

**Waterborne Release Monitoring and Surveillance Programs at the  
Savannah River Site**

by

A. Blanchard

Westinghouse Savannah River Company

Savannah River Site

Aiken, South Carolina 29808

T. I. Brown

WSMS

*RECEIVED  
APR 02 1999  
OSTI*

DOE Contract No. **DE-AC09-96SR18500**

---

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

**WATERBORNE RELEASE  
MONITORING AND SURVEILLANCE PROGRAMS  
AT THE SAVANNAH RIVER SITE (U)**

T.I. Brown, Jr.

March 1999

**Classification**

**UNCLASSIFIED**

**ADC &  
DOES NOT CONTAIN  
UNCLASSIFIED CONTROLLED  
NUCLEAR INFORMATION**

**Reviewing  
Official: E.P. Hope  
E.P. Hope, Senior Engineer**

**Date: 3/22/99**

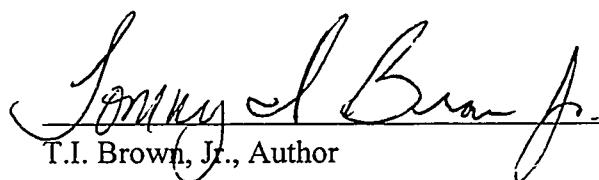


## DISCLAIMER

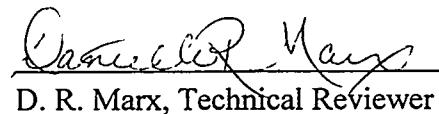
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.


Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

**DOCUMENT:** WSRC-TR-98-00411


**TITLE:** Waterborne Release Monitoring and Surveillance Programs at the  
Savannah River Site

---

Author/Technical Review:

  
T.I. Brown, Jr., Author

22 March 99  
Date

  
D. R. Marx, Technical Reviewer

22 March 99  
Date

---

Approvals:

  
C. E. Shogren, P. E., Manager, ESTG

3-22-99  
Date

  
M. J. Hitchler, Principal, Safety Analysis Services

3-22-99  
Date

## Table of Contents

|                                                                       |           |
|-----------------------------------------------------------------------|-----------|
| <b>1.0 INTRODUCTION.....</b>                                          | <b>1</b>  |
| 1.1 PURPOSE .....                                                     | 1         |
| 1.2 BACKGROUND.....                                                   | 1         |
| 1.3 OBJECTIVES .....                                                  | 3         |
| 1.4 REPORT ORGANIZATION.....                                          | 4         |
| <b>2.0 EFFLUENT MONITORING PROGRAM.....</b>                           | <b>6</b>  |
| 2.1 RADILOGICAL EFFLUENT MONITORING .....                             | 6         |
| 2.1.1 <i>Program Description</i> .....                                | 6         |
| 2.1.2 <i>Monitoring Locations</i> .....                               | 7         |
| 2.1.3 <i>Reporting Requirements</i> .....                             | 10        |
| 2.1.4 <i>Provisions for Non-routine or Emergency Conditions</i> ..... | 10        |
| 2.2 NON-RADILOGICAL EFFLUENT MONITORING .....                         | 12        |
| 2.2.1 <i>Program Description</i> .....                                | 12        |
| 2.2.2 <i>Monitoring Locations</i> .....                               | 13        |
| 2.2.3 <i>Reporting Requirements</i> .....                             | 14        |
| 2.2.4 <i>Provisions for Non-routine or Emergency Conditions</i> ..... | 14        |
| <b>3.0 ENVIRONMENTAL SURVEILLANCE PROGRAMS.....</b>                   | <b>19</b> |
| 3.1 RADILOGICAL SURVEILLANCE PROGRAM .....                            | 19        |
| 3.1.1 <i>Program Description</i> .....                                | 19        |
| 3.1.2 <i>Surveillance Locations</i> .....                             | 20        |
| 3.1.3 <i>Reporting Requirements</i> .....                             | 24        |
| 3.1.4 <i>Provisions for Non-Routine or Emergency Conditions</i> ..... | 24        |
| 3.2 NON-RADILOGICAL ENVIRONMENTAL SURVEILLANCE PROGRAM.....           | 24        |
| 3.2.1 <i>Program Description</i> .....                                | 24        |
| 3.2.2 <i>Surveillance Locations</i> .....                             | 24        |
| 3.2.3 <i>Reporting Requirements</i> .....                             | 26        |
| 3.2.4 <i>Provisions for Non-routine or Emergency Conditions</i> ..... | 27        |
| <b>4.0 BIOLOGICAL SURVEILLANCE AND TESTING PROGRAMS.....</b>          | <b>28</b> |
| 4.1 BIOLOGICAL SURVEILLANCE PROGRAM.....                              | 28        |
| 4.1.1 <i>Program Description</i> .....                                | 28        |
| 4.1.2 <i>Biological Surveillance Locations</i> .....                  | 29        |
| 4.1.3 <i>Reporting Requirements</i> .....                             | 32        |
| 4.1.4 <i>Provisions for Non-routine or Emergency Conditions</i> ..... | 32        |
| 4.2 BIOLOGICAL TESTING PROGRAMS.....                                  | 33        |
| 4.2.1 <i>Program Description</i> .....                                | 33        |
| 4.2.2 <i>Biological Testing Locations</i> .....                       | 33        |
| 4.2.3 <i>Reporting Requirements</i> .....                             | 33        |
| 4.2.4 <i>Provisions for Non-routine or Emergency Conditions</i> ..... | 33        |
| <b>5.0 SRS FIELD SAMPLING CAPABILITIES .....</b>                      | <b>34</b> |
| 5.1 ENVIRONMENTAL PROTECTION DEPARTMENT .....                         | 34        |
| 5.2 SAFETY AND HEALTH OPERATIONS DEPARTMENT.....                      | 34        |
| 5.3 OTHER ON-SITE ORGANIZATIONS .....                                 | 34        |
| 5.3.1 <i>Savannah River Technology Center</i> .....                   | 34        |
| 5.3.2 <i>Spent Fuel Storage Division</i> .....                        | 34        |
| 5.3.3 <i>Water Services Department</i> .....                          | 35        |
| <b>6.0 ON-SITE ANALYTICAL CAPABILITIES .....</b>                      | <b>37</b> |
| 6.1 ENVIRONMENTAL MONITORING SECTION LABORATORIES.....                | 37        |

---

|                                           |    |
|-------------------------------------------|----|
| 6.2 SAVANNAH RIVER TECHNOLOGY CENTER..... | 39 |
| 7.0 PROGRAMMATIC UPGRADES.....            | 41 |
| REFERENCES .....                          | 42 |
| DEFINITIONS.....                          | 43 |

#### List of Tables

|                                                                                                                           |    |
|---------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.1 Radiological Monitoring Locations and Parameters .....                                                          | 8  |
| Table 2.2 Examples of Pollutants.....                                                                                     | 12 |
| Table 2.3 NPDES Permits at Savannah River Site.....                                                                       | 13 |
| Table 2.4 Reportable Quantities of Hazardous Substances Designated Pursuant to Section 311<br>of the Clean Water Act..... | 14 |
| Table 3.1 On-site Radiological Surveillance Locations and Parameters.....                                                 | 20 |
| Table 4.1 Categories of Fish in Biological Surveillance Program .....                                                     | 28 |
| Table 4.2 Biological Monitoring Parameters .....                                                                          | 32 |
| Table 4.3 Outfalls with Toxicity Testing Requirements .....                                                               | 33 |
| Table 5.1 WSD Laboratory Analyses.....                                                                                    | 35 |
| Table 6.1 Turnaround Times for Radiological Parameters .....                                                              | 38 |
| Table 6.2 Detection Limits for Radiological Parameters .....                                                              | 39 |
| Table 6.3 TRAC Capabilities .....                                                                                         | 40 |

#### List of Figures

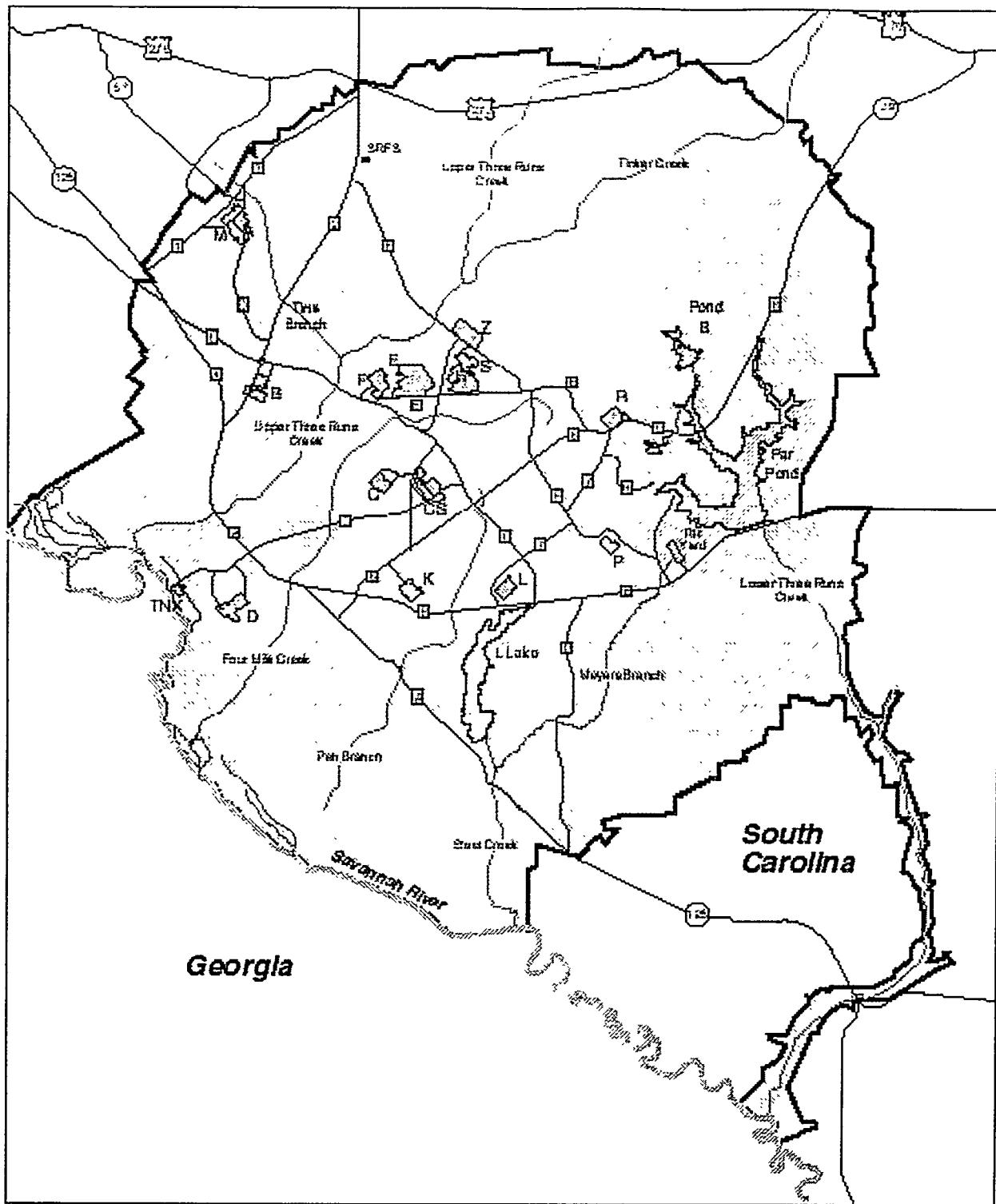
|                                                                                 |    |
|---------------------------------------------------------------------------------|----|
| Figure 1-1 Map of the Savannah River Site.....                                  | 2  |
| Figure 3-1 Radiological Surface Water Surveillance Sampling Locations .....     | 23 |
| Figure 3-2 Non-Radiological Surface Water Surveillance Sampling Locations ..... | 25 |
| Figure 4-1 On-Site Fish Surveillance Program Sampling Locations.....            | 30 |
| Figure 4-1 Off-Site Fish Surveillance Program Sampling Locations.....           | 31 |

**Acronym List**

|        |                                                               |
|--------|---------------------------------------------------------------|
| ALARA  | As Low As Reasonably Achievable                               |
| ANS    | Academy of Natural Sciences                                   |
| BAT    | Best Available Technology                                     |
| CSWTF  | Central Sanitary Wastewater Treatment Facility                |
| CWA    | Clean Water Act                                               |
| DCG    | Derived Concentration Guide                                   |
| DMR    | Discharge Monitoring Report                                   |
| DOE    | U. S. Department of Energy                                    |
| EA     | Environmental Assessment                                      |
| EDE    | Effective Dose Equivalent                                     |
| EIS    | Environmental Impact Statement                                |
| EMS    | Environmental Monitoring Section                              |
| EPA    | U. S. Environmental Protection Agency                         |
| EPD    | Environmental Protection Department                           |
| ERP&CP | Environmental Release Prevention and Control Plan             |
| ERPT   | Environmental Release Prevention Taskforce                    |
| GDNR   | Georgia Department of Natural Resources                       |
| NPDES  | National Pollutant Discharge Elimination System               |
| O&M    | Operations and Maintenance                                    |
| QA/QC  | Quality Assurance/Quality Control                             |
| RM     | River Mile                                                    |
| SCDHEC | South Carolina Department of Health and Environmental Control |
| SFSD   | Spent Fuel Storage Division                                   |
| S&HO   | Safety and Health Operations                                  |
| SIRIM  | Site Item Reportability and Issue Management                  |
| SRS    | Savannah River Site                                           |
| SRTC   | Savannah River Technology Center                              |
| TEWM   | Tritium Effluent Water Monitor                                |
| VOC    | Volatile Organic Compound                                     |
| WSD    | Water Services Department                                     |

## 1.0 INTRODUCTION

### 1.1 Purpose


This report documents the liquid release environmental compliance programs currently in place at the Savannah River Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah River and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions.

### 1.2 Background

SRS is a 310 square mile facility owned by the United States Department of Energy (DOE) (Figure 1-1). It is located in the South Carolina counties of Aiken, Barnwell, and Allendale and is bordered on the west by the Savannah River. Initially, the site's mission was the production of nuclear materials primarily in support of national defense. Additional uses for the nuclear materials included medical research and other government applications. The end of the Cold War resulted in a change in the site's priorities to nonproliferation, waste management, environmental restoration, and technology development and transfer activities.

SRS conducts both effluent monitoring and environmental surveillance programs to determine what, if any, effects site operations have on the environment and off-site populations. These two programs have different objectives, and by evaluating the data from both programs concurrently, an accurate estimate of SRS impacts can be established. The effluent monitoring program involves the collection and analysis of samples of liquid and gaseous discharges from various processes or process areas for the purpose of identifying and quantifying contaminant levels, assessing radiation exposure to the public, and demonstrating compliance with applicable local, state and federal standards. Environmental surveillance activities are used to determine the levels of radionuclides in various media from on and around SRS, including air, water, soil, foodstuffs, biota, and other media. These data are used to demonstrate compliance with applicable state and federal standards, to assess radiation exposures to off-site populations, and to determine what, if any, effects the site has on the local environment. This report deals exclusively with the monitoring and surveillance programs that involve liquid discharges to site streams and the Savannah River.

Currently, the concentration and quantity of contaminants released from SRS processes to site streams and the Savannah River are determined by analyzing: 1) radiological parameters, 2) chemical and water quality parameters, and 3) biological uptake of radionuclides. First, the radiological monitoring program measures the levels of radionuclides at points of release from processing areas. SRS also conducts radiological surveillance of on-site streams and the Savannah River to monitor ambient radiological conditions and determine the site's contribution to the levels of radioactive materials in the environment. Second, site streams are monitored at the process outfalls in accordance with the National Pollutant Discharge Elimination System (NPDES) for chemical and toxicological parameters that are released as a result of process discharges or storm water runoff. Additionally, the non-radiological surveillance program is



**Figure 1-1 Map of the Savannah River Site**

used to detect evidence of degradation in stream and river water quality as a result of site discharges. Finally, as part of the biological surveillance program, levels of certain radionuclides in fish on site, upstream, and downstream from SRS to the Atlantic Ocean are measured.

DOE Orders 5400.1 and 5400.5 (Refs 1 and 2) set forth the requirements for environmental monitoring programs. DOE/EH-0173T, *Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance* (Ref. 3), both incorporates and expands on the requirements in the Orders by describing the elements of an acceptable radiological effluent monitoring and surveillance program for DOE facilities. SRS has expanded upon these requirements even further to include non-radiological monitoring and surveillance program requirements. The guide clearly states that it is DOE policy to conduct monitoring and surveillance programs that

- can determine whether the public and the environment are properly protected during operations of DOE facilities
- can determine whether operations of DOE facilities are in compliance with DOE orders and other applicable Federal, State, and local standards and requirements
- are capable of detecting and quantifying unplanned releases
- meet high standards of quality and credibility

The SRS monitoring and surveillance program is designed to meet the requirements of DOE/EH-0173T to address monitoring, sample analysis, data analysis, demonstration of compliance, record-keeping, reporting, and quality assurance (QA).

### 1.3 Objectives

The objectives of this report are to:

- summarize the liquid release environmental compliance programs at SRS
- describe field sampling and laboratory analysis capabilities on site
- explain how normal and unusual conditions are handled in regards to stream monitoring and surveillance

The objectives of the SRS effluent monitoring program (Ref. 4) are to:

- determine compliance with Federal, State, and local regulations, DOE orders, and commitments made in environmental impact statements (EIS) and environmental assessments (EA)
- identify potential environmental problems and evaluate the need for and/or effectiveness of effluent treatment and control practices
- provide support for permitting activities and compliance

- detect, characterize, and report unplanned releases in support of the SRS Site Item Reportability and Issue Management Program (SIRIM)
- provide information in support of the SRS Environmental As Low As Reasonably Achievable (ALARA) Program, WSRC-3Q – ECM-18.2 (Ref. 5).

The objectives of the SRS environmental surveillance program (Ref. 4) are to:

- verify compliance with commitments made in EISs, EAs, and other documents
- characterize and define trends in the physical, chemical, and biological characteristics of the environment on and surrounding SRS
- establish baselines of environmental quality
- continually assess pollution abatement and effluent control programs and the adequacy of facility operations or containment
- identify and quantify new or existing environmental problems
- verify or refine the predictions of environmental models
- assess actual or potential contaminant exposures to critical groups and populations
- conduct studies aimed at improving knowledge of contaminant transfer in the environment

Inherent in these objectives for both the monitoring and surveillance programs are the following (Ref. 4):

- commitment to notify appropriate officials in the event of unusual or unforeseen conditions that warrant special environmental monitoring
- timely communication of the programs' results to DOE and the public
- maintenance of accurate and continuous records of the effects of SRS on the environment
- assistance in risk assessment and uncertainty analyses for human populations in the vicinity of SRS

#### **1.4 Report Organization**

Section 2 of this report presents descriptions of the effluent monitoring programs in place at SRS. Section 3 addresses the environmental surveillance programs associated with surface waters. Section 4 describes the biological surveillance program as it relates to surface waters. Monitoring/surveillance frequency, reporting requirements, and provisions for emergency conditions are also addressed in each of these sections.

Section 5 describes stream sampling capabilities available through the various organizations at SRS. This description includes a brief discussion of the sampling equipment used for each monitoring program. Section 6 summarizes the on-site analytical capabilities available on both a routine and emergency basis for water analysis. Laboratory Quality Assurance/Quality Control (QA/QC) issues and data turn-around times are also discussed briefly in Section 6. Finally, Section 7 documents the programmatic upgrades established since the tritium release from a reactor area occurred in 1991. Appendix A is a description of the liquid release pathways at SRS. This appendix documents the outfalls recommended for initial hydrological modeling. Appendix B identifies the industrial, commercial, and recreational river uses downstream of SRS.

## 2.0 EFFLUENT MONITORING PROGRAM

A crucial aspect of any liquid effluent monitoring program is ensuring that the samples that are collected and analyzed are indeed representative of the stream conditions. This is accomplished by using effluent monitoring systems at points of release that are appropriate for the type and level of contaminants present, that collect samples at the appropriate frequencies, and that incorporate QA measures in both the collection and analysis phases.

### 2.1 Radiological Effluent Monitoring

#### 2.1.1 *Program Description*

Direct measurement (also referred to as continuous monitoring or online monitoring) and/or sample collection and analysis (also referred to as offline monitoring) are used to monitor each liquid discharge point that could potentially contain radionuclides. The type (i.e., online or offline) and frequency of monitoring is based on regulatory and operational requirements and on the risks associated with the effluent stream being monitored. Determination of these factors was made following a 1992 evaluation of liquid effluent streams and assessment of their potential for release of radiological materials (Ref. 11).

The radiological effluent monitoring program is designed to meet the requirements of pertinent DOE orders and guides. Several SRS organizations are responsible for implementing the program and ensuring that all requirements are met. The following subsections provide discussion of the applicable requirements and the SRS organizational responsibilities.

##### 2.1.1.1 Program Requirements

The SRS radiological effluent monitoring program meets the requirements of DOE/EH-0173T, DOE Order 5400.1, and DOE Order 5400.5 (Refs. 1, 2, 3). The program is designed to ensure that the monitoring systems specified for each discharge are based directly on the characterization of the sources, the pollutants expected to be present, the treatment systems in place, and the release point configuration. These monitoring systems are adequate to evaluate compliance with DOE Derived Concentration Guides (DCGs) (Ref. 2).

DCGs are not effluent limits. Instead, they are radionuclide-specific reference values that indicate whether Best Available Technology (BAT) treatment must be applied to further reduce radionuclide concentrations prior to discharge into surface waters. SRS has committed to applying BAT (Ref. 4) to effluents that meet any of the following conditions:

- at the point of discharge to surface waters and prior to dilution, the surface waters otherwise would contain annual average concentrations of radioactive material in excess of the DOE Order 5400.5 DCG values
- the total annual Effective Dose Equivalent (EDE) to the public would otherwise exceed 10 mrem, with the effluent in question contributing a significant portion of that dose
- operators of the facility associated with the effluent are not in compliance with the Groundwater Protection Management Plan for the activity being conducted

For discharges containing multiple radionuclides, the sum of the fractional DCGs is used to determine compliance with DOE Order 5400.5. This is given by the following equation:

$$\sum_{i=1}^N C_i / DCG_i \leq 1 \quad \text{Equation 1}$$

where:

$C_i$  = concentration of radionuclide "i"  
 $DCG_i$  = DCG for radionuclide "i"  
 $N$  = the number of radionuclides present in the effluent

Release limits are not the only requirements set forth in the DOE Orders. Other program requirements are in place to ensure the adequacy of monitoring and analytical equipment. The analytical laboratories and on-line instruments are sufficiently sensitive to provide detection at levels low enough to ensure compliance with regulatory requirements. To ensure reliability, sampling systems and online monitors are calibrated and maintained according to manufacturer's specifications. Some discharge locations are monitored using continuous monitoring systems equipped with recorders and alarms. These output and warning devices are located in areas continuously occupied by operations or security personnel, and are set to alert personnel if releases of radionuclides are approaching DOE standards.

#### 2.1.1.2 Organizational Responsibilities

Environmental Monitoring Section (EMS) personnel collect and analyze most liquid radiological samples and compile the data in both a monthly radioactive release report and an annual environmental report. EMS personnel also assist the operating department in locating the monitoring equipment and in identifying any equipment deficiencies. The operating departments are responsible for the active and passive effluent monitoring systems used on the discharges from their facilities. Operating department personnel also identify non-routine effluent releases and initiate corrective actions to mitigate these releases and prevent recurrences.

#### 2.1.2 *Monitoring Locations*

Liquid effluents are sampled at or near their discharge point into the receiving stream using automatic sampling equipment or continuous monitoring equipment. A discharge point is defined at SRS as follows:

the point at which a manmade conveyance (i.e., pipe, ditch, channel, conduit, well or canal) discharges into a naturally occurring body of water (i.e., site stream) or into a manmade pond or lake (i.e. PAR Pond or L Lake) that overflows into a naturally occurring body of water that ultimately is accessible by the general public (Ref. 4).

A total of 21 locations across the site are monitored, as shown in Table 2.1 (Ref. 4). Measurements are taken at these locations to 1) quantify direct discharges to site streams, 2) determine compliance with DCG values, and 3) determine environmental ALARA release

trending. Actinide analyses are used to quantify uranium isotopes (U-234, U-235, U-238), plutonium isotopes (Pu-238, Pu-239), americium (Am-241), and curium (Cm-244).

Table 2.1 Radiological Monitoring Locations and Parameters

|                             | Monitoring Location                                                                                                                                                                                                           | Sample Type | Collection Frequency/<br>Organization | Analyses Performed                                                                 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|------------------------------------------------------------------------------------|
| <b>A-Area</b>               |                                                                                                                                                                                                                               |             |                                       |                                                                                    |
| Tims Branch-2 (TB-2)        | NPDES Outfall A-01 on an unnamed tributary of Tims Branch, east of SRTC, on the northeast side of SRS Rd. 1A and south of Green Pond Rd.                                                                                      | FP          | Weekly/EMS                            | Gross alpha and beta, actinide, tritium, & gamma spec.                             |
| <b>D-Area</b>               |                                                                                                                                                                                                                               |             |                                       |                                                                                    |
| 400-D Effluent              | In process sewer west of 772-D                                                                                                                                                                                                | FP          | Weekly/EMS                            | Gross alpha and beta, tritium, total strontium & gamma spec.                       |
| <b>F-Area</b>               |                                                                                                                                                                                                                               |             |                                       |                                                                                    |
| F-01                        | NPDES Outfall F-01; west side of F-Area in an unnamed tributary of Upper Three Runs Creek                                                                                                                                     | FP          | Weekly/EMS                            | Gross alpha and beta, tritium, total strontium & gamma spec.                       |
| F-012                       | 281-8F Retention Basin                                                                                                                                                                                                        | FP          | As required/EMS                       | Gross alpha and beta, tritium, total strontium & gamma spec.                       |
| F-013                       | 200-F Cooling Water Basin (241-97F)                                                                                                                                                                                           | FP          | As required/EMS                       | Gross alpha and beta, tritium, total strontium & gamma spec.                       |
| Four Mile Creek-3 (FM-3)    | Southeast of F-Area; receives all process effluent discharges from F-Area, as well as runoff from the southern side of F-Area                                                                                                 | FP          | Weekly/EMS                            | Gross alpha and beta, tritium, total strontium, promethium, actinide & gamma spec. |
| Upper Three Runs-2 (U3R-2)  | Northeast of F-Area in an unnamed tributary of Upper Three Runs Creek; receives nonprocess discharges and stormwater runoff from the northeast portion of F-Area                                                              | FP          | Weekly/EMS                            | Gross alpha and beta, tritium, total strontium, promethium, actinide & gamma spec  |
| Upper Three Runs-F3 (U3R-3) | Northwest of F-Area in an unnamed tributary of Upper Three Runs Creek; receives process effluent discharges and runoff from Naval Fuels                                                                                       | FP          | During rain/EMS                       | Gross alpha and beta, tritium, total strontium, promethium, actinide & gamma spec  |
| <b>H-Area</b>               |                                                                                                                                                                                                                               |             |                                       |                                                                                    |
| Four Mile Creek-1C (FM-1C)  | Unnamed tributary of Four Mile Creek, north of SRS Rd. E and downstream of outfall F-18; receives effluent discharges from RBOF, batch discharges from the 241-105H high and moderate basins, and releases monitored by HP-50 | FP          | Weekly/EMS                            | Gross alpha and beta, tritium, total strontium, promethium, & gamma spec.          |
| H-04                        | NPDES Outfall H-04; discharges into unnamed tributary of Upper Three Runs Creek; receives process effluent from CIF                                                                                                           | FP          | Weekly/EMS                            | Gross alpha and beta, tritium, total strontium & gamma spec.                       |

Table 2.1 Radiological Monitoring Locations and Parameters (continued)

|                                 | Monitoring Location                                                                                                                                                                                                                          | Sample Type | Collection Frequency/<br>Organization | Radionuclides Monitored                                                           |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|-----------------------------------------------------------------------------------|
| H-017                           | H-Area Retention Basin (281-8H)                                                                                                                                                                                                              | FP          | As req'd/<br>EMS                      | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| H-018                           | 200-H Cooling Water Basin<br>(241-103H)                                                                                                                                                                                                      | FP          | As req'd/<br>EMS                      | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| HP-15                           | East of H-Area on an unnamed<br>tributary of Upper Three Runs Creek,<br>Tritium facility outfall                                                                                                                                             | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| HP-52                           | H-Area Tank Farm, approximately<br>1600 ft. east of the intersection of SRS<br>Rd. E and Rd. 4; receives process<br>effluent discharge from H-Area (221-H<br>segregated cooling water and H-Area<br>waste management) and runoff from<br>ETF | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| Upper Three Runs-2A<br>(U3R-2A) | West of F-Area in the process effluent<br>line from ETF, just prior to discharge<br>into Upper Three Runs Creek, at Rd. C                                                                                                                    | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, total strontium,<br>promethium & gamma<br>spec. |
| <b>K-Area</b>                   |                                                                                                                                                                                                                                              |             |                                       |                                                                                   |
| K-Canal                         | Southwest of K-Reactor; receives K-<br>Area process sewer discharge                                                                                                                                                                          | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| <b>L-Area</b>                   |                                                                                                                                                                                                                                              |             |                                       |                                                                                   |
| L-07                            | Southwest corner of 105-L                                                                                                                                                                                                                    | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| <b>M-Area</b>                   |                                                                                                                                                                                                                                              |             |                                       |                                                                                   |
| Tims Branch-3 (TB-3)            | Outfall A-014, on an unnamed tributary<br>of Tims Branch, at SRS Rd. D; sample<br>point used for all M-Area liquid<br>effluents                                                                                                              | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>actinide & gamma spec.                                   |
| <b>P-Area</b>                   |                                                                                                                                                                                                                                              |             |                                       |                                                                                   |
| 105-R Sumps                     | Sumps in 105-R                                                                                                                                                                                                                               | G           | During each<br>sump release/<br>S&HO  | Gross alpha and beta,<br>tritium, total strontium &<br>gamma spec.                |
| <b>S-Area</b>                   |                                                                                                                                                                                                                                              |             |                                       |                                                                                   |
| S-04                            | NPDES Outfall S-04; receives process<br>discharge from DWPF                                                                                                                                                                                  | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, total strontium,<br>actinide & gamma spec.      |
| <b>TNX</b>                      |                                                                                                                                                                                                                                              |             |                                       |                                                                                   |
| TNX-008                         | NPDES Outfall X-08                                                                                                                                                                                                                           | FP          | Weekly/<br>EMS                        | Gross alpha and beta,<br>tritium, actinide &<br>gamma spec.                       |

FP – Flow proportional sample

G – Grab sample

### ***2.1.3 Reporting Requirements***

DOE Orders 5400.1 and 5400.5 specify the requirements for reporting data gathered from effluent monitoring activities, for both routine and unusual conditions. Notification of Unusual Occurrences must be made to the DOE Deputy Assistant Secretary for Environment and the appropriate program office of an unusual occurrence that may cause any of the following conditions:

- a combined dose for all pathways of  $\geq 100$  mrem EDE in a year due to DOE and other man-made sources
- an exceedance of or failure to meet any other legally applicable limit, including other DOE Order 5400.5 requirements

Additionally, timely notification must be made if the combined dose from SRS operations and other man-made sources exceeds 100 mrem EDE. The Annual Radioactive Releases Effluent Information Systems/Online Discharge Information System (EIS/ODIS) Report, required by DOE Order 5400.1, provides data for the subject year and a summary of that year's activities.. Also required by that same order is the SRS Environmental Report, an annual publication that summarizes environmental data and highlights significant programs. This report also includes a compliance summary, data from the effluent monitoring program, and the potential doses to the public resulting from SRS operation.

Other drivers apart from DOE Orders require the issuance of reports documenting the results of monitoring activities during routine and unusual conditions. SRS procedures require the issuance of the Monthly Radioactive Releases Report and an annual compilation of these reports, the latter of which is included in the previously mentioned SRS Environmental Report. The monthly report presents the monthly release quantities from each SRS effluent point as well as the year-to-date release quantity and the associated EDE. It also documents 1) a comparison of the year-to-date doses with the site ALARA guide and 2) compliance with DOE DCGs from DOE Order 5400.5. The Radioactive Releases Report presents this information for each area and offers a comparison of the area's EDE with the site's.

### ***2.1.4 Provisions for Non-routine or Emergency Conditions***

Each SRS operating department, with the assistance of Safety and Health Operations (S&HO), is responsible for identifying, investigating, and reporting to the Environmental Protection Department (EPD) any non-routine liquid release. SRS typically separates routine monitoring systems from those installed to monitor under emergency or unusual conditions.

Emergency notification is the mechanism by which events of a reportable occurrence at SRS are reported to state and county emergency management agencies. It establishes mutually agreed upon triggers which warrant courtesy notifications to state agencies within Georgia and South Carolina, and Emergency Management Directors within Aiken, Allendale, Barnwell, Burke, and Richmond Counties. The Savannah River Site Operations Center Operating Procedure Manual SRSOC 305-2 contains the guidance for the onsite protocol for notification of incidents to the

Operation Center and the courtesy notification to state and county emergency management agencies. In addition to regulatory notifications, courtesy notifications which result from an environmental release are required by existing Memorandums of Understanding (MOUs) [DE-MU09-92SR18285 and DE-MU09-92SR18287 respectively].

Courtesy Notifications can be distinguished from Regulatory Notifications in that there are no stringent reporting criteria or guidelines established. However, to ensure state and county emergency management agencies have prior access to any information that may be released to the public, the *as soon as possible* report not-later-than time is synonymous with *immediately*. Although not a regulatory requirement, initial notifications to state, counties, and DOE-HQ must be complete within 30 minutes from the time the event is reported to the onsite Operations Center.

Notification responsibilities in the event of a reportable occurrence at SRS that may present a threat to the health and safety of the surrounding population and environment and result in a potential or actual release of radioactive and/or non-radioactive hazardous materials is defined in a MOU between DOE-SR and the States of Georgia and South Carolina. Should the initial assessment of a spill or release indicate that the incident falls outside emergency classification guidelines, DOE-SR must make additional evaluations to further determine the need for notifications of offsite authorities. Consideration in this determination will include an assessment of the potential/actual level of news media and/or public interest resulting from the incident. Prompt notifications will be made, to the extent practical, prior to issuance of a formal news release or if a significant number of inquiries concerning the incident are received from the media or general public. Georgia and South Carolina are interested in any non-environmental related event that would generate media interest or public inquiry [e.g. hostage situation, bomb threat in a non-process facility/area, etc.]

The following offsite agencies must be notified within 30 minutes when Courtesy Notifications have been directed:

- Georgia Emergency Management Agency (GEMA)
- Georgia Department of Natural Resources/Environmental Protection Division (GA DNR/EPD)
- South Carolina Department Of Health and Environmental Control (SC DHEC)
- South Carolina Emergency Preparedness Division (SC EPD)
- Aiken County Emergency Management Director
- Allendale County Emergency Management Director
- Burke County Emergency Management Director
- Barnwell County Emergency Management Director

- Richmond County Emergency Management Director
- Plant Vogtle
- DOE-HQ

In an effort to minimize the amount of time necessary to perform on and offsite notifications, the Emergency Notification Network (ENN) is used to notify similarly equipped offsite agencies with twenty-four hour warning points. Other on and offsite notification points (e.g. SC DHEC, Richmond County Warning Point) require individual phone calls. A copy of the Courtesy Notification will be faxed to state, county, and local agencies simultaneously with the ENN notification. When directed to implement Courtesy Notifications, Operations Center personnel immediately notify and give an expedient briefing on incident status to the state and county emergency management agencies. The pre-set Allegro Conference, the Offsite Courtesy Notification Conference, will be used if the ENN is unavailable.

## 2.2 Non-Radiological Effluent Monitoring

### 2.2.1 *Program Description*

#### 2.2.1.1 Program Requirements

The Clean Water Act (CWA), passed by Congress in 1972, is the primary federal law protecting the nation's waters. The main goal of the CWA is to restore and maintain the quality of lakes, rivers, aquifers, and coastal areas. The CWA requires a permit to be obtained prior to discharging pollutants into the waters of the U.S. The NPDES program regulates the amount of pollutants that can be discharged by municipal wastewater treatment facilities and industrial facilities, referred to as point sources. Chemical concentrations and physical properties of the effluents leaving SRS facilities must meet NPDES requirements prior to discharge to site streams. Permittees are required to submit monitoring data to the government agency that regulates the permit (either state government or the United States Environmental Protection Agency [EPA]). Failure to comply with the terms of the permit or violations of permit limits could result in enforcement action being taken against the permittee.

The NPDES program regulates the discharge of conventional, non-conventional, and toxic pollutants. Examples of each of these are shown in the Table 2.2.

Table 2.2 Examples of Pollutants

| Conventional Pollutants | Non-conventional Pollutants | Toxic Pollutants |
|-------------------------|-----------------------------|------------------|
| Fecal Coliform          | Nitrogen                    | Pesticides       |
| Oil and Grease          | Phosphorous                 | Metals           |

The NPDES program also has established limits on the discharge of storm water from developed areas. These discharges are permitted separately from the point sources. The storm water permitting program is being implemented under the CWA in two phases. Currently, Phase I is

requiring permits for storm water management systems that serve communities with populations over 100,000 and for run off from areas associated with construction or industrial activities.

SRS has been monitoring its process discharges under an NPDES permit. The South Carolina Department of Health and Environmental Control (SCDHEC) administers the NPDES program in South Carolina under EPA authority. Permits are generally issued for a five-year period, but they may be re-negotiated prior to that time based on changes in processes, effluent limitations, and analytical capabilities. The industrial wastewater permit became effective in January 1998, but plans are to begin the re-negotiation process within a year of its effective date. The utility water permit that governs SRS is a general permit for the state of South Carolina. This means that the terms and conditions of the permit apply to every discharger that is granted coverage under that permit. This particular permit will be re-issued in South Carolina in 1999. The industrial storm water permit is also a general permit, which went into effect February 1, 1998 and will remain so until January 31, 2003.

#### 2.2.1.2 Organizational Responsibilities

EMS personnel collect most NPDES samples and send them to a subcontract laboratory for analysis. Operating Department personnel are responsible for promptly notifying EPD regarding any unusual occurrence or emergency condition in their facility that could result in a permit violation. EPD personnel notify SCDHEC and DOE of any NPDES permit exceedance and corrective actions that are being taken.

#### 2.2.2 *Monitoring Locations*

SRS currently has four NPDES discharge permits. Table 2.3 shows the permit number, the type of discharges regulated under each permit, and the number of outfall sampling locations associated with each permit.

Table 2.3 NPDES Permits at Savannah River Site

| Permit Number | Discharge Type           | Number of Outfalls |
|---------------|--------------------------|--------------------|
| SC0000175     | Industrial Wastewater    | 36                 |
| SCG250162     | Utility Water            | 1                  |
| SCR000000     | Industrial Storm water   | 52                 |
| SCR100000     | Construction Storm water | Varies *           |

\* Storm water monitoring is required at construction sites that disturb 5 acres or more

The permits require different monitoring frequencies and methods, depending on the type of wastewater discharged, the stream being monitored, and the constituents of concern in the effluent. Most outfalls under Permit SC0000175 are monitored once a month. Industrial storm water outfalls, covered under permit SCR000000, must be monitored during significant rainfall events. Construction storm water outfalls are monitored upon request by SCDHEC to address specific discharges.

### **2.2.3 Reporting Requirements**

Appendix A is a list of the outfalls regulated under Permit SC0000175, their effluent limitations, and monitoring requirements. The data from these samples is reported to SCDHEC each month in the form of a Discharge Monitoring Report (DMR). At SRS, EPD interfaces directly with SCDHEC on the regulatory aspects of the site's NPDES permit. Additionally, EPD acts as the liaison between the custodial departments that are responsible for the outfalls and SCDHEC. Part of EPD's responsibilities includes application for permit modifications, negotiation of new permits, submittal of DMRs, and notification of any permit violations.

Requirements for reporting permit violations, unpermitted discharges, or changes in operating conditions are the same as those discussed in Section 2.1.3.

### **2.2.4 Provisions for Non-routine or Emergency Conditions**

The mechanisms for emergency notifications, including courtesy notifications to the state agencies within Georgia and South Carolina, and Emergency Management Directors within Aiken, Allendale, Barnwell, Burke, and Richmond Counties, following a chemical release are identical to those discussed in Section 2.1.4 for radiological releases. If any conditions or limitations of the permit are violated at any time, SRS must notify SCDHEC orally within 24 hours of becoming aware of the violation (Ref. 6). Additionally, within five days of becoming aware of the violation, SRS must submit in writing a description of the discharge, the cause, and the period of the non-compliance, including exact dates and times. If the condition leading to the violation has not been corrected by the time the written notification is submitted to SCDHEC, SRS must estimate the time the non-compliance will cease and identify the actions being taken to reduce, eliminate or prevent recurrence of the discharge.

If a department at SRS knows or anticipates that pending process changes will result in the discharge of a toxic pollutant, they are to notify the appropriate EPD personnel, who will help determine if SCDHEC must be informed of the change based on permit conditions.

If any outfall custodian at SRS, referred to as "the permittee," becomes aware of an activity or condition that will result in either a routine or a non-routine discharge of any toxic pollutant that is not limited in the permit, he/she must notify EPD immediately. If the expected effluent concentrations exceed levels specified in the permit special conditions, EPD will notify SCDHEC. Additionally, if the permittee becomes aware of an activity that will result (or has resulted) in the discharge of any hazardous substance identified under Section 311 of the CWA, he/she must notify EPD immediately. EPD will in turn notify SCDHEC. A list of the hazardous substances that must be reported are shown in Table 2.4.

Table 2.4 Reportable Quantities of Hazardous Substances Designated Pursuant to Section 311 of the Clean Water Act

| Material         | RQ in pounds | kilograms |
|------------------|--------------|-----------|
| Acetaldehyde.    | 1,000        | 454       |
| Acetic acid      | 5,000        | 2,270     |
| Acetic anhydride | 5,000        | 2,270     |

| Material            | RQ in pounds | kilograms |
|---------------------|--------------|-----------|
| Acetone cyanohydrin | 10           | 4.54      |
| Acetyl bromide      | 5,000        | 2,270     |
| Acetyl chloride     | 5,000        | 2,270     |

Report of Waterborne Release Monitoring  
Programs at Savannah River Site

WSRC-TR-98-00411, Rev. 1

page 15 of 44

| Material                         | RQ in pounds | kilograms |
|----------------------------------|--------------|-----------|
| Acrolein                         | 1            | 0.454     |
| Acrylonitrile                    | 100          | 45.4      |
| Adipic acid                      | 5,000        | 2,270     |
| Aldrin                           | 1            | 0.454     |
| Allyl alcohol                    | 100          | 45.4      |
| Allyl chloride                   | 1,000        | 454       |
| Aluminum sulfate                 | 5,000        | 2,270     |
| Ammonia                          | 100          | 45.4      |
| Ammonium acetate                 | 5,000        | 2,270     |
| Ammonium benzoate                | 5,000        | 2,270     |
| Ammonium bicarbonate             | 5,000        | 2,270     |
| Ammonium bichromate              | 10           | 4.54      |
| Ammonium bifluoride              | 100          | 45.4      |
| Ammonium bisulfite               | 5,000        | 2,270     |
| Ammonium carbamate               | 5,000        | 2,270     |
| Ammonium carbonate               | 5,000        | 2,270     |
| Ammonium chloride                | 5,000        | 2,270     |
| Ammonium chromate                | 10           | 4.54      |
| Ammonium citrate dibasic         | 5,000        | 2,270     |
| Ammonium fluoborate              | 5,000        | 2,270     |
| Material                         | RQ in pounds | kilograms |
| Arsenic pentoxide                | 1            | 0.454     |
| Arsenic trichloride              | 1            | 0.454     |
| Arsenic trioxide                 | 1            | 0.454     |
| Arsenic trisulfide               | 1            | 0.454     |
| Barium cyanide                   | 10           | 4.54      |
| Benzene                          | 10           | 4.54      |
| Benzoic acid                     | 5,000        | 2,270     |
| Benzonitrile                     | 5,000        | 2,270     |
| Benzoyl chloride                 | 1,000        | 454       |
| Benzylchloride                   | 100          | 45.4      |
| Beryllium chloride               | 1            | 0.454     |
| Beryllium fluoride               | 1            | 0.454     |
| Beryllium nitrate                | 1            | 0.454     |
| Butyl acetate                    | 5,000        | 2,270     |
| Butylamine                       | 1,000        | 454       |
| Butyric acid                     | 5,000        | 2,270     |
| Cadmium acetate                  | 10           | 4.54      |
| Cadmium bromide                  | 10           | 4.54      |
| Cadmium chloride                 | 10           | 4.54      |
| Calcium arsenate                 | 1            | 0.454     |
| Calcium arsenite                 | 1            | 0.454     |
| Calcium carbide                  | 10           | 4.54      |
| Calcium chromate                 | 10           | 4.54      |
| Calcium cyanide                  | 10           | 4.54      |
| Calcium dodecylbenzenesulfonate. | 1,000        | 454       |
| Calcium hypochlorite             | 10           | 4.54      |
| Captan                           | 10           | 4.54      |
| Carbaryl                         | 100          | 45.4      |

| Material                    | RQ in pounds | kilograms |
|-----------------------------|--------------|-----------|
| Ammonium fluoride           | 100          | 45.4      |
| Ammonium hydroxide          | 1,000        | 454       |
| Ammonium oxalate            | 5,000        | 2,270     |
| Ammonium silicofluoride     | 1,000        | 454       |
| Ammonium sulfamate          | 5,000        | 2,270     |
| Ammonium sulfide            | 100          | 45.4      |
| Ammonium sulfite            | 5,000        | 2,270     |
| Ammonium tartrate           | 5,000        | 2,270     |
| Ammonium thiocyanate        | 5,000        | 2,270     |
| Amyl acetate                | 5,000        | 2,270     |
| Aniline                     | 5,000        | 2,270     |
| Antimony pentachloride      | 1,000        | 454       |
| Antimony Potassium tartrate | 100          | 45.4      |
| Antimony tribromide         | 1,000        | 454       |
| Antimony trichloride        | 1,000        | 454       |
| Antimony trifluoride        | 1,000        | 454       |
| Antimony trioxide           | 1,000        | 454       |
| Arsenic disulfide           | 1            | 0.454     |

| Material                   | RQ in pounds | kilograms |
|----------------------------|--------------|-----------|
| Carbofuran                 | 10           | 4.54      |
| Carbon disulfide           | 100          | 45.4      |
| Carbon tetrachloride       | 10           | 4.54      |
| Chlordane                  | 1            | 0.454     |
| Chlorine                   | 10           | 4.54      |
| Chlorobenzene              | 100          | 45.4      |
| Chloroform                 | 10           | 4.54      |
| Chlorosulfonic acid        | 1,000        | 454       |
| Chlorpyrifos               | 1            | 0.454     |
| Chromic acetate            | 1,000        | 454       |
| Chromic acid               | 10           | 4.54      |
| Chromic sulfate            | 1,000        | 454       |
| Chromous chloride          | 1,000        | 454       |
| Cobaltous bromide          | 1,000        | 454       |
| Cobaltous formate          | 1,000        | 454       |
| Cobaltous sulfamate        | 1,000        | 454       |
| Coumaphos                  | 10           | 4.54      |
| Cresol                     | 100          | 45.4      |
| Crotonaldehyde             | 100          | 45.4      |
| Cupric acetate             | 100          | 45.4      |
| Cupric acetoarsenite       | 1            | 0.454     |
| Cupric chloride            | 10           | 4.54      |
| Cupric nitrate             | 100          | 45.4      |
| Cupric oxalate             | 100          | 45.4      |
| Cupric sulfate             | 10           | 4.54      |
| Cupric sulfate, ammoniated | 100          | 45.4      |
| Cupric tartrate            | 100          | 45.4      |
| Cyanogen chloride          | 10           | 4.54      |
| Cyclohexane                | 1,000        | 454       |

| Material                                  | RQ in pounds | kilograms |
|-------------------------------------------|--------------|-----------|
| 2,4-D Acid                                | 100          | 45.4      |
| 2,4-D Esters                              | 100          | 45.4      |
| DDT                                       | 1            | 0.454     |
| Diazinon                                  | 1            | 0.454     |
| Dicamba                                   | 1,000        | 454       |
| Dichlobenil                               | 100          | 45.4      |
| Dichlone                                  | 1            | 0.454     |
| Dichlorobenzene                           | 100          | 45.4      |
| Dichloropropane                           | 1,000        | 454       |
| Dichloropropene                           | 100          | 45.4      |
| Dichloropropene-Dichloropropane (mixture) | 100          | 45.4      |
| Dichloropropionic acid                    | 5,000        | 2,270     |
| Dichlorvos                                | 10           | 4.54      |
| Dicofol                                   | 10           | 4.54      |
| Dieledrin                                 | 1            | 0.454     |
| Diethylamine                              | 100          | 45.4      |
| Dimethylamine                             | 1,000        | 454       |
| Dinitrobenzene (mixed)                    | 100          | 45.4      |
| Dinitrophenol                             | 10           | 45.4      |
| Dinitrotoluene                            | 10           | 4.54      |
| Diquat                                    | 1,000        | 454       |
| Disulfoton                                | 1            | 0.454     |
| Diuron                                    | 100          | 45.4      |
| Dodecylbenzenesulfonate                   | 1            | 0.454     |
| Kepone                                    |              |           |
| dodecylbenzenesulfonate                   | 5,000        | 2,270     |
| Triethylamine                             |              |           |
| Dodecylbenzenesulfonic acid               | 1,000        | 454       |
| Endosulfan                                | 1            | 0.454     |
| Endrin                                    | 1            | 0.454     |
| Epichlorohydrin                           | 100          | 45.4      |
| Ethion                                    | 10           | 4.54      |
| Ethylbenzene                              | 1,000        | 454       |
| (EDTA). Ethylene dibromide                | 1            | 0.454     |
| Ethylene dichloride                       | 100          | 45.4      |
| Ethylenediamine                           | 5,000        | 2,270     |
| Ethylenediamine- acid tetraacetic         | 5,000        | 2,270     |
| Ferric Ammonium citrate                   | 1,000        | 454       |
| Ferric Ammonium oxalate                   | 1,000        | 454       |
| Ferric chloride                           | 1,000        | 454       |
| Ferric fluoride                           | 100          | 45.4      |
| Ferric nitrate                            | 1,000        | 454       |
| Ferric sulfate                            | 1,000        | 454       |
| Ferrous Ammonium sulfate                  | 1,000        | 454       |
| Ferrous chloride                          | 100          | 45.4      |
| Ferrous sulfate                           | 1,000        | 454       |

| Material                  | RQ in pounds | kilograms |
|---------------------------|--------------|-----------|
| Formaldehyde              | 100          | 45.4      |
| Formic acid               | 5,000        | 2,270     |
| Fumaric acid              | 5,000        | 2,270     |
| Furfural                  | 5,000        | 2,270     |
| Guthion                   | 1            | 0.454     |
| Heptachlor                | 1            | 0.454     |
| Hexachlorocyclopentadiene | 10           | 4.54      |
| Hydrochloric acid         | 5,000        | 2,270     |
| Hydrofluoric acid         | 100          | 45.4      |
| Hydrogen cyanide          | 10           | 4.54      |
| Hydrogen sulfide          | 100          | 45.4      |
| Isoprene                  | 100          | 45.4      |
| Isopropanolamine          | 1,000        | 454       |
| Lead acetate              | 10           | 4.54      |
| Lead arsenate             | 1            | 0.454     |
| Lead chloride             | 10           | 4.54      |
| Lead fluoborate           | 10           | 4.54      |
| Lead fluoride             | 10           | 4.54      |
| Lead iodide               | 10           | 4.54      |
| Lead nitrate              | 10           | 4.54      |
| Lead stearate             | 10           | 4.54      |
| Lead sulfate              | 10           | 4.54      |
| Lead sulfide              | 10           | 4.54      |
| Lead thiocyanate          | 10           | 4.54      |
| Lindane                   | 1            | 0.454     |
| Lithium chromate          | 10           | 4.54      |
| Malathion                 | 100          | 45.4      |
| Maleic acid               | 5,000        | 2,270     |
| Maleic anhydride          | 5,000        | 2,270     |
| Mercaptodimethur          | 10           | 4.54      |
| Mercuric cyanide          | 1            | 0.454     |
| Mercuric nitrate          | 10           | 4.54      |
| Mercuric sulfate          | 10           | 4.54      |
| Mercuric thiocyanate      | 10           | 4.54      |
| Mercurous nitrate         | 10           | 4.54      |
| Methoxychlor              | 1            | 0.454     |
| Methyl mercaptan          | 100          | 45.4      |
| Methyl methacrylate       | 1,000        | 454       |
| Methyl parathion          | 100          | 45.4      |
| Mevinphos                 | 10           | 4.54      |
| Mexacarbate               | 1,000        | 454       |
| Monoethylamine            | 100          | 45.4      |
| Monomethylamine           | 100          | 45.4      |
| Naled                     | 10           | 4.54      |
| Naphthalene               | 100          | 45.4      |
| Naphthenic acid           | 100          | 45.4      |
| n-Butyl phthalate         | 10           | 4.54      |
| Nickel Ammonium sulfate   | 100          | 45.4      |
| Nickel chloride           | 100          | 45.4      |
| Nickel hydroxide          | 10           | 4.54      |
| Nickel nitrate            | 100          | 45.4      |

| Material                       | RQ in pounds | kilograms |
|--------------------------------|--------------|-----------|
| Nickel sulfate                 | 100          | 45.4      |
| Nitric acid                    | 1,000        | 454       |
| Nitrobenzene                   | 1,000        | 454       |
| Nitrogen dioxide               | 10           | 4.54      |
| Nitrophenol (mixed)            | 100          | 45.4      |
| Nitrotoluene                   | 1,000        | 454       |
| Paraformaldehyde               | 1,000        | 454       |
| Parathion                      | 10           | 4.54      |
| Pentachlorophenol              | 10           | 4.54      |
| Phenol                         | 1,000        | 454       |
| Phosgene                       | 10           | 4.54      |
| Phosphoric acid                | 5,000        | 2,270     |
| Phosphorus                     | 1            | 0.454     |
| Phosphorus oxychloride         | 1,000        | 454       |
| Phosphorus pentasulfide        | 100          | 45.4      |
| Phosphorus trichloride         | 1,000        | 454       |
| Polychlorinated biphenyls      | 1            | 0.454     |
| Potassium arsenate             | 1            | 0.454     |
| Potassium arsenite             | 1            | 0.454     |
| Potassium bichromate           | 10           | 4.54      |
| Potassium chromate             | 10           | 4.54      |
| Potassium cyanide              | 10           | 4.54      |
| Potassium hydroxide            | 1,000        | 454       |
| Potassium permanganate         | 100          | 45.4      |
| Propargite                     | 10           | 4.54      |
| Propionic acid                 | 5,000        | 2,270     |
| Propionic anhydride            | 5,000        | 2,270     |
| Propylene oxide                | 100          | 45.4      |
| Pyrethrins                     | 1            | 0.454     |
| Quinoline                      | 5,000        | 2,270     |
| Resorcinol                     | 5,000        | 2,270     |
| Selenium oxide                 | 10           | 4.54      |
| Silver nitrate                 | 1            | 0.454     |
| Sodium                         | 10           | 4.54      |
| Sodium arsenate                | 1            | 0.454     |
| Sodium arsenite                | 1            | 0.454     |
| Sodium bichromate              | 10           | 4.54      |
| Sodium bifluoride              | 100          | 45.4      |
| Sodium bisulfite               | 5,000        | 2,270     |
| Sodium chromate                | 10           | 4.54      |
| Sodium cyanide                 | 10           | 4.54      |
| Sodium dodecylbenzenesulfonate | 1,000        | 454       |
| Sodium fluoride                | 1,000        | 454       |
| Sodium hydrosulfide            | 5,000        | 2,270     |
| Sodium hydroxide               | 1,000        | 454       |
| Sodium hypochlorite            | 100          | 45.4      |
| Sodium methylate               | 1,000        | 454       |
| Sodium nitrite                 | 100          | 45.4      |
| Sodium phosphate, dibasic      | 5,000        | 2,270     |
| Sodium phosphate, tribasic     | 5,000        | 2,270     |

| Material                     | RQ in pounds | kilograms |
|------------------------------|--------------|-----------|
| Sodium selenite              | 100          | 45.4      |
| Strontium chromate           | 10           | 4.54      |
| Strychnine                   | 10           | 4.54      |
| Styrene                      | 1,000        | 454       |
| Sulfur monochloride          | 1,000        | 454       |
| Sulfuric acid                | 1,000        | 454       |
| 2,4,5-T acid                 | 1,000        | 454       |
| 2,4,5-T amines               | 5,000        | 2,270     |
| 2,4,5-T esters               | 1,000        | 454       |
| 2,4,5-T salts                | 1,000        | 454       |
| 2,4,5-TP acid                | 100          | 45.4      |
| 2,4,5-TP acid esters         | 100          | 45.4      |
| TDE                          | 1            | 0.454     |
| Tetraethyl lead              | 10           | 4.54      |
| Tetraethyl pyrophosphate     | 10           | 4.54      |
| Thallium sulfate             | 100          | 45.4      |
| Toluene                      | 1,000        | 454       |
| Toxaphene                    | 1            | 0.454     |
| Trichlorfon                  | 100          | 45.4      |
| Trichloroethylene            | 100          | 45.4      |
| Trichlorophenol              | 10           | 4.54      |
| Triethanolamine              | 1,000        | 454       |
| Trimethylamine               | 100          | 45.4      |
| Uranyl acetate               | 100          | 45.4      |
| Uranyl nitrate               | 100          | 45.4      |
| Vanadium pentoxide           | 1,000        | 454       |
| Vanadyl sulfate              | 1,000        | 454       |
| Vinyl acetate                | 5,000        | 2,270     |
| Vinylidene chloride          | 100          | 45.4      |
| Xylene (mixed)               | 100          | 45.4      |
| Xylenol                      | 1,000        | 454       |
| Zinc acetate                 | 1,000        | 454       |
| Zinc Ammonium chloride       | 1,000        | 454       |
| Zinc borate                  | 1,000        | 454       |
| Zinc bromide                 | 1,000        | 454       |
| Zinc carbonate               | 1,000        | 454       |
| Zinc chloride                | 1,000        | 454       |
| Zinc cyanide                 | 10           | 4.54      |
| Zinc fluoride                | 1,000        | 454       |
| Zinc formate                 | 1,000        | 454       |
| Zinc hydrosulfite            | 1,000        | 454       |
| Zinc nitrate                 | 1,000        | 454       |
| Zinc phenolsulfonate         | 5,000        | 2,270     |
| Zinc phosphide               | 100          | 45.4      |
| Zinc silicofluoride          | 5,000        | 2,270     |
| Zinc sulfate                 | 1,000        | 454       |
| Zirconium nitrate            | 5,000        | 2,270     |
| Zirconium potassium fluoride | 1,000        | 454       |
| Zirconium sulfate            | 5,000        | 2,270     |
| Zirconium tetrachloride      | 5,000        | 2,270     |

SCDHEC expects all wastewater treatment facilities to function in a manner that ensures all discharges meet permit limits. Treatment facilities can be as sophisticated as ion exchange units or as simple as settling ponds. All treatment facilities are designed with a maximum capacity that can be treated effectively. Intentionally bypassing treatment facilities is prohibited except for the following reasons:

- to prevent severe personal injury or loss of life
- to prevent severe property damage
- to avoid damage to treatment facilities caused by excessive storm drainage or run-off, if no alternatives are available (such as auxiliary treatment or retention of waste)

The permit clearly states that severe property damage does not mean economic loss resulting from production delays caused by the conditions that warranted the bypass.

It is the responsibility of the permittee to provide alternative power sources to treatment facilities to ensure uninterrupted operation. In the event the treatment facility is no longer able to discharge water in compliance with the permit limits, the permittee must mitigate, halt, or reduce activity until adequate treatment can be provided.

The permit requires the development and maintenance of Operations and Maintenance (O&M) procedures for all treatment facilities, including corrective actions to be taken during operational upsets.

### 3.0 ENVIRONMENTAL SURVEILLANCE PROGRAMS

The SRS environmental surveillance program has been developed according to the requirements of DOE Order 5400.1 to accomplish the following (Ref. 4):

- verify compliance with applicable environmental standards and public exposure limits
- establish background levels of contaminants in the environment
- verify compliance with environmental commitments made by SRS in EISs, EAs, and other documents
- determine the location and magnitude of concentrations of pollutants from SRS activities
- continually assess SRS pollution abatement programs
- evaluate the effects of contaminants from SRS activities on the public and the environment
- characterize and define trends in the physical, chemical, and biological condition of environmental media
- identify and quantify new or existing environmental problems
- verify whether any unexpected or undetected releases occur

The samples collected or measurements taken under the environmental surveillance program are divided into two categories: indicator and control. The control sites are used as background locations that are relatively unimpacted by SRS activities. Results from these sites are compared to those from the indicator locations to determine the effects of SRS activities on a particular stream.

#### 3.1 Radiological Surveillance Program

##### 3.1.1 *Program Description*

###### 3.1.1.1 Program Requirements

The surface water surveillance program is divided into two parts, consisting of streams and lakes as one category and the Savannah River as the other. The objectives of the program are the same as those listed in Section 3.0. Surface water surveillance is conducted at a total of 29 on-site and off-site locations (Ref. 7), as described in the following sections.

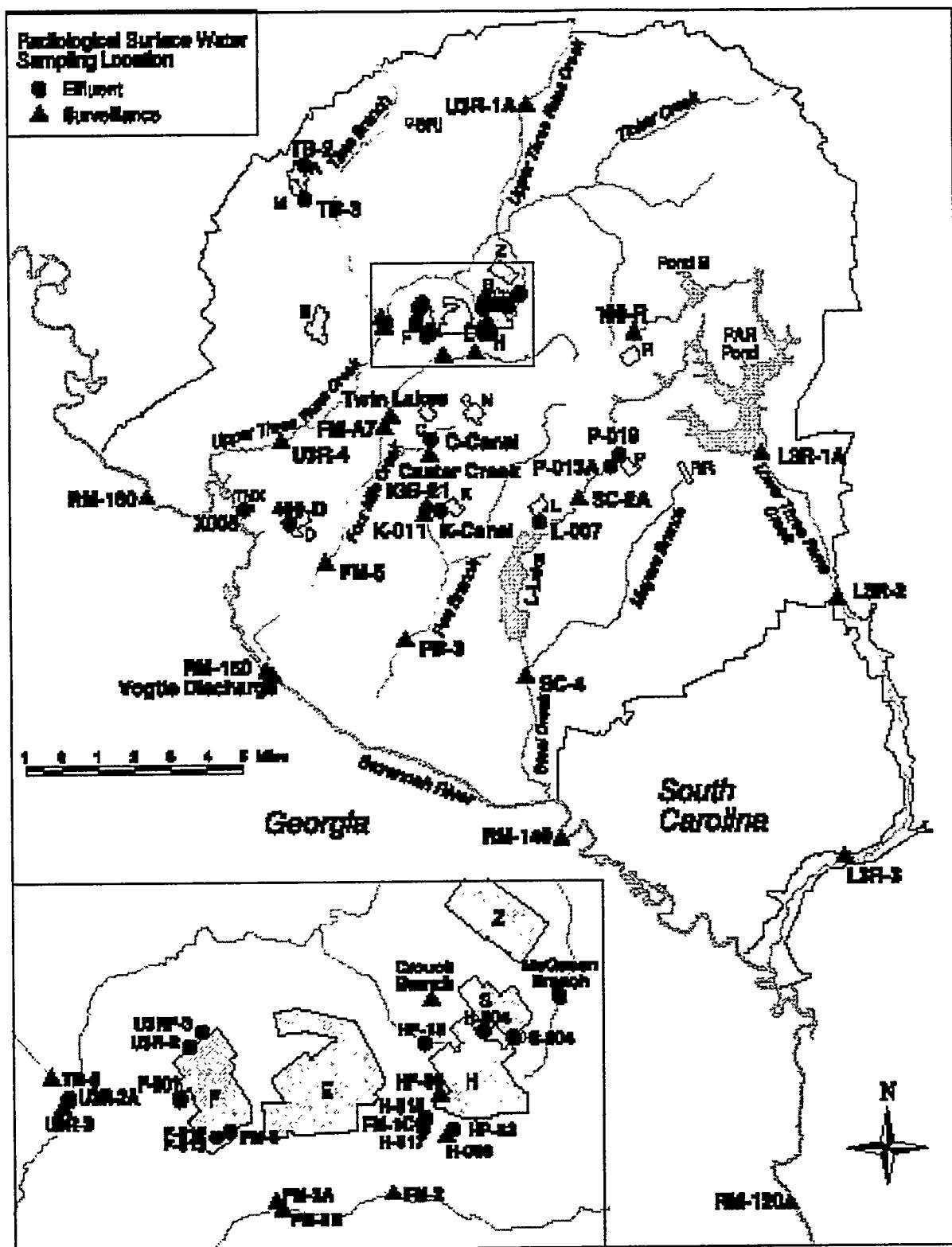
###### 3.1.1.2 Organizational Responsibilities

EMS personnel manage radiological stream surveillance activities. The data from the radiological surveillance program, in conjunction with data from the monitoring program, are used to quantify the amount of radioactive material being released from SRS to the environment and ultimately to the Savannah River.

### 3.1.2 *Surveillance Locations*

Continuous on-site surveillance stations are established at 26 locations within the following SRS streams: Tims Branch, Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek. Bi-weekly or monthly composite samples are analyzed for the parameters shown in Table 3.1 (Refs. 5 and 8). This table also shows the rationale for the location of each surveillance location. Figure 3-1, following Table 3.1, shows the location of the surveillance points with respect to the site (Ref. 7).

Table 3.1 On-site Radiological Surveillance Locations and Parameters


| Stream           | Surveillance Location              | Rationale                                                                                                                                                                            | Analyses Performed                                                |
|------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Tims Branch      | TB-5 near Rd. C                    | Last point on Tims Branch prior to entering Upper Three Runs                                                                                                                         | Gross alpha & beta, tritium                                       |
| Upper Three Runs | Crouch Branch @ Rd. 4              | Stormwater runoff from parts of H-Area                                                                                                                                               | Gross alpha & beta, tritium gamma spec, total strontium           |
|                  | U3R-1A Treadway Bridge Rd. 8-1     | Control location                                                                                                                                                                     | Gross alpha & beta, tritium                                       |
|                  | U3R-3 @ Rd. C                      | Downstream of confluence of Tims Branch and Upper Three Runs. Also downstream of ETF discharge to Upper Three Runs                                                                   | Gross alpha & beta, tritium gamma spec, total strontium           |
|                  | U3R-4 @ Rd. A                      | Downstream of all SRS discharges to Upper Three Runs prior to its discharge into Savannah River                                                                                      | Gross alpha & beta, tritium gamma spec, total strontium, actinide |
| Four Mile Creek  | Castor Creek – southeast of C-Area | Determine radionuclide concentrations resulting from process discharges, runoff, resuspension and groundwater migration from C-Area. Also includes runoff and discharges from N-Area | Tritium                                                           |
|                  | C-Canal                            | Determine radionuclide concentrations resulting from process discharges, runoff, resuspension and groundwater migration from C-Area.                                                 | Gross alpha & beta, tritium gamma spec, total strontium           |
|                  | FM-2 @ Rd 4                        | Determine radionuclide concentrations resulting from process releases and runoff from H-Area                                                                                         | Gross alpha & beta, tritium gamma spec, total strontium           |
|                  | FM-2B above F-Area effluent        | Determine radionuclide concentrations resulting from process releases and runoff from H-Area. Also used to determine migration of 200-H seepage basin into Four Mile Creek.          | Gross alpha & beta, tritium gamma spec, total strontium           |

Report of Waterborne Release Monitoring  
Programs at Savannah River Site

WSRC-TR-98-00411, Rev. 1  
page 21 of 44

| Stream                      | Surveillance Location          | Rationale                                                                                                                                                                                                                   | Radionuclides Currently Analyzed                                                                                              |
|-----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Four Mile Creek<br>(cont'd) | FM-3A                          | Determine radionuclide concentrations resulting from process releases and runoff from F-Area; also determine migration from H seepage basin 4 and E-Area into Four Mile Creek.                                              | Gross alpha & beta, tritium, gamma spec, total strontium                                                                      |
|                             | FM-3 F-Area effluent           | Determine radionuclide concentrations resulting from process releases and runoff from F-Area                                                                                                                                | Total strontium                                                                                                               |
|                             | FM-6 @ Rd. A-12.2              | Downstream of all SRS discharges to Four Mile Creek. Last sampling point on Four Mile Creek prior to its discharge into Savannah River.                                                                                     | Gross alpha & beta, tritium, gamma spec, total strontium, actinide                                                            |
|                             | FM-A7 @ R. A-7                 | Determine radionuclide concentrations resulting from process releases and runoff from upstream production areas (C-Area, E-Area, F-Area, and H-Area). Also determines migration from F seepage basins into Four Mile Creek. | Gross alpha & beta, tritium, gamma spec, total strontium                                                                      |
|                             | H-008 Outfall                  | Detect unplanned releases from H-Tank Farm, provide surveillance for runoff from 288-H ash basin and determine environmental trends.                                                                                        | Gross alpha & beta, tritium gamma spec, total strontium                                                                       |
|                             | HP-50 Tritium Facility Outfall | Detect unplanned releases from tritium facility and determine environmental trends.                                                                                                                                         | Gross alpha & beta, tritium, gamma spec                                                                                       |
|                             | Twin Lakes – West of C-Area    | Determine radionuclide resulting from migration from C seepage basin. However, quantification of C seepage migration is performed using 4M-A7 point.                                                                        | Tritium                                                                                                                       |
|                             | McQueen Branch                 | Detect releases from H-Area                                                                                                                                                                                                 | Gross alpha & beta, tritium, gamma spec                                                                                       |
|                             | Pen Branch                     | Indian Grave Branch-21 800 ft south of Rd. 6-1                                                                                                                                                                              | Determine radionuclide concentrations resulting from K seepage basin                                                          |
|                             | K-011 Outfall @ Rd. B          | Determine radionuclide concentrations resulting from process discharges, runoff, groundwater migration from K-Area                                                                                                          | Gross alpha & beta, tritium, gamma spec, total strontium                                                                      |
|                             | Pen Branch (cont'd)            | Pen Branch-3 @Rd. A-13.2                                                                                                                                                                                                    | Downstream of all SRS discharges to Pen Branch. Last sampling point on Pen Branch prior to its discharge into Savannah River. |
|                             |                                |                                                                                                                                                                                                                             | Gross alpha & beta, tritium, gamma spec, total strontium, actinide                                                            |

| Stream                 | Surveillance Location    | Rationale                                                                                                                                                     | Radionuclides Currently Analyzed                                   |
|------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Steel Creek            | SC-2A 1 mile above Rd. B | Determine radionuclide concentrations resulting from P-Area discharges and groundwater migration from P seepage basin                                         | Gross alpha & beta, tritium, gamma spec, total strontium           |
|                        | SC-4 Steel Creek @ Rd. A | Downstream of all SRS discharges to Steel Creek. Last sampling point on Steel Creek prior to its discharge into Savannah River.                               | Gross alpha & beta, tritium, gamma spec, total strontium           |
| Lower Three Runs Creek | L3R-1A @ Rd. B           | Determine radionuclide concentrations resulting from discharges from PAR Pond. May contain runoff and groundwater from P-Area and R-Area.                     | Gross alpha & beta, tritium, total strontium                       |
|                        | L3R-2 Patterson Mill Rd. | Determine radionuclide concentrations resulting from SRS releases upstream (previously monitored by L3R-1A) and any off-site industries in Barnwell, SC area. | Gross alpha & beta, tritium, gamma spec, total strontium, actinide |
|                        | L3R-3 @ Hwy. 125         | Downstream of all SRS discharges into Lower Three Runs. Last sampling point on Lower Three Runs prior to its discharge into Savannah River.                   | Gross alpha & beta, tritium, gamma spec, total strontium           |
|                        | R-Area downstream of R-1 | Determine radionuclide concentrations resulting from runoff and releases from R-area, also groundwater migration from R seepage basins.                       | Gross alpha & beta, tritium, gamma spec,                           |



**Figure 3-1 Radiological Surface Water Surveillance Sampling Locations**

Continuous radiological surveillance is also conducted at five points along the Savannah River. Biweekly composites are analyzed for tritium, cobalt-60, cesium-137, gross beta, and gross alpha at River Miles (RM) 120, 140, 150, 160 (upstream of SRS), and at the discharge from Plant Vogtle. Additionally, an annual analysis for plutonium-238, plutonium-239, and strontium-89,90 is also performed. The RM 160 location is used as the Savannah River control location.

### ***3.1.3 Reporting Requirements***

The reporting requirements cited in Section 2.1.3 apply to the radiological surveillance program as well. Notifications of exceedances, the annual Environmental Report, and the EPA monthly and annual radioactive release reports include information from the surveillance program.

### ***3.1.4 Provisions for Non-Routine or Emergency Conditions***

DOE Order 5400.1 and DOE/EH-0173T both specifically require the “detection and quantification of unplanned releases to the environment.” The radiological surface water surveillance network is designed to comply with this requirement by providing control locations and the appropriate sampling methods and analyses.

## **3.2 Non-Radiological Environmental Surveillance Program**

### ***3.2.1 Program Description***

#### **3.2.1.1 Program Requirements**

The SRS non-radiological surface water surveillance program involves the sampling and analysis of six on-site streams and the Savannah River (Ref. 7). These activities are conducted to determine if any degradation is occurring that could be attributed to discharges from SRS facilities. Surveillance locations are sampled monthly or quarterly using a grab-sampling technique and analyzed for various chemical and water quality parameters.

#### **3.2.1.2 Organizational Responsibilities**

EMS performs the sample collection and analytical activities for the site non-radiological surface water surveillance program according to the WSRC 3Q Manual series, a set of site-level procedures. Individual operating departments may conduct their own surveillance programs for process control purposes. These programs are governed by department-level procedures.

### ***3.2.2 Surveillance Locations***

Surface water samples are collected for the non-radiological surveillance program from 11 on-site stream locations and five Savannah River locations. The surveillance locations are given in the following list. Figure 3-2 shows the locations with respect to the site (Ref. 7).



Figure 3-2 Non-Radiological Surface Water Surveillance Sampling Locations

Site Stream Surveillance Locations

- Beaver Dam Creek (400-D)
- Four Mile Creek-2
- Four Mile Creek-2B
- Four Mile Creek-6
- Lower Three Runs-2
- Pen Branch-3
- Steel Creek-4 at Road A
- Tims Branch-5
- Tinker Creek-1
- Upper Three Runs-1A
- Upper Three Runs-4 at Road A

Savannah River Surveillance Locations

- RM-120 (R-10; Below SRS)
- RM-129
- RM-140 (R-8A)
- Vogtle (R-3B; Below Vogtle Electric Generating Plant)
- RM-160 (R-2; Above SRS)

Each location is sampled monthly and analyzed for temperature, pH, dissolved oxygen, conductivity, total suspended solids, nitrates, phosphate, total organic carbon, and metals. Quarterly, additional samples are collected from each location and analyzed for pesticides and herbicides.

***3.2.3 Reporting Requirements***

The reporting requirements cited in Section 2.1.3 apply to the non-radiological surveillance program as well. Notifications of exceedances and the annual Environmental Report include information from the surveillance program.

***3.2.4 Provisions for Non-routine or Emergency Conditions***

Since most of the non-radiological surface water surveillance locations are sampled on a weekly or monthly basis, it is unlikely that this program would be used to detect or quantify non-routine or unusual conditions. Data from this program could, however, be used as a baseline for comparison with monitoring conducted during non-routine or emergency conditions.

## 4.0 BIOLOGICAL SURVEILLANCE AND TESTING PROGRAMS

### 4.1 Biological Surveillance Program

#### 4.1.1 *Program Description*

##### 4.1.1.1 Program History and Requirements

The SRS biological surveillance program is used to identify and quantify what, if any, effects routine and non-routine operations have on aquatic and terrestrial food products and animals. As this report pertains to waterborne release monitoring, it will address only the aquatic biological surveillance activities, which includes freshwater and marine fish and shellfish.

The first survey of aquatic life at SRS was conducted June 1951 through May 1952 by the Academy of Natural Sciences of Philadelphia (ANS) (Ref. 9). The purpose of this early study was to "establish an objective measure of the aquatic life of the river between Mile 134-175 and of Upper Three Runs so that any significant effect of the industrial or sanitary wastes could be determined in the future." Concurrent with this study, E. I. DuPont conducted a program to determine the natural radioactive contents of the SRS environs, including fish in the streams. This overall environmental study began at the same time as the ANS study and concluded in January 1953. Since these studies from the 1950's, the ANS has continued to conduct biological monitoring of the aquatic community at SRS. Current areas of study require that they collect specimens of algae and aquatic macrophytes, non-insect macroinvertebrates, aquatic insects, and fish.

Although the ANS study is administered through EMS, the data from that study are not part of the biological surveillance program conducted by EMS personnel. The EMS fish surveillance program is a joint development between WSRC and the Georgia Department of Natural Resources (GDNR) and was formalized in a Memorandum of Agreement (MOA) between these two organizations.

Both the freshwater and marine fish are grouped into three categories, as shown in Table 4.1. These categories were selected because, according to a survey by the Fisheries Management Section of the GDNR, these are the most popular species among Savannah River fishermen (Ref. 7).

Table 4.1 Categories of Fish in Biological Surveillance Program

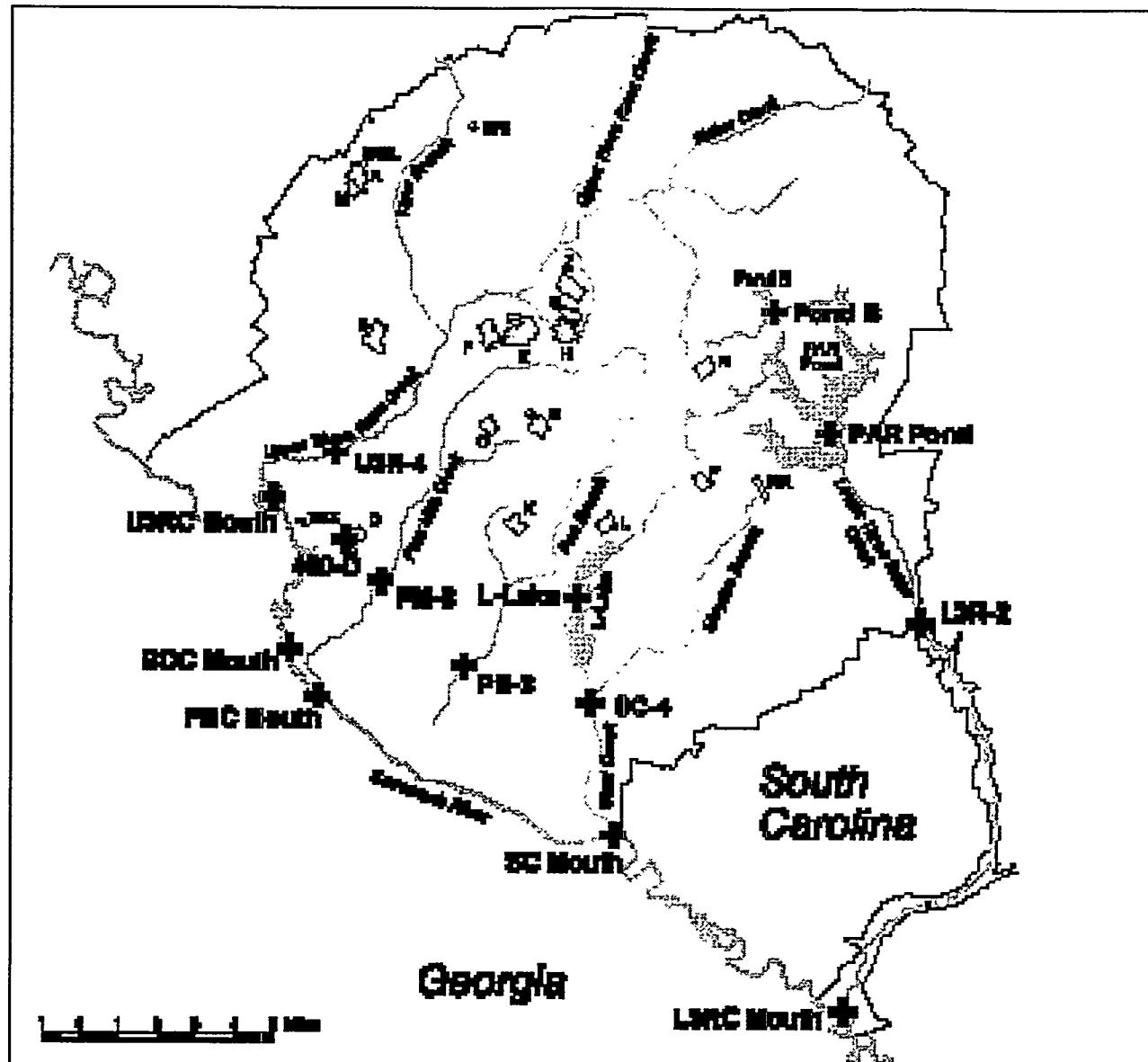
| Origin     | Categories      | Examples                 |
|------------|-----------------|--------------------------|
| Freshwater | Bass            | Largemouth Bass          |
|            | Panfish         | Bream, Crappie           |
|            | Catfish         | Catfish                  |
| Marine     | Predatory       | Sea trout, Spottail bass |
|            | Filter Feeders  | Mullet                   |
|            | Bottom Dwellers | Catfish, Flounder        |

#### 4.1.1.2 Operational Responsibilities

EMS personnel are responsible for all fish collection and analysis, as well as data reporting. All collection equipment, including boats, shocker units, etc., are also the responsibility of EMS.

#### 4.1.2 *Biological Surveillance Locations*

A total of 18 locations serve as the collection points for the biological surveillance program (Ref. 7). The nine on-site locations are as follows (see Figure 4-1):


- PAR Pond
- L-Lake
- Pond B
- Lower Three Runs Creek
- Upper Three Runs Creek
- Beaver Dam Creek
- Pen Branch
- Steel Creek
- Four Mile Creek

The nine surveillance points that are located on the Savannah River are at the following locations (see Figure 4-2):

- The Augusta Lock and Dam area, above the site (this serves as the control location)
- Five areas where SRS streams enter the Savannah River (Beaver Dam Creek, Four Mile Creek, Lower Three Runs Creek, Steel Creek, and Upper Three Runs Creek)
- The U. S. Highway 301 bridge area, below the site
- Stokes Bluff Landing, below the site
- The U. S. Highway 17A bridge area, below the site

Fifteen fish from each category are collected at each location and composited, for a total of three composite samples per type per location. Each sample is then separated into edible and non-edible portions. Table 4.2 shows the analyses that are performed on the different portions of freshwater fish (Ref. 7).

The edible portions of marine fish, which are collected at the Highway 17A bridge, are analyzed for gross alpha, gross beta, gamma (which includes cobalt-60, cesium-137) and mercury. Marine invertebrates, oysters and crabs collected on the coast near Savannah are analyzed for strontium-89,90; gross alpha; gross beta; and gamma.



### **+** Fish Sampling Location



#### Figure 4-1 On-Site Fish Surveillance Program Sampling Locations

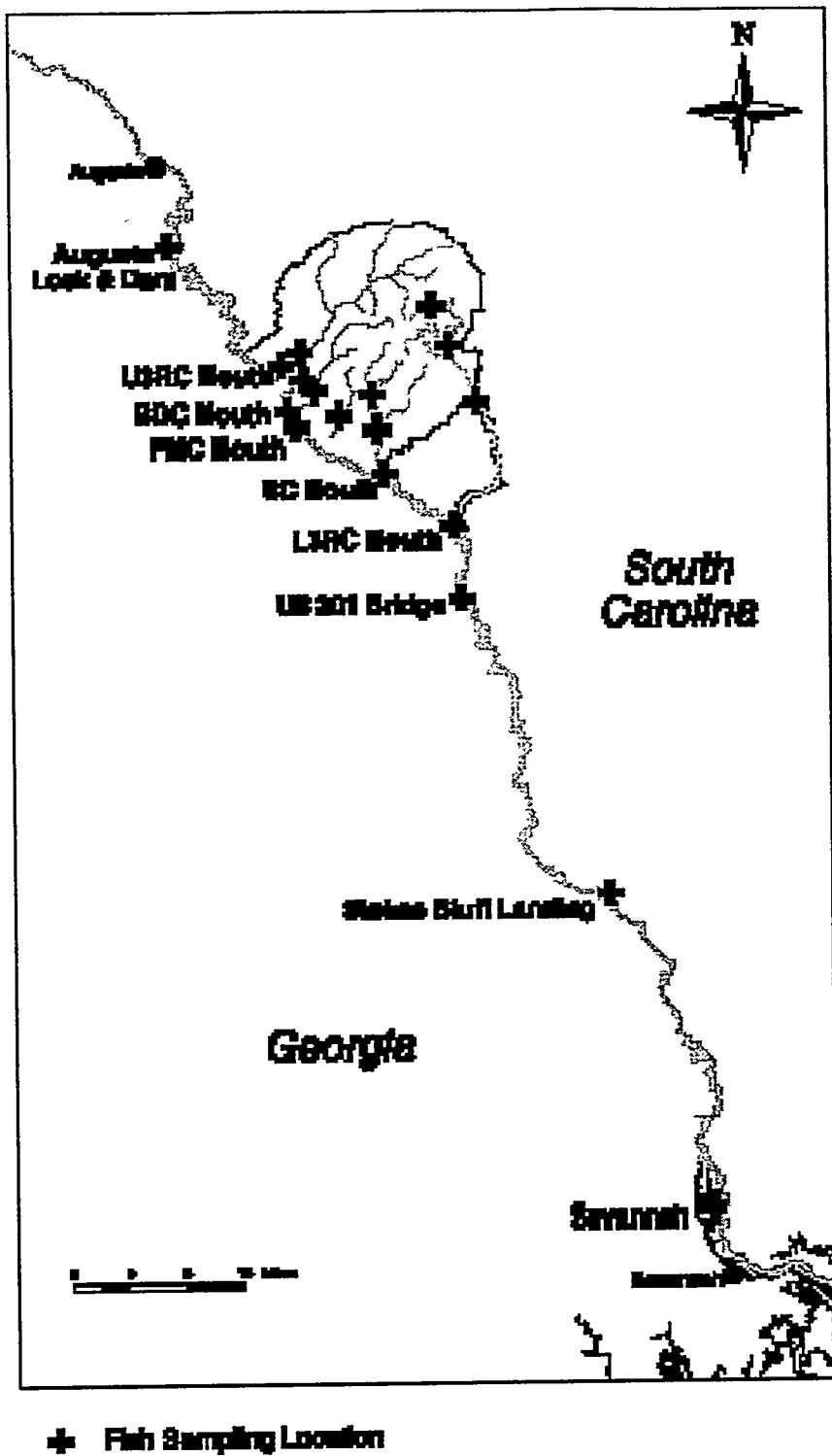



Figure 4-1 Off-Site Fish Surveillance Program Sampling Locations

Table 4.2 Biological Monitoring Parameters

|                          | Gross Alpha | Gross Beta | Gamma Scan | Tritium | Sr-89,90 | Pu-238 | Pu-239 | Mercury |
|--------------------------|-------------|------------|------------|---------|----------|--------|--------|---------|
| Augusta Lock & Dam       | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Beaver Dam Creek Mouth   | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Four Mile Creek Mouth    | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Hwy. 301 Bridge          | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Lower Three Runs Mouth   | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Steel Creek Mouth        | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Upper Three Runs Mouth   | E,N         | E,N        | E,N        | E       | E,N      | E      | E      | E       |
| Hwy 17A Bridge           | E           | E          | E          | --      | --       | --     | --     | E       |
| Stokes Bluff Landing     | E           | E          | E          | --      | --       | --     | --     | E       |
| Beaver Dam Creek         | E           | E          | E          | --      | --       | --     | --     | E       |
| Four Mile Creek          | E           | E          | E          | --      | --       | --     | --     | E       |
| L-Lake                   | E           | E          | E          | -       | --       | --     | --     | E       |
| Lower Three Runs Creek-2 | E           | E          | E          | --      | --       | --     | --     | E       |
| PAR Pond                 | E           | E          | E          | --      | --       | --     | --     | E       |
| Pen Branch               | E           | E          | E          | --      | --       | --     | --     | E       |
| Pond B                   | E           | E          | E          | --      | --       | --     | --     | E       |
| Steel Creek-4            | E           | E          | E          | --      | --       | --     | --     | E       |
| Upper Three Runs Creek-4 | E           | E          | E          | --      | --       | --     | --     | E       |

E = Edible portions analyzed for parameters indicated

N = Non-edible portions analyzed for parameters indicated

-- = Not analyzed for the parameter

#### 4.1.3 Reporting Requirements

The reporting requirements cited in Section 2.1.3 apply to the biological surveillance program as well. The annual Environmental Report includes information from the surveillance program.

#### 4.1.4 Provisions for Non-routine or Emergency Conditions

The biological surveillance program does not contain procedural program modifications that must occur in the event of an unusual or emergency event to assist in the quantification of a release. Instead, each event is considered on a case-by-case basis. Sampling and analysis parameters are then adjusted based on technical judgment, management concerns, and interactions with regulatory agencies.

## 4.2 Biological Testing Programs

### 4.2.1 Program Description

As part of the site's NPDES permit, chronic and/or acute toxicity testing are required at several outfalls as a means of measuring and controlling chemical discharges that are toxic to aquatic life. For the chronic testing, a 7-day test is conducted to determine the survival and/or reproductive capabilities of the test organism *Ceriodaphnia dubia* in the effluent water. Varying concentrations of effluent water are used for conducting the test, depending on the receiving stream dilution factor. A control test is conducted simultaneously to validate the results of the test. The static test uses the same test organism and a control test, but its duration is only 48 hours. SRS has requested SCDHEC approval to modify the toxicity testing protocol for the site to use a test organism that is indigenous to SRS waters.

### 4.2.2 Biological Testing Locations

Six NPDES outfalls have toxicity testing requirements, as shown in Table 4.3 (Ref. 6).

Table 4.3 Outfalls with Toxicity Testing Requirements

| Outfall | Discharge Description                                                                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-01    | Non-contact cooling water, steam condensate, lab waste, cooling tower overflow, well flush water, steam cleaning rack wastewater, groundwater air stripper effluent from Outfall A-1A, and storm water.                                 |
| A-11    | Air stripper effluent from Outfall M-05, LETF process effluent from Outfall M-04, fire station building drains, air conditioner condensate, non-contact cooling water, steam condensate, well flush water, and A and M Area stormwater. |
| F-01    | Non-process cooling water, cooling tower blowdown, and stormwater.                                                                                                                                                                      |
| G-10    | Central Sanitary Wastewater Treatment Facility                                                                                                                                                                                          |
| X-08    | Non-contact cooling water, domestic well overflow water, treated sanitary wastewater from Outfall X-08A, treated process water from Outfall X-8B, treated groundwater from Outfall X-8C, and stormwater                                 |
| X-19    | Treated groundwater                                                                                                                                                                                                                     |

### 4.2.3 Reporting Requirements

The results of the toxicity testing are submitted to SCDHEC with the DMRs that are described in Section 2.2.3. Any toxicity test that fails the criteria set forth in the NPDES permit must follow the requirements for identifying and eliminating the toxic discharge(s) (Ref. 6).

### 4.2.4 Provisions for Non-routine or Emergency Conditions

Although the toxicity testing program is not designed to detect or quantify non-routine releases, the results of the tests can indicate if even extremely small quantities of a toxic pollutant was present at the time of testing. Therefore, the results can be used to determine if an unplanned release occurred. If so, an investigation can then be initiated. The results of this investigation can be used in the identification and elimination of toxics discussed in Section 4.2.3.

## 5.0 SRS FIELD SAMPLING CAPABILITIES

### 5.1 Environmental Protection Department

EPD provides the majority of the stream sampling equipment and trained personnel for the SRS stream and river sampling programs discussed in Section 2. Sampling equipment consists of composite sampling instruments (i.e., ISCOs), coolers, collection containers, preservative chemicals, etc. The field sampling personnel are properly trained in EPA sampling protocol and in the operation and maintenance of the composite samplers.

### 5.2 Safety and Health Operations Department

The S&HO Department plays a major role in the SRS effluent monitoring and environmental surveillance programs. S&HO personnel collect and screen liquid samples from radiologically controlled areas and maintain monitoring equipment at some liquid effluent discharge points. For liquid samples being sent to a subcontractor laboratory, S&HO personnel screen the samples to ensure proper documentation for transporting over public roads.

### 5.3 Other On-site Organizations

#### 5.3.1 *Savannah River Technology Center*

The Savannah River Technology Center (SRTC) performs stream and river sampling in the event of an emergency that involves a liquid release. The Environmental Transport Section uses a contaminant fate and transport model known as STREAM with the Water Quality Analysis Simulation Program (WASP5) calculation module. It can be used to model surface waters in one, two, or three dimensions. WASP5 uses a finite difference method to solve the advective transport equation (Ref. 14). The WASP5 code used at SRS has been customized for the site using information obtained from dye studies on various streams. Also, it is calibrated for certain stream segments on site. When used in an emergency condition, either USGS flow data or default flow rates (average flow rates for a stream segment for a particular time of year) are used.

SRTC also runs a mobile laboratory that is normally used for air sampling but can be used for liquid release quantification during an emergency. The equipment in this mobile lab can detect very low concentrations of chemicals and radionuclides. Turn-around time on some analytical results is as little as 10 minutes. This vehicle is discussed more in Section 6.2.

#### 5.3.2 *Spent Fuel Storage Division*

The Tritium Effluent Water Monitor (TEWM) Systems once used by the Spent Fuel Storage Division (SFSD) to monitor K and L Reactor discharges have been taken out of service with the shut-down of these two facilities. Manual sampling of the process sewer discharge continues in these areas. Grab samples are collected once per shift at the K-Area discharge point and once per day at the L-Area discharge. The SFSD conducts alpha and beta-gamma counts on these samples and sends them to another onsite laboratory for tritium analysis.

In D-Area, the Heavy Water Facility uses a TEWM system to detect tritium discharges. Additionally, a composite sample is collected at the TEWM and analyzed for tritium at least once per shift.

### 5.3.3 *Water Services Department*

The Water Services Department (WSD) operates the Central Sanitary Wastewater Treatment Facility (CWSTF), which receives sanitary wastewater from A, B, C, Central Shops, F, H, and S Areas, and package sanitary wastewater plants in P, K, L, D, and TNX Areas. Operators run process control tests and sample the effluent from these facilities. They do not conduct any stream sampling.

WSD laboratory technicians perform the analyses shown in Table 5.1. As indicated, they are SCDHEC certified to perform certain parameters. This certification indicates that a series of QA/QC tests and blind analyses have been successfully completed and the data are acceptable for NPDES reporting. Those parameters limited by the NPDES permit that WSD is not certified to analyze are sent to a subcontracted laboratory.

Table 5.1 WSD Laboratory Analyses

| Parameter                 | Permit Limit? | SCDHEC Certified? |
|---------------------------|---------------|-------------------|
| Biochemical Oxygen Demand | Yes           | Yes               |
| Total Suspended Solids    | Yes           | Yes               |
| pH (liquid)               | Yes           | Yes               |
| pH (solid)                | Yes           | Yes               |
| Dissolved Oxygen          | Yes           | Yes               |
| Temperature               | No            | Yes               |
| Fecal Coliform            | Yes           | Yes               |
| Alkalinity                | No            | No                |
| Total Solids              | No            | No                |
| Volatile Solids           | No            | No                |
| Ammonia as N              | Yes           | No                |
| Sludge Volume Index       | No            | No                |
| Zone Settling Rate        | No            | No                |

Due to the constantly changing composition of the discharges reaching the wastewater treatment plants, it is difficult to proceduralize how to deal with unplanned releases. There are, however, operational measures that are taken to detect and mitigate unplanned releases of toxic substances. For example, each treatment plant has an equalization basin that can be used to store wastewater containing hazardous or toxic substances in the event of an unplanned release. The CSWTF equalization basin is divided into two sections that can be isolated, if necessary, to keep harmful influent from reaching the biological organisms in the treatment portion of the facility. Also,

many radiological and hazardous constituents are adsorbed onto the solids, or sludge, from the system. If an unplanned discharge was inadvertently processed through the system, the sludge can be stored for an extensive period of time at the CSWTF sludge storage area until a suitable disposal option is determined. Normally, sludge is tested for metals, nutrients, and pathogens before being applied to a permitted land application site according to permit ND0072125.

## 6.0 ON-SITE ANALYTICAL CAPABILITIES

There are several laboratories at SRS that provide analysis of water samples for various chemical and radiological constituents. Each laboratory has its own quality assurance/quality control (QA/QC) program, detection limits, turn-around times, and operating procedures.

### 6.1 Environmental Monitoring Section Laboratories

The EMS laboratories are used for the routine analyses of the environmental monitoring and surveillance programs at SRS. Personnel in EMS laboratories conduct both radiological and non-radiological analyses of environmental samples, including air, water, fish, and vegetation. Routine radiological analyses detect radionuclides such as (Ref. 8):

- Tritium
- Cesium-137
- Uranium-234
- Uranium-235
- Uranium-238
- Plutonium-238
- Plutonium-239
- Strontium-89/90
- Gross Beta
- Gross Alpha

The EMS non-radiological laboratory is certified by SCDHEC for the following parameters (Ref. 7):

- Alkalinity
- Chemical Oxygen Demand
- Chloride
- pH
- Nitrite Nitrogen
- Nitrate Nitrogen
- Orthophosphate
- Phosphorous
- Sulfate
- Total Suspended Solids
- Total Dissolved Solids
- Specific Conductance

and is in the process of obtaining certification for inorganics, volatile organic compounds (VOCs), and metals. Additionally, field personnel are certified to perform some routine NPDES analyses.

Routinely conducted analyses, in addition to those listed above for which EMS is certified, are as follows (Ref. 8):

#### *Metals*

- Aluminum
- Arsenic
- Barium
- Cadmium
- Chromium
- Copper
- Iron
- Lead
- Magnesium
- Manganese
- Mercury
- Nickel
- Selenium
- Silver
- Uranium
- Zinc
- Other metals in Target Analyte List

*VOCs*

- Acetone
- Benzene
- Carbon tetrachloride
- Chloroform
- Dibromomethane
- Dichloromethane
- Tetrachloroethane
- Trichloroethane
- Trichloroethene
- Tetrachloroethylene
- Toluene
- Xylene
- Other Target Analyte List VOCs

EMS laboratories also conduct analyses of environmental media under emergency conditions, as described in Reference 10. Most of these analyses are for radiological parameters. To ensure the laboratory instruments are not cross-contaminated, the samples being submitted to EMS for analysis must be accompanied by a form that details the number of samples, the matrix (water, soil, etc.), the approximate activities (obtained from H&SO screening), the nuclides of interest, and the required measurement sensitivity. Liquid samples exceeding the following limits must receive written authorization from EMS management before they can be accepted for analysis:

- Tritium 0.1  $\mu$ Ci/ml
- Alpha 5.0 pCi/ml
- Beta 10.0 pCi/ml
- Gamma 10.0 pCi/ml

Table 6.1 is a list of radiological analyses and the turnaround times that could be expected under both routine and emergency conditions. Sample turnaround times are dependent on both the analysis being performed and the required sensitivity. A greater sensitivity will result in a longer turnaround time due to longer processing time. The number of samples being processed at a time can also affect routine turnaround times. Therefore, times are expressed as a range in the table.

Table 6.1 Turnaround Times for Radiological Parameters

| Parameter                                                                                                                                                                                                                                                 | Routine Turnaround | Emergency Turnaround |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| Gross Alpha/Beta                                                                                                                                                                                                                                          | 2-5 days           | 1 day                |
| Alpha Spectrometry <ul style="list-style-type: none"><li>• Uranium isotopes</li><li>• Plutonium isotopes</li><li>• Americium isotopes</li><li>• Curium isotopes</li></ul>                                                                                 | 3-10 days          | 2 days               |
| Gamma Spectrometry <ul style="list-style-type: none"><li>• Beryllium isotopes</li><li>• Potassium isotopes</li><li>• Cobalt isotopes</li><li>• Ruthenium isotopes</li><li>• Iodine isotopes</li><li>• Cesium isotopes</li><li>• Cerium isotopes</li></ul> | 1-3 days           | 12-24 hours          |
| Tritium                                                                                                                                                                                                                                                   | 1-3 days           | 12-24 hours          |
| Total Strontium                                                                                                                                                                                                                                           | 3-7 days           | 1 1/2-2 days         |

Shown in Table 6.2 are the detection limits for radiological parameters (Ref. 10). Detection limits for river water samples are considerably lower due to the need to quantify much lower concentrations from these samples. As stated previously, the lower detection limits require longer turnaround times.

Table 6.2 Detection Limits for Radiological Parameters

| Parameter       | Stream Samples<br>(pCi/l) | River Samples<br>(pCi/L) |
|-----------------|---------------------------|--------------------------|
| Tritium         | 1.20E+03                  | 4.40E+02                 |
| Beryllium-7     | 4.70E+01                  | 1.10E+01                 |
| Potassium-40    | 1.30E+01                  | 2.50E+01                 |
| Cobalt-58       | 7.40E+00                  | 1.20E+00                 |
| Cobalt-60       | 9.10E+00                  | 1.90E+00                 |
| Ruthenium-103   | 6.70E+00                  | 1.30E+00                 |
| Ruthenium-106   | 5.90E+01                  | 1.10E+01                 |
| Iodine-131      | 1.60E+01                  | 2.30E+00                 |
| Cesium-134      | 5.80E+00                  | 1.30E+00                 |
| Cesium-137      | 7.10E+00                  | 1.40E+00                 |
| Cerium-141      | 8.50E+00                  | 1.50E+00                 |
| Cerium-144      | 2.90E+01                  | 5.90E+00                 |
| Strontium-89,90 | 1.40E+00                  | 1.40E+00                 |
| Uranium-234     | 2.80E-02                  | ---                      |
| Uranium-235     | 1.00E-02                  | ---                      |
| Uranium-238     | 4.60E-02                  | ---                      |
| Plutonium-238   | 7.70E-03                  | 2.00E-02                 |
| Plutonium-239   | 8.00E-03                  | 2.10E-02                 |
| Americium-241   | 7.90E-03                  | ---                      |
| Curium-244      | 7.80E-03                  | ---                      |
| Gross Alpha     | 8.00E-01                  | 8.00E-01                 |
| Gross Beta      | 1.40E+00                  | 1.40E+00                 |

## 6.2 Savannah River Technology Center

SRTC provides analytical capabilities for emergency releases, both liquid and airborne, at SRS. SRTC and EMS coordinate work loads during emergency situations, and the two laboratories have different specialties. While EMS is more prepared for large numbers of routine analyses, SRTC is more suited to specialty analyses at very high sensitivity. Since SRTC personnel are involved primarily in research and development activities, they have developed a variety of hardware and instrumentation for specific detection needs. Laboratory instruments are state-of-the-art and chiefly employ mass spectrometric and radiometric techniques. Additionally, the following analytical methods are also available:

- Particle and surface analysis
- Noble gas mass spectrometry

- Ultra high resolution (Fourier Transform) mass spectrometry
- Plasma mass spectrometry
- Organic analysis by gas chromatography and infrared spectrometry

In addition to the fixed laboratory, SRTC operates a mobile laboratory known as the TRAC (Tracking Radioactive Atmospheric Contaminants) vehicle. Despite its name, it is highly effective in monitoring and analyzing surface water as well as atmospheric releases. The primary purposes of the TRAC vehicle are emergency response, environmental monitoring, in-field analysis, environmental research, and instrument development. The vehicle is equipped with the detectors shown in Table 6.3 to provide real-time data on surface water releases.

Table 6.3 TRAC Capabilities

| Detector              | Application                   |
|-----------------------|-------------------------------|
| High Purity Germanium | Environmental Sample Analysis |
| Liquid Scintillation  | On-location Tritium Analysis  |
| Surface Barrier       | TRU in Water                  |

The TRAC laboratory is maintained to SRS quality program requirements for laboratory equipment.

## 7.0 PROGRAMMATIC UPGRADES

In December 1991, a tritium release at K-Reactor resulted in a release to the environment and considerable criticism from the public. SRS formed the Environmental Release Prevention Taskforce (ERPT) in January 1992 to review potentially significant environmental releases and the systems, procedures, and practices in place to prevent and/or mitigate their severity (Ref. 11). The ERPT was not only to review current policies and practices, but it also recommended corrective actions where necessary. Most of the effort was focused on assessing potentially significant radioactive releases to streams from either surface water outfalls or groundwater outcrops. Next, the ERPT prioritized the recommendations based on the highest potential for release. The ERPT spent two months researching and compiling information about SRS outfalls, particularly those with potential for radioactive release. In doing this, they accomplished the following:

- collected information on all SRS liquid effluent release points, including 201 outfalls and approximately 400 component streams
- identified 10 facilities/operations with the highest potential for accidental liquid radionuclide release
- observed monitoring and/or sampling practices to ensure procedures were adequate to monitor and control discharges
- reviewed previous accidental radioactive liquid release occurrences to determine if corrective actions had been taken and if they were adequate
- documented monitoring and/or sampling equipment, procedures, and practices for each release point

From these activities, the ERPT made 56 recommendations for improving the prevention and control of radioactive liquid releases from SRS facilities. Based on these recommendations and input from management, 111 action items were developed as part of the Environmental Release Prevention and Control Plan (ERP&CP) (Ref. 12). These action items were actively pursued and tracked. In October 1994, WSRC notified DOE of four action items that had not been completed and explained the status of each. Then, in January 1998, DOE requested updates on the ERP&CP's open action items. All but one item has been closed. The remaining open item is being tracked by the responsible SRS organization, with closure expected in FY99 (Ref 13).

## REFERENCES

1. DOE Order 5400.1, *General Environmental Protection Program*, U. S. Department of Energy, June 1990.
2. DOE Order 5400.5, *Radiation Protection of the Public and Environment*, U. S. Department of Energy, January 1993.
3. U. S Department of Energy, 1991, *Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance*, DOE/EH-0173T, National Technical Information Service.
4. WSRC-3Q1-2 Manual, *SRS Environmental Monitoring Section Plans and Procedures*, Vol. 1, April 30, 1998, WSRC, Aiken, SC.
5. WSRC 3Q Manual, *Environmental Compliance Manual ECM 18.2, Radiological Effluent Monitoring, Reporting and ALARA Release Guides Rev 1*, December 4, 1995, WSRC, Aiken, SC
6. *Savannah River Site National Pollutant Discharge Elimination Permit*, SC0000175, January 1, 1998.
7. *Savannah River Site Environmental Report for 1997*, WSRC-TR-97-00322, WSRC, Aiken, SC.
8. *Environmental Data for 1997*, WSRC-TR-97-00324, WSRC, Aiken, SC.
9. *Savannah River Biological Survey, South Carolina and Georgia, June 1951 – May 1952, Final Report for E. I. duPont de Nemours and Co., Savannah River Plant*, Academy of Natural Sciences of Philadelphia, 1953.
10. WSRC-3Q1-3 Manual, *Environmental Chemistry*, Section 5030, Requirements for Submission, Receipt, and Handling of Special Samples for Radioactive, Chemical, and Physical Determinations, Rev. 1, February 15, 1998, WSRC, Aiken, SC.
11. J. E. Dickenson, et al., *Final Report of the Environmental Release Prevention Task Force*, WSRC-RP-92-356, March 6, 1992, WSRC, Aiken, SC.
12. *Environmental Release Prevention and Control Plan*, WSR-920067, June 30, 1992, WSRC, Aiken, SC.
13. F. B. Williams to T. F. Heenan, *Followup to Release Prevention Controls*, May 13, 1998.
14. Chen, Kuo-Fu, *Revised STREAM Code and WASP5 Benchmark (U)*, WSRC-RP-95-598, May 1995, WSRC, Aiken, SC.

## DEFINITIONS

|                                   |                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active monitoring                 | - continuous online monitoring equipment from which real-time quantification of contaminant releases can be obtained.                                                                                                                                                                                                                                            |
| Best Available Technology (BAT)   | - the preferred technology for a particular activity; it is selected from among others after taking into account factors related to technology, economics, public policy, and other parameters. The BAT is not a specific level of treatment, but is the conclusion of a selection process that includes several alternatives.                                   |
| Composite sample                  | - a sample that is comprised of the blending of more than one portion to make a sample for analysis                                                                                                                                                                                                                                                              |
| Continuous effluent monitoring    | - 1) characterization of the contaminant of concern by continuous sampling followed by laboratory analysis or 2) measurement by an online detector. A continuous sample can periodically collect an aliquot of the effluent stream.                                                                                                                              |
| Control locations                 | - sampling locations assumed to contain no significant amount of the analyte of interest, but whose measurements are compared with those of other test sites to determine to what extent that analyte is present.                                                                                                                                                |
| Critical pathway                  | - the specific route of transfer of contaminants from one environmental component to another that results in the greatest fraction of an applicable dose limit to a population group or to an individual's whole body, organ, or tissue.                                                                                                                         |
| Derived Concentration Guide (DCG) | - the concentration of a radionuclide in water that, under conditions of continuous exposure for one year by one exposure mode (i.e., ingestion) would result in an effective dose equivalent (EDE) of 100 mrem (0.1 rem) to a reference human. DCGs do not consider decay products when a parent radionuclide is the cause of the exposure.                     |
| Effective Dose Equivalent (EDE)   | - the sum of the dose equivalents received by all organs or tissues of the body after each one has been multiplied by an appropriate weighting factor. The EDE includes the committed dose equivalent from internal deposition of radionuclides and the dose equivalent attributable to sources external to the body.                                            |
| Effluent monitoring               | - continuous online measurement of liquid effluents (active monitoring) and the collection and analysis of samples from those effluents (passive monitoring) for the purpose of characterizing and quantifying contaminants in a process stream, assessing radiation exposures of members of the public, and demonstrating compliance with applicable standards. |
| Environmental medium              | - a discrete portion of the total environment, animate or inanimate, that may be sampled or measured directly.                                                                                                                                                                                                                                                   |
| Environmental monitoring          | - data collection that involves two major activities (effluent monitoring and environmental surveillance) with the dual purpose of 1) showing compliance with federal, state, local regulations and DOE orders and 2) monitoring any effects of site operations on onsite and offsite natural resources on human health.                                         |
| Environmental surveillance        | - the collection and analysis of samples from environmental media and the measurement of external radiation to demonstrate compliance with applicable standards and to assess the effects, if any, on the site and surrounding environs.                                                                                                                         |
| Macroinvertebrates                | - size-based classification used for a variety of insects and other small invertebrates; as defined by the EPA, those organisms that are retained by a No. 30 (590 micron) U. S. Standard Sieve.                                                                                                                                                                 |
| Macrophyte                        | - a plant that can be observed with the naked eye.                                                                                                                                                                                                                                                                                                               |
| NPDES                             | - the National Pollutant Discharge Elimination System (NPDES) is a regulatory                                                                                                                                                                                                                                                                                    |

|                       |                                                                                                                                                                                                                                 |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | program for permitting liquid releases from facilities.                                                                                                                                                                         |
| Offline measurement   | - a sample collected and transported to a laboratory for analysis.                                                                                                                                                              |
| Online measurement    | - a measurement made directly in real time.                                                                                                                                                                                     |
| Passive monitoring    | - continuous online sampling equipment from which samples must be collected than analyzed before quantification of release can be determined. A proportional-flow liquid sampler is an example of passive monitoring equipment. |
| Representative sample | - a sample taken to depict the characteristics of a lot or population as accurately and precisely as possible. It may be a random or stratified sample, depending on the objective of the sampling.                             |
| Sampler               | - a device used to collect samples from an effluent stream. It can deliver a sample to an online detector or preserve the sample for later laboratory analysis, such as refrigeration for certain chemical parameters.          |
| Turnaround time       | - the time required to receive analytical data from a laboratory. This is typically measured beginning at time the sample is received at the laboratory, not the time the sample is collected.                                  |

**APPENDIX A**

**SAVANNAH RIVER SITE**  
**LIQUID RELEASE PATHWAYS**

## **INTRODUCTION**

Savannah River Site (SRS) facilities have many processes that result in liquid waste discharges. Under normal operating conditions, these liquid discharges are controlled and/or treated to prevent or minimize adverse chemical or radiological impacts to the receiving streams and, ultimately, the Savannah River. However, under unusual or emergency circumstances, a liquid release could potentially reach the Savannah River, affecting river water users downstream of the site.

To determine at which facilities a release that impacts the river could occur, the following information was evaluated:

- the flow pathways for both process wastewater and storm water
- facilities associated with the various processes
- the proximity of receiving streams to the Savannah River

From this evaluation, it was determined which liquid release pathways should be evaluated using various hydrological modeling programs. The modeling data can then be used for emergency preparedness planning. The results of the evaluation are presented in the Conclusions section of this document.

As the site mission has shifted from the production of nuclear materials for defense purposes to environmental remediation, many production facilities have been or are being shut down. Consequently, the associated liquid discharges have been dramatically reduced or are non-existent. The reactors and the majority of the powerhouses are the most notable examples of facility shutdowns.

## **DISCUSSION**

The flow pathways for process and storm water discharges at SRS are shown in *Savannah River Site Area Drainage Systems* maps, issued 12/1/93. Due to construction activities, site mission changes, and facility shutdowns, some of these maps no longer accurately indicate the actual flow path of liquid releases. However, used in conjunction with the SRS National Pollutant Discharge Elimination System (NPDES) Permit and a basic knowledge of recent SRS operating history, the maps were used to recommend which discharges should be considered for hydrological modeling.

Table 1 lists outfalls at SRS that are permitted as process or stormwater discharges and the facilities that comprise the majority of the effluent to these outfalls. This information is based on the previously mentioned 1993 drainage system maps. Prior to pursuing hydrological modeling on the selected outfalls, source verification will be required.

Table 1 SRS Outfalls and Their Major Sources

| Outfall | Major Sources                        | Building Number |
|---------|--------------------------------------|-----------------|
| A-01    | Waste Loading Station                | 776-6A          |
|         | Tech. Transfer Lab                   | 779-A           |
| A-1A    | Air Stripper                         | --              |
| A-3 *   | Hypochlorite Feed Bldg.              | 780-2A          |
|         | Cooling Tower                        | 785-A           |
|         | Refrigeration Bldg.                  | 789-A           |
| A-05 *  | Stores                               | 713-A & 3A      |
|         | E&I Motor Shop                       | 722-4A          |
|         | Offices and Labs                     | 723-A           |
|         | Environmental Research Lab           | 737-A           |
| A-11    | Fire Station                         | 709-A           |
|         | Auto Repair Shop                     | 716-A           |
|         | Training School/Lab Bldg.            | 721-A           |
| A-14    | Dilute Effluent Treatment Facility   | 341-M & 1M      |
| A-25    | Main SRTC Technical Bldg.            | 773-A           |
| D-03    | Water treatment                      | ---             |
|         | Distillation Columns                 | ---             |
| D-06    | Powerhouse                           | 484-D           |
| E-01 *  | Mixed Waste Storage Bldgs.           | 643-29E & 43E   |
|         | Experimental TRU Acceptance Facility | 724-8E          |
|         | TRU Pads                             | ---             |
|         | Waste Storage Pads                   | ---             |
|         | Engineered Low Level Trenches        | ---             |
| E-02 *  | TRU Pads                             | ---             |
|         | Engineered Low Level Trenches        | ---             |
| F-01    | F-Canyon                             | 221-F           |
|         | Control Lab                          | 772-F           |
| F-02    | F-Canyon Auxiliary                   | 221-F           |
|         | Special Recovery                     | 221-F           |
|         | Pu Storage                           | 221-F           |
|         | Laboratory                           | 772-F           |
|         | Production Control Facility          | 772-1F          |
| F-03    | Metallurgical Bldg.                  | 235-F           |

| Outfall       | Major Sources                                | Building Number |
|---------------|----------------------------------------------|-----------------|
|               | Equipment Development Facility               | 246-F           |
| F-05          | Metallurgical Bldg.                          | 235-F           |
| F-08          | Contaminated Storage (external)              | 080-2F          |
|               | Chemical Feed Bldg.                          | 280-1F          |
|               | Area Shops                                   | 717-F           |
|               | Process Control Lab                          | 772-F           |
| G-10          | A, B, C, CS, F, H, and S Sanitary Wastewater | CSWTF           |
| F-9           | Delaying Basins inflow                       | --              |
| F-12 & F-13 * | Stormwater Retention Basins                  | ---             |
| H-02          | Manufacturing Bldg.                          | 232-H & 234-H   |
|               | Storage and Process Bldg.                    | 237-H           |
|               | Reclamation Bldg.                            | 238-H           |
| H-04          | Canyon Auxiliaries                           | 211-2H          |
|               | Canyon Bldg.                                 | 221-H           |
|               | Waste Management Maintenance Facility        | 299-H           |
|               | CIF Non-process Wastewater                   | ---             |
| H-06 *        | Canyon Stack                                 | 291-H           |
|               | Canyon Exhaust Fanhouse                      | 292-H           |
|               | Canyon Exhaust Filters                       | 294-H           |
|               | Additional Canyon Sand Filter                | 294-1H          |
| H-07          | Jumper Storage Pad                           | 080-7H & 8H     |
|               | A-Line                                       | 221-1H          |
|               | Cooling Tower Blowdown                       | 241-49H         |
| H7A *         | Wastewater Tanks                             | 241-75H         |
|               | Acid/Caustic Tanks                           | 241-61H         |
| H-08          | Waste Management Tank Farm                   | 241-H           |
|               | Chemical Feed Bldg.                          | 280-1H          |
| H8A           | Ash Basin Overflow                           | ---             |
| H10           | Receiving Basin for Offsite Fuel             | 244-H           |

\* - Denotes stormwater outfall

Table 1 SRS Outfalls and Their Major Sources (continued)

| Outfall       | Major Sources                       | Building Number |
|---------------|-------------------------------------|-----------------|
|               | Return Water Delaying Basin         | 281-1H          |
|               | Waste Storage Tanks *               | 241-15H         |
| H12           | H-Canyon                            | 221-H           |
| H-12 (cont'd) | Manufacturing Bldgs.                | 232-H & 234-H   |
|               | Cooling Tower                       | 241-13H         |
|               | ETF Steam Condensate                | 241-84H         |
|               | Retention Basin                     | 241-103H        |
|               | Segregated Water Delaying Basin     | 281-5H          |
| H-16          | F/H Effluent Treatment Facility     | ---             |
| K-10          | K-Reactor                           | 105-K           |
|               | Deionizers                          | ---             |
| K-12          | Sanitary Wastewater Treatment Plant | 607-17K         |
| K-18          | K-Reactor                           | 105-K           |
|               | Containment Basin                   | 106-K           |
| L-07          | L-Reactor                           | 105-L           |
| L-7A          | Sanitary Wastewater Treatment Plant | 607-16L         |
| L-08          | L-Reactor                           | 1-5-L           |
|               | Engine House                        | 108-1L & 2L     |
| M-04          | Canning Bldg.                       | 313-M           |
|               | Alloy Bldg.                         | 320-M           |
|               | Manufacturing Bldg.                 | 321-M           |
|               | Metallurgical Lab                   | 322-M           |
|               | Lab Waste Treatment Facility        | 340-M           |
|               | Dilute Effluent Treatment Facility  | 341-M           |
| M-05          | Groundwater Air Stripper            | 323-M           |
| P-13          | P-Reactor                           | 105-P           |
|               | Basin Deionizer                     | 105-1P          |
|               | Sanitary Wastewater Treatment Plant | 607-7P & 23P    |
| P-19          | P-Reactor                           | 105-P           |
| PP-1          | Transformer Yard                    | 651-6G          |
|               | Par Pond Lab *                      | 735-7G          |

\* - Denotes stormwater outfall

| Outfall | Major Sources                              | Building Number |
|---------|--------------------------------------------|-----------------|
|         | Backwash from Greensand Filter             | ---             |
| S-02    | Construction Equipment Washdown            | S-7             |
| S-04    | DWPF Non-process wastewater                | ---             |
|         | Cooling Tower Blowdown                     | ---             |
|         | Neutralization wastewater                  | ---             |
| S-05 *  | S-Area Operations                          | 704-S           |
|         | Operations Service Bldg.                   | 210-S           |
|         | Vitrification Bldg.                        | 221-S           |
|         | Chemical Receipt Area                      | 422-S           |
|         | Chemical Treatment facility                | 980-S           |
|         | Cooling Tower                              | 981-S           |
| X-04    | Pilot Plant Bldg.                          | 677-T           |
| X-08    | Effluent Treatment Plant                   | 904-T           |
|         | Cooling Tower                              | 675-T           |
|         | Water from X-8A (Sanitary)                 | ---             |
|         | Water From X-8B (ETP)                      | ---             |
|         | Water from X-8C (Groundwater Air Stripper) | ---             |
| X-8A    | Sanitary Wastewater Treatment Plant        | 607 37T         |
| X-8B    | Floor Drains                               | 670-T           |
|         | Tank Farm                                  | 671-T           |
|         | Glass Melter Bldg.                         | 675-T           |
|         | Chemical Semiworks Bldg.                   | 678-T           |
|         | Cooling Tower                              | 672-1T          |
|         | Analytical lab                             | 772-T           |
|         | Organics Removal Facility                  | 607-46T         |
|         | Effluent Treatment Plant                   | 904-T           |
| X-09    | Mock Waste Tank                            | 678-5T          |
| X-19    | Treated groundwater                        | ---             |

Based on the information in Table 1, several outfalls can be eliminated due to the potential pollutant releases associated with them. For example, the sanitary wastewater treatment plants (SWTPs) receive only non-process, sanitary wastewater. Even in the event of an unplanned release that reached the sanitary sewer in any particular area, all SWTPs are equipped with equalization basins that provide the capability for detaining the wastewater until proper disposal options can be determined. Consequently, sanitary wastewater outfalls (G-10, K-12, L-7A, P-13, X-8A) can be eliminated from further consideration for modeling.

Coal-fired powerhouses at SRS once provided steam to facilities across the site. All powerhouses are now out of service except for those in A- and D-Areas. However, even under emergency conditions, the biggest concerns with powerhouse effluents are suspended solids and thermal discharges, neither of which are emergency preparedness concerns. Consequently, outfalls associated with powerhouses can be eliminated (D-06, H-08A, and K-06).

Operation of the powerhouse and associated outfalls in D-Area was taken over by SCE&G. Consequently, D-Area outfalls are no longer covered under the SRS NPDES permit. However, due to the proximity of D-Area to the Savannah River, D-03 outfall will be modeled for tritium releases.

The outfalls associated with Reactor discharges (K-10, K-18, L-07, L-08, P-13, and P-19) can also be eliminated from modeling by virtue of the reactor shutdowns. Additionally, M-Area operations have also ceased; therefore, associated outfalls (A-14, M-04, and M-05) do not require hydrological modeling.

Several other outfalls receive discharges that are not an emergency preparedness concern. For example, A-03, A-05, A-11, and PP-1 do not receive any hazardous chemicals or radionuclides, either under normal or emergency conditions.

One of the largest recent construction activities at SRS is the Defense Waste Processing Facility (DWPF). Now complete, DWPF has resulted in major changes in both the flow paths and the hazardous material release potential for the area. The 1993 maps are now out-dated, but the actual routes that discharges take should be relatively simple to determine. Also, radiological and chemical inventories for DWPF are well documented, making the materials of concern easily determined as well.

## CONCLUSIONS

The greatest concern from an emergency preparedness perspective is outfalls that have a potential for receiving significant amounts of hazardous chemicals and/or radionuclides. Another concern is the probability for the release to reach the Savannah River. Process and stormwater discharges from A, D, E, F, H, S, and TNX Areas are considered further for hydrological modeling. Table 2 shows the outfalls recommended for further modeling of specific accident scenarios and the reasons for the recommendations. These outfalls were selected on the basis of potential contaminants and/or proximity to the Savannah River. Additionally, one outfall from each currently operating area is represented in the list. If the results of the modeling indicate particularly severe consequences from an area, other locations from that area may then be selected for additional modeling.

**Table 2. Outfalls Recommended for Potential Hydrological Modeling**

| Outfall | Reason for Recommending Hydrological Modeling                                                                                                                                                                                                                               |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-01    | This outfall receives discharges from SRTC that, under emergency conditions, could potentially contain both radionuclides and hazardous chemicals.                                                                                                                          |
| D-03    | This outfall receives discharges from the tritium distillation columns. Also, it is particularly close to the Savannah River.                                                                                                                                               |
| E-01    | This stormwater outfall receives runoff from around several radioactive waste and mixed waste storage areas.                                                                                                                                                                |
| F-08    | This outfall receives a wide range of discharges that, under emergency conditions, could potentially contain both radionuclides and hazardous chemicals. Additionally, it has the largest average flowrate of the F-Area outfalls, based on the current NPDES permit.       |
| H-12    | This outfall receives a wide range of discharges that, under emergency conditions, could potentially contain both radionuclides and hazardous chemicals. Additionally, it has an average flowrate of greater than 1 million gallons/day, based on the current NPDES permit. |
| S-05    | This stormwater outfall receives runoff from around DWPF operating areas and chemical receipt and treatment areas. Under emergency conditions, it could potentially receive both radionuclides and hazardous chemicals.                                                     |
| X-08    | This outfall receives discharges that, under emergency conditions, could potentially contain hazardous chemicals. Additionally, this outfall is the closest of the recommended outfalls to the Savannah River.                                                              |

- It is recommended that initially, outfalls D-03, H-12, and X-08 be modeled. Table 3 shows the rationale for selecting these outfalls and for dismissing the remaining outfalls.

Table 3 Rationale for Selecting and Dismissing Outfalls

| Outfalls Selected for Hydrological Modeling     | Outfall | Area / Facility | Comments                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|---------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | D-03    | D Area          | <ul style="list-style-type: none"> <li>• Proximity to river; limited mitigation</li> <li>• Heavy Water facility operational through 10/99; will be consolidated in L Area</li> </ul>                                                                                                                                                         |
|                                                 | H-12    | H Area          | <ul style="list-style-type: none"> <li>• H Canyon wastewater</li> <li>• H-Tank Farm runoff; failure of engineered berms would result in release to H-12</li> </ul>                                                                                                                                                                           |
|                                                 | X-08    | TNX             | <ul style="list-style-type: none"> <li>• Closest to Savannah River</li> <li>• Potential chemical discharges</li> </ul>                                                                                                                                                                                                                       |
| Outfalls Not Selected for Hydrological Modeling | A-01    | M & A           | <ul style="list-style-type: none"> <li>• Low flow in Tim's Branch; long transport time to Upper Three Run's</li> <li>• Power house shutdown</li> <li>• M Area de-inventoried</li> <li>• A Area is administrative, no process discharges</li> <li>• Waste water plant shut down</li> <li>• Only minor process discharges from SRTC</li> </ul> |
|                                                 | E-01    | Burial Ground   | <ul style="list-style-type: none"> <li>• No process discharges</li> <li>• Only issue is liquid release from catastrophic coincident with heavy rains</li> <li>• Normally dry creek bed; middle of site, long transport time as worst case</li> </ul>                                                                                         |
|                                                 | S-05    | DWPF            | <ul style="list-style-type: none"> <li>• No process discharges</li> <li>• Only issue is liquid release from catastrophic coincident with heavy rains</li> </ul>                                                                                                                                                                              |
|                                                 | F-08    | F Area          | <ul style="list-style-type: none"> <li>• Modeling H; no reason to model F</li> <li>• No engineered tank berms in F</li> </ul>                                                                                                                                                                                                                |

**Appendix B**

**Industrial, Commercial, and Recreational Uses  
Of the Savannah River**

Rev. 0

October 1998

**Table of Contents**

|     |                         |    |
|-----|-------------------------|----|
| 1.0 | INTRODUCTION.....       | 1  |
| 2.0 | INDUSTRIAL USES.....    | 1  |
| 2.1 | DISCHARGES .....        | 1  |
| 2.2 | INTAKES .....           | 5  |
| 3.0 | COMMERCIAL USES.....    | 6  |
| 4.0 | RECREATIONAL USES ..... | 7  |
| 4.1 | BOATING .....           | 7  |
| 4.2 | SKIING/SWIMMING.....    | 8  |
| 4.3 | FISHING .....           | 8  |
| 5.0 | CONCLUSIONS.....        | 10 |
|     | REFERENCES .....        | 11 |

**List of Tables**

|         |                                                         |   |
|---------|---------------------------------------------------------|---|
| Table 1 | Parameter Groups.....                                   | 1 |
| Table 2 | NPDES Permitted Facilities.....                         | 2 |
| Table 3 | NPDES Regulatory Limits for Parameters of Interest..... | 4 |
| Table 4 | SC Savannah River Water Withdrawals .....               | 5 |
| Table 5 | GA Savannah River Water Withdrawal Applicants .....     | 5 |
| Table 6 | GA Savannah River Water Withdrawal Permits .....        | 5 |
| Table 7 | Savannah River Water Supply and Power Generation .....  | 6 |
| Table 8 | Savannah River Boat Landings.....                       | 8 |

**Acronyms**

|        |                                                               |
|--------|---------------------------------------------------------------|
| CWA    | Clean Water Act                                               |
| EPA    | <i>Environmental Protection Agency</i>                        |
| GDNR   | Georgia Department of Natural Resources                       |
| MGD    | million gallons daily                                         |
| NPDES  | National Pollutant Discharge Elimination System               |
| PID    | Private and Institutional Development                         |
| SCDHEC | South Carolina Department of Health and Environmental Control |
| SRS    | Savannah River Site                                           |

## 1.0 INTRODUCTION

Liquid effluents from Savannah River Site (SRS) processes discharge to site streams and, ultimately, to the Savannah River. If an emergency release of hazardous material (either radiological or chemical) to the site stream system were to occur, knowing what river water uses exist downstream of SRS would be valuable in providing the proper notification to prevent or mitigate consequences to the public and the environment. This report documents the industrial, commercial, and recreational uses of the Savannah River. As such, its purpose is to provide input for a separate expanded study of potential waterborne releases from SRS under emergency conditions.

## 2.0 INDUSTRIAL USES

### 2.1 Discharges

The National Pollutant Discharge Elimination System (NPDES) was created under the Clean Water Act (CWA) of 1972 to regulate the amount of pollutants that could be discharged into the country's waters. It is administered in South Carolina by the South Carolina Department of Health and Environmental Control (SCDHEC) and in Georgia by the Georgia Department of Natural Resources (GDNR) under U. S. Environmental Protection Agency (EPA) authority. The program requires permitting for the release of effluents into streams, reservoirs and wetlands with the express purpose of protecting surface waters (Ref. 1).

The discharge limits are facility-specific, as are the effluents that are released. To facilitate presentation, the effluents (parameters) are grouped into five broad categories as shown in Table 1:

**Table 1 Parameter Groups**

| Parameter Group                     | Examples                                                  |
|-------------------------------------|-----------------------------------------------------------|
| 1 - Conventional/Non-conventional   | pH, Oil & Grease, Nitrogen, Phosphorous                   |
| 2 - Volatile Organic Compounds      | Benzene, Toluene, Xylene, Chloroform                      |
| 3 - Semi-Volatile Organic Compounds | <i>Anthracene, Naphthalene, Phenol</i>                    |
| 4 - Metals                          | Lead, Copper, Iron, Mercury, Chromium                     |
| 5 - Pesticides/PCBs/Dioxins         | Aldrin; Aroclor 1254; 2,3,7,8-tetrachlorodibenzo-p-dioxin |

Table 2 summarizes the NPDES permitted facilities for South Carolina (Ref. 2) and Georgia (Refs. 3 & 4) that discharge into the Savannah River Basin from SRS to the coast. For the purpose of this report, it was determined that only substances that could potentially be discharged in SRS effluents are identified as specific parameters following the parameter group. Furthermore, facilities holding municipal or private and institutional development (PID) permits are not presented as they are only permitted to release conventional pollutants. Conventional pollutants, while presenting a stream health concern, do not pose an immediate severe threat to the public health under emergency conditions.

Table 2 NPDES Permitted Facilities

| County        | Facility                               | Permit No. | Type | Parameters                                             | Receiving Stream                |
|---------------|----------------------------------------|------------|------|--------------------------------------------------------|---------------------------------|
| Allendale, SC | Clariant Corp                          | SC0042803  | IND  | 1, 2 (benzene), 3                                      | Savannah River                  |
| Jasper, SC    | Amoco Service                          | SC0044385  | IND  | 1, 2 (benzene) 3, 4 (Chromium, Lead)                   | Savannah River                  |
| Burke, GA     | Southern Nuclear Operating             | GA0026786  |      | 1, 4                                                   | Savannah River                  |
| Chatham, GA   | GAF Materials Corp.                    | GA0003841  | IND  | 1                                                      | Dundee Canal & Savannah River   |
|               | Georgia Pacific Corp.                  | GA0047007  | IND  | 1                                                      | Savannah River (Port Wentworth) |
|               | Stone Container Corp.                  | GA0002798  | IND  | 1, 4, 5                                                | Savannah River                  |
|               | Engelhard                              | GA0048330  |      | 1                                                      | Savannah River                  |
|               | Hercules                               | GA0026867  | IND  | 1 (pH)                                                 | Dundee                          |
|               | Atlantic Wood Ind.                     | GA0047783  | IND  | 1, 3 (phenols)                                         | Savannah River                  |
|               | E M Industries, Inc.                   | GA0034355  | IND  | 1, 4 (Chromium)                                        | Savannah River                  |
|               | Sav. Elec.-Pt. Wentworth STM           | GA0003816  | IND  | 1, 4 (Copper, Iron, Mercury), Temperature              | Savannah River                  |
|               | Pooler (SWP)                           | GAS000209  |      | 1                                                      | Hardin                          |
|               | Central of Georgia R/R                 | GA0002381  | IND  | 1                                                      | Ogeechee to Savannah River      |
|               | Kemira                                 | GA0003646  | IND  | 1 (pH)                                                 | Savannah River                  |
|               | Georgia-Pacific Gypsum                 | GA0001961  |      | 1                                                      | Savannah River                  |
|               | Union Camp Corp.                       | GA0001988  | IND  | 1 (pH)                                                 | Savannah River                  |
|               | Tybee Island (SWP)                     | GAS000212  |      | 1, 4 (Chromium)                                        | Savannah River                  |
|               | Pineforest Port Wentworth              | GA0034801  |      | 1                                                      | Black Creek to Savannah River   |
|               | Southern States Phosphate & Fertilizer | GA0002437  | IND  | 1                                                      | Kayton Canal to Savannah River  |
|               | Savannah Sugar Refinery                | GA0003611  | IND  | 1 (pH)                                                 | Savannah River                  |
|               | Savannah Pines                         | GA0022250  |      | 1                                                      | Black Creek to Savannah River   |
|               | Garden City (SWP)                      | GAS000208  |      | 1, 4 (Zinc)                                            |                                 |
|               | Air Liquide America Corp.              | GA0046230  |      | 1                                                      | Savannah River                  |
|               | Citgo Asphalt Refining Co.             | GA0004332  | IND  | 1, 3(phenolics) ,4 (Chromium <sup>+6</sup> , Chromium) | Savannah River                  |
|               | Gulfstream Aerospace Corp.             | GA0003255  | IND  | 1                                                      | Pipemakers Canal                |

**Table 2 NPDES Permitted Facilities (continued)**

| County                        | Facility                          | Permit No. | Type | Parameters                                                                                              | Receiving Stream                                    |
|-------------------------------|-----------------------------------|------------|------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Chatham,<br>GA<br>(continued) | Herty Foundation<br>(Savannah)    | GA0002402  | IND  | 1                                                                                                       | Ditch to Dundee<br>Canal                            |
|                               | USA Hunter AFB<br>STP             | GA0027588  |      | 1                                                                                                       | Forrest River                                       |
|                               | PCS Nitrogen<br>Fertilizer, LP    | GA0002356  | IND  | 1, 4 (Chromium,<br>Copper, Zinc)                                                                        | Savannah River                                      |
| Effingham,<br>GA              | Effingham Elem<br>(South)         | GA0046990  |      | 1                                                                                                       | Un-named tributary to<br>Black Creek                |
|                               | Savannah Elec-<br>Effingham Steam | GA0003883  | IND  | 1, 4 (Copper, Iron),<br>Temperature                                                                     | Savannah River                                      |
|                               | Fort Howard Corp.                 | GA0046973  | IND  | 1, 2, 4 (Chromium,<br>Lead, Nickel, Zinc,<br>Cyanide, Mercury), 5<br>(PCB-1242)                         | Savannah River                                      |
| Richmond,<br>GA               | PCS Nitrogen<br>Fertilizer, L P   | GA0002071  |      | 1                                                                                                       | Savannah River                                      |
|                               | USA Ft. Gordon                    | GA0003484  | IND  | 1                                                                                                       | McCoy Creek<br>Trib/Spirit<br>Creek/Savannah River  |
|                               | International Paper<br>Company    | GA0002801  |      | 1, 5(2,3,7,8-<br>Tetrachloro dibenzo-p-<br>dioxin)                                                      | Savannah River                                      |
|                               | Olin Corporation<br>(Augusta)     | GA0003719  | IND  | 1, 4 (Mercury)                                                                                          | Savannah River                                      |
|                               | DSM Chemicals<br>Augusta, Inc.    | GA0002160  | IND  | 1, 2 (Benzene, others),<br>3, 4 (Cyanide,<br>Chromium, Copper,<br>Lead, Nickel)                         | Cason's Lake/Beaver<br>Dam Ditch/Butler<br>Creek    |
|                               | Albion Kaolin<br>Company          | GA0002470  | IND  | 1                                                                                                       | Grindstone<br>Branch/Spirit<br>Creek/Johnson Branch |
| Screven,<br>GA                | King Finishing<br>Company         | GA0003280  |      | 1, 3, 4 (Cyanide,<br>Sulfur, Cadmium,<br>Chromium, Copper,<br>Mercury, Nickel,<br>Lead, Zinc, Antimony) | Jackson<br>Branch/Ogeechee                          |
|                               | Newington Pond                    | GA0050202  |      | 1                                                                                                       | Ogeechee Creek/<br>Ogeechee River                   |

Regulatory limits for the parameters determined to be similar to SRS potential discharges are listed in Table 3 (Ref. 4). More information on these and other parameters is given in Attachment 1.

Table 3 NPDES Regulatory Limits for Parameters of Interest

| Facility                       | Permit No. | Parameters of Interest                                                                              | Regulatory Limits                                                                          |
|--------------------------------|------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Clariant Corp                  | SC0042803  | Benzene<br>Phenol<br>Cyanide                                                                        | 136.0 $\mu\text{g}/\text{L}$<br>26.0 $\mu\text{g}/\text{L}$<br>1200 $\mu\text{g}/\text{L}$ |
| Amoco Service                  | SC0044385  | Benzene<br>Chromium<br>Lead                                                                         | 0.005 mg/L<br>0.016 mg/L<br>0.050 mg/L                                                     |
| Southern Nuclear Operating co. | GA0026786  | Chromium<br>Zinc                                                                                    | 0.200 mg/L<br>1.000 mg/L                                                                   |
| Stone Container Corporation    | GA0002798  | 2, 3, 7, 8-Tetrachloro-dibenzo-p-dioxin                                                             | 0.00068 $\mu\text{g}/\text{L}$                                                             |
| Atlantic Wood Ind.             | GA0047783  | Phenols                                                                                             | 0.2 mg/L                                                                                   |
| E M Industries, Inc.           | GA0034355  | Chromium                                                                                            | *                                                                                          |
| Sav. Elec.-Pt. Wentworth STM   | GA0003816  | Copper<br>Iron<br>Mercury                                                                           | 1.0 mg/L<br>1.0 mg/L<br>0.016 mg/L                                                         |
| Tybee Island (SWP)             | GA0020061  | Chromium<br>Chromium <sup>-6</sup>                                                                  | 0.01 mg/L<br>0.01 mg/L                                                                     |
| Garden City (SWP)              | GA0031038  | Zinc                                                                                                | (1)                                                                                        |
| Citgo Asphalt Refining Co.     | GA0004332  | Phenolics                                                                                           | 2.02 mg/L                                                                                  |
| Savannah Elec-Effingham Steam  | GA0003883  | Copper<br>Iron                                                                                      | 1.0 mg/L<br>1.0 mg/L                                                                       |
| Fort Howard Corp.              | GA0046973  | Chromium<br>Cyanide<br>Lead<br>Nickel<br>Mercury<br>PCB-1242<br>Zinc                                | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>0.38 $\mu\text{g}/\text{L}$<br>(1)                      |
| International Paper Company    | GA0002801  | 2,3,7,8-Tetrachloro-dibenzo-p-dioxin                                                                | 0.00016 $\mu\text{g}/\text{L}$                                                             |
| DSM Chemicals Augusta, Inc.    | GA0002160  | Benzene<br>Phenol                                                                                   | 10 mg/L<br>10 mg/L                                                                         |
| King Finishing Company         | GA0003280  | Cyanide<br>Sulfur<br>Cadmium<br>Chromium<br>Copper<br>Mercury<br>Nickel<br>Lead<br>Zinc<br>Antimony | (1)<br>(1)<br>(1)<br>(1)<br>(2)<br>0.5 $\mu\text{g}/\text{L}$<br>(1)<br>(1)<br>(2)<br>(1)  |

\* - No limit specified on permit. Potential exists for this parameter to be discharged from the facility based on NPDES permit application data, however, under routine conditions it is not in excess of the applicable Water Quality Criteria.

(1) - EPA permit database (Ref. 4) indicates monitoring has been deleted for these parameters.

- EPA permit database (Ref. 4) indicates monitoring is optional for these parameters.

## 2.2 Intakes

SCDHEC requests facilities with intakes of greater than 100,000 gallons of water per day to register with the Bureau of Water Compliance Assurance Division; however, compliance is voluntary. Currently, two facilities that intake from the Savannah River below the Savannah River Site in South Carolina submit the requested reports. The data for 1997 for these facilities are given in million gallons daily (MGD) and are listed in Table 4 as provided by SCDHEC.

**Table 4 SC Savannah River Water Withdrawals**

| County    | Facility                               | Contact      | Phone Number | Monthly Average (MGD) |
|-----------|----------------------------------------|--------------|--------------|-----------------------|
| Allendale | Clariant Corp – Martin Plant           | B. G. Hudley | 803-584-4321 | 43.9                  |
| Hampton   | International Paper/Westinghouse Elec. | B. R. Ulmer  | 803-943-7200 | 19.0                  |

The State of Georgia requires permitting of facilities that use greater than 100,000 gallons of water per day. The facilities listed in Table 5 have filed permit applications for surface water withdrawal with the Water Resources Management Program (Ref. 5).

**Table 5 GA Savannah River Water Withdrawal Applicants**

| County    | Facility                             | Associate     | Phone Number | Max. Withdrawal (MGD) |
|-----------|--------------------------------------|---------------|--------------|-----------------------|
| Effingham | Savannah Industrial & Domestic Water | Clay Burdette | 404-657-6008 | 75.0                  |
| Effingham | The Savannah Group                   | Clay Burdette | 404-657-6008 | 4.6                   |
| Richmond  | City of Augusta                      | Clay Burdette | 404-657-6008 | 87.0                  |

Table 6 contains a complete list of Georgia DNR permitted users in the Savannah River Basin counties of Richmond, Burke, Screven, Effingham, and Chatham. (Obtained via e-mail, GDNR)

**Table 6 GA Savannah River Water Withdrawal Permits**

| County    | Facility Name                              | Source Water   | Max Withdrawal (MGD) |
|-----------|--------------------------------------------|----------------|----------------------|
| Richmond  | Augusta-Richmond County*                   | Augusta Canal  | 50.00                |
| Richmond  | Augusta-Richmond County                    | Savannah River | 37.00                |
| Richmond  | DSM Chemicals Augusta, Inc.                | Savannah River | 7.20                 |
| Richmond  | Federal Paper Board Company, Inc.          | Savannah River | 85.00                |
| Richmond  | Fort Gordon - Butler Creek                 | Butler Creek   | 5.40                 |
| Richmond  | Fort Gordon - Cow Branch                   | Cow Branch     | 0.60                 |
| Effingham | Fort James Operating Company               | Savannah River | 35.00                |
| Chatham   | Kemira Inc.                                | Savannah River | 30.00                |
| Richmond  | Martin Marietta Aggregates-Augusta Quarry  | Sump pit       | 3.30                 |
| Richmond  | Olin Corporation                           | Savannah River | 4.00                 |
| Richmond  | PCS Nitrogen Fertilizer, L.P.              | Savannah River | 21.60                |
| Richmond  | Peridot                                    | Savannah River | 5.65                 |
| Effingham | Savannah Electric & Power Co-Effingham     | Savannah River | 130.00               |
| Chatham   | Savannah Electric & Power Co-Riverside     | Savannah River | 174.00               |
| Chatham   | Savannah Electric & Power Co-Pt. Wentworth | Savannah River | 267.00               |
| Effingham | Savannah Ind. & Domestic Water*            | Abercorn Creek | 55.00                |

**Table 6 GA Savannah River Water Withdrawal Permits (continued)**

| County  | Facility Name                        | Source Water   | Max Withdrawal (MGD) |
|---------|--------------------------------------|----------------|----------------------|
| Burke   | Southern Nuclear Operating Co., Inc. | Savannah River | 127.00               |
| Chatham | Stone Container Corporation          | Savannah River | 30.50                |
| Chatham | Stone Container Corporation          | Savannah River | 60.00                |
| Chatham | Union Camp Corporation               | Savannah River | 58.00                |

\* New permit application filed. See Table 5.

Industrial intakes from the Savannah River have the potential to be effected by releases from SRS. For purposes of human health, drinking water intakes from the Savannah River are of utmost concern. For release of contaminant into free flowing surface water or groundwater system, SCDHEC refers to the South Carolina Drinking Water Standards R.61-58.8 (SCDWS). The emergency procedure of the SCDWS establishes the minimum requirements that must be met by all public water systems prior to, during, and after an emergency. Each accidental waterborne release of contaminant into the surface water system would be evaluated on a case by case basis. The Beaufort Jasper Water System is the only South Carolina public water system downstream from SRS. Upon notification of a release of contaminant into the Savannah River that exceeds - or has the potential to exceed - the safe drinking water standards, the public water system will shutdown the intake of water from the river. If the Beaufort Jasper Water System can not remove the contaminant from the water through their water purification process then the intake system from the river would be shutdown until the monitoring of the river indicates that the release has passed. The Beaufort Jasper Water System has the ability to supply the water needs for its customers for several days without acquiring water from the Savannah River. Other non-drinking water industrial intakes may also be affected by releases into the river. Conversations with SCDHEC personnel indicate that most facilities downstream from SRS will halt intakes from the river following an accidental acute release of radionuclides. At this time concentration levels of radionuclide and or other hazardous substances at which intakes are halted are not available.

### 3.0 COMMERCIAL USES

Identified commercial uses of the Savannah River include:

- Surface water supply
- Electrical power generation
- Waterborne commerce
- Fishing

Surface water supply and electrical power generation can be identified through permitting/reporting as intake sources, as noted in Table 6 and summarized in Table 7.

**Table 7 Savannah River Water Supply and Power Generation**

| County    | Facility Name           | Commercial Use       | Source Water   |
|-----------|-------------------------|----------------------|----------------|
| Richmond  | Augusta-Richmond County | Surface Water Supply | Augusta Canal  |
| Richmond  | Augusta-Richmond County | Surface Water Supply | Savannah River |
| Effingham | The Savannah Group      | Surface Water Supply | Savannah River |

|           |                                             |                             |                |
|-----------|---------------------------------------------|-----------------------------|----------------|
| Effingham | Savannah Ind. & Domestic Water              | Surface Water Supply        | Abercorn Creek |
| Effingham | Savannah Electric & Power Co.-Effingham     | Electrical Power Generation | Savannah River |
| Chatham   | Savannah Electric & Power Co.-Riverside     | Electrical Power Generation | Savannah River |
| Chatham   | Savannah Electric & Power Co.-Pt. Wentworth | Electrical Power Generation | Savannah River |

Waterborne commerce, for the purposes of this report, is a minor concern. This is largely due to the fact that there is little to no navigation above the Savannah River Harbor. The only documented commercial navigation identified was barges that are sent to SRS by Chem Nuclear. In 1994, they expected to send 8 to 10 barges (Ref. 10). Further consideration should be given to the pollution capability of this commerce.

In general, the Savannah River cannot support commercial fishing for many species because local testing by various organizations (SRTC, CRESP, SCDHEC, GDNR, and the Academy of Natural Sciences of Philadelphia) severely depletes the fish population. There is, however, some commercial fishing for shad. SCDNR Marine Resources gives limited information due to privacy laws but reports that there are over 1,000 pounds of shad harvested annually by 20 to 50 individuals. GDNR Wildlife Resources Division reports approximately 15,900 shad harvested for 1998, which represents the lowest annual figures in recent years. The peak harvest since 1972 occurred in 1985 totaling 111,631 fish.

Both SCDNR and GDNR suggest that there is some commercial fishing for catfish; however, this activity is not regulated, nor is it believed to occur at a substantial level. Turtle and eel harvesting are also potentials for commercial activities; but neither department was aware of any such activity in the Savannah River.

#### 4.0 RECREATIONAL USES

Recreational uses of the Savannah River include boating, skiing, swimming, and fishing. Since most recreational activities are not conducted under any permit or license (with the exception of fishing), accurate data on these uses is more subjective than that gathered for commercial and industrial uses. However, the states of South Carolina and Georgia have conducted and documented studies (Refs. 6 & 7) on these activities in an effort to fully understand the actual and potential recreational uses of the Savannah River. This information could, in turn, be used to ensure that the state treasuries continue to benefit from recreational river usage. Additionally, Rutgers University has surveyed Savannah River anglers (Ref. 8). All of these studies were used in compiling information for this report.

##### 4.1 Boating

The RiverCare 2000 program evaluated, among other topics, the use of Georgia rivers, streams, swamps, and intracoastal waterways for various types of recreational boating. The data were collected from a survey completed by GDNR law-enforcement officers familiar with the river uses in their jurisdictions. This survey was completed only for those waters that the officers felt had the potential to provide recreational boating opportunities, but lacked public access points. From this information, river segments were assigned point values based on the evaluation criteria and were classified as one of the following:

- Superior recreational boating value is of statewide importance

- Outstanding recreational boating value is of regional importance
- Significant recreational boating value is of local importance

River segments not exceeding the minimum criteria for a "Significant" segment ranking were not classified. Based on this assessment, the Savannah River has 42 miles classified as Superior for boating, 237 miles classified as Outstanding, and 161 miles classified as Significant (Ref. 7).

In addition, boat landings downstream of the Savannah River Site that have been identified by SCDHEC and GDNR Wildlife Resources Division are listed in Table 8.

**Table 8 Savannah River Boat Landings**

| Landing              | County        | River Mile | Approximate Location                              |
|----------------------|---------------|------------|---------------------------------------------------|
| Shell Bluff          | Burke, GA     | 162.0      | 7 mi. NE of Shell Bluff at end of GA80/CR477      |
| Hancock Landing      | Burke, GA     | 152.0      | 10.5 mi. E of Shell Bluff off GA23 at end of CR98 |
| GA Power – Vogtle    | Burke, GA     | 149.0      | (not given)                                       |
| Brighams Landing     | Burke, GA     | 144.0      | 5.5 mi. NE of Girard off GA 23 at end of CR79     |
| Steel Creek Landing  | Barnwell, SC  | 142.0      | Off of County Road 493                            |
| Little Hell Landing  | Barnwell, SC  | 135.0      | Left at Millet Crossing                           |
| Stony Bluff          | Burke, GA     | 132.0      | 10 mi. E of Girard off CR 433 at end of CR60      |
| Johnson's Landing    | Allendale, SC | 124.0      | Highway 321                                       |
| Burtons Ferry        | Screven, GA   | 119.0      | 11.5 mi. NE of Sylvania off US301 at end of CR220 |
| Cohens Bluff         | Allendale, SC | 104.0      | Off of CR41                                       |
| Tuckahoe WMA         | Screven, GA   | 100.0      | (not given)                                       |
| Poor Robin Landing   | Screven, GA   | 87.0       | 11 mi. SE of Sylvania off GA21 at end of CR105    |
| Blue Springs Landing | Screven, GA   | 78.0       | 5 mi. NE of Newington off GA24 at end of CR214    |
| Stokes Bluff         | Hampton, SC   | 63.8       | Off of County Road 461                            |
| Tuckasee King        | Effingham, GA | 62.0       | 3.5 mi. NE of Clyo off GA119, CR84 and CR279      |
| B & C Landing        | Jasper, SC    | 60.0       | West on Hwy 19 to CR 201                          |
| Ebenezer Creek       | Effingham, GA | 45.0       | 9 mi. NE of Rincon of GA21 at end of GA275        |
| Becks Ferry          | Jasper, SC    | 44.0       | Off of CR 170                                     |
| Millstone Landing    | Jasper, SC    | 33.0       | Off of CR 34                                      |
| Abercorn Creek       | Effingham, GA | 29.0       | 8 mi. SE of Rincon off GA21, CR133 and CR134      |
| Houlihan Bridge      | Chatham, GA   | 21.0       | 1.5 mi. NE of Port Wentworth at US17              |

## 4.2 Skiing/Swimming

As with recreational boating, skiing and swimming are not permitted activities, making data-gathering particularly difficult. It is assumed that skiing and swimming will occur at the same locations that are deemed acceptable for boating. GDNR reports that there are no public swimming areas below the Savannah River Site. SCDHEC does issue permits for public swimming areas; however, no such areas are located on the South Carolina side of the Savannah River. Private docks provide access for a limited population and information regarding their locale is not readily accessible.

## 4.3 Fishing

Recreational fishing on the Savannah River is a popular pastime. However, both SCDHEC and GDNR have issued pamphlets, leaflets, etc. detailing the potential hazards associated with eating fish from the river. These warnings cite mercury, cesium, and strontium uptake in the fish as the

**Table 8 Savannah River Boat Landings (continued)**

primary causes of concern, and they particularly caution children and pregnant or nursing women about the possible dangers of consumption. Crappie, pickerel, and sunfish are recommended for consumption due to lower levels of chemicals. Conversely, largemouth bass and bowfin are advised against. According to the GDNR, the most popular species among Georgia fishermen are sunfish, bluegill, channel catfish, bullheads, and black crappie (Ref. 9).

The Environmental and Occupational Health Sciences Institute from Rutgers University conducted a survey of Savannah River anglers to examine fishing behavior, consumption rates, cooking methods, and potential health hazards associated with consuming fish from the Savannah River (Ref. 8). Other objectives of the study included 1) determining whether people have heard the warnings about fish consumption and 2) whether ethnic background, age, income, or other differences affect fishing behavior, consumption patterns, and exposure. The data from this study have been issued in draft format. Of those surveyed, 61% had heard warnings about fish consumption, and 82% of respondents believe the fish are safe to eat.

## 5.0 CONCLUSIONS

Many of the uses of the Savannah River were identified through permitting requirements, reporting programs, or studies conducted by various organizations. These forms of documentation were the most useful in determining industrial, commercial, and recreational river water uses. Therefore, most of the downstream river uses are assumed to be included in this document. However, the permits, reports, and studies were by no means all-inclusive. This assessment is echoed in the Savannah River Watershed Project's *Initial Assessment and Prioritization for the Savannah River Basin* (Ref. 10), which repeatedly cites insufficient data on topics such as water quality, economic development, land use, and navigation. Information provided in Reference 10 is, however, extremely useful in understanding the various aspects of Savannah River watershed management issues.

For those activities where no permits or reports were required, or compliance with such programs was voluntary, no method was available to definitively determine these uses. For instance, NPDES permits provide a method of determining effluent discharges to the river, and water withdrawal permits allow tracking of facilities that use greater than 100,000 gallons/day from the river. However, industries that use less than 100,000 gallons/day are not monitored, and the possibility of facilities not participating in voluntary intake registration precludes generation of a complete listing of intake points without physical inspection of that segment of the river. Consequently, commercial uses that depend on surface water intakes may have been overlooked as well. The details of recreational uses are also recognized to be incomplete, due to the nature of these uses, i.e., personal entertainment and/or subsistence. These identified information gaps would have to be recognized and addressed in the event of an emergency release and in associated planning efforts.

## REFERENCES

1. *Savannah River Site Environmental Report for 1997*, WSRC-TR-97-00322, WSRC, Aiken, SC.
2. *Savannah River Site Operation Center Operating Procedure Manual*, SRSOC- 305-2, WSRC, Aiken, SC.
3. *Memoranda of Understanding with the Georgia Emergency Management Agency; Georgia Department of Natural Resources, Environmental Protection Division; and the United States Department of Energy, Savannah River Site Operations*, DE-MU09-92SR18287, WSRC, Aiken, SC.
4. *Memoranda of Understanding with the South Carolina Department of Health and Environmental Control, the South Carolina Emergency Preparedness Division, and the Department of Energy, Savannah River Site Operations*, DE-MU09-92SR18275, WSRC, Aiken, SC.
5. *Watershed Water Quality Assessment: Savannah and Salkehatchie River Basins*, Bureau of Water Technical Report No. 003-97, December 1997.
6. Georgia Environmental Protection - Department of Natural Resources, *Listing of NPDES & LAS Permits*, <http://www.dnr.state.ga.us/dnr/environ/>, September 25, 1998.
7. United States Environmental Protection Agency, Envirofacts Warehouse, *Permit Compliance System*, <http://www.epa.gov/enviro>, October 9, 1998.
8. Georgia Environmental Protection - Department of Natural Resources, *Water Resources Branch*, <http://www.ganet.org/dnr/environ/branches/watresource/swpa598.html>, September 30, 1998.
9. Powell, J. M., SCDHEC Environmental Surveillance and Oversight Program, *Savannah River Watershed Basin Project Recommendation 20 Part 1*, July 28, 1998.
10. Georgia Environmental Protection - Department of Natural Resources, *RiverCare 2000*, <http://www.dnr.state.ga.us/dnr/environ/>, September 25, 1998.
11. Burger, J., Environmental and Occupational Health Sciences Institute – Rutgers University, *Fishing, Consumption Rates, and Perceptions of People Fishing Along the Savannah River*, CRESP Preliminary Data – September 1997.
12. Georgia Environmental Protection - Department of Natural Resources, *Georgia River Fishing Predictions*, <http://www.dnr.state.ga.us/dnr/wild/98rvrpre.htm>, September 22, 1998.
13. Management Committee of the Savannah River Basin Watershed Project, *Savannah River Basin Watershed Project, Initial Assessment and Prioritization Report for the Savannah River Basin*, Volume 1 and 2, October 1995.

**Attachment 1**  
**NPDES Regulatory Limits**  
**By Permit**

Attachment 1  
NPDES Regulatory Limits

Page

| NPDES #   | FACILITY               | COUNTY  | PARAMETER    | MAX | Avg | UNITS    |
|-----------|------------------------|---------|--------------|-----|-----|----------|
| GA0001961 | GEORGIA-PACIFIC GYPSUM | CHATHAM | CONDUCTIVITY |     |     | UMHO/ CM |
| GA0001961 | GEORGIA-PACIFIC GYPSUM | CHATHAM | PH           | 9   |     | SU       |

UMHO/CM  
SU  
CONDUCTANCE-MICROMHO'S PER CM  
STANDARD UNITS

| NPDES #   | FACILITY               | COUNTY  | PARAMETER | MAX | AVG | UNITS |
|-----------|------------------------|---------|-----------|-----|-----|-------|
| GA0001988 | UNION CAMP CORPORATION | CHATHAM | PH        | 9   |     | SU    |
| GA0001988 | UNION CAMP CORPORATION | CHATHAM | PH        | 9   |     | SU    |

SU

STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY          | COUNTY  | Code Expansion for Parameter Code | MAX    | AVG    | Units   |
|-----------|-------------------|---------|-----------------------------------|--------|--------|---------|
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | OXYGEN DISSOLVED (DO)             | DELMON | DELMON | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | BOD 5-DAY (20 DEG. C)             | 45     | 30     | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | BOD 5-DAY (20 DEG. C)             | 45     | 30     | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | BOD 5-DAY (20 DEG. C)             |        |        | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | PH                                | 9      |        | SU      |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | PH                                | 8.5    |        | SU      |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | PH                                | 9      |        | SU      |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | PH                                | 9      |        | SU      |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | SOLIDS TOTAL SUSPENDED            | 45     | 30     | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | SOLIDS TOTAL SUSPENDED            | 45     | 30     | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | SOLIDS TOTAL SUSPENDED            |        |        | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | NITROGEN AMMONIA TOTAL (AS N)     | 26.1   | 17.4   | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | CHROMIUM HEXAVALENT (AS CR)       | 0.01   | DELMON | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | CHROMIUM TOTAL (AS CR)            | 0.01   | DELMON | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | CHLORINE TOTAL RESIDUAL           | 0.5    | DELMON | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | CHLORINE TOTAL RESIDUAL           | 0.5    | DELMON | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | CHLORINE TOTAL RESIDUAL           |        | DELMON | MG/L    |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | COLIFORM FECAL GENERAL            | 400    | 200    | #/100ML |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | COLIFORM FECAL GENERAL            | 200    | 100    | #/100ML |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | COLIFORM FECAL GENERAL            | 400    | 200    | #/100ML |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | BOD 5-DAY PERCENT REMOVAL         |        |        | %       |
| GA0020061 | TYBEE ISLAND WPCP | CHATHAM | SOLIDS SUSPENDED PERCENT REMOVAL  |        |        | %       |

SU STANDARD UNITS (I.E. PH)  
 MG/L MILLIGRAMS PER LITER  
 #/100ML NUMBER PER 100 MILLILITERS

| NPDES #   | FACILITY                     | COUNTY   | PARAMETER                      | MAX | AVG | UNITS |
|-----------|------------------------------|----------|--------------------------------|-----|-----|-------|
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | BOD 5-DAY (20 DEG. C)          | 45  | 30  | MG/L  |
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | PH                             | 9   |     | SU    |
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | PH                             | 9   |     | SU    |
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | SOLIDS TOTAL SUSPENDED         | 45  | 30  | MG/L  |
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | NITROGEN, ORGANIC TOTAL (AS N) |     |     | MG/L  |
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | NITROGEN, AMMONIA TOTAL (AS N) |     |     | MG/L  |
| GA0002071 | PCS NITROGEN FERTILIZER L.P. | RICHMOND | NITROGEN, NITRATE TOTAL (AS N) |     |     | MG/L  |

MG/L MILLIGRAMS PER LITER  
SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY                  | COUNT    | PARAMETER                       | MAX  | AVG    | UNIT |
|-----------|---------------------------|----------|---------------------------------|------|--------|------|
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | PH                              | 10.5 |        | SU   |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | PH                              | 9    |        | SU   |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | PH                              | 9    |        | SU   |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | SOLIDS TOTAL SUSPENDED          | 110  | 55     | MG/L |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | NITROGEN AMMONIA, TOTAL (AS N)  |      |        | MG/L |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | NITROGEN KJELDAHL, TOTAL (AS N) |      |        | MG/L |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | TOLUENE                         | 10   | DELMON | MG/L |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | BENZENE                         | 10   | DELMON | MG/L |
| GA0002160 | DSM CHEMICALS AUGUSTA INC | RICHMOND | PHENOL, SINGLE COMPOUND         | 10   | DELMON | MG/L |

SU            STANDARD UNITS (I.E. PH)  
 MG/L        MILLIGRAMS PER LITER

| NPDES #   | FACILITY       | COUNTY  | PARAMETER                | MAX | AVG | UNITS   |
|-----------|----------------|---------|--------------------------|-----|-----|---------|
| GA0022250 | SAVANNAH PINES | CHATHAM | BOD 5-DAY (20 DEG. C)    | 45  | 30  | MG/L    |
| GA0022250 | SAVANNAH PINES | CHATHAM | PH                       | 9   |     | SU      |
| GA0022250 | SAVANNAH PINES | CHATHAM | PH                       | 9   |     | SU      |
| GA0022250 | SAVANNAH PINES | CHATHAM | SOLIDS, TOTAL SUSPENDED  | 45  | 30  | MG/L    |
| GA0022250 | SAVANNAH PINES | CHATHAM | COLIFORM, FECAL, GENERAL | 400 | 200 | #/100ML |

MG/L                    MILLIGRAMS PER LITER  
 SU                    STANDARD UNITS (I.E. PH)  
 #/100ML            NUMBER PER 100 MILLILITERS

| NPDES #   | FACILITY                     | COUNTY  | Parameter | MAX | Avg | Units |
|-----------|------------------------------|---------|-----------|-----|-----|-------|
| GA0002356 | PCS NITROGEN FERTILIZER L.P. | CHATHAM | PH        | 9   |     | SU    |

SU            STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY               | COUNTY  | PARAMETER                           | MAX | AVG | UNITS |
|-----------|------------------------|---------|-------------------------------------|-----|-----|-------|
| GA0002381 | CENTRAL OF GEORGIA R/R | CHATHAM | PH                                  | 9   |     | SU    |
| GA0002381 | CENTRAL OF GEORGIA R/R | CHATHAM | SOLIDS, TOTAL SUSPENDED             | 45  | 30  | MG/L  |
| GA0002381 | CENTRAL OF GEORGIA R/R | CHATHAM | OIL AND GREASE (SOXHLET EXTR.) TOT. | 15  | 10  | MG/L  |

SU STANDARD UNITS (I.E. PH)

MG/L MILLIGRAMS PER LITER

| NPDES #   | FACILITY                    | COUNTY  | PARAMETER               | MAX | AVG | UNITS |
|-----------|-----------------------------|---------|-------------------------|-----|-----|-------|
| GA0002402 | HERTY FOUNDATION (SAVANNAH) | CHATHAM | BOD 5-DAY (20 DEG. C)   |     |     | MG/L  |
| GA0002402 | HERTY FOUNDATION (SAVANNAH) | CHATHAM | PH                      | 9   |     | SU    |
| GA0002402 | HERTY FOUNDATION (SAVANNAH) | CHATHAM | SOLIDS, TOTAL SUSPENDED |     |     | MG/L  |

MG/L MILLIGRAMS PER LITER

SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY              | COUNTY  | PARAMETER                              | MAX | AVG | UNITS |
|-----------|-----------------------|---------|----------------------------------------|-----|-----|-------|
| GA0002437 | SOUTHERN STATES PHOSP | CHATHAM | BOD 5-DAY (20 DEG. C)                  |     |     | MG/L  |
| GA0002437 | SOUTHERN STATES PHOSP | CHATHAM | OXYGEN DEMAND CHEM. (HIGH LEVEL) (COD) |     |     | MG/L  |
| GA0002437 | SOUTHERN STATES PHOSP | CHATHAM | PH                                     | 9   |     | SU    |
| GA0002437 | SOUTHERN STATES PHOSP | CHATHAM | SOLIDS TOTAL SUSPENDED                 |     |     | MG/L  |

MG/L MILLIGRAMS PER LITER  
SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY              | COUNTY   | PARAMETER | MAX | AVG | UNITS |
|-----------|-----------------------|----------|-----------|-----|-----|-------|
| GA0002470 | ALBION KAOLIN COMPANY | RICHMOND | TURBIDITY | 100 | 50  | NTU   |
| GA0002470 | ALBION KAOLIN COMPANY | RICHMOND | PH        | 9   |     | SU    |

NTU NEPHELOMETRIC TURBIDITY UNITS

SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY                       | COUNTY | PARAMETER                      | MAX    | AVG    | UNITS     |
|-----------|--------------------------------|--------|--------------------------------|--------|--------|-----------|
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | BOD 5-DAY (20 DEG. C)          | 45     | 30     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | BOD 5-DAY (20 DEG. C)          | 45     | 30     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | PH                             | 9      |        | SU        |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | PH                             | 9      |        | SU        |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | SOLIDS TOTAL                   | 20     | 15     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | SOLIDS TOTAL SUSPENDED         | 100    | 30     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | SOLIDS TOTAL SUSPENDED         | 100    | 30     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | OIL AND GREASE (SOXHLET EXTR.) | 20     | 15     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | OIL AND GREASE (SOXHLET EXTR.) | 20     | 15     | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHROMIUM TOTAL (AS CR)         | 0.2    |        | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHROMIUM TOTAL (AS CR)         | 0.2    | OPTMON | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHROMIUM TOTAL (AS CR)         | 0.2    | DELMON | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | ZINC, TOTAL (AS ZN)            | 1      |        | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | ZINC, TOTAL (AS ZN)            | 1      | DELMON | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | ZINC, TOTAL (AS ZN)            | 1      | OPTMON | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINE, TOTAL RESIDUAL       | OPTMON | OPTMON | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINE, TOTAL RESIDUAL       |        | DELMON | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINE, TOTAL RESIDUAL       |        |        | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINE, FREE AVAILABLE       | 0.5    | 0.2    | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINE, FREE AVAILABLE       | 0.5    | 0.2    | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINE, FREE AVAILABLE       | 0.5    | 0.2    | MG/L      |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINATION                   | 120    |        | HOURS/DAY |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINATION, DURATION         | 120    | DELMON | MINUTES   |
| GA0026786 | SOUTHERN NUCLEAR OPERATING CO. | BURKE  | CHLORINATION, DURATION         | 120    | OPTMON | MINUTES   |

MG/L MILLIGRAMS PER LITER  
 SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY | COUNTY  | PARAMETER | MAX | AVG | UNITS |
|-----------|----------|---------|-----------|-----|-----|-------|
| GA0026867 | HERCULES | CHATHAM | PH        | 9   |     | SU    |
| GA0026867 | HERCULES | CHATHAM | PH        | 9   |     | SU    |

SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY           | COUNTY  | PARAMETER                | MAX | AVG    | UNITS   |
|-----------|--------------------|---------|--------------------------|-----|--------|---------|
| GA0027588 | USA HUNTER AFB STP | CHATHAM | BOD 5-DAY (20 DEG. C)    | 30  | 20     | MG/L    |
| GA0027588 | USA HUNTER AFB STP | CHATHAM | PH                       | 9   |        | SU      |
| GA0027588 | USA HUNTER AFB STP | CHATHAM | SOLIDS TOTAL SUSPENDED   | 45  | 30     | MG/L    |
| GA0027588 | USA HUNTER AFB STP | CHATHAM | CHLORINE, TOTAL RESIDUAL |     | DELMON | MG/L    |
| GA0027588 | USA HUNTER AFB STP | CHATHAM | COLIFORM, FECAL GENERAL  | 400 | 200    | #/100ML |

MG/L MILLIGRAMS PER LITER  
SU STANDARD UNITS (I.E. PH)  
#/100ML NUMBER PER 100 MILLILITERS

| NPDES #   | FACILITY             | COUNTY  | PARAMETER                            | MAX     | AVG     | UNITS      |
|-----------|----------------------|---------|--------------------------------------|---------|---------|------------|
| GA0002798 | STONE CONTAINER CORP | CHATHAM | PH                                   | 9       |         | SU         |
| GA0002798 | STONE CONTAINER CORP | CHATHAM | PH                                   | 9       |         | SU         |
| GA0002798 | STONE CONTAINER CORP | CHATHAM | LEAD TOTAL (AS PB)                   |         | DELMON  | MG/L       |
| GA0002798 | STONE CONTAINER CORP | CHATHAM | ZINC TOTAL (AS ZN)                   |         | DELMON  | MG/L       |
| GA0002798 | STONE CONTAINER CORP | CHATHAM | COLOR (ADMI UNITS)                   |         | DELMON  | ADMI UNITS |
| GA0002798 | STONE CONTAINER CORP | CHATHAM | 2 3 7 8-TETRACHLORO-DIBENZO-P-DIOXIN | 0.00068 | DELMON  | UG/L       |
| GA0002798 | STONE CONTAINER CORP | CHATHAM | 2 3 7 8-TETRACHLORO-DIBENZO-P-DIOXIN | DELMON  | 0.00057 | UG/L       |

SU STANDARD UNITS (I.E. PH)  
 MG/L MILLIGRAMS PER LITER  
 ADMI UNITS ADMI UNITCOLOR  
 UG/L MICROGRAMS PER LITER

| NPDES #   | FACILITY                    | COUNTY   | Parameter                            | MAX     | AVG     | Units |
|-----------|-----------------------------|----------|--------------------------------------|---------|---------|-------|
| GA0002801 | INTERNATIONAL PAPER COMPANY | RICHMOND | COLOR                                |         | DELMON  | MG/L  |
| GA0002801 | INTERNATIONAL PAPER COMPANY | RICHMOND | PH                                   | 9       |         | SU    |
| GA0002801 | INTERNATIONAL PAPER COMPANY | RICHMOND | PH                                   | 9       |         | SU    |
| GA0002801 | INTERNATIONAL PAPER COMPANY | RICHMOND | 2 3 7 8-TETRACHLORO-DIBENZO-P-DIOXIN | 0.00018 | DELMON  | UG/L  |
| GA0002801 | INTERNATIONAL PAPER COMPANY | RICHMOND | 2 3 7 8-TETRACHLORO-DIBENZO-P-DIOXIN | 0.0011  | DELMON  | UG/L  |
| GA0002801 | INTERNATIONAL PAPER COMPANY | RICHMOND | 2 3 7 8-TETRACHLORO-DIBENZO-P-DIOXIN | DELMON  | 0.00016 | UG/L  |

MG/L MILLIGRAMS PER LITER  
 SU STANDARD UNITS (I.E. PH)  
 UG/L MICROGRAMS PER LITER

| NPDES #   | FACILITY         | COUNTY  | Parameters                      | MAX    | AVG    | Units   |
|-----------|------------------|---------|---------------------------------|--------|--------|---------|
| GA0031038 | GARDEN CITY WPCP | CHATHAM | OXYGEN DISSOLVED (DO)           | DELMON | DELMON | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | BOD 5-DAY (20 DEG. C)           | 30     | 20     | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | BOD 5-DAY (20 DEG. C)           | 45     | 30     | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | BOD 5-DAY (20 DEG. C)           |        |        | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | PH                              | 9      |        | SU      |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | PH                              | 9      |        | SU      |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | SOLIDS TOTAL SUSPENDED          | 45     | 30     | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | SOLIDS TOTAL SUSPENDED          |        |        | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | NITROGEN, AMMONIA, TOTAL (AS N) | 26.1   | 17.4   | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | ZINC TOTAL (AS ZN)              |        | DELMON | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | CHLORINE, TOTAL RESIDUAL        | 0.5    | DELMON | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | CHLORINE, TOTAL RESIDUAL        |        | DELMON | MG/L    |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | COLIFORM, FECAL GENERAL         | 400    | 200    | #/100ML |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | BOD, 5-DAY, % REMOVAL           |        |        | %       |
| GA0031038 | GARDEN CITY WPCP | CHATHAM | SOLIDS, SUSPENDED, % REMOVAL    |        |        | %       |

MG/L MILLIGRAMS PER LITER  
 SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY                         | COUNTY  | PARAMETER    | MAX | AVG | UNITS   |
|-----------|----------------------------------|---------|--------------|-----|-----|---------|
| GA0003255 | GULFSTREAM AEROSPACE CORPORATION | CHATHAM | CONDUCTIVITY |     |     | UMHO/CM |
| GA0003255 | GULFSTREAM AEROSPACE CORPORATION | CHATHAM | PH           | 9   |     | SU      |

UMHO/CM CONDUCTANCE-MICROMHO'S PER CM

SU STANDARD UNITS (I.E. PH)

| NPDES #     | FACILITY               | COUNTY  | Parameter                 | MAX    | Avg    | Units |
|-------------|------------------------|---------|---------------------------|--------|--------|-------|
| GA000032280 | KING FINISHING COMPANY | SCREVEN | BOD 5-DAY (20 DEG. C)     | DELMON | DELMON | N/A   |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | PH                        | 8.5    |        | SU    |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | CYANIDE TOTAL (AS CN)     | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | CADMIUM TOTAL (AS CD)     | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | CHROMIUM TOTAL (AS CR)    | DELMON | DELMON | N/A   |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | COPPER TOTAL (AS CU)      | OPTMON | OPTMON | MG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | COPPER TOTAL (AS CU)      | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | LEAD TOTAL (AS PB)        | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | NICKEL TOTAL (AS NI)      | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | ZINC TOTAL (AS ZN)        | OPTMON | OPTMON | MG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | ZINC TOTAL (AS ZN)        | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | ANTIMONY TOTAL (AS SB)    | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | HEXACHLOROCYCLOPENTADIENE | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | PHENOLS                   | DELMON | DELMON | UG/L  |
| GA000032280 | KING FINISHING COMPANY | SCREVEN | MERCURY TOTAL (AS HG)     | 0.5    | DELMON | UG/L  |

SU STANDARD UNITS (I.E. PH)  
UG/L MICROGRAMS PER LITER  
MGL MILLIGRAMS PER LITER

| NPDES #   | FACILITY            | COUNTY  | Parameter               | MAX | AVG | UNITS |
|-----------|---------------------|---------|-------------------------|-----|-----|-------|
| GA0034355 | E.M. INDUSTRIES INC | CHATHAM | TURBIDITY               | 120 | 100 | NTU   |
| GA0034355 | E.M. INDUSTRIES INC | CHATHAM | PH                      | 9   |     | SU    |
| GA0034355 | E.M. INDUSTRIES INC | CHATHAM | PH                      | 9   |     | SU    |
| GA0034355 | E.M. INDUSTRIES INC | CHATHAM | SOLIDS, TOTAL SUSPENDED | 150 | 120 | MG/L  |
| GA0034355 | E.M. INDUSTRIES INC | CHATHAM | CHROMIUM, TOTAL (AS CR) |     |     | MG/L  |

NTU NEPHELOMETRIC TURBIDITY UNITS

SU STANDARD UNITS (I.E. PH)

MG/L MILLIGRAMS PER LITER

| NPDES #   | FACILITY                       | COUNTY  | PARAMETER               | MAX | AVG | UNITS |
|-----------|--------------------------------|---------|-------------------------|-----|-----|-------|
| GA0034801 | PINE FOREST S/D-PORT WENTWORTH | CHATHAM | BOD 5-DAY (20 DEG. C)   | 45  | 30  | MG/L  |
| GA0034801 | PINE FOREST S/D-PORT WENTWORTH | CHATHAM | BOD 5-DAY (20 DEG. C)   |     |     | MG/L  |
| GA0034801 | PINE FOREST S/D-PORT WENTWORTH | CHATHAM | PH                      | 9   |     | SU    |
| GA0034801 | PINE FOREST S/D-PORT WENTWORTH | CHATHAM | PH                      | 9   |     | SU    |
| GA0034801 | PINE FOREST S/D-PORT WENTWORTH | CHATHAM | SOLIDS, TOTAL SUSPENDED | 120 | 90  | MG/L  |
| GA0034801 | PINE FOREST S/D-PORT WENTWORTH | CHATHAM | SOLIDS, TOTAL SUSPENDED |     |     | MG/L  |

MG/L MILLIGRAMS PER LITER  
SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY      | COUNT    | PARAMETER                       | MAX    | AVG    | UNITS   |
|-----------|---------------|----------|---------------------------------|--------|--------|---------|
| GA0003484 | USA FT GORDON | RICHMOND | OXYGEN DISSOLVED (DO)           | DELMON | DELMON | MG/L    |
| GA0003484 | USA FT GORDON | RICHMOND | BOD 5-DAY (20 DEG. C)           | 45     | 30     | MG/L    |
| GA0003484 | USA FT GORDON | RICHMOND | PH                              | 9      |        | SU      |
| GA0003484 | USA FT GORDON | RICHMOND | SOLIDS, TOTAL SUSPENDED         | 45     | 30     | MG/L    |
| GA0003484 | USA FT GORDON | RICHMOND | NITROGEN, AMMONIA, TOTAL (AS N) |        |        | MG/L    |
| GA0003484 | USA FT GORDON | RICHMOND | PHOSPHORUS, TOTAL (AS P)        |        |        | MG/L    |
| GA0003484 | USA FT GORDON | RICHMOND | COLIFORM, FECAL, GENERAL        | 400    | 200    | #/100ML |

MG/L MILLIGRAMS PER LITER

SU STANDARD UNITS (I.E. PH)

#/100ML NUMBER PER 100 MILLILITERS

| NPDES #   | FACILITY                | COUNTY  | PARAMETER | MAX | AVG | UNITS |
|-----------|-------------------------|---------|-----------|-----|-----|-------|
| GA0003611 | SAVANNAH SUGAR REFINERY | CHATHAM | PH        | 9   |     | SU    |

SU            STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY | COUNTY  | PARAMETER | MAX | AVG | UNITS |
|-----------|----------|---------|-----------|-----|-----|-------|
| GA0003646 | KEMIRA   | CHATHAM | PH        | 9   |     | SU    |

SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY                   | COUNTY   | Parameter               | MAX | Avg    | Units |
|-----------|----------------------------|----------|-------------------------|-----|--------|-------|
| GA0003719 | OLIN CORPORATION (AUGUSTA) | RICHMOND | PH                      | 9   |        | SU    |
| GA0003719 | OLIN CORPORATION (AUGUSTA) | RICHMOND | SOLIDS, TOTAL SUSPENDED | 110 | DELMON | MG/L  |

SU STANDARD UNITS (I.E. PH)  
MG/L MILLIGRAMS PER LITER

| NPDES #   | FACILITY               | COUNTY  | PARAMETER                      | MAX    | AVG    | UNITS |
|-----------|------------------------|---------|--------------------------------|--------|--------|-------|
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | TEMP. DIFF.                    | 90     | DELMON | DEG.F |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | PH                             | 9      |        | SU    |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | PH                             | OPTMON |        | SU    |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | SOLIDS, TOTAL SUSPENDED        | 100    | 30     | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | SOLIDS, TOTAL SUSPENDED        | OPTMON | OPTMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | OIL AND GREASE (SOXHLET EXTR.) | 20     | 15     | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | OIL AND GREASE (SOXHLET EXTR.) | OPTMON | OPTMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | COPPER, TOTAL (AS CU)          | 1      | 1      | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | COPPER, TOTAL (AS CU)          | OPTMON | OPTMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | IRON, TOTAL (AS FE)            | OPTMON | OPTMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | IRON, DISSOLVED (AS FE)        | 1      | 1      | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | CHLORINE, TOTAL RESIDUAL       | 0.2    | DELMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | CHLORINE, TOTAL RESIDUAL       |        | DELMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | MERCURY, TOTAL (AS HG)         | 0.016  | DELMON | MG/L  |
| GA0003816 | SAV. ELEC-PT WENTWORTH | CHATHAM | METALS, TOTAL                  | OPTMON | OPTMON | MG/L  |

DEG.F DEGREES FAHRENHEIT  
 SU STANDARD UNITS (I.E. PH)  
 MG/L MILLIGRAMS PER LITER

| NPDES #   | FACILITY            | COUNTY  | PARAMETER               | MAX | Avg | UNITS   |
|-----------|---------------------|---------|-------------------------|-----|-----|---------|
| GA0003841 | GAF MATERIALS CORP. | CHATHAM | BOD 5-DAY (20 DEG. C)   |     |     | MG/L    |
| GA0003841 | GAF MATERIALS CORP. | CHATHAM | PH                      | 9   |     | SU      |
| GA0003841 | GAF MATERIALS CORP. | CHATHAM | SOLIDS, TOTAL SUSPENDED |     |     | MG/L    |
| GA0003841 | GAF MATERIALS CORP. | CHATHAM | COLIFORM, FECAL GENERAL |     |     | #/100ML |

MG/L                    MILLIGRAMS PER LITER  
 SU                    STANDARD UNITS (I.E. PH)  
 #/100ML            NUMBER PER 100 MILLILITERS

| NPDES #   | FACILITY            | COUNTY    | PARAMETER                      | MAX    | AVG    | UNITS |
|-----------|---------------------|-----------|--------------------------------|--------|--------|-------|
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | TEMP. DIFF.                    | 90     | DELMON | DEG.F |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | BOD 5-DAY (20 DEG. C)          | 45     | 30     | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | BOD 5-DAY (20 DEG. C)          | 45     | 30     | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | PH                             | 9      |        | SU    |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | PH                             | OPTMON |        | SU    |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | SOLIDS, TOTAL SUSPENDED        | 45     | 30     | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | SOLIDS, TOTAL SUSPENDED        | 100    | 30     | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | SOLIDS, TOTAL SUSPENDED        | 45     | 30     | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | SOLIDS, TOTAL SUSPENDED        | OPTMON | OPTMON | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | OIL AND GREASE (SOXHLET EXTR.) | 20     | 15     | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | OIL AND GREASE (SOXHLET EXTR.) | OPTMON | OPTMON | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | COPPER, TOTAL (AS CU)          | 1      | 1      | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | COPPER, TOTAL (AS CU)          | OPTMON | OPTMON | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | IRON, TOTAL (AS FE)            | 1      | 1      | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | IRON, TOTAL (AS FE)            | OPTMON | OPTMON | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | CHLORINE, TOTAL RESIDUAL       | 0.2    | DELMON | MG/L  |
| GA0003883 | SAV. ELEC-EFFINGHAM | EFFINGHAM | CHLORINE, TOTAL RESIDUAL       |        | DELMON | MG/L  |

DEG.F DEGREES FAHRENHEIT  
 MG/L MILLIGRAMS PER LITER  
 SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY      | COUNTY    | PARAMETER                      | MAX    | AVG    | UNITS   |
|-----------|---------------|-----------|--------------------------------|--------|--------|---------|
| SC0042803 | CLARIANT CORP | ALLENDALE | TEMPERATURE, WATER             | 98     | DELMON | DEG.F   |
| SC0042803 | CLARIANT CORP | ALLENDALE | SPECIFIC CONDUCTANCE           | ADDMON | ADDMON | UMHO/CM |
| SC0042803 | CLARIANT CORP | ALLENDALE | PH                             | 9      | DELMON | SU      |
| SC0042803 | CLARIANT CORP | ALLENDALE | PH                             | ADDMON | DELMON | SU      |
| SC0042803 | CLARIANT CORP | ALLENDALE | PH                             | ADDMON |        | SU      |
| SC0042803 | CLARIANT CORP | ALLENDALE | SOLIDS, TOTAL SUSPENDED        | ADDMON | ADDMON | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | NITROGEN, AMMONIA TOTAL (AS N) | ADDMON | ADDMON | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CARBON, TOT ORGANIC (TOC)      | ADDMON |        | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CYANIDE, TOTAL (AS CN)         | 1200   | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | SULFATE, TOTAL (AS SO4)        | ADDMON | ADDMON | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CHROMIUM, TOTAL (AS CR)        | ADDMON |        | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | ZINC, TOTAL (AS ZN)            | ADDMON |        | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CARBON TETRACHLORIDE           | 38     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1,2-DICHLOROETHANE             | 211    | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CHLOROFORM                     | 46     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | PHENOLICS, TOTAL RECOVERABLE   | ADDMON |        | MG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | TOLUENE                        | 80     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | BENZENE                        | 136    | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | ACENAPHTHYLENE                 | 59     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | ACENAPHTHENE                   | 59     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | ACRYLONITRILE                  | 242    | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | ANTHRACENE                     | 59     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | BENZO(K)FLUORANTHENE           | 59     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | BENZO(A)PYRENE                 | 61     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CHLOROBENZENE                  | 28     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CHLOROETHANE, TOTAL WEIGHT     | 268    | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | CHRYSENE                       | 59     | DELMON | UG/L    |
| SC0042803 | CLARIANT CORP | ALLENDALE | DIETHYL PHTHALATE              | 203    | DELMON | UG/L    |

| NPDES #   | FACILITY      | COUNTY    | PARAMETER                         | MAX | AVG    | UNITS |
|-----------|---------------|-----------|-----------------------------------|-----|--------|-------|
| SC0042803 | CLARIANT CORP | ALLENDALE | DIMETHYL PHTHALATE                | 47  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | ETHYLBENZENE                      | 108 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | FLUORANTHENE                      | 68  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | FLUORENE                          | 59  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | HEXACHLOROETHANE                  | 54  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | METHYL CHLORIDE                   | 190 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | METHYLENE CHLORIDE                | 89  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | NITROBENZENE                      | 68  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | PHENANTHRENE                      | 59  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | PYRENE                            | 67  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | TETRACHLOROETHYLENE               | 56  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 1-DICHLOROETHANE                | 59  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 1-DICHLOROETHYLENE              | 25  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 1 1-TRICHLORO-ETHANE            | 54  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 1 2-TRICHLORO-ETHANE            | 54  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | BENZO(A)ANTHRACENE                | 59  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 2-DICHLOROBENZENE               | 163 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 2-DICHLOROPROPANE               | 230 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 2-TRANS-DICHLORO-ETHYLENE       | 54  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 2 4-TRICHLORO-BENZENE           | 140 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 3-DICHLOROPROPENE, TOTAL WEIGHT | 44  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 1 3-DICHLOROBENZENE               | 44  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2-CHLOROPHENOL                    | 98  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2-NITROPHENOL                     | 28  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2-NITROPHENOL                     | 69  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2 4-DICHLOROPHENOL                | 112 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2 4-DIMETHYLPHENOL                | 36  | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2 4-DINITROTOLUENE                | 285 | DELMON | UG/L  |
| SC0042803 | CLARIANT CORP | ALLENDALE | 2 4-DINITROPHENOL                 | 123 | DELMON | UG/L  |

| NPDES #   | FACILITY      | COUNTY    | PARAMETER                                     | MAX    | AVG    | UNITS     |
|-----------|---------------|-----------|-----------------------------------------------|--------|--------|-----------|
| SC0042803 | CLARIANT CORP | ALLENDALE | 2,6-DINITROTOLUENE                            | 641    | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | 4-NITROPHENOL                                 | 124    | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | 4,6-DINITRO-O-CRESOL                          | 277    | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | PHENOL, SINGLE COMPOUND                       | 26     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | NAPHTHALENE                                   | 59     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | BIS (2-ETHYLHEXYL) PHTHALATE                  | 279    | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | DI-N-BUTYL PHTHALATE                          | 57     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | VINYL CHLORIDE                                | 268    | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | TRICHLOROETHYLENE                             | 54     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | HEXACHLOROBENZENE                             | 28     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | HEXACHLOROBUTADIENE                           | 49     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | NITROGEN NITRATE, TOTAL (AS NO <sub>3</sub> ) | ADDMON | ADDMON | MG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | LENGTH OF LONGEST PH EXCURSION                | 60     | DELMON | MINUTES   |
| SC0042803 | CLARIANT CORP | ALLENDALE | % OF TIME EXCEEDING PH LIMITS                 | 1      | DELMON | PERCENT   |
| SC0042803 | CLARIANT CORP | ALLENDALE | COLIFORM, FECAL GENERAL                       | 400    | 200    | #/100ML   |
| SC0042803 | CLARIANT CORP | ALLENDALE | 3,4-BENZOFUORAN-THENE                         | 61     | DELMON | UG/L      |
| SC0042803 | CLARIANT CORP | ALLENDALE | P/F STATRE 7DAY CHR CERIODAPHNIA              | 0      | DELMON | PASS/FAIL |

DEG.F DEGREES FAHRENHEIT

UMHO/CM CONDUCTANCE-MICROMHO'S PER CM

SU STANDARD UNITS (I.E. PH)

MG/L MILLIGRAMS PER LITER

UG/L MICROGRAMS PER LITER

#/100ML NUMBER PER 100 MILLILITERS

PASS/FAIL PASS=0 FAIL=1

| NPDES #   | FACILITY                   | COUNTY  | PARAMETERS                | MAX  | AVG  | UNITS |
|-----------|----------------------------|---------|---------------------------|------|------|-------|
| GA0004332 | CITGO ASPHALT REFINING CO. | CHATHAM | PH                        | 9    |      | SU    |
| GA0004332 | CITGO ASPHALT REFINING CO. | CHATHAM | PHENOLIC COMPOUNDS, TOTAL | 2.02 | 0.48 | MG/L  |

SU STANDARD UNITS (I.E. PH)

MG/L MILLIGRAMS PER LITER

| NPDES #   | FACILITY                   | COUNTY | PARAMETER               | MAX    | AVG    | UNITS |
|-----------|----------------------------|--------|-------------------------|--------|--------|-------|
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | BOD 5-DAY (20 DEG. C)   | 20     | 10     | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | PH                      | 8      | DELMON | SU    |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | ARSENIC, TOTAL (AS AS)  | 0.005  | ADDMON | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | CHROMIUM, TOTAL (AS CR) | 0.016  | 0.011  | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | LEAD, TOTAL (AS PB)     | 0.05   | ADDMON | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | METHYL TERT-BUTYL ETHER | 14.12  | 7.06   | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | TOLUENE                 | 0.35   | 0.175  | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | BENZENE                 | 0.005  | ADDMON | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | 2,4-DIMETHYLPHENOL      | 0.0424 | 0.0212 | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | NAPHTHALENE             | 0.046  | 0.023  | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | FLOW IN CONDUIT         |        |        | N/A   |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | 2-METHYLNAPHTHALENE     | 0.004  | ADDMON | MG/L  |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | 4-METHYLPHENOL          | 0.08   | 0.04   | MG/KG |
| SC0044385 | AMOCO SERVICE STATION #489 | JASPER | XYLENE                  | 0.164  | 0.082  | MG/L  |

MG/L MILLIGRAMS PER LITER  
 SU STANDARD UNITS (I.E. PH)  
 MG/KG MILLIGRAMS PER KILOGRAM

| NPDES #   | FACILITY                  | COUNTY  | PARAMETER    | MAX    | AVG | UNITS    |
|-----------|---------------------------|---------|--------------|--------|-----|----------|
| GA0046230 | AIR LIQUIDE AMERICA CORP. | CHATHAM | CONDUCTIVITY | DELMON |     | UMHO/ CM |
| GA0046230 | AIR LIQUIDE AMERICA CORP. | CHATHAM | PH           | 9      |     | SU       |

UMHO/CM CONDUCTANCE-MICROMHO'S PER CM

SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY         | COUNTY    | PARAMETER                | MAX    | AVG    | UNITS      |
|-----------|------------------|-----------|--------------------------|--------|--------|------------|
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | COLOR (PT-CO UNITS)      |        | DELMON | PT-CO      |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | PH                       | 9      |        | SU         |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | PH                       | 9      |        | SU         |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | CYANIDE, TOTAL (AS CN)   |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | CHROMIUM, TOTAL (AS CR)  |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | LEAD, TOTAL (AS PB)      |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | NICKEL, TOTAL (AS NI)    |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | ZINC, TOTAL (AS ZN)      |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | COLOR (ADMI UNITS)       | DELMON | DELMON | ADMI UNITS |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | COLOR (ADMI UNITS)       |        | DELMON | ADMI UNITS |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | CHLOROFORM               |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | TOLUENE                  |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | HEXACHLOROETHANE         |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | PCB-1242 (AROCHLOR 1242) | 0.38   | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | PCB-1242 (AROCHLOR 1242) | DELMON | 0.38   | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | PCB-1242 (AROCHLOR 1242) |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | MERCURY, TOTAL (AS HG)   |        | DELMON | UG/L       |
| GA0046973 | FORT HOWARD CORP | EFFINGHAM | CHLOROETHANE             |        | DELMON | UG/L       |

PT-CO COLOR - PLATINUM COBALT UNIT

SU STANDARD UNITS (I.E. PH)

UG/L MICROGRAMS PER LITER

ADMI UNIT COLOR - ADMI UNITS

| NPDES #   | FACILITY               | COUNTY    | PARAMETER               | MAX | AVG | UNITS |
|-----------|------------------------|-----------|-------------------------|-----|-----|-------|
| GA0046990 | EFFINGHAM ELEM (SOUTH) | EFFINGHAM | BOD 5-DAY (20 DEG. C)   | 45  | 30  | MG/L  |
| GA0046990 | EFFINGHAM ELEM (SOUTH) | EFFINGHAM | PH                      | 9   |     | SU    |
| GA0046990 | EFFINGHAM ELEM (SOUTH) | EFFINGHAM | SOLIDS, TOTAL SUSPENDED | 120 | 90  | MG/L  |

MG/L  
SU  
MILLIGRAMS PER LITER  
STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY                    | COUNTY  | PARAMETER                                  | MAX | Avg    | UNITS |
|-----------|-----------------------------|---------|--------------------------------------------|-----|--------|-------|
| GA0047007 | GEORGIA PACIFIC CORPORATION | CHATHAM | OXYGEN DEMAND, CHEM. (HIGH LEVEL)<br>(COD) |     |        | MG/L  |
| GA0047007 | GEORGIA PACIFIC CORPORATION | CHATHAM | PH                                         | 9   |        | SU    |
| GA0047007 | GEORGIA PACIFIC CORPORATION | CHATHAM | SOLIDS, TOTAL SUSPENDED                    | 45  | OPTMON | MG/L  |

MG/L                    MILLIGRAMS PER LITER  
 SU                    STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY            | COUNT   | PARAMETER                       | MAX    | AVG    | UNITS   |
|-----------|---------------------|---------|---------------------------------|--------|--------|---------|
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | OXYGEN DISSOLVED (DO)           | DELMON | DELMON | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | BOD 5-DAY (20 DEG. C)           | 15     | 10     | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | BOD 5-DAY (20 DEG. C)           | 15     | 10     | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | BOD 5-DAY (20 DEG. C)           |        |        | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | PH                              | 9      |        | SU      |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | PH                              | 9      |        | SU      |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | PH                              | 9      |        | SU      |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | SOLIDS, TOTAL SUSPENDED         | 45     | 30     | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | SOLIDS, TOTAL SUSPENDED         | 45     | 30     | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | SOLID, TOTAL SUSPENDED          |        |        | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | NITROGEN, AMMONIA, TOTAL (AS N) | 3      | 2      | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | NITROGEN, AMMONIA, TOTAL (AS N) | 6      | 4      | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | NITROGEN, AMMONIA, TOTAL (AS N) | 3      | 2      | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | NITROGEN, AMMONIA, TOTAL (AS N) | 6      | 4      | MG/L    |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | COLIFORM, FECAL, GENERAL        | 400    | 200    | #/100ML |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | COLIFORM, FECAL, GENERAL        | 400    | 200    | #/100ML |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | BOD ,5-DAY % REMOVAL            |        |        | %       |
| GA0047066 | POOLER/BLOOMINGDALE | CHATHAM | SOLIDS, SUSPENDED, % REMOVAL    |        |        | %       |

MG/L MILLIGRAMS PER LITER

SU STANDARD UNITS (I.E. PH)

#/100ML NUMBER PER 100 MILLILITERS

| NPDES #   | FACILITY           | COUNTY  | PARAMETER                               | MAX     | AVG    | UNITS  |      |
|-----------|--------------------|---------|-----------------------------------------|---------|--------|--------|------|
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | BOD, 5-DAY (20 DEG. C)                  | 240     | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | BOD, 5-DAY (20 DEG. C)                  | 30      | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | OXYGEN DEMAND, CHEM. (HIGH LEVEL) (COD) | 30      | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | OXYGEN DEMAND, CHEM. (HIGH LEVEL) (COD) | 90      | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | OXYGEN DEMAND, CHEM. (HIGH LEVEL) (COD) |         |        | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM |                                         | PH      | 9      | SU     |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM |                                         | PH      | 9      | SU     |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | SOLIDS, TOTAL SUSPENDED                 | 20      | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | OIL AND GREASE (SOXHLET EXTR.) TOT.     | 30      | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM | PHENOL, SINGLE COMPOUND                 | 0.2     | DELMON | MG/L   |      |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM |                                         | PHENOLS | 0.2    | DELMON | MG/L |
| GA0047783 | ATLANTIC WOOD IND. | CHATHAM |                                         | PHENOLS | 0.8    | DELMON | MG/L |

MG/L MILLIGRAMS PER LITER  
 SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY              | COUNTY  | PARAMETER               | MAX  | AVG  | UNITS |
|-----------|-----------------------|---------|-------------------------|------|------|-------|
| GA0048330 | ENGELHARD CORPORATION | CHATHAM | PH                      | 9    |      | SU    |
| GA0048330 | ENGELHARD CORPORATION | CHATHAM | SOLIDS, TOTAL SUSPENDED | 6000 | 2000 | MG/L  |

SU STANDARD UNITS (I.E. PH)

MG/L MILLIGRAMS PER LITER

| NPDES #   | FACILITY                | COUNTY  | PARAMETER               | MAX | AVG | UNITS |
|-----------|-------------------------|---------|-------------------------|-----|-----|-------|
| GA0049506 | GARDEN ACRES S/D-POOLER | CHATHAM | BOD, 5-DAY (20 DEG. C)  | 45  | 30  | MG/L  |
| GA0049506 | GARDEN ACRES S/D-POOLER | CHATHAM | PH                      | 9   |     | SU    |
| GA0049506 | GARDEN ACRES S/D-POOLER | CHATHAM | SOLIDS, TOTAL SUSPENDED | 120 | 90  | MG/L  |

MG/L MILLIGRAMS PER LITER  
SU STANDARD UNITS (I.E. PH)

| NPDES #   | FACILITY       | COUNTY  | PARAMETER               | MAX | AVG | UNITS |
|-----------|----------------|---------|-------------------------|-----|-----|-------|
| GA0050202 | NEWINGTON POND | SCREVEN | BOD 5-DAY (20 DEG. C)   | 45  | 30  | MG/L  |
| GA0050202 | NEWINGTON POND | SCREVEN | BOD 5-DAY (20 DEG. C)   |     |     | MG/L  |
| GA0050202 | NEWINGTON POND | SCREVEN | PH                      | 9   |     | SU    |
| GA0050202 | NEWINGTON POND | SCREVEN | SOLIDS, TOTAL SUSPENDED | 120 | 90  | MG/L  |
| GA0050202 | NEWINGTON POND | SCREVEN | SOLIDS, TOTAL SUSPENDED |     |     | MG/L  |

MG/L MILLIGRAMS PER LITER  
SU STANDARD UNITS (I.E. PH)