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ABSTRACT

The research carried out under this grant is a continuation of some of our previous
experimental work on ICF target shells which focused on emissivity properties over a
large temperature range, and on magnetic properties which could lead to successful
levitation of target shells. Former methods in which contact-less shell temperature
determination was achieved by accurate measurements of shell permeation rate are not
workable at temperatures below about 230K, since the permeation rate becomes too slow.
A new method explored here for emissivity determination at lower temperatures than in
the preceding studies utilizes visual observation of phase changes between the liquid and
gaseous phases as the shell warms up under the influence of black-body radiation
absorption. The apparatus for this method was modified from its previously form by
using cold flowing gas as coolant rather than a liquid N, bath. Two gases, argon and
methane, were principally employed. While the actual emissivities were not accurately
measured here, proof of the method was established. CHy (methane) gives the best
results, thus extending the temperature range of emissivity determination down to about
140K. For emissivity determinations at still lower temperatures, another method
discussed in our previous work provides contact-less temperature measurement via the
Curie law through measurements of the magnetic susceptibility using electron spin
resonance (ESR). Current work showed some interesting distinctions among variously

doped shells, but otherwise the results of the preliminary work carried out at the end of

the previous grant were confirmed. \%(
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I. INTRODUCTION

Since the interruption several years ago of our work on ICF spin-polarized D fuel
due to the upgrading of OMEGA, we have concentrated our efforts on characterization of
polystyrene target shells and developed novel techniques for determining the emissivity
of the shells at low temperature, important for limiting the cryogenic target shell warming
rate just prior to a shot. These have been described in a previous final report!, and in a
recent publicationz. In this report, we describe progress made in these efforts during the
grant period, in particular extension of the temperature range of the emissivity
determinations by using a new method.

NLUF has supported our work over the previous decade, and it helps put into
context our current work by briefly discussing in this introduction the principal mission of
our original enterprise, use of spin-polarized fuel for fusion. It is relevant since it may be
worthwhile to consider its revival with the new upgraded OMEGA. Our investigations
began with a multifaceted program aimed at preparing and imploding polystyrene targets
containing solid spin-polarized HD or D, fuel. This program was brought to an advanced
stage, including cold (4K) transfer of solid deuterium-filled target shells prepared at
Syracuse and transported, positioned and shot at the OMEGA facility ‘at the University of
Rochester’s Laboratory for Laser Energetics (LLE). Due to the shutdown of OMEGA for
its upgrade, the final experiments using spin-polarized solid HD targets were not
completed. Nevertheless, the entire deuterium polarization technology has now been fully
developed and demonstrated® and the impetus for spin-polarized fusion has not
diminished. It is most probable that the polarized fuel technology we developed will be
utilized again within the next few vears. In addition, the 4K cold-transfer* technology we
introduced formed the basis of the current cryotarget development for OMEGA upgrade.
In the course of the earlier work, we developed a strong capability for characterizing
polymer target shells by techniques not readily accessible at other centers, and since the
closing of (old) OMEGA, we have focused our attention on target shell properties such as
emissivity and accommodation coefficient, which are of high concern to the cryogenic

ICF program, both for polarized and unpolarized fuels. In direct drive ICF experiments,

the emissivity determines the warm-up rate under room temperature black-body




irradiation during the short interval between retracting the shroud, in order to make the
target accessible to the laser beams, and the firing of the lasers. Since there are
mechanical constraints which limit the speed with which the shrokud can be retracted and
since the black body radiation environment is difficult to alter, emissivity controls the
target shell temperature rise. For polarized targets, an appreciable temperature rise leads
to relaxation-induced depolarization, and must be avoided. For an unpolarized target, the
temperature rise must also be held to a very low value to avoid distortion of the required
highly-symmetrized condensed fuel layer. For a given residual gas pressure in the fusion
chamber, a low accommodation coefficient’ reduces the temperature rise rate due to free
molecular conduction. Even with indirect drive, shell warming from black-body radiation
can be a significant detrimental factor.

Both emissivity and accommodation coefficient are less than or equal to 1, and
lower values of these, which result in slower warming of the target, are always
advantageous to ICF for the reasons presented above. During the grant period preceding
this one, we had improved upon the techniques first introduced at the Monterey Ninth
Target Specialists’ meeting® in 1993, and at the Albuquerque Tenth Target Specialists’
meeting’, for investigation of emissivity and accommodation coefficients of target shells.
The improvements were principally with respect to target conductive thermal isolation
and optical access. The measurements of both emissivity and accommodation coefficient
are reliable and in the vicinity of 10, a very satisfactory range for temperature stability of
polystyrene-based cryogenic ICF targets. In our previous final report', we also included
initial experiments on magnetic properties of shells, obtained by doping styrene with
magnetic particles of a few nm diameter prior to forming the shells by a
microencapsulation or drop tower method, and results of experiments on paramagnetic
shells obtained by stabilization at low temperatures of paramagnetic defects produced by
gas discharge plasma (GDP) coatings. The idea of using room temperature stable organic
radical dopants® in styrene to make paramagnetic polystyrene shells was introduced. The
paramagnetism with which the shells become endowed would permit contactless

temperature sensing via electron spin resonance (ESR) measurements, owing to the Curie

law. Such measurements are applicable all the way down to the liquid helium temperature




region, enabling extension of our target shell emissivity and accommodation coefficient
measurements to the temperature region where they will be actually employed. Other
suggested applications of such paramagnetic shells to ICF include levitation of target
shells at low temperatures for non-perturbative shell positioning and possibly shell
transport, and uniform or possibly even profiled shell heating in the liquid hydrogen
temperature range through electron spin resonance and relaxation.

During this grant period, further work on these aspects was carried out, but the
main effort was on emissivity determination in the intermediate temperature region
between about 100K and 240K. A new technique of contactless temperature measurement
in this range was introduced for this, consisting of visual observation of phase changes of

selected gases.

II. EMISSIVITY AND ACCOMMODATION COEFFICIENT MEASUREMENTS ON
POLYSTYRENE ICF TARGET SHELLS

Emissivity and accommodation coefficient measurements are of importance for
both direct and indirect drive inertial confinement fusion, as mentioned in the preceding
section. Our previous measurements in the >240K range are, to our knowledge, the first
for polystyrene polymer shells. The results of that work have been presented at
conferences®’ and in a publication’. A brief description of the method is reviewed here,
since some of the technical implementation is common to the new visual observation
method as well.

The experiments are thermal transfer ones in which a shell of known heat capacity
is subject to warming by absorbing radiation from a known isothermal environment, in
our case the walls of the cell containing the target shell. These walls, at temperature Tw,
are maintained warmer than the shell temperature, Ts. The shell is mounted on thin spider
silks, and hence is thermally isolated with respect to heat conduction from its support
structure. Thus, heat transfer to the shell is via net radiation absorption and via gas
conduction. The radiative heat transfer rate is proportional to es(’l“w4 - Ts4), where es is

the shell emisivity. The gas pressure is arranged to be always low, so that the heat transfer

rate via gas conduction is characteristic of the molecular free conduction (as opposed to




diffusion) regime. Its contribution to the heat transfer rate is proportional to asP¢ (Tw -
Ts), where ag is the accommodation coefficient’ of the shell and P is the gas pressure in
the cell. Because of the different temperature dependencies of the heat-transfer-rate, and
the ability to control the pressure range, separation of each of these thermal transport
contributions to the temperature rise of the shell can be effected by monitoring the target
shell temperature during warm-up. The innovative element of these experiments is in the
means of monitoring the shell temperature, Ts. The shells are very small and any external
thermometer placed in contact with them would compromise the conductive isolation and
make the interpretation of the measurements difficult, or indeed even impossible. We
introduced a method whereby the property of a shell called its permeability coefficient,
which is proportional to the rate at which gas leaks out of the shell into a vacuum, serves
as the thermometric indicator. This quantity, denoted by Kp depends exponentially on the
temperature of the shell. One measures the gas leakage rate out of the shell by
continuously monitoring the pressure in its containment cell. This method works very
well in the temperature region of 240 - 350K. Below 240K, the permeation rate is too
slow. Nevertheless, these ‘high’ temperature values are helpful for approximating the low
temperature values, and other contactless temperature determination methods for shells
which can be utilized at lower temperatures have been proposed by us. Among these are
the magnetic susceptibility one, which has been mentioned above, and visual observation
of phase transitions at boiling and melting points of various materials, which has been
carried out by us during the past year and is the principal subject of this report.

In both the permeation rate and visual phase transition techniques, a polystyrene
target shell is mounted on very low thermal conductance spider silks and placed in a
small sample cell whose walls are maintained at any desired temperature, Tw, between
77K and 350K. In the permeation method, visual access is not necessary whereas in the
phase transition method, it clearly is. The shell temperature, Ts, can be cooled to a low
value, for example 77K, at which any gas inside it cannot leak out since the shell is very
hnpefmeable at low temperature. The sample chamber is connected via a thin tube to a

larger volume which includes an accurate pressure sensor in the low pressure regime, in

our case a Baratron operable over the pressure range 0 to 2000 Pa. The experimental




arrangement, including provision for permeating gas into the shell, cooling the sample
cell with flowing gas, and optical access is shown in Fig. 1. This is the configuration used
in the principal work reported here. A detail of one form of sample cell utilized by us,
where the shell is glued to a pair of spider silk supports, is seen in Fig. 2. This particular
stalk mounted arrangement is useful when only permeation is measured, since the optical
path is obviously blocked by the stalk. An alternative arrangement in which the shell is
glued to supporting spider silks with optical access is shown in Fig. 3. Another shell
positioning method we have successfully employed places the shell freely on a net of
spider silks, such as is shown in Fig. 4. In this way, the shells are usable after being
characterized. In both positioning methods, the targets are accessible for visual viewing
through an Indium o-ring sealed window at the bottom of the cell, in a manner depicted
best in Fig. 3. The aim is to cool the gas-filled target shell, quickly raise the temperature,
Tw, of the sample cell walls, and observe the rise in Ts due to heat transport from the cell
walls to the shell. Using the known values of polystyrene heat capacity’, Cy(T), and
measurement of shell temperature as a function of time during the warm-up, the total rate
of heat absorption of the shell, dQs/dt, is obtained from the product Cy(T)(dTs/dt). The
procedure for the permeation rate measurements has been described in previous reports,
so we turn our discussion at this point to the new method of visual observation of phase

transitions for contactless temperature determination.

M. METHOD OF VISUAL OBSERVATION OF PHASE TRANSITIONS FOR
EMISSIVITY DETERMINATION

This method has much in common with the previous one, regarding general
concept, basic apparatus and procedures. The difference is in the contactless temperature
measurement technique. Instead of using helium or deuterium gas at room temperature
(293K) permeated into the target shell to about 12 atmospheres pressure, in this method
we use gases which have phase transitions in the required temperature regions.

For the temperature range between 77K and 240K, several gases are available,

among them Ar, O,, CHs, Xe. We experimented with Ar and CHy, but for demonstratiox}

of the method, CH4 was chosen since its thermodynamic characteristics'® are better




matched to the current apparatus. However, the other gases should present no special
difficulties. The concept is the same as for the previous permeation based temperature
measurement method. A target is mounted in a conductively isolated manner with spider
silks or equivalent material. The apparatus including the illumination system has been
presented in Fig. 1. An important change for the experiment to be described is the wall
temperature surrounding the target is cooled by cold gas, and not by immersion in a cold
liquid. This prevents bubbling interference in the image, and refractive effects from the
cooling liquid. The cooling gas is helium which passes through a tube situated in liquid
nitrogen. By varying the rate of gas flow, the temperature can be controlled. With our set-
up, it is difficult to attain temperatures below about 100K, but this is more than adequate
for the methane experiments, and usable for the Argon as well.

We measured the polystyrene permeation rate at room temperature for Argon and
for Methane. Fig. 5a shows the room temperature leak-out from a polystyrene shell
initially filled to 12 atmospheres with Argon, and Fig. 5b gives the background-leak-
corrected results. From the latter, the leak-out, or permeation time constant, t, is
determined. From the relation between 1, the dimensional physical characteristics of the

shell (given in the caption), and the permeation constant K,

Wwr
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we determine the permeation constant to be 5.9 X 10"'® mole/Pa.m.s, about an order of
magnitude smaller than the permeability constant for helium or deuterium in polystyrene'.
Figure 6 similarly shows the results of a badkground-corrected permeation time constant
determination for methane, from which the permeation constant, K,, is determined to be
2.3 X 107" mole/Pa.m.s. It is apparent that the permeation constant for Argon is lower
than for methane, and partly for that reason, and also because of the more favorable phase
transition temperatures for methane with respect to this initial apparatus, methane was the
gas of choice for demonstrating the method.

This demonstration experiment was not intended to provide an accurate value of
the emissivity, but to demonstrate that this visual method is a workable one. The delicate

5 pm spider silks usually used to support the shell were replaced with thicker fibers,

roughly 40 pm in diameter. This makes the target more stable against the vibration




problems in this not very elaborate new apparatus, but increases the thermally conductive
effects enough to limit the accuracy of an emissivity measurement. This can be seen by
estimating the relative heat input contributions from radiative and conductive
mechanisms, using an arbitrary 10K temperature difference, in the 140K range. The
dQ/dt’s are 1.4 uW for the radiative contribution, using an emissivity of 0.2, and 1.5 yW
for the conductive contribution, using a thermal conductivity value of 1.3 uW/cm.K,
approximately that of teflon™ at 140K. By constructing a more stable apparatus and
returning to spider silk supports, the radiative heat input would exceed the conductive one
and the emissivities would be more easily determinable. Meanwhile, we limit our
objective to demonstrating the utility of the contactless thermometry aspect. From the
above heat transfer rates and the heat capacities and latent heat of vaporization of CH,,
the vaporization phase transition is expected to take a few minutes, under the conditions
of our experiment, and the shell warming rate should be about 30K/min. Since the
experiment is done while the T of the surrounding cryostat rises at a rate of about 1K/min,
the temperatures of the shell should be within a few degrees of that of the cryostat, rather
than the 10K difference assumed in the calculation. The temperature difference could
increase to about 10K during the liquid vaporization process.

The target was permeated with methane to a pressure of 50 atmospheres, in slow
increments so that it could withstand possible implosion during the intervals of non-
equilibrium between shell internal pressure and cell external pressure. This high a
pressure was judged necessary, since for the shell used, of diameter 575 um and wall
thickness 9.5 um, if a uniformly condensed layer formed upon condensation, it would be
about 5 pm thick, easily discerned optically from the changed index of refraction and
from scattering. The results of Fig. 6 were used to obtain the safe filling intervals. When
equilibrium at 50 atmospheres is achieved, the gas supply source is shut off, and the cell
and target shell are cooled. Since they cool at nearly the same rate, only small pressure
differentials exist between the cell and the target shell. In the old procedure of Ref. 1,
when the temperature became colder, the permeation rate slowed sufficiently to evacuate

the cell. Here, even allowing for pressure reduction from the gas law, there was the

possibility of the shell exploding under the approximately 30 atmosphere pressure




differential. Thus, for the first test, both cell and target were cooled together, and warmed
together, with exchange gas present in the cell. Optical effects are expected from both the
condensed liquid in the target and the condensed liquid in the cell, which we shall see. A
later experiment was done in which the cell was pumped after cooling. It turned out that
the shell withstood the evolving pressure differentials as the system warmed, consistent
with the upper part of the range of polystyrene tensile strengths, near 80 MPa. Such an
experiment with proper low thermal conductivity supports should be capable of yielding
good emissivity values.

Considerable difficulty in maintaining a good image was encountered when liquid
N, filled the dewar. The bubbling and convective instabilities effectively precluded
keeping a constant image, using the apparatus we assembled for these preliminary
experiments. In principle, both the illumination system and dewar mount could be
designed to minimize these perturbations, and the method could be used down to 77K. In
our case, we opted for circulating the cold helium gas as described before, through the
dewar, as shown in Fig. 1. In this way, we could not cool below 100K, but this was

sufficient for demonstrating the method for CHy.

IV. RESULTS OF VISUALIZED PHASE TRANSITION EXPERIMENTS

As discussed above, two types of experiments were undertaken. In the first, we
cooled the cryostat to 100K, and then cut off the circulating cool helium gas and allowed
the system to warm, in the presence of exchange gas in the cell. Figure 7 depicts the
cooling and warming temperature profile of the container cell upon which the
thermocouple is mounted, with numbers marking positions at which “still” photographs
were taken. We expect this temperature profile is quite similar to that of the target shell
itself, because of the presence of exchange gas and the fairly high conductance of the
supporting fibers. Figs. 8 and 9 show a series of photos of the shell taken with the long
distance microscope camera and displayed on the monitor, which correspond to a few

selected numbered points on the temperature profile curves (Fig. 7). We have interpreted

these pictures in the following way:




No optical changes are observed as the gas cools inside the cell and inside the
target, as seen in the photographs corresponding to temperature points 1 and 2, shown on
Fig. 8.

Formation of a liquid pool at the bottom of the cell having lens-like qualities
causes an apparent shrinkage of the image at the temperature corresponding to point 5 on
Fig. 8.

A slightly lagging formation of liquid inside the target shell is seen at temperature
point 6 in Fig. 8.

Vaporization of the liquid, inside and outside the cell, as the cell and target warm
through temperature points (referring to Fig. 7) up to 12, are shown in Fig. 9.

After this experiment, which demonstrates the visibility of features associated
with the phase changes, the second experiment, in which pump-out is effected at the
temperature corresponding to point 6 on Fig. 8, was undertaken. After the pump-out, and
during the warm-up, a feature associated only with vaporization inside the target, and
lagging in temperature rise because of the absence of exchange gas, was observed. As
mentioned previously, one cannot calculate accurately the emissivity because of the high
thermal conductance of the target supports in this present experiment, which makes it
difficult to extract just the radiative contribution. However, the existence of the visual
feature inside the target shell shows that the method is an operable one. Video recordings
of the cooling and warming processes in both experiments were made, but “still” pictures
were not taken in the second experiments in which the exchange gas was pumped at the
lowest temperature point. Its cool-down portion is the same as shown in Fig. 8, but the

warm-up presents fewer features because of the absence of liquid or gas in the cell itself.

V. ADDITIONAL SUSCEPTIBILITY MEASUREMENTS

Several shells were examined using the ESR method described in our previous
final report' for this project. The results were basically similar to those previously
reported. However, a new observed feature is that the spin-density measured for GDP

shells of germanium doped polystyrene can exceed that for the plain polystyrene shells
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by up to an order of magnitude. These observations are perhaps worth further

investigation.
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at Temperatures Corresponding to Numbered Points 8, 9, 11 and 12, on Fig. 7.




