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Multivariate calibration methods have been applied extensively to the quantitative analysis of Fourier tignsform infrared (FT-IR)
spectral data. Partial least squares (PLS) methods have become the most widely used multivariate method for quantitative
spectroscopic analyses. Most often these methods are limited by model error or the accuracy or precision of the reference
methods. However, in some cases, the precision of the quantitative analysis is limited by the noise in the spectroscopic signal. In
these situations, the precision of the PLS calibrations and predictions can be improved by the incorporation of weighting in the
PLS algorithm. If the spectral noise of the system is known (e.g., in the case of detector-noise-limited cases), then appropriate
weighting can be incorporated into the multivariate spectral calibrations and predictions. A weighted PLS (WPLS) algorithm was
developed to improve the precision of the analyses in the case of spectral-noise-limited data. This new PLS algorithm was then
tested with real and simulated data, and the results compared with the unweighted PLS algorithm. Using near-infrared (NIR)
spectra obtained from a series of dilute aqueous solutions, the simulated data produced calibrations that demonstrate improved
calibration precision when the WPLS algorithm was applied. The best WPLS method improved prediction precision for the
analysis of one of the minor components by a factor of nearly 9 relative to the unweighted PLS algorithm.
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Sandia National Laboratories, Albuquerque, NM 87185-0342

INTRODUCTION EXPERIMENTAL PROCEDURES

When multivariate spectral calibrations are limited by
spectral noise and when the noise is nonuniform across
the spectral region used in the analysis, the partial least
squares (PLS) algorithm can be suboptimal.  This
suboptimal performance arises from the fact that PLS
assumes that the spectral errors are normally distributed
with zero mean and constant variance throughout the
spectral region. For infrared spectra, the high-frequency
spectral noise of transmittance spectra is often limited by
detector noise that exhibits constant variance that is
independent of the spectral intensity. However, once
these transmittance spectra are converted to absorbance,
the spectral noise variance is no longer constant. This
nonuniform noise variance is accentuated in those cases
where there are large variations in absorbance. In this
case, the precision of the concentration prediction
estimates should be improved using a WPLS algorithm
relative to that of the traditional wnweighted PLS
algorithm. In this paper, we demonstrate one version of a
weighted PLS (WPLS) algorithm and compare the
prediction precisions for weighted and unweighted PLS
analyses applied to both real and simulated data obtained
from a set of dilute aqueous solutions.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.
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The spectral data in this paper have been described
previously (1). The data are from a set of spectra of urea,
creatinine, and NaCl at 0 to 3000 mg/dL. in water. 31
calibration samples were prepared in sealed cuvettes with
each component varied at 13 concentration levels in a
Latin hypercube experimental calibration design (1). The
near-infrared spectra were obtained in 10-mm path-length
cuvettes maintained at 23° C in a Nicolet 800 FT-IR
spectrometer operated at 16 cm” resolution. The
spectrometer was equipped with a liquid-nitrogen-cooled
InSb detector, a quartz beam splitter, and a 75 W
tungsten-halogen source. The run order of the samples
was randomized. The spectra are exhibited in Fig. 1 for
the analysis region (7500 to 11000 cm™). Figure 2 shows
the same calibration spectra after mean centering.
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FIGURE 1. Spectra of 31 calibration samples.
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FIGURE 2. Mean-centered spectra of 31 calibration samples.

To further evaluate the advantages of the WPLS
method, simulated spectra were generated to model the
same system in a 25-mm path-length cell. These
simulation spectra assured that the multivariate data
analysis would be dominated by spectral noise. The
simulation was accomplished by estimating the pure-
component spectra from the 31 calibration spectra by
CLS multivariate methods. Simulated absorbance spectra
were generated by multiplying the pure-component
spectra by 2.5 and then adding these path-length-
corrected pure-component spectra according to their
concentrations in each calibration sample. The baseline
offset was also increased to further accentuate spectral
noise differences across the spectrum. These simulated
absorbance spectra were then converted to single-beam
spectra and random noise (0 mean, normally distributed,
and constant variance) was added. The resulting single-
beam spectra were then converted back to absorbance. In
this manner, the spectral noise mimics that expected for
25-mm path-length aqueous samples obtained on an FT-
IR spectrometer with linear response. Figure 3 shows the
mean-centered spectra of the 31 simulated samples. Note
the greater noise in Fig. 3 relative to that in Fig. 2.
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FIGURE 3. Mean-centered spectra of 31 simulated calibration
samples.

All of the weighted and unweighted PLS analyses were
performed using in-house software generated in Matlab
5.0. The cross-validated standard errors of prediction
(CVSEP) for the two types of PLS calibrations were used

for comparing the results.

THEORY

When the spectral noise variance is not constant and the
multivariate calibration prediction precision is limited by
this spectral noise variance, then a weighted multivariate
calibration should be applied. Wentzell et al. (2) have
recently presented a weighted approach to principal
component regression. However, to date, a weighted
approach to PLS has not been published. In this paper,
we present our methods for performing a weighted PLS
analysis.

As reported by Haaland and Thomas (3), the PLS
algorithm can be broken down into a series of CLS
calibration and prediction steps and an inverse least
squares (ILS) step. Haaland and coworkers (4,5) have
presented the methods for performing CLS analyses in
both the calibration and prediction phases. By analogy,
the WPLS algorithm is readily constructed by adding
weighting to the CLS portions of the PLS algorithm in the
calculation of each PLS loading vector. Since the errors
are presumed to be dominant in spectral rather in
concentration space, weighting is not applied to the ILS
steps of the PLS algorithm. Two basic unweighted PLS
algorithms are currently available, one that generates
orthogonal scores and one that generates orthogonal
loading vectors (6). Without weighting, these two
algorithms are equivalent. However, in the WPLS
algorithms, it can be shown that the two PLS methods no
longer yield identical results. We report in this paper
results for the WPLS method that uses as its basis the
unweighted PLS method with orthogonal loading vectors.
The resulting WPLS algorithm has neither the scores nor
the loading vectors orthogonal. However, orthogonal
loading vectors can be generated during the WPLS
algorithm simply by adding a Gram-Schmidt
orthogonalization procedure after the second and
subsequent loading vectors have been determined.

In Haaland and Easterling (4), the appropriate
weighting function for detector-noise-limited FT-IR
absorbance spectra is given. The proposed weighting
factor was T;* where T, is the transmittance of the sample
at frequency i. This weighting factor was determined by
expanding the absorbance signal as a Taylor series about
the transmittance and retaining only the first two terms.
The variance of the transmittance noise was then found to
be proportional to T;%, and the appropriate weighting
factor is inversely proportional to this variance. This
weighting factor is the appropriate for the case presented
in Ref. 3 where the analysis was performed over a small
spectral window and the single-beam intensity of the
spectrometer response was essentially constant with
frequency.




A more general weighting factor can be determined for
those cases where the spectrometer response is highly
variable over the spectral region of interest. In this case,
the Taylor series expansion of the absorbance is made
about the single-beam intensity. Retaining the first two
terms of this expansion shows that the appropriate
weighting function is the square of the single-beam
intensity spectrum (I>). This weighting takes into
account variations in spectral noise with sensitivity of the
spectrometer as a function of frequency. In this paper, we
used the square of the single-beam spectrum for
weighting each step of the WPLS algorithm.

The WPLS algorithm is considerably slower than the
standard PLS method. For the data presented in this
paper, the WPLS method was a factor of seven slower
than the traditional PLS method. Of the weighted steps in
the PLS algorithm, by far the slowest is the weighted CLS
calibration step of the WPLS method. However, in those
cases where the spectral differences between samples are
small relative to the range of absorbance variations within
a sample, then this slow weighted CLS calibration step
has relatively little influence on the predictions. Thus, in
the case described above, the weighted portion of the CLS
calibration step can be skipped. With this modification of
the algorithm, the analyses time of the data presented in
this paper differed by less than a factor of two between
the WPLS and PLS algorithms.

RESULTS AND DISCUSSION

The cross-validated SEP values for the weighted and
unweighted PLS analyses were not significantly different
for the three components analyzed (CVSEP for the three
components ranged from 13 to 24 mg/dL). The lack of
significant difference between the two methods suggests
that the spectral analysis of the original absorbance data is
not dominated by spectral noise. Therefore, simulated
spectra were generated as described above to assure that
the analysis would be limited by spectral noise. The urea
prediction results for the PLS and WPLS analyses are
presented in Fig. 5 and Fig. 6, respectively. The results
for the analyses of these simulated data are given in Table
I for all three minor components in the calibration

samples. The enormous benefit of WPLS over the normal
PLS is observed in Figs. 4 and 5 and in Table I where the
system is clearly limited by spectral noise and where the
weighting function is highly variable over the spectral
analysis region. Improvements in precision vary from
factors of 3.8 to 8.9. In addition, the model sizes are
approximately half the size for the WPLS models where
the spectral noise is normalized. These results
dramatically demonstrate the potential value of applying
WPLS to systems where the errors are dominated by
spectral noise.
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FIGURE 4. Prediction results for urea using the traditional
PLS algorithm. The line is the linear least squares fit to the
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FIGURE 5. Prediction results for urea using the weighted PLS
algorithm. The line is the linear least squares fit to the data.




Table I: Results of Applying PLS and WPLS to Simulated Data

Component PLS WPLS
CVSEP Factors R’ CVSEP | Factors R’
(mg/dL) (mg/dL)
Urea 350 7 0.8800 39.4 3 0.9986
Creatinine 216 8 0.9480 53.8 4 0.9967
NaCl 166 7 0.9689 43.5 4 0.9982
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