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SMART BRIDGE: A TOOL FOR ESTIMATING THE MILITARY
LOAD CLASSIFICATION OF BRIDGES USING
VARYING LEVELS OF INFORMATION

by

C.N. Van Groningen and R.A. Paddock

ABSTRACT

A major consideration in planning and executing military deployments
is determining the routes available for moving troops and equipment. Part of this
planning ensures that all of the bridges along the routes can support the
specialized equipment needed. Because few trained and experienced bridge
analysts are available, an automated tool is required to help military engineers and
planners quickly and accurately determine the capacity, or the military load
classification, of bridges. However, because detailed information about each
bridge may not always be available, the tool also needs to include alternative
methods for estimating bridge capacities. SMART BRIDGE, developed by Argonne
National Laboratory, provides this capacity. The tool consists of a collection of
modules that interact with each other to accommodate various bridge types,
analytical techniques, and database functions.

1 INTRODUCTION

Whenever military forces deploy, a wide variety of personnel, equipment, and supplies must
be moved, and many transportation modes are used, including air, sea, rail, highways, and, possibly,
inland waterways and pipelines. Extensive planning and preparation are needed to select the best
transportation modes (e.g., aircraft, ships, rail cars, and trucks) and transportation routes. A major
need in planning the ground portion of a deployment is determining the highways and roads
available for moving convoys of vehicles containing personnel, equipment, and supplies. In forward
areas, in particular, equipment, such as tanks, armored personnel carriers, and artillery, can be
transported under their own power as individual vehicles.

When determining which highways and roads are available for a deployment, a planner
must ensure that all of the bridges along a route can support the specialized military vehicles being
transported. The U.S. military has adopted a vehicle and bridge classification scheme to facilitate




comparing the load-carrying capacity of a bridge with the loading generated by convoys of military
vehicles. Military load classification (MLC) values are assigned to both vehicles and bridges. As
long as the MLC of the largest vehicle in a convoy does not exceed the MLC of the bridge, the
bridge can safely withstand occasional use by the convoy.

An accurate evaluation of the MLC of a bridge requires extensive measurements and
knowledge of the components of the bridge and fairly sophisticated engineering calculations. The
U.S. Department of the Army (U.S. Army) is the primary user of ground transportation in forward
areas, and it has established a set of analytical classification methods for use by Army combat
engineers. These methods, simplified as much as possible but remaining consistent with good
engineering practices, are described in detail in the Army field manual FM 5-446, Military
Nonstandard Fixed Bridging (U.S. Army 1991). Even though somewhat simplified, these methods
still require gathering vast amounts of information about the bridge, carrying out some time-
consuming computations, and looking up parameter values in standard tables.

Under the direction and sponsorship of the U.S. Army Military Traffic Management
Command Transportation Engineering Agency (MTMCTEA), Argonne National Laboratory (ANL)
developed an automated tool to guide the combat engineer through the process of gathering the
information required to classify a bridge and to complete the analytical classification process. The
automated tool, referred to as SMART BRIDGE, also includes a database management capability for
storing and retrieving bridge information. In addition, because all the measurements and other
attributes of a bridge needed for analytical classification are often unavailable, SMART BRIDGE
includes less precise methods for classifying bridges, creating a single system that captures and
automates a range of bridge-related support for ground transportation planning.

SMART BRIDGE is designed for a variety of uses within the military. First, engineers and
reconnaissance personnel in the field can accurately analyze bridges. Using SMART BRIDGE installed
on a laptop computer allows engineers and reconnaissance personnel to enter and record information
about the bridge at the bridge, as the components of the bridge are measured. Once they have entered
the required attributes, the MLC of the bridge can be estimated immediately by automatically
performing standard bridge analysis computations established by the U.S. Army.

Second, SMART BRIDGE captures all of the bridge’s characteristics and analysis results in
a database that planners can use for evaluating alternative deployment routes. Import and export
routines incorporated in SMART BRIDGE allow each engineer or reconnaissance unit to exchange its
records with units that have successively larger areas of responsibility until eventually all records
are included in a central worldwide database of bridges.

Third, military planners can use SMART BRIDGE to estimate the MLC of bridges when
detailed, hands-on measurements of the bridges are not available, such as for routes behind enemy
lines. The system estimates, with a lower level of confidence, the MLC of a bridge on the basis of




a few characteristics that might be available from other sources, such as remote imagery and general
knowledge of the region in which the bridge is located.

Finally, SMART BRIDGE is an ideal training tool for assisting new Army combat engineers
in learning and applying classification techniques and expertise.

The remainder of this report is organized into several sections. Section 2 provides a brief
overview of the bridge and vehicle classification system used by the military. The programming
languages, computer platforms, and database management systems (DBMSs) used by SMART
BRIDGE are discussed in Section 3. Section 4 describes how bridge records are created in the SMART
BRIDGE database and how bridge and span information is entered. Section 5 summarizes the general
approach used in the analytical classification procedures extracted from FM 5-446. Section 6
discusses the approximate classification of bridges by using limited bridge information correlated
to civilian design and rating standards. The output from SMART BRIDGE is described in Section 7,
along with methods for assigning confidence levels to the classification results. Finally, Section 8
summarizes SMART BRIDGE efforts and possible future work.




2 BRIDGE AND VEHICLE CLASSIFICATION

The U.S. military uses the vehicle and bridge classification system established by the
nations of the North Atlantic Treaty Organization (NATO) through international agreement. Within
this system, vehicles are assigned ML.C numbers that represent the size of the vehicle and the loading
effects that it has on a bridge. The MLC of a vehicle depends on a combination of factors, including
gross weight, number of axles, axle spacing, axle width, and weight distribution to the axles.
Similarly, bridges are assigned MLC numbers that represent the largest vehicle classification that
the bridge can safely support as part of an occasional convoy with the vehicles spaced 100 ft apart
and traveling at a maximum speed of 25 miles per hour. The MLC of a bridge is the MLC of its
weakest span and depends on such factors as the length of the span, the type of construction, the
quantity and size of the structural members, the strength of the materials used, and the width of the
roadway. In preparing for ground movements of personnel, equipment, and supplies, military
planners must compare the MLCs of vehicles to be moved with the MLCs of bridges along potential
transportation routes.

The MLC scale is defined in terms of a set of 16 hypothetical standard wheeled vehicles
and a set of 16 hypothetical tracked vehicles. Originally, these hypothetical vehicles were typical of
actual military vehicles used in NATO countries. Standard tracked vehicles are designated by MLC
numbers ranging from 4 to 150, which correspond to the gross vehicle weight in short tons. In
addition to gross weight, each standard tracked vehicle is defined in terms of track width, length, and
spacing. Standard wheeled vehicles are designated by the same MLC numbers (4 throﬁgh 150),
which correspond to about 85% of the gross weight in short tons. Each standard wheeled vehicle is
defined in terms of gross weight, number of axles, axle spacing, and axle load. In addition to the
standard hypothetical wheeled vehicles, a maximum single-axle load is specified for each MLC
(used to represent the loading on very short spans when only one axle is on the span at a time). The
details of these hypothetical standard vehicles are described in Table C-1 of Appendix C of FM
5-446.

The U.S. Army has developed a set of analytical procedures to assign MLC values to
existing bridges. These procedures are described in Chapter 3 of FM 5-446. The MLC values differ
for wheeled and tracked vehicles and for one- and two-lane operation. Up to four MLC values can
be assigned to a single bridge. These procedures assume that the bridge superstructure is the
controlling or limiting feature in bridge classification. The substructure, which includes footings,
abutments, piers, piles, posts, and other supports, is usually overdesigned to compensate for
uncertainties in the underlying soil properties. The details for the analytical procedures depend on
the type of construction used for the bridge (e.g., timber, steel, reinforced-concrete, or prestressed-
concrete stringers; steel girders or trusses; steel, concrete, or masonry arches; or suspension).




However, generally one or more of the following seven factors are examined, and the most
restrictive factor limits the MLC values assigned to the bridge:

* Bending moments that induce bending stresses in structural elements that
exceed the allowable limits of the construction material,

* Bending moments that cause vertical deflections of structural elements that
can disrupt the bridge,

* Bending moments that create a potential for the lateral buckling of structural
elements,

¢ Shear forces that induce shear stresses in structural elements that exceed the
allowable limits of the construction material,

* Bearing forces that induce bearing stresses in structural elements or
supporting members that exceed the allowable limits of either construction

material,

e Individual tire loads that exceed the strength of the bridge deck, and

Required lane widths that exceed the roadway width over the bridge.

The bending moments and the shear and bearing forces induced in the structural elements
of a bridge span arise primarily from three sources: the dead load of the span superstructure, the live
load of the vehicles on the span, and the impact load of the vehicles moving onto or off of the span.
These general relationships can be expressed as follows:

m=mp, *my *myo, 6y
and
V=V t Vi TV 2)
where:
m = total induced bending moment per structural elemént;

il

mpr. contribution to the bending moment due to the dead load;

il

contribution to the bending moment due to the live load;

myy




contribution to the bending moment due to the impact load;

total induced shear force per structural element;

contribution to the shear force due to the dead load;

contribution to the shear force due to the live load; and

1779 contribution to the shear force due to the impact load.

The dead-load bending moment and shear force per structural element depend on the weight of the
materials that make up the superstructure, the number of structural elements, and the length of the
span. The live-load bending moment and shear force per structural element depend on the particular
vehicles on the span, their spacing, and their speed. The live-load moment and shear force per
structural element also depend on the length of the span and the effective number of structural
elements per lane of traffic. That is, the effect of the live load is distributed by the deck to several
structural members. The impact load is usually approximated as being proportional to the live load.

Therefore, the bending moment and shear force due to the impact load can be expressed as:

m, =1m, |, 3)

where [ is an empirical impact factor.
Substituting Equations 3 and 4 in Equations 1 and 2 yields:

m = mp +(1+Dmy,;

v=v, +(1+D v, . (6)

For concrete spans, the analytical procedures developed by the Army include safety factors that
effectively increase the estimated dead- and live-load bending moments. Equation 5 can be rewritten
to include safety factors:

m =(1+fDL) mDL+(1+I) (1+fLL) My )




where:

Ior dead-load safety factor, and

fiL

live-load safety factor.
Equations 7 and 6 can be solved for the live-load moment and shear:
my = [m - 1+ fo) mp VI + fi)A+ D], )
and
v = -ovp )+ D) ©)

The analytical procedures in FM 5-446 use values of zero for both the dead- and live-load safety
factors for timber and steel spans; for concrete spans, they use values of 0.4 and 0.7 for dead- and
live-load safety factors, respectively. The value of the impact factor is zero for timber spans and 0.15
for steel and concrete spans.

If m and v are interpreted as the maximum allowable total bending moment and shear force
that an individual structural element can sustain, Equations 8 and 9 can be used to calculate the
maximum allowable bending moment and shear force that a structural element can support due to
the live or vehicle load. The maximum allowable total bending moment and shear force depend on
the cross-sectional properties of the structural element and the maximum allowable stress to which
the construction materials can be exposed. The cross-sectional properties include the dimensions of
the structural element and, for a concrete element, the location and quantity of the reinforcing or
prestressed steel. The maximum allowable stress is usually assumed to be some fraction of the
strength of the material. For steel spans, the analytical procedures in FM 5-446 suggest 0.8 and
0.49 times the yield strength of the steel for the maximum allowable bending stress and shear stress,
respectively. The maximum allowable stresses for timber spans depend on the type of timber used.
For reinforced-concrete spans, the maximum allowable bending stress is estimated as 0.9 times the
yield stress of the reinforcing steel. For prestressed-concrete spans, the maximum allowable bending
stress is estimated as 0.9 times either the allowable stress in the prestressed steel or the 28-day
strength of the concrete, depending on which is the most limiting. Limits due to shear forces are not
considered in the analyses of concrete spans.

Once the maximum allowable live-load bending moment and shear force per structural
element (m;; and v; ;) have been calculated, the maximum allowable live-load bending moment and
shear force per lane of traffic for one- and two-lane operation (M;;,, M;;,, V1, and V;,) are
estimated. These estimates are made by multiplying the bending moment per structural element by
empirical estimates of the effective number of structural elements per lane of traffic for one- and




two-lane operation (N and N,) and by multiplying the shear force per structural element by other
empirical estimates of the effective number of elements per lane (N’ and N,"):

M. . = Nl m, (10)

My, =N, m, |, 1y

(12)

V,, =N, v, . (13)

In general, the effective number of structural elements per lane of traffic depends on many factors.
These factors include the type, number, and spacing of the structural elements; the type of deck
supported by the structural elements; the width of the roadway relative to the length of the span; the
number of lanes of traffic; and whether bending moments or shear forces are being assessed.

Finally, limiting MLC values based on bending moments and shear forces can be assigned
to the span by comparing the maximum allowable live-load bending moments and sheer forces
(calculated by means of Equations 10—13) with the maximum live-load bending moments and sheer
forces induced by convoys of the 16 standard wheeled vehicles and the 16 standard tracked vehicles.
The NATO countries have calculated and agreed upon these maximum induced bending moments
and shear forces. Tables and plots of the calculational results are available in several U.S. Army
publications, such as Appendix C of FM 5-446.




3 SYSTEM DESIGN

SMART BRIDGE was implemented by using the Application Interface Engine (AIE), a
software tool created at ANL to facilitate development of applications that use graphical display and
database access. The AIE is described in Fuja and Widing (1992). By using the AIE, the components
of an application can easily be isolated for portability and maintainability. In addition, the same
source code can be compiled for use on either UNIX or personal computer (PC)-based systems.

SMART BRIDGE consists of a series of modules that perform various functions, such as
gathering information from the user, performing the calculations associated with a particular analysis
method, generating printed reports, and interfacing with a database system. Information is entered
(and the system controlled) through a graphical user interface that consists of a series of windows.
Although slightly different in appearance, the same windows are used in both the UNIX and PC
implementations of the system, and the same calculations are performed. To help the user gather and
enter the required information about a specific bridge, SMART BRIDGE windows include Help buttons
for quick access to material that describes each window and each data entry item in the window.
Both textual and graphical materials are provided, including labeled diagrams of typical bridge
structures and annotated photographs of actual bridges. The general approach to data entry is
discussed in Section 4.

In contrast, the database management function differs in the two implementations. The
UNIX implementation is intended for use in an office environment on a SUN platform. It uses the
ORACLE™ relational DBMS, designed to handle very large databases, and requires a substantial
computing platform. The PC implementation is intended for use in the field on a laptop computer
to collect bridge information and perform rapid analyses. It uses CodeBase™ to create and
manipulate FoxPro™ formatted database files and is intended to handle information about only
several hundred bridges at a time. The actual data contents maintained in both systems are the same.
In addition to textual and numerical information about bridges, both databases provide for links to
files that contain digitized photographs or sketches of the bridges.
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4 DATA ENTRY AND STORAGE

To classify bridges accurately, military engineers must know what bridge attributes are
important; how the attributes relate and interact with each other; how to measure or otherwise
determine these attributes; how to calculate dead loads, bending moments, and shear stresses; and
how to assign MLC values on the basis of the calculations. SMART BRIDGE captures much of this
expertise in a series of attribute input screens, automated attribute links, on-line help documents and
diagrams, database tables, computational routines, and report generation facilities.

A bridge consists of one or more spans. The spans that make up a bridge are either of the
same type or a variety of types of construction. Detailed information about each individual span is
needed to assign MLC values to the span; general information about the bridge as a whole is needed
for transportation planning. The detailed information needed depends on the type of construction and
includes the number and dimensions of the structural components, the strengths of the materials, and
the weights of the components. The general information needed includes the location and name of
the bridge, the highway or road carried by the bridge, the condition and nature of the approaches to
the bridge, the feature crossed by the bridge, and the availability of nearby bypass routes. A series
of screens guides the user through the data input process. Once collected, all information about a
particular bridge and its spans is stored as a record in a database.

4.1 CREATING A BRIDGE RECORD

When a user wants to add a new record to the database, SMART BRIDGE displays a Create
Bridge Window (Figure 1). The user then enters basic information about the new bridge and its
spans. The first three data fields (Bridge ID, Creator, and Country Code) form a unique key for
identifying and linking the components of the record in the database. The country in which the
bridge is located must correspond to an entry from an established list of 406 countries, states, seas,
and other areas published as a Federal Information Processing Standard by the National Institute of
Standards and Technology of the U.S. Department of Commerce. The Country can either be selected
from a table, entered as a standard two-character code, or entered as a name. The Creator is the name
or designation of the organization or individual responsible for the bridge record. The Bridge ID is
a unique identifier for the bridge in the specified Country under the responsibility of the specified
Creator.

At this point, the user enters basic information about each span. This information includes
the span length, the span construction type, and the boundary condition with the next adjoining span,
if one exists. By convention, the spans of a bridge are numbered in sequence starting with the
westernmost span. If the bridge is essentially oriented in a north-south direction, numbering starts
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FIGURE 1 Create Bridge Window

with the northernmost span. The user selects the measurement units to be used in specifying the span
length from an established list.

The user also selects the span construction type from a list based on the span types
described in FM 5-446. This list will eventually include about 16 construction types that fall into two
general categories. The first category includes stringerlike spans in which several structural members
made of timber, steel, or concrete extend across the span and directly support a deck of timber,
concrete, or steel grating. The structural members are often referred to as stringers or beams. The
second category includes spans with floor-beam systems supported by, or suspended from, one or
two large specialized structural members, such as trusses, girders, arches, or cables. Girders and
cables are usually made of steel; trusses can be made of steel or timber; and arches can be made of
steel, concrete, or masonry. The floor beams are oriented transverse to the centerline of the bridge
and either support the deck directly or serve as the end supports for a series of stringerlike sections.
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At present, only the stringerlike spans have been implemented in SMART BRIDGE in terms
of detailed data entry screens, data storage facilities, and analytical classification procedures. These
construction types are the most common for the small bridges likely to be encountered by combat
engineers in forward deployment areas. However, rudimentary data entry screens have been
implemented for all span construction types, including spans of unspecified construction, so that
basic information about any span can be entered.

The eight stringerlike span construction types already implemented are timber stringer, steel
stringer, steel stringer with composite concrete deck, reinforced-concrete stringer, reinforced-
concrete slab, reinforced-concrete T-beam, reinforced-concrete box-girder, and prestressed-concrete
beam. Timber spans can be made of dimensional structural grade timbers, fabricated glue-laminated
beams, or natural rough timbers. The spans rarely exceed 20 ft and are simply supported at the ends.
Decks are usually made of timber, laid either flat as planks or on edge to form a laminated deck.
Laminated decks are either nailed or glued. The deck can be covered with a wearing surface, usually
either a layer of asphalt or a timber treadway.

Steel-stringer spans are often made of standard rolled-steel beams, although longer spans
(60-120 ft) can use stringers built of welded steel plates. Spans up to 90 ft long can be simply
supported at the ends. However, multiple spans can be of continuous construction in which a single
stringer extends across several supports, which distributes the induced internal bending moment and
reduces the effective length of each span. Continuous steel-stringer spans can extend up to 120 ft.
Decks are usually timber or concrete. Concrete decks can be structurally connected with the steel
stringers to form composite beams, which effectively increases the bending moment that the
stringers can sustain. The wearing surface, if present, can be a layer of asphalt. For a concrete deck
with no explicit wearing surface, the top inch of concrete is often considered to be the wearing
surface.

Reinforced-concrete stringers or beams are used in simply supported spans up to 60 ft and
in continuous-span bridges with clear spans up to 100 ft. Although concrete is well suited to resist
compression, embedded-steel-reinforcing rods allow the beams to resist tension. The decks are
usually concrete and can be either composite or noncomposite with the beams. Often, a section of
the deck is fabricated as an integral part of the reinforced-concrete beam to form a composite
T-beam. Placed side by side, the T-beams form both the stringers and the deck. In either case, a
wearing surface of asphalt can be added, or the top inch of concrete can be considered to be the
wearing surface.

Reinforced-concrete box-girder spans can be as short at 40 ft but are usually 60160 ft long
when used in multiple-span bridges with continuous construction. Whole spans or sections of spans
are fabricated as a single unit, with the top serving as the deck and resisting compression, the bottom
containing reinforcing steel to resist tension, and the external and internal vertical webs acting as
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equivalent beams. Again, a wearing surface of asphalt can be added, or the top inch of concrete can
be considered to be the wearing surface.

Reinforced-concrete slabs are usually used for single spans of less than 25 ft. Multiple-span
bridges are normally continuous, but span lengths rarely exceed 40 ft. The slab serves as both the
structural member and the deck and is generally 8-30 in. thick. A wearing surface of asphalt can be
added, or the top inch of concrete can be considered to be the wearing surface and not contribute to
the strength of the slab.

Spans using prestressed-concrete beams are similar to spans using reinforced-concrete
stringers, except the special embedded steel is placed under tension during beam fabrication. After
fabrication, when the tension is released, the beam is naturally under compression. For a well- -
designed beam, when the beam is incorporated into the span and the span is exposed to the expected
vehicular traffic, the compression is reduced to near zero. Consequently, the concrete in the beam
never experiences significant tension.

The final information needed about each span is the boundary condition with the next
adjoining span, if one exists. The boundary condition can be either simple, indicating that the two
spans are separate and independent, or continuous, indicating that the main structural members of
the two spans are rigidly and continuously joined at their common support point. Except for span
length, none of these parameter values can be changed once the basic record is created.

After values have been entered in all the data fields, the user selects either the Create Bridge
and Span Records button to create the basic records or the Cancel button to reject the action. Before
the system actually creates the appropriate bridge and span entries in the database, certain
consistency checks are performed on the entries. For example, a Bridge 1D, a Creator, and a valid
Country Code must be present and form a unique key. Also, span lengths must be greater than zero,
and spans can have only a continuous boundary condition with adjacent spans of the same
construction type. As the basic bridge and span records are created, the system incorporates default
values for data fields where defaults are appropriate. If the information is available, the default
values depend on the specific country in which the bridge is located. This feature is particularly true
of data fields that correspond to the strength of construction materials. Otherwise, general default
values are provided.

4.2 ENTERING BRIDGE INFORMATION

Once the basic records are created, the user is presented with a series of bridge information
windows, such as the window shown in Figure 2, for entering general information about the bridge.
The data fields that make up the database key cannot be edited. The Country of Design entry, if
present, is selected from a predefined list. This list includes countries for which specific default
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FIGURE 2 Bridge Information Window

values or predefined sets of allowed values for certain data fields exist or for which special
classification by correlation procedures have been implemented (Section 6). The Country of Design
parameter allows the user to associate a bridge with the design and material standards of a country
other than the country in which it is physically located. For example, by using this parameter, the
user can treat a bridge in Puerto Rico as if it were designed to the standards used in the continental
United States. When appropriate, the default value for this parameter is the country in which the
bridge is actually located. The bridge reconnaissance process, described in FM 5-36, Route
Reconnaisance and Classification (U.S. Army 1985), was used as a guide for determining specific
information to be included in a bridge record.

Throughout SMART BRIDGE, each window has a Help button that displays a textual
description of the window, its contents, and its purpose. In addition, each data entry field in a
window has a small button to its left that brings up an Edit Item window (Figure 3). This window
provides a definition of the data item and a means for entering a value. Depending on the data item,
the window also explains how the item is to be measured or gathered, discusses typical or default
values, and provides access to figures or diagrams that can help the user determine the value of the
parameter. The user has a choice of units associated with data items that represent dimensional
parameters. This option provides flexibility for using the most appropriate or convenient
measurement system.
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4.3 ENTERING SPAN INFORMATION

After entering the general information pertaining to the bridge as a whole, the user enters
detailed information about individual spans. Upon specifying a particular span, the user is presented
with a window that corresponds to that span, such as a timber-stringer span (Figure 4). The exact
form of the window depends on the type of construction assigned to the span when the record was
created. The user enters information about the span either through a series of span data forms by
selecting the Span Info and Span Data Form buttons or through a series of generic span diagrams
by selecting the Span Cross Section and Span Side Elevation buttons. Again, the details of the data
forms and the generic diagrams depend on the type of construction assigned to the span. In fact,
several span construction types use a third diagram that corresponds to a stringer, beam, girder, or
slab cross-section. Either approach allows the user to enter values for all the detailed data items
needed to fully describe the span. The user selects the more convenient approach under the particular
circumstances or, if preferred, a combination of the two approaches.

Figure 5 shows a typical span data form for a timber-stringer span. Again, each window has
a Help button; each data entry field has an Edit Item window (Figure 3); and each dimensional
parameter has a choice of units. Figure 6 shows a typical generic span diagram for the cross-section
of a timber span. The components of the span are labeled, and individual parameters are designated
by symbols inside boxes, either within or next to the diagram. Selecting a parameter brings up the
Edit Item window for that parameter and provides a definition and a means for entering a value. The
color and thickness of the boxes are coded to indicate the source of the present value of the
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parameter and whether the parameter will be used directly in the detailed analysis of the span.
Specifically, a red box indicates that the parameter retains its default value; a green box indicates that
the user has specified a value for the parameter; a blue box indicates that the system has
automatically calculated a value for the parameter based on the values of other parameters; and a
yellow box indicates that a value has been estimated or inferred from the values of other parameters.
Parameters whose values are used directly in the detailed analysis of the span are surrounded by
boxes with thick boundaries.

During parameter input, the system makes and updates estimates of certain parameter
values based on the current values of other parameters. In particular, values for the dead- and live-
load continuity coefficients (Cpy, and Cy;) for continuous spans are estimated from the span
boundary conditions. Also, the dead-load weight per unit span length of the bridge superstructure
(Wpy) is calculated from the dimensions of the various components of the superstructure and typical
material densities. Bearing or contact areas between stringers and their supports (A) are calculated
from the dimensions of the contact regions, and stringer cross-sectional areas (Apoanm) are calculated
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from the dimensions of the stringers. For steel stringers, section properties, such as the section
modulus (S), the height of the neutral axis (y,,,,,), the effective area of shear (A,), and the weight
per unit length (wy,..), are obtained by table lookup for standard rolled shapes or calculated from
the dimensions of the stringers. Maximum allowable bending and shear stresses (f;, and f,) are
calculated from the minimum yield stress of the steel used in the construction of the stringers. At any
time, if the user can obtain more accurate values for any of these parameters, the estimated or
calculated values can be replaced.

4.4 STORING BRIDGE AND SPAN INFORMATION

A set of 12 data tables is used in the SMART BRIDGE databases to store the detailed
information about bridges and their spans, including calculated or estimated MLC values. The first
5 tables store information about bridges and spans that is independent of the particular span
construction type. However, the remaining 7 tables correspond to the individual implemented span
construction types and store information specific to a particular type. Because of the similarity in
data requirements for spans constructed with reinforced-concrete beams and prestressed-concrete
beams, these construction types share the same data table. The tables and their general contents are
listed in Table 1.

Each data item in the database tables has a single-character code that indicates the source
of the value stored in that entry. Most items are either entered directly by the user or established by
SMART BRIDGE. Items established by SMART BRIDGE are either set as defaults or obtained through
table lookup, estimation, inference, correlation, or calculation on the basis of the values of other
items. Keeping track of the sources of individual data items in the database and including those
sources in the printed reports generated by SMART BRIDGE help the user assess the reliability of any
derived quantities, such as MLC values. Data items that represent dimensional quantities, such as
length, area, mass, bending moment, stress, or density, also have a two-character code that indicates
the unit of measure that accompanies the numerical value. This approach allows the user to enter and
store data items in the most convenient unit of measure. SMART BRIDGE converts dimensional
parameters to a consistent set of units just before the actual computations are carried out.
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TABLE 1 Data Tables Used in the SMART BRIDGE Database

Data Table Typical Items Stored

BRMASTER Data items about a bridge that allow quick retrieval of the records for a
specific bridge or set of bridges

BRCOMMON Data items that provide additional general information about the bridge

IMMASTER File names of images (digitized photographs or sketches), if any, associated
with a bridge

SPMASTER Data items that summarize a span, such as construction type, length, and
MLC values

SPCOMMON Data items common to spans of all construction types, such as deck and

Span-type specific

wearing surface type, width, and thickness, and roadway width

Data items specific to spans of a particular construction type, such as the
number and dimensions of structural components, the strength of materials,
and the weights of components
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S ANALYTICAL CLASSIFICATION

Once the data concerning a bridge and its spans have been entered, the user analyzes each
span by selecting the Perform Analysis button on the corresponding span window (Figure 4). When
the user selects the analysis option, SMART BRIDGE examines the data associated with the specified
span to determine the construction type and the appropriate analytical classification procedure to use.
SMART BRIDGE currently has analytical procedures for eight span construction types (Section 4.1).
These analytical procedures were derived from the analytical methods described in Section IV of
Chapter 3 in FM 5-446. The system can easily incorporate additional procedures for other span

types.

A check is then made to determine that values exist for all the attributes or parameters used
by the selected analytical procedure. The parameter values are (1) established by the system as
default values, (2) entered directly by the user, or (3) calculated by the system from other parameter
wvalues. If values are not available for all the needed parameters, the user is alerted to the missing
values. The user can then opt either to return to the data entry process (Section 4.3) or to estimate
temporary MLC values by using the classification by correlation method described in Section 6, if
sufficient information is available.

When it has been determined that values exist for all the parameters used by the analytical
procedure, calculations are made to establish MLC values on the basis of one or more of the seven
potential limiting factors discussed in Section 2. The specific calculations and the particular limiting
factors depend on the span construction type and the analytical procedure being used.

For a timber-stringer span, all seven potential limiting factors are checked. First, the
maximum bending moment that an individual stringer can sustain due to the live load of vehicles
on the span (m; ;) is calculated. This maximum bending moment is such that the allowable bending
stress limit for the timber (f,) is not exceeded within the stringer; the vertical deflection of the
stringer will not disrupt the deck (vertical deflection is less than 0.005 times the span length); and
the lateral bracing between stringers is sufficient to prevent lateral buckling of the stringers. The
maximum live-load bending moments per traffic lane for one- and two-lane operation (M, , and
M, ;) are then calculated by using empirical estimates of the effective number of stringers per lane
for one- and two-lane operation (N, and N,). Limiting MLC values based on the bending moment
induced in the stringers by wheeled and tracked vehicles in one- and two-lane operation are then
evaluated by using M, ;, and M, |, the span length (L), and the tabulated values of live-load bending
moments for convoys of the standard military vehicles included in Appendix C of FM 5-446.

The system then calculates the maximum shear force that an individual timber stringer can
sustain due to the live load of vehicles on the span (v;;). This force is such that the allowable shear
stress limit of the timber (f,) is not exceeded within the stringer, and the maximum allowable bearing
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stress limit of the timber stringer or its supporting material (fp) is not exceeded. The maximum live-
load shear forces per traffic lane for one- and two-lane operation (V;;, and V;,,) are calculated by
using empirical estimates of the effective number of stringers per lane (N;’ and N, ). Limiting MLC
values based on the shear force induced in the stringers by wheeled and tracked vehicles are then
evaluated by using V;;; and V,;,, the span length (L), and the tabulated values of live-load shear
forces for convoys of the standard military vehicles included in Appendix C of FM 5-446.

The system then assigns a limiting MLC value based on the potential for shear failure of
the timber deck by using Figure 3-14 of FM 5-446 and also assigns limiting MLC values based on
roadway width (bp) for one- and two-lane operation by using Table 3-3 of FM 5-446. Finally, the
system assigns the resulting MLC values for the span for wheeled and tracked vehicles in one- and
two-lane operation (a total of four combinations) as the lowest values for the various potential
limiting factors. However, for one-lane operation, the width of the roadway is not considered to be
a potential limiting factor. Instead, if width would have been the limiting factor for a one-lane bridge,
this restriction should be noted and posted at the bridge.

For a steel-stringer span, all seven potential limiting factors are also checked, unless the
span has a composite concrete deck. When the deck is composite with the stringers, vertical
deflection and lateral buckling are not considered because the composite action of the deck tends to
negate these two failure modes. The maximum live-load shear force per traffic lane is assumed to -
be the same for both one- and two-lane operation (when steel stringers are used) and is estimated
using the equivalent of two stringers per lane (N, = N,’ = 2). Also, for a concrete deck, the system
assigns a limiting MLC value based on the strength of the deck using the procedure described in
Section 6-10.c of FM 5-446. In applying the procedure, it is assumed that the depth of the reinforcing
steel (d,) is 2 in. less than the actual thickness of the deck (¢;"). Moreover, it is also assumed that the
concrete is of a balanced design (the steel and concrete reach their allowable stresses simultaneously)
and that the strengths of the steel and concrete are typical of normal construction materials, resulting
in a moment capacity per unit length of concrete along the stringers of about 0.214 ksi x drz. This
approximate analysis for the moment capacity of a concrete slab is taken from the analysis of a
reinforced-concrete slab bridge in Section 5-16 of TM 5-312, Military Fixed Bridges (U.S. Army
1968).

For a reinforced-concrete span (either stringer, T-beam, box-girder, or slab), only bending
moments that induce excessive bending stresses and roadway width are considered to be potentially
limiting factors. Vertical deflection, lateral buckling, and failure due to shear or bearing forces are
not likely to be problems in a well-designed, reinforced-concrete structure. First, the system
calculates the maximum bending moment that an individual structural element (stringer, beam,
girder web, or unit width of slab) can sustain due to the live load of vehicles on the span (m;;). It
is assumed that the structural elements are designed so that the reinforcing steel carries all the
tension, and the steel will fail in tension before the concrete fails in compression. When calculating
my . safety factors of 40% and 70% are included in estimating the contributions of the live- and




22

dead-load bending moments, respectively, to the total bending moment. Also, the total bending
moment capacity of each reinforced-concrete element is calculated by using 90% of the yield
strength of the reinforcing steel (Fy) as the limiting stress.

As with timber- and steel-stringer spans, the system then calculates the maximum live-load
bending moments per traffic lane for one- and two-lane operation (M;;; and M;,,) by using
empirical estimates of the effective number of reinforced-concrete elements per lane (N, and N,).
For a reinforced-concrete slab span, estimates of the effective slab width per lane for one- and
two-lane operation (b,; and b ;) are used. Limiting MLC values are then evaluated based on the
maximum live-load bending moments per traffic lane (M, ;; and M;;,) and on roadway width (bp).
Finally, the system assigns the resulting MLC values for the span for wheeled and tracked vehicles
in one- and two-lane operation (a total of four combinations) as the lowest values for the two
potential limiting factors, remembering that roadway width is not considered to be a limiting factor
for one-lane operation.

For a prestressed-concrete span, the analysis is similar to that for a reinforced-concrete
span. However, the total bending moment capacity of each prestressed-concrete beam is calculated
by using either 90% of the estimated allowable stress in the prestressed steel (fps) or 90% of the
28-day strength of the concrete, depending on the relationship between the strength of the steel and
the strength of the concrete.

Upon completion of the span analysis, the user views the MLC values for the span in a
pop-up window, along with a brief notation as to what factor, if any, was the limiting factor. At the
direction of the user, these MLC values and all the parameter values that describe the span just
analyzed can be saved in the span database tables described in Section 4.4. In addition, the system
can generate printed reports that summarize the analysis and its results. These reports are described
in Section 7.
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6 CLASSIFICATION BY CORRELATION

Often, sufficient, detailed information about a bridge is not available for carrying out the
analytical classification process described in Section 5. The bridge can be in an area inaccessible to
combat engineers, or perhaps it is early in the planning process, meaning that reconnaissance
missions have not yet been performed. Therefore, it may be necessary to assign temporary MLC
values to a bridge on the basis of available information. One method often used by the military is
to correlate the loading generated by hypothetical standard military vehicles with the civilian load
configuration for which the bridge was designed or rated. The specific civilian load configuration
depends on the organization that regulates roads and highways in the country or region where the
bridge is located. Often civilian load configurations are defined in terms of a few standard vehicle
configurations that are simplified representations of the largest trucks expected to use the bridge.

6.1 CONCEPT

Except for some timber-stringer bridges and certain short steel-stringer bridges where shear
stresses are important and for bridges with narrow roadways, excessive bending stress in structural
elements induced by excessive bending moments is usually the factor that limits the MLC values
assigned to a bridge. Therefore, correlation between civilian and military loading is generally
established in terms of maximum allowable live-load bending moments.

As discussed in Section 2, the maximum allowable total bending moment per structural
element (m) depends on the cross-sectional properties of the element and the maximum allowable
stress to which the construction material can be safely exposed. The cross-sectional properties of a
structural element depend on the dimensions and configuration of the element. Therefore, they
depend on the element itself, not on the method of analysis. In contrast, the maximum allowable
stress is usually assumed to be some fraction of the strength of the material, and the choice of that
fraction is up to the person or organization overseeing the analysis. In general, civilian organizations
tend to be more conservative than military organizations in their choice of this fraction because the
former usually assumes continual use of the bridge, whereas the latter assumes occasional use. This
relationship between the maximum allowable total bending moment used by the military (m,,;) and
the maximum allowable total bending moment used by civilian organizations (. ) is expressed as:

civ)

m.o=wxm. . (14)

‘mil civ

In this relationship, the proportionality factor k depends on the particular organizations and analyses
involved, but typically ranges from 1.3 to 1.5.
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Substituting from Equation 5 for both sides of Equation 14 yields:

=xkm, +K{(1+1 )ym

my, + (1+ 1 ) m DL civ) Mirev - 15)

LLmil
The contribution of the dead-load weight of the bridge superstructure to the total bending moment
(mp;) is a function of the bridge itself and should not depend on the organization doing the analysis.
However, the values used for the impact factors may differ. Solving Equation 15 for the military
maximum allowable live-load bending moment per structural element yields:

My = K My, (B 1A+ L)+ (R-1) mp, /[(1+ 1) (16)

If the second term can be neglected with respect tb the first term, Equation 16 can be approximated
as:

My = K€ My, (L LI+ L) 17

This expression for the military maximum allowable live-load bending moment per structural
element is conservative because the neglected term is always positive. For the second term to be
small, the following must hold:

[(e- W/RIL/L+ L )l(mpfmy, ) « 1 . (18)

v

It is difficult to show that this term is always small. However, when bridges are designed, the
contribution of the dead load to the bending moment per structural element (i, ) is deliberately kept
as small as possible with respect to the contribution due to the live load (m; ;). A cursory
examination of some actual bridges indicates that the ratio of mp,; to m;; ... ranges from 0.1 to 1.0,
with 0.5 being typical. By using 1.3 for k, a conservative value of zero for I ;,, and 0.5 for the
bending moment ratio, the left side of Equation 18 is 0.12, indicating that the effect of the neglected
term is about 12%.

Equation 17 can be put in terms of the maximum allowable live-load bending moments per
lane of traffic by multiplying by the effective number of structural elements per lane (Section 2). The
latter depends on the particular analysis and the number of lanes of traffic:

My = N ya/No) « Mygo s, (U L)AL ) (19)

/N,

2civ-

Mo = Ny ) kK M, A+ L)+ L)

L2civ civ
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Because most civilian bridges are designed and rated for two or more lanes of traffic, Equations 19
and 20 are expressed in terms of the civilian maximum allowable bending moment per lane of traffic
for two or more lanes of operation (M, ;). According to the analytical classification procedures
in FM 5-446, N, , and N, ., depend on the total number of structural elements and the spacing of
those elements. It is possible that this information would not be available, unless a person had access
to the design drawings or the results of a detailed reconnaissance of the bridge. To proceed with this
approach to classification by correlation, one can assume that the two ratios of military-to-civilian
effective numbers of structural elements per lane in Equations 19 and 20 are approximated by
corresponding ratios that involve only civilian values and that the civilian ratios can be approximated
by those suggested by the American Association of State Highway and Transportation Officials
(AASHTO 1989); that is,

Vit Noei) = NN, = (KUK (21)
and
(Nopit/Nogi) = Ny /N, ) = 1. (22)

Table 2 lists the suggested AASHTO values for the ratio K /K, in Equation 21 as a function of the
type of deck (T ,,), the span construction type (Tsp on)» and the thickness of the deck (z,"). If nothing
is known about the construction of the bridge, the conservative assumption can be made that there
is no advantage to restrict operation to one lane (i.e., assume K /K5 = 1.0). The more that is known
about the bridge, the more accurately (and less conservatively) the ratio can be determined.

After the additional assumptions involving the number of structural elements per traffic lane
(Equations 21 and 22), Equations 19 and 20 become:

My = (KJK) ©« My, (L 1A L) (23)
and
My = € Mypp,, 0+ LI L) . (24)

If the civilian design load and the maximum allowable live-load bending moment per lane for a span
can be determined, the relationships in Equations 23 and 24 can be used to estimate the military
maximum live-load bending moments per lane and thus the MLC values, assuming that the bending
moment is the limiting factor. In certain situations, the civilian design standard, or part of it, may be
in terms of one lane of traffic or of occasional rather than continual use. For situations

/
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TABLE 2 Ratios of Lateral Distribution Factors Suggested by AASHTO

Thickness of
Type of Deck, Span Construction Type, Deck,
Tdeck T t d, (in.)

span

Simple timber plank Any Any

Multilayer timber plank <5
Any >5

Nailed-laminated timber  Any <4
Any >4and <6
Any 26

Glue-laminated timber Timber-stringer <4
Timber-stringer >4and<6
Timber-stringer 26
Not timber-stringer <4
Not timber-stringer >4and<6
Not timber-stringer > 6

Concrete Timber-stringer Any

Steel-stringer, composite steel-concrete Any
stringer, steel girder, truss, prestressed-
concrete, suspension

Reinforced-concrete T-beam, Any
reinforced-concrete stringer

Concrete box-girder Any
Other (including unknown) Any

Unknown Any Any

Source: Based on information from AASHTO (1989).
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where one lane of traffic is considered in the civilian design standard, relationships analogous to
Equations 23 and 24 can be developed in terms of M, ;.

My = X My, A+ 1A+ ), (25)
and
Moy = € My, (I L+ T K /K A (26)

Where occasional use is considered in the civilian standard, a value of 1.0 is used for k rather than
values like 1.3.

Information concerning civilian design load configurations and civilian treatment of impact
loads and allowable stresses is currently included in SMART BRIDGE for the United States, the
Republic of Korea (South Korea), and Russia. This information includes tabulated values of the
maximum live-load bending moments as a function of span length induced by these civilian design
load configurations. SMART BRIDGE can be used to apply the classification by the correlation method
described above to bridges in one of these three countries or to bridges designed to the standards
established by one of these countries. For example, several South American countries use the same
bridge design standards as the United States, just as many countries from the former Soviet Union
use Russian bridge design standards. Civilian design considerations for other countries can readily
be added as additional correlation procedures are developed.

In the United States, bridges are designed or rated in terms of two hypothetical standard
truck configurations (HS and H) established by AASHTO. The HS-type truck is similar to a tractor
and semitrailer configuration, but with only three axles. The tractor axles are spaced 14 ft apart, and
the trailer axle is from 14 to 30 ft behind the rear tractor axle. The exact spacing of the trailer axle
is that which produces the maximum bending moment in the span being designed or rated. The
weights on the rear tractor axle and the trailer axle are assumed to be the same, and the weight on
the front tractor axle is assumed to be one-fourth that on either of the other two axles. A particular
HS truck is designated by a numerical value equal to the sum of the weights on the two tractor axles
expressed in short tons. For example, an HS20 truck would have a weight of 4 tons on the front axle,
16 tons on the rear tractor axle, and 16 tons on the trailer axle. Some old, small bridges are designed
or rated in terms of an H-type truck. The H truck is similar to a box van with two axles. The axles
are spaced 14 ft apart, with the weight on the front axle assumed to be one-fourth of that on the rear
axle. A particular H truck is designated by a numerical value equal to the sum of the weights in the
two axles expressed in short tons. An H15 truck would have a weight of 3 tons on the front axle and
12 tons on the rear axle. AASHTO (1989) has published tables of live-load bending moments as a
function of span length for these two standard truck configurations. The tabulated values are adjusted




28

for short spans to account for the fact that only a portion of the truck is on the span at any one time
and for long spans to account for multiple trucks on the span at the same time.

The Republic of Korea has bridge design standards that are similar to those used in the
United States, except that the standard design trucks are designated by DB. A DB truck is defined
exactly the same as an HS truck, except that the weight is expressed in metric tons rather than short
tons (1 metric ton equals 1.102 short tons). Therefore, a DB-18 truck has a weight of 3.6 metric tons
(3.97 short tons) on the front axle, 14.4 metric tons (15.87 short tons) on the rear tractor axle, and
14.4 metric tons (15.87 short tons) on the trailer axle. A bridge designed or rated according to
Republic of Korea standards in terms of a DB truck can be classified by the same correlation
procedure used for U.S. bridges by converting the DB rating to the equivalent HS rating.

The bridge design criteria used in Russia are slightly more complicated. Both continual use
by commercial trucks and occasional use by large special vehicles in one lane are considered.
Commercial trucks are represented by the hypothetical standard A-type truck, which has two axles
spaced 1.5 m apart, with the total vehicle weight equally distributed between the two axles.
Associated with each A truck is a uniform companion load of approximately 0.45% of the total truck
weight per meter of span. A particular A truck is designated by a numerical value approximately
equal to the weight per axle expressed in tens of kilonewtons (kIN). For example, an A1l truck
weighs about 220 kN (24.7 short tons) and has a uniform companion load of 1.0 kN/m (68.5 Ib/ft).
The large special vehicles are represented by the hypothetical HK80 wheeled truck and the
hypothetical HG60 tracked vehicle. The HKS80 truck has four axles spaced 1.2 m apart, with the total
vehicle weight of 800 kN (89.9 short tons) equally distributed among the axles. The HG60 tracked
vehicle has two tracks 5.0 m long and a total vehicle weight of 600 kN (67.4 short tons). Two
common design situations are often used — one for highways and major roads and one for rural
roads. The former includes continual use by pairs of Al1 trucks traveling side by side along with
their uniform companion loads and occasional use by single HK80 trucks in one-lane operation,
whichever has the maximum effect. For rural roads, continual use by pairs of A8 trucks traveling
side by side along with their uniform companion loads and occasional use by single HG60 tracked
vehicles in one-lane operation are considered. These two design situations are referred to in SMART
BRIDGE as A11x2/HK80 and A8x2/HG60, respectively.

6.2 IMPLEMENTATION IN SMART BRIDGE

When the user selects the Perform Analysis button on a span window (Figure 4), SMART
BRIDGE examines the data associated with that span to determine its construction type and the
appropriate analytical classification procedure. If the span is one of the eight implemented types and
values are not available for all the parameters needed to carry out the analytical classification
procedure, the user can estimate temporary MLC values by using classification by correlation. If the
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span is not one of the eight implemented types, SMART BRIDGE automatically attempts classification
by correlation.

For SMART BRIDGE to apply a classification by correlation procedure, the value of the
Country of Design parameter for the bridge must be one of the implemented countries (United
States, Republic of Korea, or Russia), and a valid value for civilian design load or inventory rating
parameter must be present. In addition, values for the span length (L), the span live-load continuity
coefficient (C;,), and the curb-to-curb roadway width (b) must be present. A conservative value
of 1.0 can be entered for C;; if a more appropriate value is not available. Also, because the roadway
width is used only to check for limitations due to required lane widths for two-lane operation, the
user can enter any nonzero conservative value to check for limitations due to excessive bending
stresses. Other span parameters, such as span construction type (Tspan), type of deck (7,,), and
deck thickness (z,), can be used to improve the accuracy of a particular correlation procedure;
however, only a valid design load or inventory rating and a span length within about 10% of the true

value are needed to obtain reasonable results.

The span length can be obtained by direct measurement, from civilian records, or by
estimation from remote imagery. If possible, design loads and inventory ratings should be obtained
from civilian records. However, if that option is not available, the user may be able to infer the
design load of a bridge on the basis of the country or region in which the bridge is located and the
functional classification of the route carried by the bridge. The functional classification of a route
is a designation of the type of traffic expected to use the route. The responsible organizations in
different countries use different systems or schemes to categorize or classify roadways. Usually,
countries establish minimum design standards for bridges built along routes of a particular functional
classification. While entering bridge information into SMART BRIDGE (Section 4.2), whenever the
Country of Design parameter is set or modified, the list of possible values for the Functional
Classification of Route Carried (Route Fun. Class.) parameter is revised, and the parameter is set to
a default value of Unknown. The user can then assign an appropriate value by selecting from the list.
If the correct Functional Classification of Route Carried is not known, the Edit Item window
associated with this parameter provides hints on how to infer a value on the basis of the
characteristics of the route. Relevant characteristics include age, number of lanes, lane widths,
existence and condition of shoulders, access restrictions, speed limits, observed traffic, type of area
traversed, and sizes of population centers connected.

In the United States, roadways are classified as expressways, arterials, collectors, and local
roads. Bridges on expressways and arterials are usually designed for HS20 trucks, while bridges on
collectors and local roads may be designed only for HS15 trucks. When the user assigns one of these
four functional classifications to the route carried by a bridge, SMART BRIDGE sets the default value
of the Design Load parameter to the corresponding HS truck. The user can change this value if
additional information becomes available. Many bridges in the United States are assigned inventory
ratings by various state and local governments in accordance with guidance supplied by the Federal
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Highway Administration of the U.S. Department of Transportation. The inventory rating is a
measure of the carrying capacity of a bridge for normal, continual operation in its present condition
expressed in terms of the AASHTO standard vehicles (HS or H). For example, a bridge with an
inventory rating of HS24.4 can support HS trucks that have a total gross weight 22% greater than
an HS20 truck (43.92 short tons). The inventory rating can be less than or greater than the design
load, depending on the condition of the bridge and the conservatism built into the original design.
When entering bridge information into SMART BRIDGE, the user inputs a value for the Inventory
Rating parameter, if available. Besides the United States, many protectorates and former
protectorates of the United States, as well as several South American countries, use this design and
rating scheme.

Roadways in the Republic of Korea are classified as expressways, national or provincial
roads, and county roads. Bridges on expressways in the Republic of Korea are usually designed for
DB-24 trucks. However, the DB-18 truck is used as the design vehicle for bridges on national and
provincial roads, while the DB-13.5 truck is used for bridges on county roads. When the user assigns
one of these three functional classifications to the route carried by a bridge, SMART BRIDGE sets the
default value of the Design Load parameter to the corresponding DB truck. The user can change this
value if additional information becomes available.

In Russia and much of the former Soviet Union, roadways are classified as Category IA,
IB, and II highways or Category III, IV, and V roads. The design configuration referred to as
A11x2/HKB8O is used for bridges on highways and major roads designated as Category 1A, IB, and
II highways and Category III roads. The design configuration referred to as A8x2/HG60 is used for
bridges on rural roads designated as Category IV and V roads. When the user assigns one of these
six functional classifications to the route carried by a bridge, SMART BRIDGE sets the default value
of the Design Load parameter to the corresponding design configuration. The user can change this
value if additional information becomes available. Within SMART BRIDGE, if a bridge of Russian
design carries somewhat more or less than one of the two common design configurations, a rating
factor may be included with the design configuration. For example, a bridge designed or rated as
0.8A11x2/HK80 would be able to carry vehicles of the same axle spacing and weight distribution
as those in the A11x2/HKS80 design configuration, but weighing 20% less.

When SMART BRIDGE applies a classification by correlation procedure, the value of the
Country of Design parameter determines the procedure to be used. The value of either the Inventory
Rating parameter or the Design Load parameter forms the basis of the correlation, depending on
which parameter contains a valid rating or design format for the procedure. If both parameters
contain valid formats, the Inventory Rating is used because it supposedly more closely represents
the condition of the bridge as it presently exists.

Similar to a detailed analytical classification, when a planner uses SMART BRIDGE to apply
a classification by correlation procedure to a span, the estimated MLC values for the span are
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presented in a pop-up window. At the direction of the user, these MLC values are saved in the span
database tables (Section 4). In addition, the user can have the system generate printed reports that
summarize the correlation process and its results. These reports are described in Section 7.
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7 PRINTED REPORTS

SMART BRIDGE is intended to support (1) military engineers in classifying the capacity of
bridges for military vehicles and (2) military transportation planners in identifying suitable ground
transportation routes. SMART BRIDGE generates two general types of printed reports to provide the
appropriate information. When MLC values are assigned to an individual span, a report can be
generated that describes the span, the procedure used to arrive at the MLC values, and the resulting
MLC values. Two versions of span reports are available. One includes only the essential details, and
one adds descriptive material that outlines the classification procedure. The short version of the
report is generated by selecting the Mini Report button in the span window (Figure 4) after selecting
the Perform Analysis button and completing the analysis. The complete version of the report is
generated by selecting the Full Report button. In both cases, the reports are created in PostScript™
format and displayed on the screen using Ghostscript and Ghostview. The user then directs the
reports to a printer, if desired.

After all the bridge spans have been evaluated and the results stored in the database
managed by SMART BRIDGE, a bridge report can be produced that includes all the information
recorded about the bridge and summarizes the characteristics of each span. This report is generated
by selecting the Bridge Report button in the initial Bridge Window.

7.1 SPAN REPORTS: ANALYTICAL CLASSIFICATION

When an analytical classification procedure is used to obtain the MLC values for a span,
the report describes the span and summarizes the parameter values used in the computations, the
computations themselves, intermediate calculated values, and the resulting MLC values. If any of
the MLC values are limited (i.e., less than 150), the source of the limitation is noted. In situations
where the MLC values are lower than expected, knowledge of the source of the limitation may direct
the user to values of parameters that are either incorrect or in need of more careful evaluation.

The report indicates the sources of individual parameter values and other data items. Data
items can be either entered directly by the user or established by SMART BRIDGE. Items established
by SMART BRIDGE can be either set as defaults or obtained through table lookup, estimation, or
calculation on the basis of other items. Keeping track of the sources of individual data items and
including those sources in the printed reports helps the user assess the reliability of the assigned
MLC values.

The specific contents of the reports depend on the particular analytical procedure. However,
all span reports start out by listing data items that identify the bridge to which the span belongs.
Included are those items that make up the unique key that identifies the bridge in the database
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(Bridge ID, Creator, and Country), along with the name of the bridge, the number of spans, and the
Country of Design. The full report then contains textual descriptions of the bridge, the span, the
classification method used, and the span classification results. The short or mini report simply
identifies the span by number and construction type and the classification method by reference to
the appropriate section of FM 5-446.

All the parameters that describe the detailed construction of the span are then listed, along
with their mathematical symbols, numerical values, sources, and units, if appropriate. If the user has
entered the values of individual dimensional parameters in measurement units other than the standard
units used directly by SMART BRIDGE, the equivalent values in the standard units are also included.
Typical span parameters, their mathematical symbols, and standard units include:

* Span length L (ft);

* Dead-load continuity coefficient for continuous spans Cpy,;

* Live-load continuity coefficient for continuous spans C;;;

* Number of structural elements (stringers, beams, webs) N, Ng, Ny, or Np;

* Structural element spacing S, Sg, ST, or §; (ft);

* Dimensions and sectional properties of the structural elements, such as width,

depth, thickness b, d, and ¢ (in.), section modulus S or § beam (in.3 ),
cross-sectional area Ay, ., (in.z), height of the neutral axis y ., (in.),

effective area of shear 4, (in.z), and weight per unit length wy, .. (Ib/ft);

* Cross-sectional area of the reinforcing or prestressed steel per structural
element A, (in.2 or in.z/ft);

* Location/depth of the reinforcing or prestressed steel d' or d; (in.);

* Dimensions of bearing or contact area between the support material and the
structural elements, such as length dj, (in.), width b, (in.), and area A_ (in.z);

* Properties of the materials that make up the structural elements and their
supports, such as the yield strength of the steel F. y (ksi), the ultimate strength
of the prestressed steel fpu (ksi), the maximum allowable bending stress of the
stringer material f, (ksi), the maximum allowable shear stress of the stringer
material f, (ksi), the maximum allowable concrete stress f,.’ (ksi), the modulus
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of elasticity of the stringer material £ (ksi), and the maximum allowable
bearing stress at the stringer support fp (ksi);

Lateral brace spacing along the stringers S, (ft) or unbraced length of the
stringers L, (ft);

Type of deck T, ;, (unknown, simple timber plank, multilayered timber plank,
nailed-laminated timber, glue-laminated timber, or concrete);

Thickness of the deck z,’ (in.);
Curb-to-curb roadway width by, (ft);

Dead-load weight of the bridge superstructure per unit length of span Wp,,
(kip/ft); and

Items used to estimate the dead-load weight, such as the full width of the deck
b4,k (f0), the type of wearing surface T, (none, timber, compacted sand or
gravel, or asphalt or concrete), the width of the wearing surface b,,,,, (ft), the
average thickness of the wearing surface 7. (in.), the number and size of
bracing elements, and the average weight of accessories per unit length of
span w, .. (kip/ft).

Subsequent sections of the report describe each of the applicable potential sources of
limitation to the classification of the span — bending stress, shear stress, bearing stress, strength of
decking, and width of roadway. For each potential source, the relevant calculations are summarized
and the resulting MLC values are listed. In the full printed report, each step in the calculation is
described, and the applicable formulas and numerical results presented. The short printed report
includes only the formulas and the results. The final section of both span reports summarizes the
resulting MLC values from each of the potential sources of limitation and presents the overall span
classification results. These results consist of MLC values for wheeled vehicles in one-lane
operation, wheeled vehicles in two-lane operation, tracked vehicles in one-lane operation, and
tracked vehicles in two-lane operation. Each MLC value that is limited (i.e., less than 150) is
accompanied by a phrase that indicates the source of the limitation (bending stress or moment,
vertical deflection, lateral buckling, shear stress, bearing stress, roadway width, or strength of
decking).

To add to the usefulness of the MLC values assigned to a span by means of the analytical
procedures developed by the U.S. Army and incorporated into SMART BRIDGE, the confidence that
should be placed in the values needs to be quantified. One approach for establishing a level of
confidence is to compare the predictions of the U.S. Army procedures in SMART BRIDGE with the
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predictions of well-accepted analytical procedures developed by professional structural engineers.
The effort required to complete this comparison for all the bridge construction types included in
SMART BRIDGE is beyond the scope of the present project. However, to investigate the approach and
demonstrate how the results could be incorporated into SMART BRIDGE, a set of about 90 actual steel-
stringer bridges with concrete decks was selected. These bridges are part of the State of Maryland
highway system and have been studied in detail by the Bridge Engineering Software (BEST) Center,
Department of Civil Engineering, University of Maryland.

The BEST Center used their MERLIN-DASH bridge design and analysis computer code,
the definitions of the standard NATO wheeled and tracked vehicles, and a maximum allowable
bending stress factor comparable to that used by the military to assign MLC values to each of the
90 bridges. The SMART BRIDGE analytical procedure was also applied to the same bridges. On the
average, the two methods agreed quite well. That is, about 50% of the time the SMART BRIDGE MLC
values were up to 24% less than the BEST Center values, and about 50% of the time they were up
to 34% greater. If it is assumed that the limiting spans of the 90 bridges are typical of similar steel-
stringer spans and that the MLC values predicted by the BEST Center closely represent the actual
capacities of the spans, the likelihood that the MLC values predicted by SMART BRIDGE will exceed
the actual capacity of the span is about 50%. Adjusting the MLC values predicted by SMART BRIDGE
downward increases the likelihood that the predictions will not exceed the actual capacity of the
span. In the span reports for the analytical classification of steel-stringer spans similar to the
90 bridges studied in terms of span length and capacity, adjusted MLC values corresponding to
90 and 99% likelihoods of not exceeding the actual capacity of the span have been included to guide
the user in interpreting the SMART BRIDGE results.

7.2 SPAN REPORTS: CLASSIFICATION BY CORRELATION

When a classification by correlation procedure is used to estimate MLC values for a span,
the span report describes the span and summarizes the parameter values used in the correlation, the
calculations performed, and the resulting estimated MLC values. The sources of the individual
parameter values and other data items are indicated in the report. The user either enters data items
directly or allows them to be established by SMART BRIDGE. Items established by SMART BRIDGE
can be either set as defaults or estimated or inferred from other items. Again, tracking the sources
of individual data items and including those sources in the printed reports helps the user assess the
reliability of the estimated MLC values.

The specific contents of the reports depend on the particular correlation procedure used.
However, all span reports start out by listing data items that identify the bridge to which the span
belongs. These items include those that make up the unique key that identifies the bridge in the
database (Bridge ID, Creator, and Country), along with the name of the bridge, the number of spans,
and the Country of Design. Items related to the normal civilian characterization of the bridge are then
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listed, including the year in which the bridge was built, the functional classification of the route
carried by the bridge, the design load for the bridge, the inventory and operating ratings of the
bridge, and the gross load limit.

The full report gives written descriptions of the bridge, the span, the correlation procedure
used, and the estimated span classification results. The short report simply identifies the span by
number and construction type and the correlation procedure by reference to the appropriate civilian
design or rating standards.

All the parameters that describe the span and are used in the classification by correlation
procedure are then listed, along with their mathematical symbols, numerical values, sources, and
units, if appropriate. If the user has entered the value of individual dimensional parameters in
measurement units other than the standard units used by SMART BRIDGE, the equivalent values in
standard units are also included. The span parameters, their mathematical symbol, and standard units
include:

Decoded inventory rating, design load, or load configuration and rating factor
Rf extracted by SMART BRIDGE from the value of the inventory rating or
design load parameters;

Span length L (ft);
Live-load continuity coefficient in the case of continuous spans C;;;
Curb-to-curb roadway width b, (ft);

Span type (unspecified, timber stringer, steel stringer, composite steel
concrete, reinforced-concrete stringer, reinforced-concrete slab, reinforced-
concrete T-beam, concrete box-girder, prestressed concrete, steel-girder, truss,
trussed deck arch, 2 hinge through arch, masonry arch, fixed end arch, and
suspension);

Type of deck T, ; (unknown, simple timber plank, multilayered timber plank,
nailed-laminated timber, glue-laminated timber, or concrete); and

Thickness of the deck ¢ (in.).

The subsequent two sections of the report examine the potential sources of limitation to the
classification of the span by correlation — bending stress and width of roadway. For bending stress,
the relevant calculations are summarized, and the resulting MLC values are listed. The full report
describes each step in the calculation and presents the applicable formulas and numerical results. The
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short report includes only the formulas and the results. The final section of both span reports
summarizes the resulting MLC values from each of the potential sources of limitation and presents
the overall span classification results. These results consist of MLC values for wheeled vehicles in
one-lane operation, wheeled vehicles in two-lane operation, tracked vehicles in one-lane operation,
and tracked vehicles in two-lane operation. Each MLC value that is limited (i.e., less than 150) is
accompanied by a phrase that indicates the source of the limitation (bending stress or roadway
width).

To add to the usefulness of the MLC values estimated by correlation with civilian design
or rating load configurations, the confidence that should be placed in the values needs to be
quantified. One major source of uncertainty in applying a classification by correlation procedure is
determining the appropriate design or rating load. It would be difficult to quantify that uncertainty
in general terms because the design or rating load may be either accurately known from recent
civilian records or simply an educated guess. However, even if the design or rating load is precisely
known, an intrinsic uncertainty is introduced by the correlation procedure. One method of
quantifying this intrinsic uncertainty is to compare the predictions of the correlation method with
those of a well-accepted analytical procedure using rating loads for the correlation method calculated
by the well-accepted analytical procedure. This method would have to be applied separately to each
correlation procedure. At present, the method has been applied only to the correlation procedure for
U.S. bridges to demonstrate how the results of such a comparison could be used to quantify
confidence in the correlation estimates.

For a set of about 120 bridges in their database of Maryland bridges, the BEST Center
assigned MLC values by using the MERLIN-DASH bridge design and analysis computer code
(Section 7.1). They also determined rating loads for each of the bridges based on the standard
HS truck load configuration established by AASHTO for bridge design and rating in the United
States. The correlation procedure in SMART BRIDGE for U.S.-designed bridges was then applied to
the same bridges, using those rating loads.

If it is assumed that the limiting spans of the 120 bridges are typical of similar spans in the
United States and that the MLC values predicted by the BEST Center closely represent the actual
capacities of the spans, the likelihood is about 90% that the MLC values predicted by correlation will
not exceed the actual capacity of the span if the design or rating load is precisely known. Adjusting
the MLC values predicted by correlation downward increases the likelihood that the predictions will
not exceed the actual capacity of the span. These conclusions are included in the SMART BRIDGE
span reports for the classification by correlation of U.S.-designed spans (and, by extension, the
Republic of Korea) similar to the 120 bridges studied in terms of span length and capacity to guide
the user in interpreting the correlation results.




7.3 BRIDGE REPORTS

After analyzing all the spans that make up a bridge, the user can direct the system to assign
MLC values to the bridge as a whole by selecting the smallest values from among all the spans that
make up the bridge. Again at the direction of the user, these bridge MLC values can be saved in the
bridge database tables described in Section 4.4. In addition, the user can have the system generate
a report that describes the bridge and summarizes the characteristics of each span.

The bridge report supplies all the particulars that might be needed by a transportation
planner. The report lists data items that identify the bridge and the origin of the information. These
items include those that make up the unique key that identifies the bridge record in the SMART
BRIDGE database (Bridge ID, Creator, and Country), along with the name of the bridge, the year it
was built, its location, the date the record was first created, the date the record was last modified, and
a description of the origin of the information about the bridge. The location of the bridge is
expressed in terms of latitude and longitude but can include coordinates in terms of the Military Grid
Reference System and references to standard military map series and map sheet numbers.

The general characteristics of the bridge are then listed, followed by the assigned MLC
values for wheeled and tracked vehicles in one- and two-lane operation. The general bridge
characteristics include:

Bridge Type (construction type of main span),
Overall Length of Bridge,

Roadway Route Carried by Bridge,

Country of Design (if known),

Functional Classification of Route Carried (if Country of Design is
designated),

Design Load,
Operating Rating,
Inventory Rating,
Gross Load Limit,

Feature Crossed by Bridge,
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* Roadway Route Crossed by Bridge (if any),

* Number of Spans,

* Limiting or Controlling Span,

* Type of Use (heavy, medium, light, or unknown), and

* Bridge Bypass Conditions (unknown, easy, difficult, or impossible).
The report then includes any descriptions of qualifications and limitations pertaining to the assigned
MLC values and the condition of the bridge substructure and superstructure. Relevant bridge
clearances are specified in terms of traveled way width (between curbs), horizontal clearance (above
curbs), and overhead clearance, and the approaches to the bridge are characterized by minimum

roadway width, roadway surface, maximum grade, and minimum curvature.

Each span is then individually summarized in terms of MLC values, a textual description,
and general characteristics. The general span characteristics include:

* Span Type (construction type),

* Span Length,

* Boundary Condition at West/North End (simple or continuous),
* Boundary Condition at East/South End (simple or continuous),
¢ Curb-to-Curb Roadway Width,

* Type of Deck (unknown, simple timber plank, multilayered timber plank,
nailed-laminated timber, glue-laminated timber, or concrete)

» Type of Wearing Surface (none, timber, compacted sand or gravel, or asphalt
or concrete),

* Is Span Usable? (yes or no),

* Is Span Movable? (yes or no),

* Is Span over Water? (yes or no),
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¢ (Clear Distance above Normal Water Surface (if over water),

* (Clear Distance above Stream Bed (if over water), and

» (lear Distance above Ground Surface (if not over water).
As with the span reports, the sources of individual items are indicated in the report. The user enters
most items directly or accepts values established by SMART BRIDGE. Values established by SMART

BRIDGE can be either set as defaults or obtained through table lookup, estimation, inference,
correlation, or calculation on the basis of other items.
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8 SUMMARY AND CONCLUSIONS

SMART BRIDGE is a usable initial step in developing a tool to assist (1) military engineers
in classifying existing bridges in terms of their military capacity and (2) military transportation
planners in identifying potential limitations to ground transportation routes. The system captures the
knowledge of what attributes of a bridge are important for classification and transportation planning.
Input screens, on-line help documents and diagrams, and automated links among parameters help
the user acquire the needed information about a bridge and establish reasonable values for
parameters required for classification that cannot be directly measured. In addition, the system
establishes a database framework for collecting, storing, assembling, and retrieving detailed bridge
information and analysis results.

Detailed analytical procedures for classifying about half of the bridge construction types
considered in FM 5-446 are incorporated into SMART BRIDGE, along with all supporting tabular data
and ancillary calculations needed to apply them. This automated process eliminates the tedium
involved in applying the procedures, provides the user with printed documentation of the
calculations made, and reduces the likelihood of arithmetic and other human errors. Analytical
procedures for other bridge construction types can easily be added to extend the usefulness of the
system.

The inclusion of classification by correlation procedures for bridges designed or rated
according to the standards of certain countries allows users to obtain reasonable estimates of bridge
capacities on the basis of very little detailed information. Built-in rules for inferring the design
standards of a bridge from the characteristics of the roadway carried by the bridge allow
transportation planners to estimate bridge capacities for preliminary planning. New correlation
procedures and inference rules for other countries can be added to the system as they are developed.

The two types of bridge classification procedures in SMART BRIDGE essentially represent
the extremes. The analytical classification procedures require knowledge of 25 to 35 individual
parameters that describe the structural components of a bridge, while the classification by correlation
procedures requires knowledge of only 3 or 4 characteristics of a bridge. It is reasonable to assume
that the more that is known about a bridge, the more likely it is that the estimated MLC values
represent the actual maximum capacity of the bridge. That is, it should be possible to obtain
improved estimates of bridge capacity even if only a subset of the 25 to 35 parameter values is
known. As SMART BRIDGE matures, two concepts should be explored: (1) estimating bridge
capacities on the basis of whatever information is available and (2) estimating the confidence in
those capacities based on the quantity and quality of the information.

One approach would be to infer missing parameter values from other known parameter
values or bridge characteristics. As the SMART BRIDGE database becomes more populated, artificial
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intelligence concepts, such as data mining, case-based reasoning, and neural networks, could be used
to search the database and identify rules or trends that could help to estimate missing parameter
values and to quantify the expected accuracy of those estimates. Having the capability to estimate
the capacities of bridges on the basis of available information rather than having to rely on detailed
on-site reconnaissance, which can be expensive or impossible to obtain, would greatly benefit
military transportation planners.
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