

SANDIA REPORT

SAND97-2094 • UC-406
Unlimited Release
Printed August 1997

SmartWeld Working Session for the GTS4**RECEIVED**

SEP 18 1997

OSTI

Stephen Kleban, Ken Hicken, Ray Ng, Bernie Fricke

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; distribution is unlimited.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Sandia National Laboratories

PH

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SmartWeld Working Session for the GTS4

Stephen Kleban
Sandia National Laboratories
Albuquerque, NM 87185

Ken Hicken and Ray Ng
Sandia National Laboratories
Livermore, CA 94551

Bernie Fricke
Allied Signal Kansas City Division
Kansas City, Missouri

Abstract

Results from SmartWeld's first working session involving in-progress designs is presented. The Welding Advisor component of SmartWeld was thoroughly exercised, evaluating all eleven welds of the selected part. The Welding Advisor is an expert system implemented with object-oriented techniques for knowledge representation. With two welding engineers in attendance, the recommendations of the Welding Advisor were thoroughly examined and critiqued for accuracy and for areas of improvement throughout the working session. The Weld Schedule Database component of SmartWeld was also exercised. It is a historical archive of proven, successful weld schedules that can be intelligently searched using the current context of SmartWeld's problem solving state. On all eleven welds, the experts agreed that Welding Advisor recommended the most risk free options. As a result of the Advisor's recommendation, six welds agreed completely with the experts, two welds had their joint geometry modified for production, and three welds were not modified but extra care was exercised during welding.

Acknowledgements

We wish to acknowledge the efforts of K.W. Mahin, without whose vision the SmartWeld system would never have happened. We also acknowledge John Mitchiner for the successful management of such a large and diverse project. Barry Hess, Dave Missink, and Gregroy Gershanok are also acknowledged for their great efforts and talents in producing a successful software system. Finally, we appreciate the support for the working session from Ed Cull.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Contents

Nomenclature.....	5
Introduction	6
SmartWeld's First Three Steps	6
The Eleven Welds for GTS4.....	10
Weld 1 and 2: "CSD Tube" to "Body A"	10
Weld 3: "Stem Plug" to "Body B" Internal	14
Weld 4: "Stem Plug" to "Body B" External	16
Weld 5: "Fill Stem A" to "Body A"	17
Weld 6: "Fill Stem B" to "Body B"	19
Weld 7: "Plunger Disk" to "Body B"	19
Weld 8: "CSD Plunger" to "Body A"	22
Weld 9: "Cap A" to "Body A"	24
Weld 10: "Cap B" to "Body B"	26
Weld 11: Final Closure - "Body A" to "Body B".....	28
Summary.....	30

Figures

Figure 1. Top level SmartWeld window. The "Finite Element Analysis" button is for detailed thermal analysis.....	7
Figure 2. This window obtains the part and weld information from the user.	8
Figure 3. The Weld Advisor queries the user for more specific weld requirements.....	8
Figure 4. The table of results as output by the Weld Advisor.....	9
Figure 5. The detailed explanation of weld number 15 in Figure 4. It failed the "EndPreps" test because relief notches are not allowed with a structural weld function.	9
Figure 6. Joint design for "CSD Tube" to "Body A".....	11
Figure 7. The SmartWeld material chemistry editor. The specific material chemistry is entered for each material used in the weld and the weldability performance parameters are calculated.....	12
Figure 8. Weld Advisor table of results for "CSD Tube" to "Body A" weld.	13
Figure 9. "CSD Tube" to "Body A" modified with relief notches	14
Figure 10. "Stem Plug" to "Body B" weld configuration . Left internal, right external... ..	14
Figure 11. Weld Advisor output for "Stem Plug" to "Body B" Internal weld.....	15
Figure 12. Weld Advisor table of results for "Stem Plug" to "Body B" External weld.	16
Figure 13. "Fill Stem A" to "Body A" weld configuration.....	17
Figure 14. "Fill Stem A" to "Body A" table of results from the Welding Advisor.	18
Figure 15. The "Plunger Disk" to "Body B" weld.	19
Figure 16. "Plunger Disk" to "Body B" results from the Welding Advisor.....	20
Figure 17. Explanation for weld number 7, a High Voltage Electron Beam, Square Butt joint with backing (no relief notch).....	21
Figure 18. "CSD Plunger" to "Body A" weld.....	22

Figure 19. The results from the Welding Advisor for the “CSD Plunger Disk” to “Body A” weld.....	23
Figure 20. The “Cap A” to “Body A” weld.....	24
Figure 21. The results from the Welding Advisor for the “Cap A” to “Body A” weld.....	25
Figure 22. “Cap B” to “Body B” weld configuration.....	26
Figure 23. The table of results for “Cap B” to “Body B”.....	27
Figure 24. The final closure weld, “Body A” to “Body B.”.....	28
Figure 25. The results from the Welding Advisor for the final closure weld, “Body A” to “Body B.”.....	29

Tables

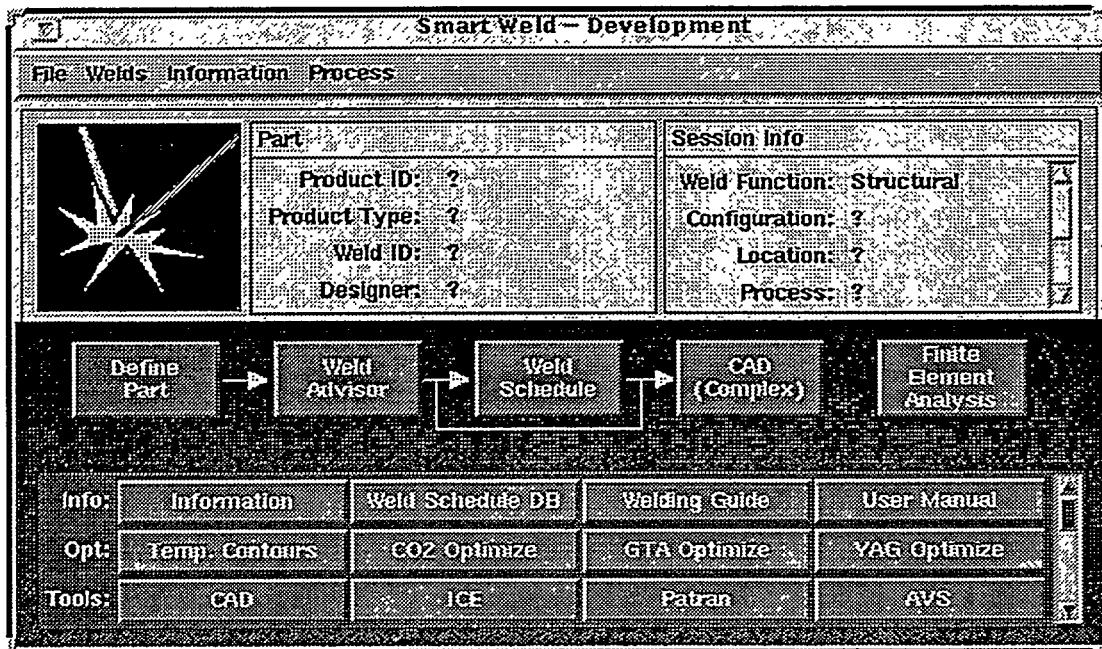
Table 1. GTS4 Material Chemistries	10
Table 2. Weld Advisor’s weldability rating system.	11
Table 3. Summary of agreement between the Welding Advisor and production weld.....	30

Nomenclature

GTS4	Gas Transfer System 4
GTAW	Gas Tungsten Arc Weld
PAW	Plasma Arc Weld
Nd:YAG	Neodymium:Yttrium Aluminum Garnet laser weld
GMAW	Gas Metal Arc Weld
CSD	Cut, Seal, and Divert
AS/KCD	Allied Signal / Kansas City Division
WA	Weld Advisor
WSDB	Weld Schedule Data Base
TMS	Tool Made Sample

Introduction

On July 16, 1996, SNL and AS/KCP personnel met in Livermore, CA to evaluate SmartWeld as it evaluated the then current GTS4 weld designs. SmartWeld is a sophisticated weld design and analysis system. It consists of a ten step procedure to get from part definition to the visualization of the thermal analysis. Product designers can use the system to get initial information about acceptable weld joint designs. Welding engineers can use the Welding Advisor (WA) to more completely and more systematically explore welding options and search the Weld Schedule Database (WSDB) for weld schedules that have proven successful in the past. This working session involved only the first three steps of 1) defining the part, 2) using the Welding Advisor, and 3) obtaining the weld schedule from the WSDB.


The goal of this session was to use real parts and real designs to assess the utility of these tools for product designers and weld engineers. During this five hour session, the attendees, Kleban, Hicken, Ng, and Fricke, exercised these SmartWeld components on the eleven weld joint configurations planned for the GTS4. The current set of engineering drawings and specific chemical compositions of the materials planned for this part were used in this activity. This paper will present the analysis of each of the eleven welds.

SmartWeld's First Three Steps

The top level SmartWeld window is shown in Figure 1. The series of steps to perform thermal analysis are “behind” the “Finite Element Analysis” button. This working session focused exclusively on the first three buttons in the center of the window. By clicking on “Define Part” another window appears to enter part and weld information as shown in Figure 2. Here, the user selects the piece part configuration as depicted on icons and identifies the part by giving it a part name. Figure 2 shows a hemisphere-to-plate weld. Every possible joint configuration is not depicted by icons, so a best fit decision must be made. Each piece part is parameterized depending on its shape, with thickness being of primary concern to the weld advisor. Also, the function of the weld must be defined as either structural, hermetic, or attachment. A structural weld is one whose primary function is to bear substantial levels of mechanical stress. They are generally required to be full penetration. Hermetic welds are primarily used to prevent access of fluids, gases or liquids, from one region to another, and attachment welds join two parts together without the requirement to be structural or hermetic.

Once the part and weld are defined, the user clicks on “Done” at the bottom of the “Define Part” window and is returned to the top level SmartWeld window where the next

step, the "Weld Advisor" is invoked. At this time, the WA begins analyzing the weld, querying the user for more detailed information as shown in Figure 3. Each question has a "Help" button associated with it for further clarification. After the weld is fully described, a table of results is presented as shown in Figure 4. Each row is a weld scenario, consisting of a process and joint geometry. The scenarios are ordered by their score (see Score column) which is a sum of how well it performed on each of the tests (see columns to the right of Score). For further explanation of the scenario performance, the user may select a scenario and click on "Explanation" at the bottom of the table and another window will appear with the details as shown in Figure 5.

Figure 1. Top level SmartWeld window. The "Finite Element Analysis" button is for detailed thermal analysis.

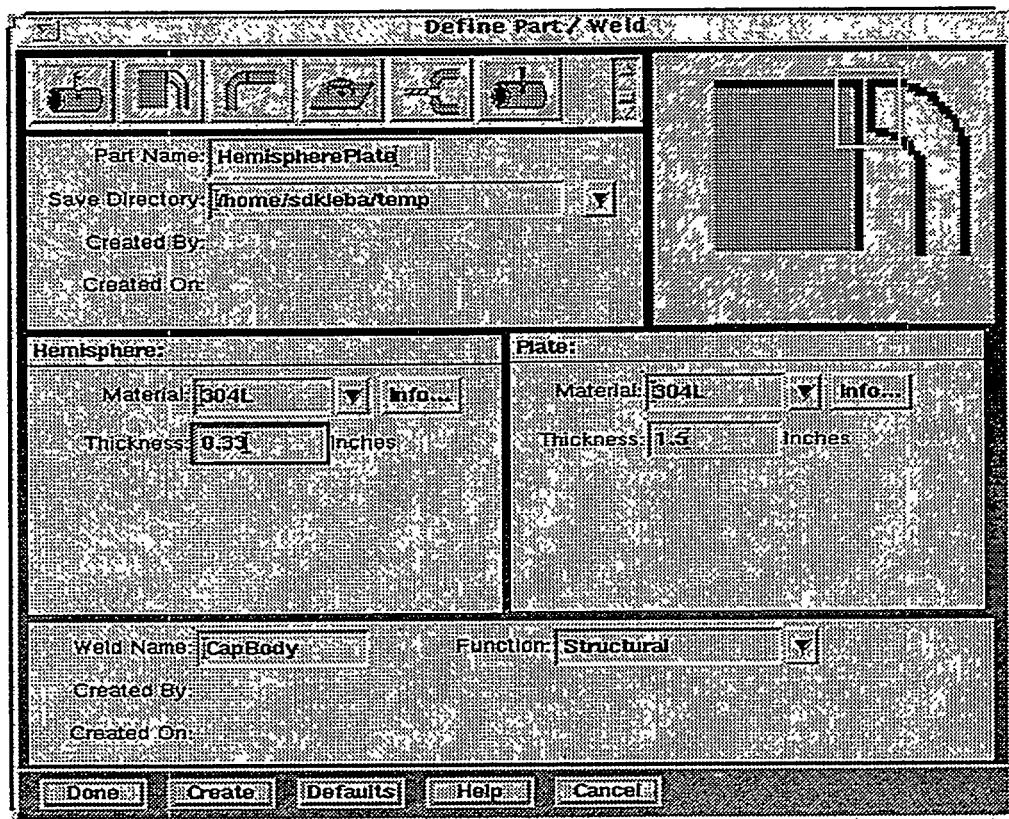


Figure 2. This window obtains the part and weld information from the user.

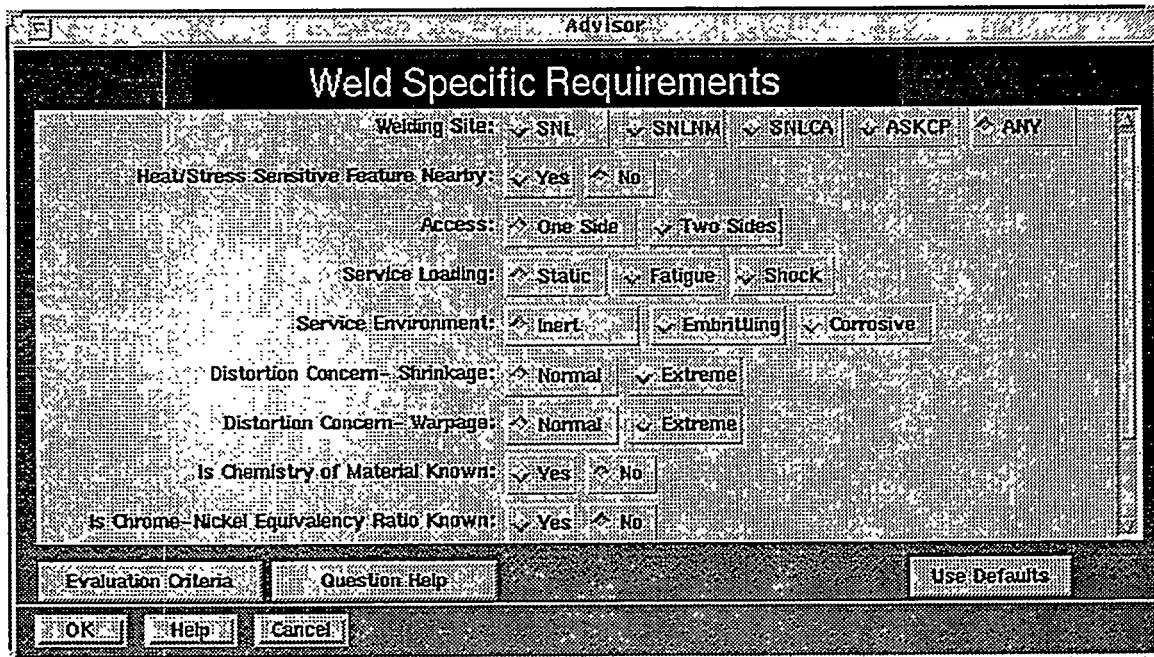


Figure 3. The Weld Advisor queries the user for more specific weld requirements.

Weld Advisor Results									
Product: hp3		Weld: CapBody		Designer: sdukeha		Advisor Date: 05/02/97 10:35:59			
Rank	Weld Process	Joint Geometry	Weld	Score	Steel Life Certified	Distortion	Metal Cracking	Process Cost	Underhead Contour
1	Upset	Square Butt Joint		487	50	47.5	50	40.0	50
2	Inertia	Square Butt Joint		470	50	47.5	50	40.0	50
3	Continuous Drive	Square Butt Joint		470	50	47.5	50	40.0	50
4	LowVoltageEB	Square Butt With Backing		422	50	47.5	50	20.0	50
5	HighVoltageEB	Square Butt With Backing		422	50	47.5	50	20.0	50
6	GMAW	V Groove Butt With Reinforced Shoulder		420	50	37.5	50	27.5	50
7	GMAW	V Groove Butt With Backing		420	50	37.5	50	27.5	50
8	CO2	U Groove Butt With Backing		414	50	47.5	50	12.0	50
9	PAW	V Groove Butt With Backing		412	50	37.5	50	20.25	50
10	PAW	V Groove Butt With Reinforced Shoulder		412	50	37.5	50	20.25	50
11	GTAW	U Groove Butt With Reinforced Shoulder		402	50	25.0	50	22.5	50
12	GTAW	U Groove Butt With Backing		402	50	25.0	50	22.5	50
13	HighVoltageEB	U Groove Butt With Backing		363	50	47.5	0.5	16.0	50
14	LowVoltageEB	U Groove Butt With Backing		369	50	47.5	0.5	16.0	50
15	HighVoltageEB	Square Butt With One Relief Notch		417	50	47.5	50	20.0	50

Figure 4. The table of results as output by the Weld Advisor.

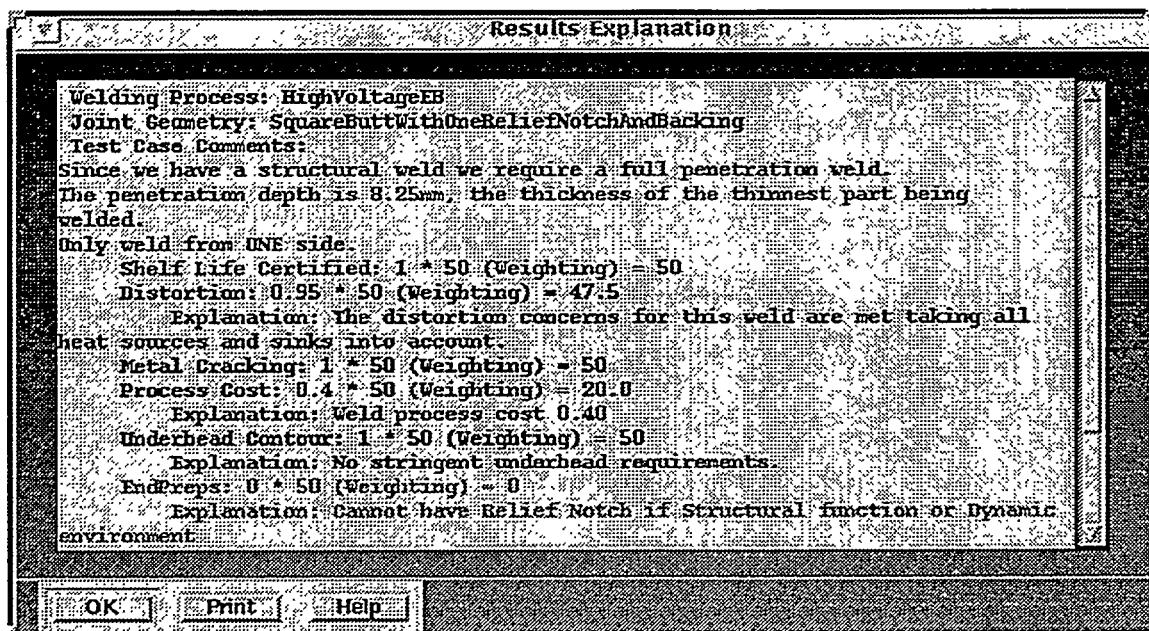


Figure 5. The detailed explanation of weld number 15 in Figure 4. It failed the "EndPreps" test because relief notches are not allowed with a structural weld function.

The Eleven Welds for GTS4

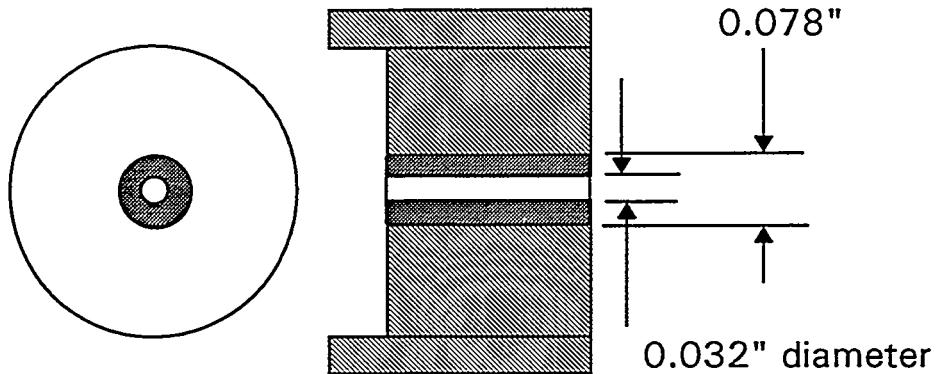

The GTS4 is a three chambered work bottle consisting of eleven welds attaching caps, tubes, stems, plungers, and disk to bodies. The structural components (caps and bodies) are made from 304L stainless steel forgings. The forgings have been worked to produce a yield strength between 65,000 and 80,000 psi. The other components are made from bar, tubing and sheet. The chemistries for all metals used in GTS4 are shown in Table 1 along with who provided the analysis and the component's name. (Anamet is an independent service company which performs chemical analysis)

Table 1. GTS4 Material Chemistries

Source	Component	C	Cr	Cu	Mn	Mo	Ni	P	Si	S	Ti	N
Vender	CSD Tube	.021	18.36	.24	1.07	.02	8.29	.028	.44	.003		
Anamet	CSD Tube	.034	18.32	.24	1.13	.02	8.4	.013	.40	.005		
Vender	Stem Plug	.023	18.15	.18	1.55	.23	8.13	.023	.44	.026		.080
Anamet	Stem Plug	.017	18.53	.0	1.55	.21	7.95	.016	.43	.025		
Vender	CSD Plngr	.020	18.49	.43	1.14	.29	8.78	.028	.38	.002	.01	.034
Anamet	CSD Plnge	.019	18.88	.37	1.03	.27	8.82	.020	.36	.001		
Vender	Fill Stem	.016	16.49	.35	1.84	2.22	12.82	.027	.31	.026		.097
Anamet	Fill Stem	.009	16.57	.32	1.79	2.24	12.7	.026	.33	.022		
Vender	CapA BodyA	.021	19.7		1.69	.079	11.5	.013	.49	.0021	.05	.038
Vender	CapB	.021	19.2		1.7	.025	10.3	.013	.48	.0015		.028
Vender	BodyB	.021	18.7		1.7	.085	10.7	.017	.70	.003	.063	.036
Vender	Disc	.025	18.07	.34	1.66	.08	9.0	.031	.52	.004		.08
Anamet	Disc	.028	18.42	.43	1.7	.041	8.92	.027	.50	.006	.005	

Weld 1 and 2: “CSD Tube” to “Body A”

The “CSD Tube” to “Body A” weld is a tube welded through a solid body (Figure 1.) The “CSD Tube” is welded on both ends to “Body A” (welds 1 and 2). The joint is a butt or corner weld attaching a tube to a solid. Our joint design model assumes tubes are protruding and one side access is from the outside, these assumptions would be incorrect in this case. Therefore, the joint was described to SmartWeld as a corner weld configuration with a hermetic seal weld function. In SmartWeld, a corner weld consists of a housing and a plate. The “CSD Tube” is approximated by the housing with a wall thickness of .023” and “Body A” is approximated by the plate with a .500” thickness (Figure 6). The tube is the darker piece part in Figure 6 and is weld at each end. Both piece parts are made of 304L stainless steel.

Figure 6. Joint design for “CSD Tube” to “Body A”.

The answers to the “Weld Specific Requirements” were:

a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	No
c) Access:	One Side
d) Service Environment:	Embrittling
e) Distortion Concern - Shrinkage:	Normal
f) Distortion Concern - Warpage:	Normal
g) Material Chemistry - CSD Tube:	Cr/Ni Equiv. Ratio = 2.04 Ferrite Number = 13.795 Weldability = Excellent
- Body A:	
	Cr/Ni Equiv. Ratio = 1.51 Ferrite Number = 1.71 Weldability = Medium

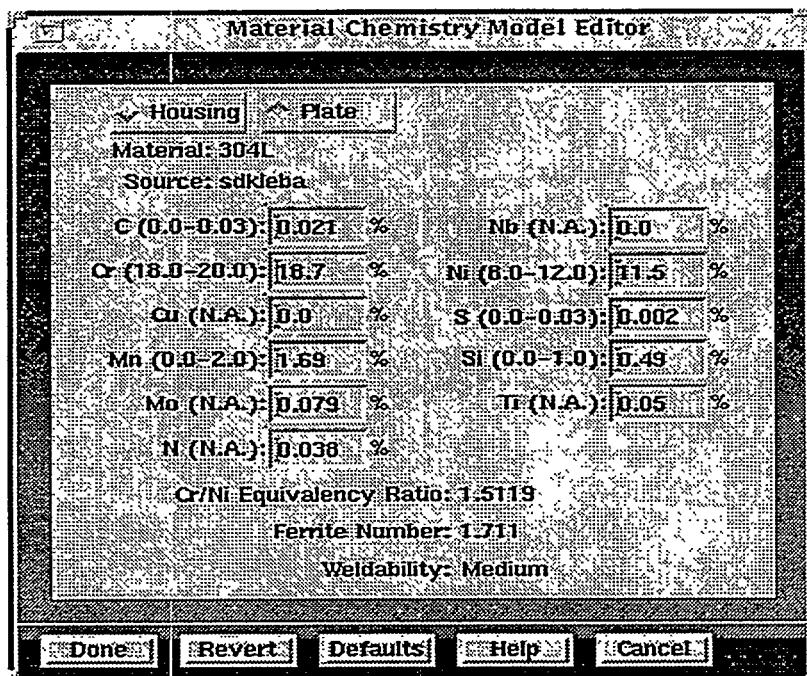

The Cr/Ni equivalency ratio calculations are due to the work performed by John Brooks Dept. 8240, SNL. They are applicable to austenitic stainless steels (300 Series) where the Weld Advisor’s rating system is presented in Table 2. The Advisor either considers a Cr/Ni value for a material either weldable or not (yes/no) for each of the arc, beam, and laser fusion processes.

Table 2. Weld Advisor’s weldability rating system.

Cr/Ni	Weld Advisor Rating	GTAW/PAW	Electron Beam	Laser
< 1.5	Poor	no	no	no
1.5 - 1.6	Medium	yes	no	no
1.6 - 1.7	Good	yes	yes	no
> 1.7	Excellent	yes	yes	yes

Situations where the Advisor considers a material not weldable can be improved if filler metal additions are practical. The GMAW weld process has filler metal additions as part of

the process so its weldability is always good. The Ferrite number is also an important indicator for fusion processes. Generally, if the Ferrite number is above 3 or 4, the stainless steel is considered weldable by the Arc processes (GTAW, PAW). Ferrite number is also important in beam welding processes (electron, laser) and a ferrite number of 4 to 8 is desirable. The rapid solidification possible with the beam process can result in hot crack-susceptible austenite being retained in the weld metal. The user interface window for entry of the material chemistry and display of the weldability parameters is shown in Figure 7.

Figure 7. The SmartWeld material chemistry editor. The specific material chemistry is entered for each material used in the weld and the weldability performance parameters are calculated.

The table of results as output by the Weld Advisor is shown in Figure 8.

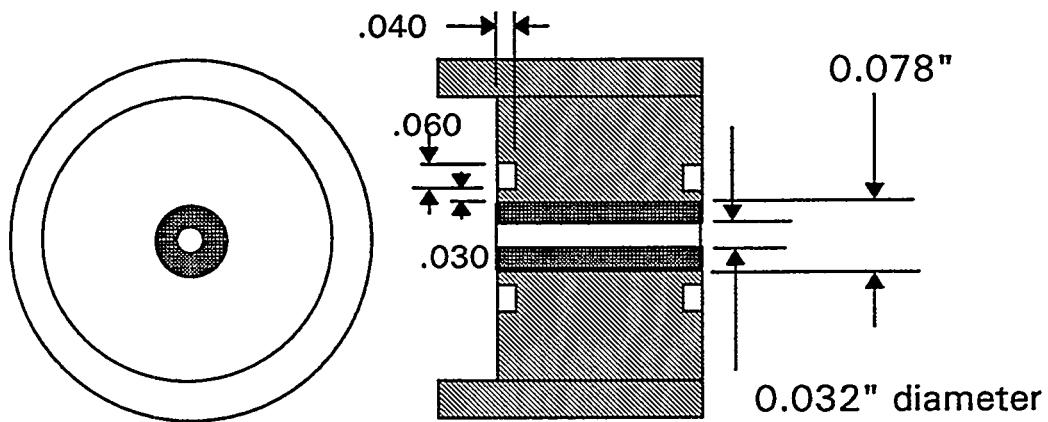

Weld Advisor Results								
Product: CSD Tube/Body A	Weld: 1.0d	Designer: S. G. Gobin	Review Date: 4/22/2007 14:57:53					
Weld Process	Joint Geometry	Weld	Score	Metal Cracking	Process Cost	Underbead Contour	Distortion	End Prope
1. High Voltage EB	Corner With Relief Notches	Pass	332	SO	20.0	SO	47.5	25.0
2. Low Voltage EB	Corner With Relief Notches	Pass	332	SO	20.0	SO	47.5	25.0
3. CO2	Corner With Relief Notches	Pass	387	SO	15.0	SO	47.5	25.0
4. Nd:YAG	Corner With Relief Notches	Pass	385	SO	10.0	SO	50.0	25.0
5. PAW	Corner With Relief Notches	Pass	385	SO	22.5	SO	37.5	25.0
6. GTAW	Corner With Relief Notches	Pass	375	SO	25.0	SO	25.0	25.0
7. High Voltage EB	Corner With Relief Notches And Align	Pass	367	SO	20.0	SO	47.5	Failed
8. Low Voltage EB	Corner With Relief Notches And Align	Pass	367	SO	20.0	SO	47.5	Failed
9. GMAW	Corner With Relief Notches And Align	Pass	365	SO	27.5	SO	37.5	Failed
10. CO2	Corner With Relief Notches And Align	Pass	362	SO	15.0	SO	47.5	Failed
11. PAW	Corner With Relief Notches And Align	Pass	360	SO	22.5	SO	37.5	Failed
12. Nd:YAG	Corner With Relief Notches And Align	Pass	360	SO	10.0	SO	50.0	Failed
13. GTAW	Corner With Relief Notches And Align	Pass	350	SO	25.0	SO	25.0	Failed
14. High Voltage EB	Corner Joint	Pass	342	Failed	20.0	SO	47.5	25.0
15. Low Voltage EB	Corner Joint	Pass	342	Failed	20.0	SO	47.5	25.0

Figure 8. Weld Advisor table of results for “CSD Tube” to “Body A” weld.

Again, this edge weld is approximated by a corner weld and this is reflected in the joint picture in Figure 8. Because the weldability of the metal used for the body is considered adequate only for Arc processes, the Electron Beam and Laser processes scenarios have a recommended relief notch to alleviate stress and potential cracking. Although the Arc processes do not require relief notch for potential cracking problems, the notches are still recommended (in scenarios 5 and 6 in Figure 8) for heat flow balance between two significantly different piece part thicknesses, .020” and .500”. This detailed information is obtained by selecting a scenario and clicking “Explanation” at the bottom of the table.

Analysis

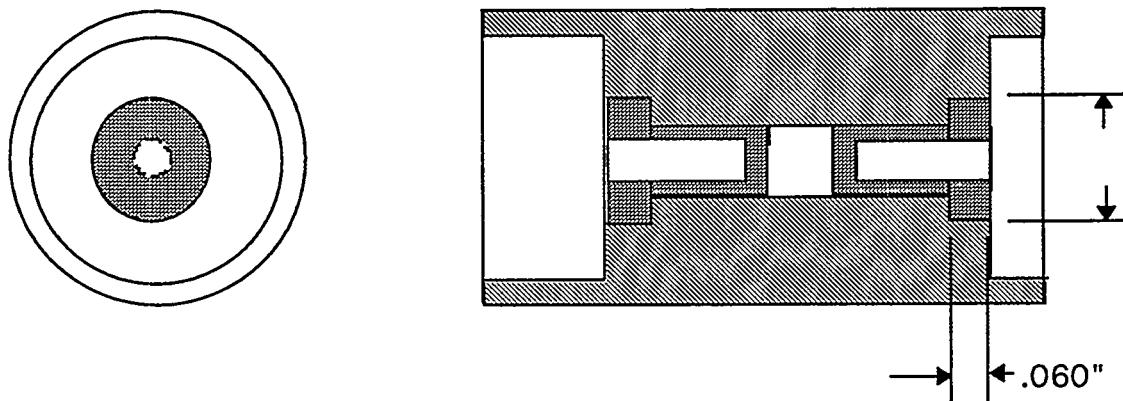

The planned weld for this joint was a partial penetration square butt joint performed by the Nd:YAG Laser process. Since the discovery of the poor weldability of “Body A”, the welding engineers agreed with the Welding Advisor to include a relief notch to reduce the stress at the joint and thereby alleviate the cracking concerns. Additionally, Laser beam welds were scheduled to be made in the actual forged material to confirm a crack free weld could be produced. The relief notch as shown in Figure 9 is now part of the design. There were no schedules in the WSDB that were similar to this weld in terms of material, penetration depth, and weld process.

Figure 9. “CSD Tube” to “Body A” modified with relief notches

Weld 3: “Stem Plug” to “Body B” Internal

To analyze a plug weld in SmartWeld, one chooses the plug in a cylinder weld configuration in “Define Part.” The “Stem Plug” is defined to be .060” thick and the thickness of “Body B” is .500” (see Figure 10). The weld function is defined as attachment. Both piece parts are 304L stainless steel.

Figure 10. “Stem Plug” to “Body B” weld configuration . Left internal, right external.

The answers to the “Weld Specific Requirements” were:

a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	No
c) Access:	One Side

d) Service Environment:	Inert
e) Distortion Concern - Shrinkage:	Normal
f) Distortion Concern - Warpage:	Normal
g) Material Chemistry - Stem Plug:	Cr/Ni Equiv. Ratio = 1.83
	Ferrite Number = 6.17
	Weldability = Excellent
- Body B:	Cr/Ni Equiv. Ratio = 1.64
	Ferrite Number = 5.56
	Weldability = Good
h) Is there Line of Sight to the Weld:	Yes
i) Is there room for a Laser Nozzle:	No
j) Is there room for an Arc Torch:	No
k) Certified Shelf Life Required:	No

The table of results as output by the Weld Advisor is shown in Figure 11. From answering the Laser Nozzle and Arc Torch access questions in the negative, those processes were subsequently eliminated by the advisor. Only line of sight to weld is required by the Electron Beam processes.

Weld Advisor Results								
Weld Process	Joint Geometry	Weld	Score	Shelf Life Certified	Polar Access	Metal Cracking	Process Cost	Underbead Contour
1 Upset	PlugAttachment		512	50	50	50	40.0	50
2 Upset	PlugCountersunk		512	50	50	50	40.0	50
3 LowVoltageEB	PlugFlushReliefNotch		472	50	50	50	20.0	50
4 HighVoltageEB	PlugFlushReliefNotch		472	50	50	50	20.0	50
5 HighVoltageEB	PlugFlush		447	50	50	5.0	20.0	50
6 LowVoltageEB	PlugFlush		447	50	50	5.0	20.0	50
7 Upset	PlugAttachmentReliefNotch		442	50	50	Failed	40.0	50
8 Upset	PlugCountersunkReliefNotch		442	50	50	Failed	40.0	50
9 CO2	PlugFlushReliefNotch		417	50	Failed	50	15.0	50
10 Nd:YAG	PlugFlushReliefNotch		415	50	Failed	50	10.0	50
11 PAW	PlugFlushReliefNotch		415	50	Failed	50	22.5	50
12 GTAW	PlugFlushReliefNotch		405	50	Failed	50	25.0	50
13 PAW	PlugFlush		390	50	Failed	5.0	22.5	50
14 CO2	PlugFlush		387	50	Failed	Failed	15.0	50
15 Nd:YAG	PlugFlush		385	50	Failed	Failed	10.0	50

Figure 11. Weld Advisor output for “Stem Plug” to “Body B” Internal weld.

Analysis

The welding engineers agreed with the WA recommendations. All the recommended processes and joints would have yielded excellent results. The Upset welding process was not chosen because of the possibility of the reduced diameter of the stem making contact other than at the interface. The relief notches were not necessary because of the weldable chemistries of the two components. We chose the High Voltage Electron Beam welding process because of ease of tooling and process experience. Also, note that welds 3 and 4 have a relief notch and would seem to score lower than welds 5 and 6 without the relief notch because of the cost of machining the joint. However, the advisor likes the relief notch to balance heat flow because of the significant difference in piece part thicknesses. Again, no similar weld schedules were found in the WSDB. In fact, when this working session took place, only about twenty weld schedules were in the WSDB and none of them were very similar to the welds on the GTS4.

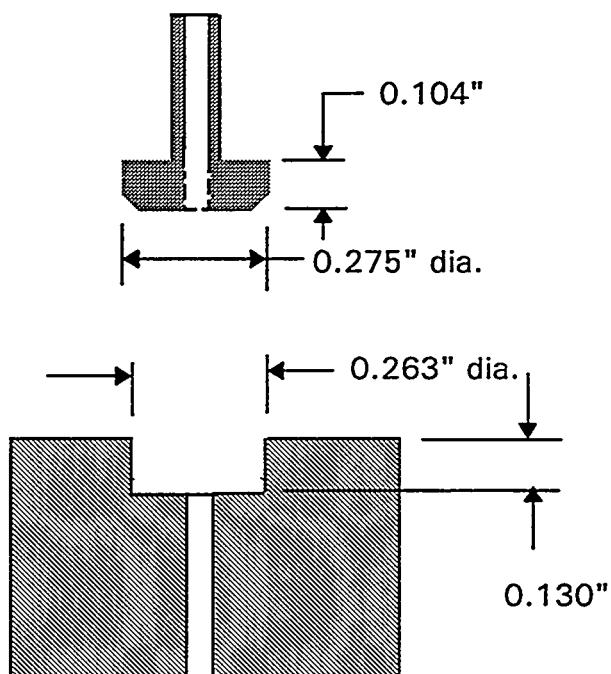
Weld 4: "Stem Plug" to "Body B" External

This weld is exactly the same as Weld 3 except that it is "External" which means there is plenty of room for a Laser nozzle or an Arc torch. When we answer the Laser and Arc access questions in the affirmative, the table of results is as shown in Figure 12.

Weld Advisor Results									
Product: StemPlugBodyB		Weld: Plug		Designer: sdidema		Advisor Date: 02/26/97 15:21:23			
Weld Process	Joint Geometry	Weld	Series	Shelf life Certified	Outer access	Welds	Process Cost	Underhead	Contour
1. Upset	PlugAttachment		512	50	50	50	40.0	50	
2. Upset	PlugCountersunk		512	50	50	50	40.0	50	
3. LowVoltageEB	PlugFlushReliefNotch		472	50	50	50	20.0	50	
4. HighVoltageEB	PlugFlushReliefNotch		472	50	50	50	20.0	50	
5. CO2	PlugFlushReliefNotch		467	50	50	50	15.0	50	
6. PAW	PlugFlushReliefNotch		465	50	50	50	22.5	50	
7. Nd:YAG	PlugFlushReliefNotch		465	50	50	50	10.0	50	
8. GTAW	PlugFlushReliefNotch		455	50	50	50	25.0	50	
9. LowVoltageEB	PlugFlush		447	50	50	5.0	20.0	50	
10. HighVoltageEB	PlugFlush		447	50	50	5.0	20.0	50	
11. PAW	PlugFlush		440	50	50	5.0	22.5	50	
12. GTAW	PlugFlush		430	50	50	5.0	25.0	50	
13. Upset	PlugAttachmentReliefNotch		442	50	50	Failed	40.0	50	
14. Upset	PlugCountersunkReliefNotch		442	50	50	Failed	40.0	50	
15. CO2	PlugFlush		437	50	50	Failed	15.0	50	

View Part Details Geometry Info Process Info Explanation Evaluation Criteria

OK Help


Figure 12. Weld Advisor table of results for "Stem Plug" to "Body B" External weld.

Analysis

All the processes and joints recommended by the WA would work on these materials. The welding engineer choose to use the Nd:YAG for this weld because of equipment load levels.

Weld 5: "Fill Stem A" to "Body A"

This is a stem/tube to body Attachment weld. "Fill Stem A" has a shoulder that is .104" thick. This gets welded into a .130" deep counterbore in "Body A" which is .500" thick as shown in Figure 13. The stem is made of 316 stainless steel and the body is 304L.

Figure 13. "Fill Stem A" to "Body A" weld configuration.

The answers to the "Weld Specific Requirements" were:

a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	No
c) Access:	One Side
d) Service Environment:	Embrittling
e) Distortion Concern - Shrinkage:	Normal

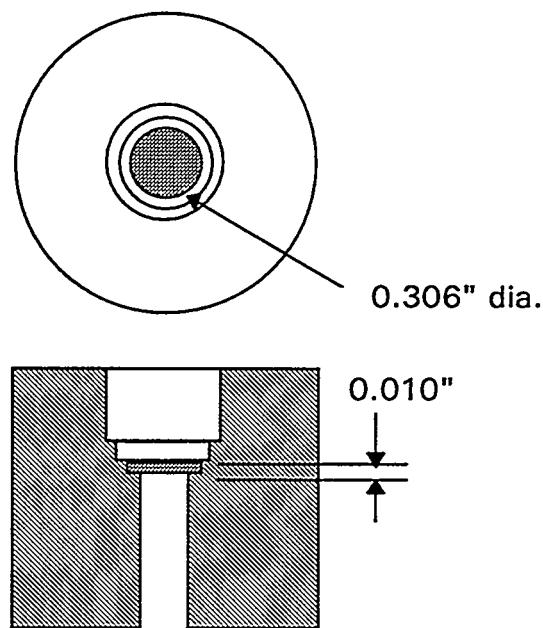
f) Distortion Concern - Warpage:	Normal
g) Material Chemistry - Fill Stem A:	Cr/Ni Equiv. Ratio = 1.29
	Ferrite Number = -8.69
	Weldability = Poor
- Body A:	Cr/Ni Equiv. Ratio = 1.51
	Ferrite Number = 1.71
	Weldability = Medium
h) Is there Line of Sight to the Weld:	Yes
i) Is there room for a Laser Nozzle:	Yes
j) Does Stem have a Fitting:	No
k) Does Stem need O-ring Seal:	No
l) Full Bore Stem Diameter Required:	No
m) Certified Shelf Life Required:	Yes

The table of results as output by the Weld Advisor is shown in Figure 14.

Weld Advisor Results									
	Weld Process	Joint Geometry	Weld	Score	Shelf Life Certified	Stem Rating	Stem Rating: Freq. Use	Polar Process	Metal Decking
1	Upset	StemAttachmentAlignmentOutside		597	50	50	50	50	50
2	Low Voltage EB	StemAttachmentReliefNotchOutside		592	50	50	50	50	50
3	High Voltage EB	StemAttachmentReliefNotchOutside		592	50	50	50	50	50
4	Upset	StemAttachmentBoss		592	50	50	50	50	50
5	Upset	StemAttachmentAlignmentInside		547	50	50	50	50	50
6	High Voltage EB	StemAttachmentReliefNotchInside		542	50	50	50	50	50
7	Low Voltage EB	StemAttachmentReliefNotchInside		542	50	50	50	50	50
8	GMAW	StemAttachmentReliefNotchOutside		540	Failed	50	50	50	50
9	CO2	StemAttachmentReliefNotchOutside		537	Failed	50	50	50	50
10	Low Voltage EB	StemAttachmentPerpendicular		537	50	50	50	50	Failed
11	High Voltage EB	StemAttachmentPerpendicular		537	50	50	50	50	Failed
12	PAW	StemAttachmentReliefNotchOutside		535	Failed	50	50	50	50
13	Inertia	StemAttachmentAlignmentOutside		530	Failed	50	50	50	50
14	Continuous Drive	StemAttachmentAlignmentOutside		530	Failed	50	50	50	50
15	Low Voltage EB	StemAttachmentAlignmentOutside		527	50	50	50	50	Failed

Figure 14. “Fill Stem A” to “Body A” table of results from the Welding Advisor.

Analysis


The advisor listed the Upset welding process as the first choice. This choice was made because the Upset weld is a Solid State weld and the materials are not intended to melt, therefore, the poor *fusion* weldability rating for the materials will have no affect on the Upset weld. The two Electron Beam welds options 2 and 3, would result in a fillet weld which is less crack sensitive than a butt joint. The resistance Upset side bond weld recommended by the advisor was used. This process is widely accepted in the DOE complex and Sandia has used it extensively. Fixturing is often available.

Weld 6: "Fill Stem B" to "Body B"

"Fill Stem B" is made from the same material as "Fill Stem A", but "Body B" has a more weldable chemistry (see Table 1). Again, the advisor recommends resistance Upset welding which will be used.

Weld 7: "Plunger Disk" to "Body B"

This weld is modeled in SmartWeld as a disk to a plate. Both piece parts are made of 304L stainless steel. The "Plunger Disk" has a thickness of ".010" and "Body B" has a thickness of ".500". The weld function is Hermetic. The actual geometry is shown in Figure 15.

Figure 15. The "Plunger Disk" to "Body B" weld.

The answers to the “Weld Specific Requirements” were:

a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	No
c) Access:	One Side
d) Service Environment:	Inert
e) Distortion Concern - Shrinkage:	Normal
f) Distortion Concern - Warpage:	Normal
g) Material Chemistry - Plunger Disk:	Cr/Ni Equiv. Ratio = 1.64 Ferrite Number = 2.78 Weldability = Good
- Body B:	
	Cr/Ni Equiv. Ratio = 1.64 Ferrite Number = 5.56 Weldability = Good
h) Certified Shelf Life Required:	No

Note that the Cr/Ni equivalency ratio is the same for the two materials but the ferrite numbers are different. This is because they are derived from two different equations.

The table of results from the Welding Advisor is shown in Figure 16.

Weld Advisor Results									
	Weld Process	Joint Geometry	Weld	Score	Shelf Life Certified	Distortion	Metal Cracking	Process Cost	Underhead Control
1	HighVoltageEB	Square Butt With One Relief Notch A	██████	455	50	47.5	50	20.0	50
2	LowVoltageEB	Square Butt With One Relief Notch A	██████	455	50	47.5	50	20.0	50
3	CO2	Square Butt With One Relief Notch A	██████	450	50	47.5	50	15.0	50
4	Nd:YAG	Square Butt With One Relief Notch A	██████	447	50	50.0	50	10.0	50
5	PAW	Square Butt With One Relief Notch A	██████	447	50	37.5	50	22.5	50
6	GTAW	Square Butt With One Relief Notch A	██████	437	50	25.0	50	25.0	50
7	HighVoltageEB	Square Butt With Backing	██████	417	50	47.5	50	20.0	50
8	LowVoltageEB	Square Butt With Backing	██████	417	50	47.5	50	20.0	50
9	LowVoltageEB	Square Butt With Relief Notches A	██████	417	50	47.5	50	20.0	50
10	HighVoltageEB	Square Butt With One Relief Notch A	██████	417	50	47.5	50	20.0	50
11	LowVoltageEB	Square Butt With One Relief Notch A	██████	417	50	47.5	50	20.0	50
12	HighVoltageEB	Square Butt With Relief Notches A	██████	417	50	47.5	50	20.0	50
13	LowVoltageEB	Square Butt With Relief Notches A	██████	417	50	47.5	50	20.0	50
14	HighVoltageEB	Square Butt With Relief Notches A	██████	417	50	47.5	50	20.0	50
15	CO2	Square Butt With Relief Notches A	██████	412	50	47.5	50	15.0	50

Figure 16. “Plunger Disk” to “Body B” results from the Welding Advisor.

Analysis

The actual weld we used was weld number 7, a High Voltage Electron Beam, Square Butt joint with backing. The reason welds 1 and 2 scored higher than 7 and 8 is that the advisor likes the relief notch to balance the heat flow and reduce cracking when the two piece parts have a significant piece part thickness difference as described in the explanation window for weld 7 in Figure 17. The WA did account for the higher cost of joint preparations that include a relief notch by scoring the "Endpreps" test (not visible in Figure 16 because the column is to the right in the table and is off screen) where the end prep with the relief notch scored a 5 (weld 1 and 2) and without a relief notch, scored 25 (weld 7 and 8). Even so, the Laser beam welds rated above the Electron Beam and would have been a good choice for this weld. Allied Signal expressed a preference for Electron Beam which fit within Allied's and Sandia's experience base. The Arc processes would not work in this instance because the disc is recessed below the surface.

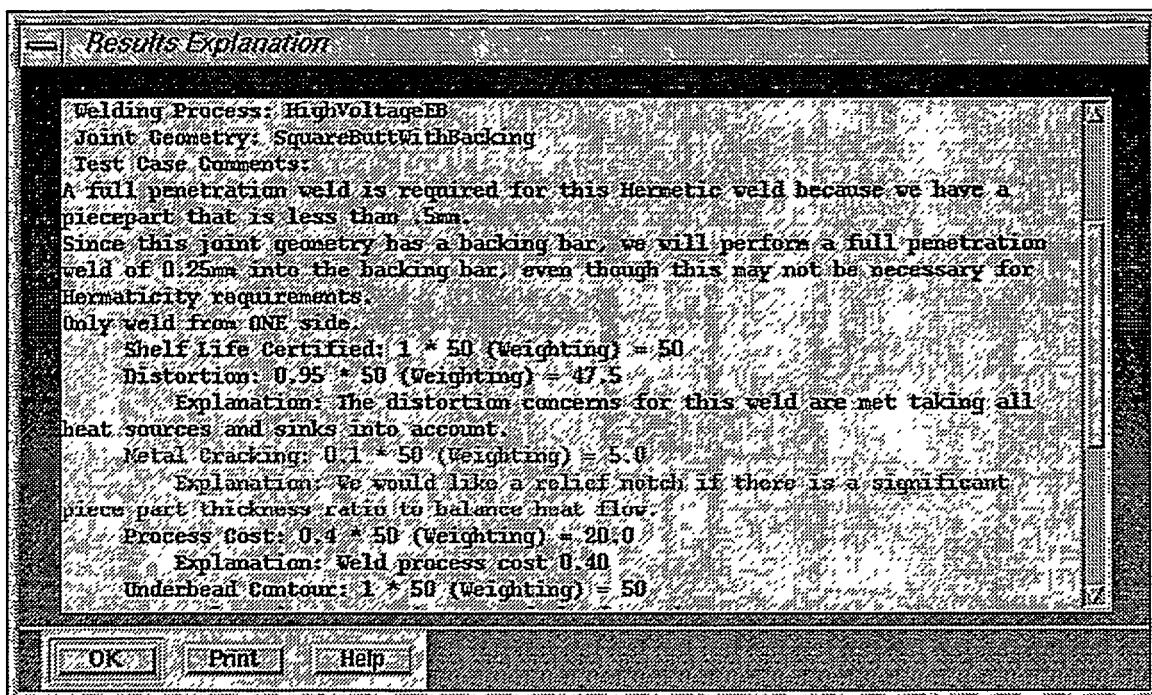
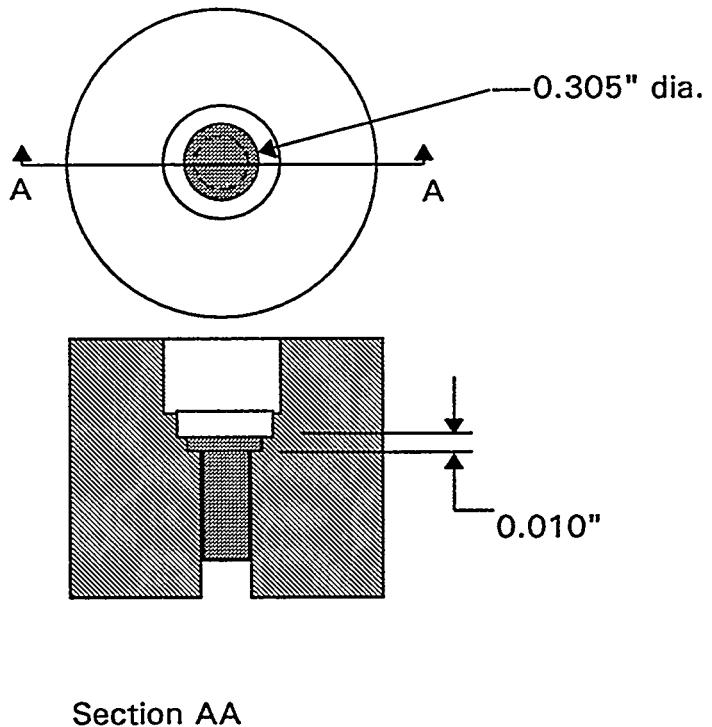



Figure 17. Explanation for weld number 7, a High Voltage Electron Beam, Square Butt joint with backing (no relief notch).

At this point the design engineer can feel comfortable with his design knowing that several processes and joints could be used successfully for this weld. The welding engineer now makes decisions on which recommendation to follow based on equipment schedules and experience at his facility.

Weld 8: "CSD Plunger" to "Body A"

The "CSD Plunger" to "Body A" is described to SmartWeld as a disk to plate weld. The details are shown in Figure 18. The disk has thickness .010" and the body thickness is .500". Both parts are made of 304L stainless steel. The weld function is Hermetic.

Figure 18. "CSD Plunger" to "Body A" weld.

The answers to the "Weld Specific Requirements" were:

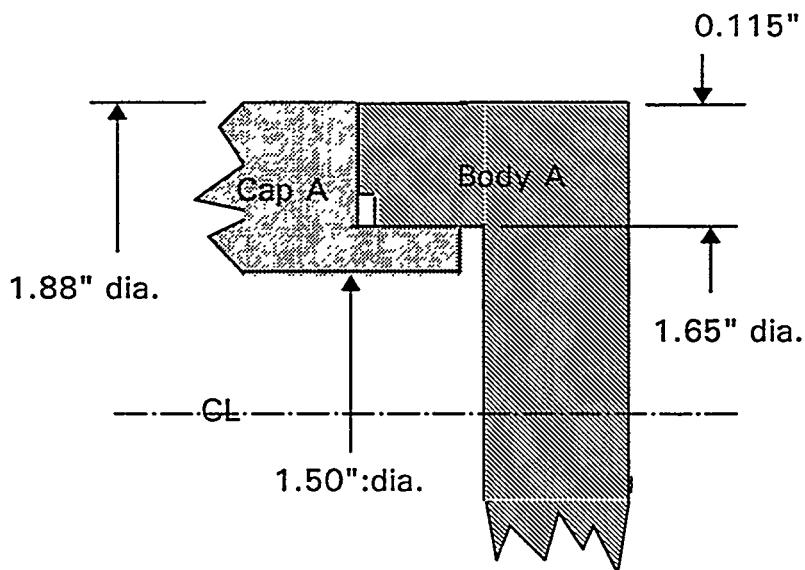
a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	No
c) Access:	One Side
d) Service Environment:	Inert
e) Distortion Concern - Shrinkage:	Normal
f) Distortion Concern - Warpage:	Normal
g) Material Chemistry - CSD Plunger:	Cr/Ni Equiv. Ratio = 1.85
	Ferrite Number = 10.49
	Weldability = Excellent
- Body A:	Cr/Ni Equiv. Ratio = 1.51

Ferrite Number = 1.71
 Weldability = Medium
 h) Certified Shelf Life Required: No

The table of results from the Welding Advisor is shown in Figure 19.

Weld Advisor Results									
Product: CSDPlungerBodyA		Weld: Disc		Designer: sskdeta		Advisor Date: 02/26/07 13:00:39			
Weld Process	Joint Geometry	Weld	Score	Shear life Certified	Distortion	Metal Cracking	Process Cost	Underbead Contour	
1. HighVoltageEB	Square Butt With One Relief Notch A	455	50	47.5	50	20.0	50		
2. LowVoltageEB	Square Butt With One Relief Notch A	455	50	47.5	50	20.0	50		
3. CO2	Square Butt With One Relief Notch A	450	50	47.5	50	15.0	50		
4. Nd:YAG	Square Butt With One Relief Notch A	447	50	50.0	50	10.0	50		
5. PAW	Square Butt With One Relief Notch A	447	50	37.5	50	22.5	50		
6. GTAW	Square Butt With One Relief Notch A	437	50	25.0	50	25.0	50		
7. LowVoltageEB	Square Butt With Relief Notches	417	50	47.5	50	20.0	50		
8. HighVoltageEB	Square Butt With One Relief Notches	417	50	47.5	50	20.0	50		
9. LowVoltageEB	Square Butt With One Relief Notches	417	50	47.5	50	20.0	50		
10. HighVoltageEB	Square Butt With Relief Notches	417	50	47.5	50	20.0	50		
11. LowVoltageEB	Square Butt With Relief Notches A	417	50	47.5	50	20.0	50		
12. HighVoltageEB	Square Butt With Relief Notches A	417	50	47.5	50	20.0	50		
13. CO2	Square Butt With One Relief Notches	412	50	47.5	50	15.0	50		
14. HighVoltageEB	Square Butt With Backing	412	50	47.5	Failed	20.0	50		
15. CO2	Square Butt With Relief Notches	412	50	47.5	50	15.0	50		
By using this software, the user agrees to the terms of the license agreement. The software is provided "as is" without warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability, fitness for a particular purpose and non-infringement. The user assumes responsibility for the use of the software and for any damage or loss that may result from its use.									
View Part Details	Geometry Info	Process Info	Explanation	Evaluation Criteria					
OK	Help								

Figure 19. The results from the Welding Advisor for the “CSD Plunger Disk” to “Body A” weld.


Analysis

The Welding Advisor recommended a relief notch to lessen the risk of cracking for the Electron Beam and Laser processes. For the Arc processes, it recommended a relief notch to help balance the heat flow since the piece parts have significantly different thicknesses. The welding engineers excluded the Arc processes because the depth of the recess precludes Arc processes because of the size of the welding torches. The WA’s recommendation for relief notches is correct. We chose to use the Electron Beam process with a butt joint with backing (weld 14) even though the “Body A” material has

poor weldability for beam processes. This choice was based on additional information not addressed within the advisor. The weld size (width) is restricted because of a seal that is required at the inside edge of the weld. The Electron Beam process has been demonstrated to meet the size requirement on other programs. Also, the physical geometry eliminates the possibility of a machined relief notch. Notice that the first and only joint geometry in the table of results that does not have a relief notch is Weld 14, (the High Voltage Electron Beam, square butt joint with backing) the one that was used.

Weld 9: “Cap A” to “Body A”

The “Cap A” to “Body A” weld is modeled in SmartWeld as a Hemisphere to Cylinder weld. The cap has a thickness of .190” and the cylinder was .115”. A drawing of the configuration is shown in Figure 20. Both piece parts are made of 304L stainless steel. The function of this weld is Structural.

Figure 20. The “Cap A” to “Body A” weld.

The answers to the “Weld Specific Requirements” were:

a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	No
c) Access:	One Side
d) Service Environment:	Embrittling
e) Service Loading:	Static
f) Distortion Concern - Shrinkage:	Normal

g) Distortion Concern - Warpage:	Normal
h) Material Chemistry - Cap A:	Cr/Ni Equiv. Ratio = 1.51 Ferrite Number = 1.71 Weldability = Medium
- Body A:	Cr/Ni Equiv. Ratio = 1.51 Ferrite Number = 1.71 Weldability = Medium
h) Certified Shelf Life Required:	Yes

The table of results from the Welding Advisor is shown in Figure 21.

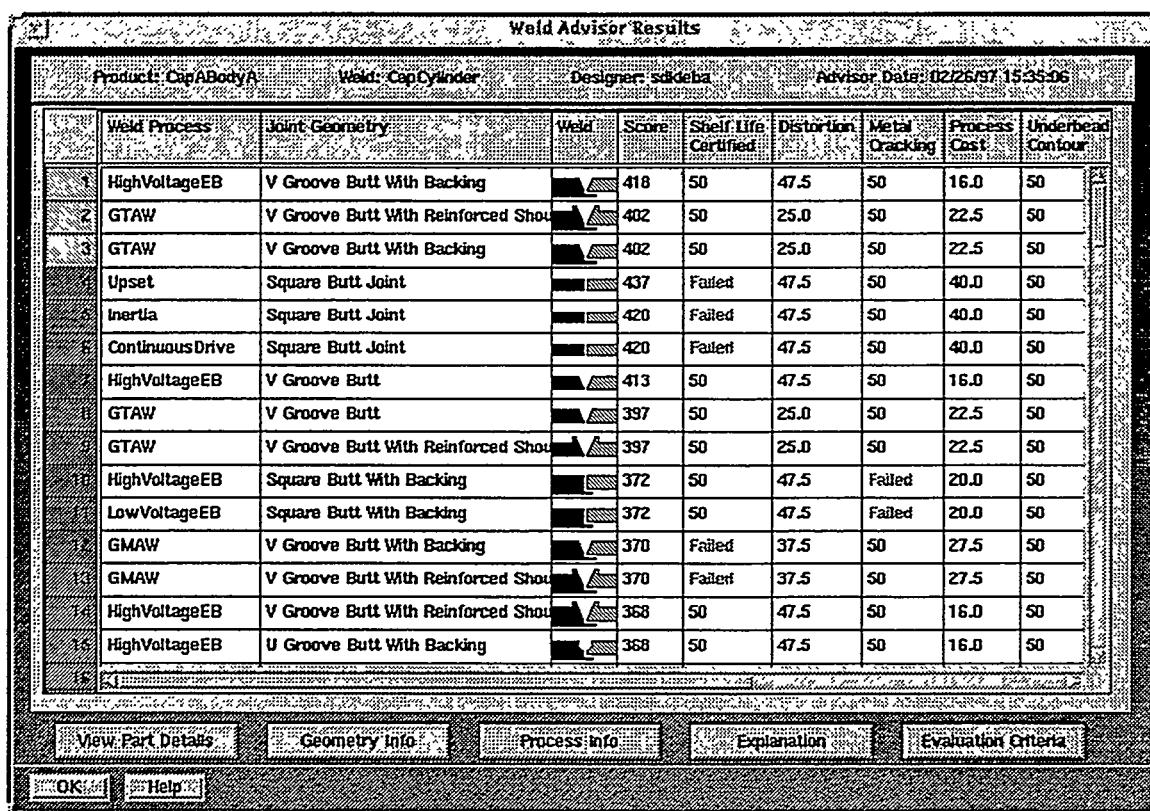
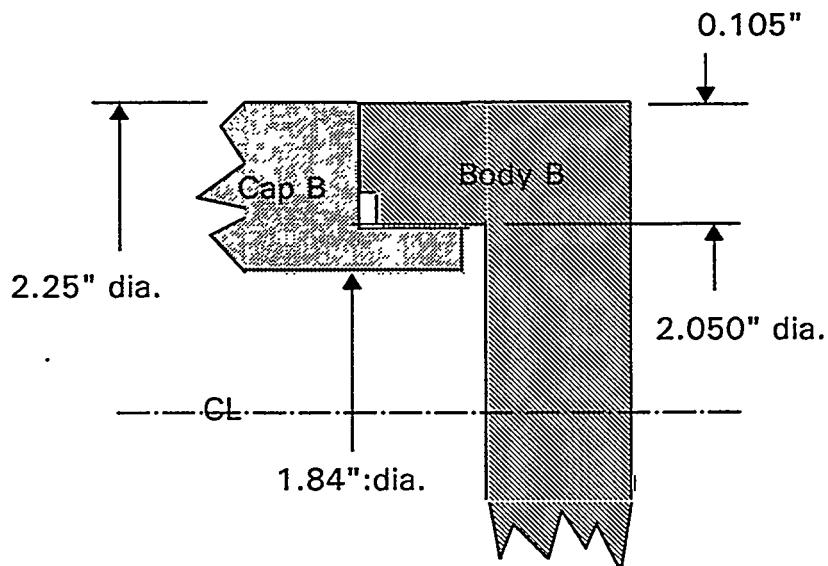


Figure 21. The results from the Welding Advisor for the “Cap A” to “Body A” weld.

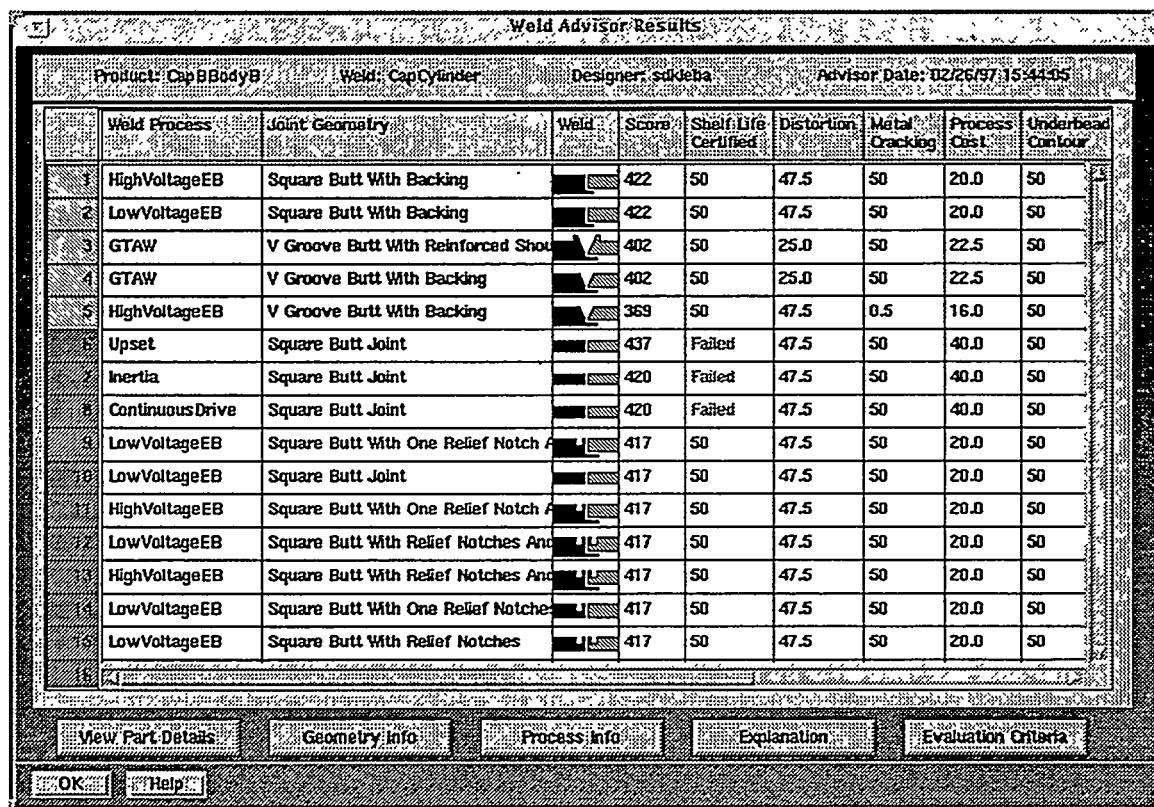

Analysis

The Electron Beam and GTAW welds recommended by the welding advisor have a V groove for the addition of filler metal to improve the weldability of the “Body A” and “Cap A” material. In addition, the GTAW weld requires a grooved geometry to meet the full penetration requirements. A structural weld requires full penetration and in this case the weld would be .100”, too thick for GTAW in low sulfur material. The reinforced shoulders would be used for a large production run to allow the use of simple heat sinks.

The V groove weld is recommended because the end prep costs are less and the advisor does not recommend U grooves for joints thinner than .120". Hicken would recommend the U groove GTAW with reinforced shoulders (because of well established weld schedules) with equal wall thicknesses for a large production run where the tooling costs could be amortized over many parts. The solid state weld scored favorably but they are not Shelf Life certified. This weld size is very similar to weld number 10, Body B to Cap B. A set of development experiments could be eliminated if the same process was used for both welds. We choose the Electron Beam, square butt with backing (no V groove, weld scenario 10 in Figure 21) because of the minimum weld tooling required, low heat input, and favorable production history. This is a joint not recommended by the Welding Advisor and care must be used to assure cracking does not occur.

Weld 10: "Cap B" to "Body B"

The "Cap B" to "Body B" weld is very similar to the "Cap A" to "Body A" weld except for slightly different thicknesses. "Cap B" is .205" thick and "Body B" is .105" thick. It is also modeled in SmartWeld as a hemisphere to cylinder weld. Both piece parts are made of 304L stainless steel. The details of this joint can be found in Figure 22. The function of this weld is Structural.

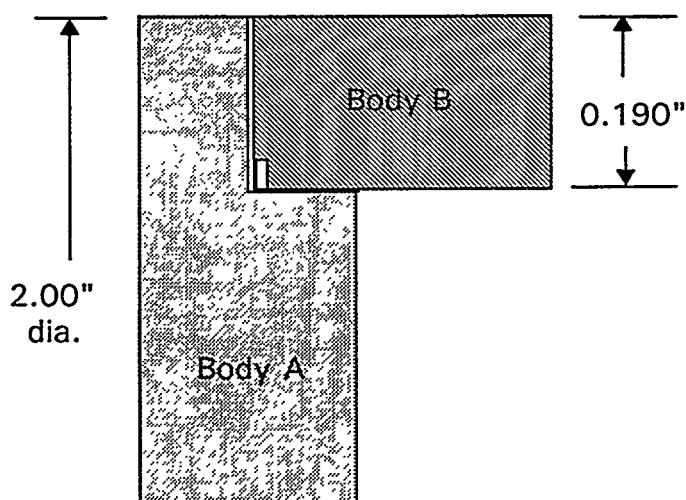

Figure 22. "Cap B" to "Body B" weld configuration.

The answers to the "Weld Specific Requirements" were:

- a) Welding Site: Any
- b) Heat/Stress Sensitive feature Nearby: No

c) Access:	One Side
d) Service Environment:	Embrittling
e) Service Loading:	Static
f) Distortion Concern - Shrinkage:	Normal
g) Distortion Concern - Warpage:	Normal
h) Material Chemistry - Cap B:	Cr/Ni Equiv. Ratio = 1.7
	Ferrite Number = 7.92
	Weldability = Excellent
- Body B:	Cr/Ni Equiv. Ratio = 1.64
	Ferrite Number = 5.56
	Weldability = Good
h) Certified Shelf Life Required:	Yes

The table of results from the Welding Advisor is shown in Figure 23.


Figure 23. The table of results for “Cap B” to “Body B”.

Analysis

The composition of the materials used for "Body B" and "Cap B" have good to excellent weldability. The addition of filler metal to improve weldability is not required for these two material compositions. Again, GTAW needs to be grooved for penetration requirements. We chose weld scenario 1 (Figure 23), a High Voltage Electron Beam with backing.

Weld 11: Final Closure - "Body A" to "Body B"

The final closure weld, "Body A" to "Body B", is modeled in SmartWeld as a hemisphere to a plate. The thickness of the hemisphere is .190" and the thickness of the plate is .500" (see Figure 24) with the function of the weld being Structural. Again, both piece parts are made of 304L stainless steel.

Figure 24. The final closure weld, "Body A" to "Body B."

The answers to the "Weld Specific Requirements" were:

a) Welding Site:	Any
b) Heat/Stress Sensitive feature Nearby:	Yes
c) Sensitive feature distance from weld:	.120"
d) Heatsink Allowed:	None
e) Access:	One Side
f) Service Environment:	Embrittling
g) Service Loading:	Static
h) Distortion Concern - Shrinkage:	Normal
i) Distortion Concern - Warpage:	Normal
Material Chemistry - Body A:	Cr/Ni Equiv. Ratio = 1.51 Ferrite Number = 1.71

- Body B:	Weldability	= Medium
	Cr/Ni Equiv. Ratio	= 1.64
	Ferrite Number	= 5.56
	Weldability	= Good

h) Certified Shelf Life Required: Yes

The table of results from the Welding Advisor is shown in Figure 25.

Weld Advisor Results													
Product: Body A/Body B	Melt: Cap/Body	Designer: adKlean	Advisor Data: 5/22/07 18:24:13										
Weld Process	Joint Geometry	Weld	Score	Shelf Life Certified	Deflection	Melt Cracking	Process Code	Undersized Center	End Pipe	Penetration	Sensitive Feature	Machinability	Access
HighVoltageEB	U Groove Butt With Reinforced Shoulder	333	50	47.5	60	15.0	50	5.0	50	15.0	50	50	50
LowVoltageEB	V Groove Butt With Reinforced Shoulder	333	50	47.5	50	15.0	50	5.0	50	15.0	50	50	50
LowVoltageEB	V Groove Butt With Backing	333	50	47.5	50	15.0	60	5.0	50	15.0	50	50	60
HighVoltageEB	U Groove Butt With Backing	333	50	47.5	50	15.0	50	5.0	50	15.0	50	50	50
Continuous Drive	Square Butt Joint	387	Failed	47.5	50	40.0	50	50.0	50	Failed	50	50	50
Inertia	Square Butt Joint	387	Failed	47.5	50	40.0	50	50.0	50	Failed	50	50	50
Upset	Square Butt Joint	387	Failed	47.5	50	40.0	50	50.0	50	Failed	50	50	50
LowVoltageEB	V Groove Butt	378	50	47.5	50	15.0	60	Failed	50	15.0	50	60	60
HighVoltageEB	U Groove Butt	378	50	47.5	50	15.0	50	Failed	50	15.0	50	50	50
HighVoltageEB	U Groove Butt With Reinforced Shoulder	378	50	47.5	50	15.0	50	Failed	50	15.0	50	50	50
LowVoltageEB	V Groove Butt With Reinforced Shoulder	378	50	47.5	50	15.0	60	Failed	50	15.0	50	60	60
GTAW	U Groove Butt With Backing	352	50	25.0	50	22.5	50	5.0	50	Failed	50	60	60
GTAW	U Groove Butt With Reinforced Shoulder	352	50	25.0	60	22.5	50	5.0	50	Failed	50	60	60
GTAW	U Groove Butt	347	50	25.0	50	22.5	50	Failed	50	Failed	50	50	50
GTAW	U Groove Butt With Reinforced Shoulder	347	50	25.0	50	22.5	50	Failed	50	Failed	50	50	50
HighVoltageEB	Square Butt With Backing	337	50	47.5	Failed	20.0	50	5.0	50	15.0	50	50	50
LowVoltageEB	Square Butt With Backing	337	50	47.5	Failed	20.0	50	5.0	50	15.0	50	50	50
LowVoltageEB	U Groove Butt With Backing	333	50	47.5	50	15.0	50	5.0	Failed	15.0	50	50	50
HighVoltageEB	V Groove Butt With Reinforced Shoulder	333	50	47.5	50	15.0	50	5.0	Failed	15.0	50	50	50
HighVoltageEB	V Groove Butt With Backing	333	50	47.5	50	15.0	50	5.0	Failed	15.0	50	50	50
LowVoltageEB	U Groove Butt With Reinforced Shoulder	333	50	47.5	50	15.0	50	5.0	Failed	15.0	50	50	50
LowVoltageEB	Square Butt With One Relief Notch A	332	50	47.5	Failed	20.0	50	Failed	50	15.0	50	60	60
HighVoltageEB	Square Butt With One Relief Hatch A	332	50	47.5	Failed	20.0	50	Failed	50	15.0	50	50	50
HighVoltageEB	Square Butt With Relief Notches A	332	50	47.5	Failed	20.0	50	Failed	50	15.0	50	50	50
LowVoltageEB	Square Butt With Relief Notches A	332	50	47.5	Failed	20.0	50	Failed	50	15.0	50	50	50
CO2	V Groove Butt With Backing	329	Failed	47.5	50	12.0	50	5.0	50	15.0	50	50	50

View Part Details | Geometry Info | Process Info | Explanation | Evaluation Criteria | OK | Help

Figure 25. The results from the Welding Advisor for the final closure weld, “Body A” to “Body B.”

Analysis

The weldability of the two components joined in the closure weld are quite different. Body A has poor weldability as reflected in the low Cr/Ni equivalency ratio and low ferrite number. Body B has good weldability values for ferrite and Cr/Ni equivalency ratio. The

welding advisor makes suggestions based on the worst case conditions when two materials of different weldability are to be joined. The electron beam process is recommended because of the heat sensitive feature close to the weld, the groove because of the need for filler to reduce cracking and finally the U groove for High Voltage Electron Beam because of underbead contour requirements for structural welds. The Welding Advisor should have scored welds 3 and 4 higher than 1 and 2 since materials of two different thickness are being joined and backing is preferred to an open root weld. The backing also helps the fixturing and alignment. No heat sinking was possible in this case.

We selected an electron beam process with a square groove and backing bar for this weld. It was ranked as 16th by the advisor and failed the weld cracking test (see figure 25). This selection of process and joint geometry was driven by process availability (Electron Beam cold wire feed was not available) and the mixing of the body B material will improve the weldability.

Summary

The welding experts involved in this analysis agreed with the recommendations and advice given by the Welding Advisor in all eleven welds. They did not, however, use the weld configurations as recommended by the Welding Advisor in all eleven welds. The agreement between the Welding Advisor and the Production welds are summarized in Table 3.

Table 3. Summary of agreement between the Welding Advisor and production weld.

Weld Number	Piece Parts	Expert Agreed	Used in Production	Notes
1	Tube / Body A	yes	yes	joint design was modified for production
2	Tube / Body A	yes	yes	joint design was modified for production
3	Plug / Body B	yes	yes	
4	Plug / Body B	yes	yes	
5	Stem / Body A	yes	yes	
6	Stem / Body B	yes	yes	
7	Disk / Body B	yes	yes	
8	Plunger / Body A	yes	no	proven production history; specifics of weld
9	Cap A / Body A	yes	no	proven production history
10	Cap B / Body B	yes	yes	
11	Body A / Body B	yes	no	process availability; weldability improved by mixing

Note that extra caution was applied to all fusion welds involving "Body A". This is because of the poor weldability of "Body A" (weldability is not a factor in solid state welds like weld 5). The use of instock forged material for "Body A" is a design requirement because new stock would require at least two years to acquire.

To summarize, this first use of SmartWeld on a real system that is currently in design was a success. The Welding Advisor is quite sophisticated and the first time user should get training or assistance from a knowledgeable user. The system is designed to support most routine welding problems in a thorough and complete manner with difficult configurations and situations reserved for the welding experts. Some assumptions made by the Advisor were confusing, for example, for tube attachments, access from one side assumes the access was from the outside which was not the case for the CSD tube weld. Not only did the welding advisor concur with most of the planned weld configurations, but it discovered potential problems with the welds involving "Body A". The suggestions have already been acted upon in that one weld geometry was modified and experiments on the others have commenced. This translates directly into schedule and budget savings by discovering the potential problems early in development and not during TMS or production. Those cases where the Advisor's recommendations were not followed were based on favorable experience or information not supplied to the advisor. In all cases, the joints and processes recommended by the advisor were the most risk free, and the best choices for a large production build.

Distribution

MS-0722	Ken Washington (6614)
MS-0726	Jim Rice (6600)
MS-0722	John Mitchiner (6614)
MS-0722	Bill Stubblefield (6614)
MS-0722	Steve Kleban (6614) [10]
MS-9430	Ken Hicken (8240) [10]
MS-9108	Ray Ng (8414) [10]
AS/KCD	Bernie Fricke [10]
AS/KCD	Brad Keith
MS-0367	Jerry Knorovsky (1833)
MS-0342	Kim Mahin (1807) [10]
MS-9108	Ed Cull (8414)
MS-9430	Anton West (8240)
MS-9420	Barry Hess (8220)
MS-1010	Margaret Olson (9622)
MS-1010	Jill Rivera (9622)
MS-0661	Keith Bauer (4612)
MS-0367	Brian Damkroger (1833)
MS-0958	Gary Pressly (1484)
MS-0367	Sandy Monroe (1833)
MS-0333	Doug Adolf (1841)
MS-0367	Terry Guilinger (1811)
MS-0873	Lou Malizia (14402)
MS-0873	Neil Lapetina (14402)
MS-0873	Don Malbrough (14402)
MS-1003	Ray Harrigan (9602)
MS-9405	Duane Lindner (1809)
MS-1435	Mike Cieslak (1860)
MS-9012	Jim Costa (8920)
MS-9037	Ron Stoltz (12120)
MS-1411	Duane Dimos (1831)
MS-9420	Jack O'connor (8220)
MS-9430	Louie Tallerico (8204)
MS-0960	Jimmie Searcy (1400)
MS-9003	Dona Crawford (8900)
MS-9420	Al West (8200)
MS-0961	John Sayre (1403)
MS-0486	Mark Retter (2123)
MS-0329	Marcus Craig (2643)
MS-0328	Marty Stevenson (2674)
MS-1434	James Jellison (1803)
MS-1434	Gordon Pike (1802)
MS-0961	Joe Harris (1404)

MS-9036	Martin Hinckley (2254)
MS-0873	Neil Lapetina (14402)
MS-9013	Russell Miller (2266)
MS-9201	Jennifer Chan (8112)
MS-9430	John Brooks (8240)
MS-0516	Gary Laughlin (1564)
MS-0521	Tom Young (1567)
MS-0521	Leslie Interrante (1567)
MS-0329	Frank Peter (2643)
MS-0505	Perry Molley (2336)
MS-0515	Frank Bacon (1561)
MS-0619	Review & Approval for DOE/OSTI (12690) [2]
MS-0899	Technical Library (4916) [5]
MS-9018	Central Technical Files (8940-2)