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Abstract

An algorithm which efficiently solves large systems of equations arising from the dis-

cretization of a single second-order elliptic partial differential equation is discussed.The global domain is partitioned into not necessarily disjoint subdomains which are

traversed using the Schwarz Alternating Procedure. On each subdomain the multi-

grid method is used to advance the solution. The algorithm has the potential to

decrease solution time when data is stored across multiple levels of a memory hierar-

chy. Results are presented for a virtual memory, vector multiprocessor architecture.

A study of choice of inner iteration procedure and subdomain overlap is presented for

a model problem, solved with two and four subdomians, sequentially and in parallel.

Microtasking multiprocessing results are reported for multigrid on the Alliant FX-8

vector-multiprocessor. A convergence proof for a class of matrix splittings for the

two-dimensional Helmholtz equation is given.
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Chapter 1

The Schwarz Alternating

Procedure

In the 1860's Schwarz [Sch69] found that for a region consisting of the union

of two rectangular regions or disks, he could construct a sequence of solutions of

the Laplace equation on these subregions which would converge to the solution of

the Laplace equation on the union. Picard [Pic90] called it "the Schwarz alternating

procedure" and used it to solve a nonlinear elliptic equation in 1890. Mathematicians

now refer to his method as the SAM, Schwarz alternating method, or SAP, Schwarz

alternating procedure. We use the terminology SAP. The following is description of

a simple version of SAP taken from [Tan87]:

1.1 A Two Subdomain Example

Consider the Dirichlet problem for an elliptic operator L

L(u) = f x E
(1.1)

ulr, =¢ xer_

where f] is a bounded region in d-dimensional space, Fm is the boundary of fl and

x = {xl, x2,'",xd} is the independent variable, u is a function which maps x to

the real numbers, _, is twice continuously differentiable and continuous up to the

boundary. It is assumed that the solution of this problem exists and is unique.

1
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Figure 1.1: Two overlapping subdomains.

Schwarz split the solution domain fl into two overlapping subdomains _"_1 and ft2.

Let f_12 = _i N li2 _ 0 and let F_I, F_ 2 and F_12 denote the boundaries of f_x, _2

and f_12 respectively. We denote by F_ that part of F12 lying in f_2, and by P_ that

part of F12 lying in f_l. Then

P_, = F, U P'1,

F_2 = Fs U F_,

as in Figure 1, where

F_ = ra, N rn_2,

Fs = F_ N F_,

We refer to the dashed lines of Figure 1 which correspond to F] and F_ as pseudo-

boundaries.

From this splitting we formulate two coupled problems
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L(ul) = i xEfll
u, lr., ¢ x e r, (1.2)u_ xerl

and

, [ n(u2) = f xef_2

I (u2lr._ ¢ xe r_ (1.3)u, xerl.
Clearly, u, the solution of (1.1), is the solution of (1.2) and (1.3). It is also clear

that:

Ul -- U2, X E _'_12

ul = u, x E _a

U 2 -" U, X _ _'_2"

Thus, problem (1.1) is equivalent to the pair of problems (1.2) and (1.3). Since

there are unknowns which are coupled in the boundary conditions, we cannot solve

the two problems independently. By constructing an initial guess U]r_ = ¢0, we can

form a sequence {u_i), u_/)), i _>1, as follows:

{ L(_°)) = i _c_,
¢ x e r_ (1.4)

_°)lr_' ¢o x e rl

{ L(u_')) =iu_,)lrn2 = ¢ xefl_

• x e Fs (1.5)

x
L(u_ i)) = f x e fl_

u_i)lrn, ( ¢ x e r,= i , (1.6)
L u2 xEFx

i= 1,2,...

We can now show that the sequence I, (i) u_i)_1 , } will converge to the solutions {ul, u_}

of (1.2) and (1.3) under certain conditions mentioned in §1.3. Then, fr,)m the solution

of (1.2) and (1.3), we construct the solution of (1.1).
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Convergence proofs for the continuous problem rely on finding the analytical solu-

tion as each subdomain is visited. For the discrete problem one solves the subdomain

problem using some numerical method. One need not solve with Lhe same numer-

ical method on each subdomain. We call the act of solving on a subdomain (with

a particular numerical method) the inner iteration procedure. We call a sequence of

inner iteration procedures applied to each of the subdomains an outer iteration. Also,

an inner iteration procedure isn't restricted to an iterative method; it may be some

type of direct solution method, in which case we say the inner iteration procedure

has an iteration count of one. An outer iteration advances the solution for all grid

points in the domain f/. An inner iteration procedure is a method used to advancc

the solution of a subdomain problem. Furthermore, in chaotic SAP schemes the inner

iteration procedure on fl_ may vary from one outer iteration to the next. For some

outer iteration, an inner iteration procedure on i'll could be a null iteration where no

update of the unknowns in fli occurs.

"Unlike some other techniques which usually are precise procedures for solving

problems, the SAP basically gives us only a philosophy for solving a problem. The

freedoms inherent in the SAP provide great opportunities to incorporate many other

techniques in order to obtain good performance.

• Freedom in the geometrical shapes of the subproblems. This freedom makes

it possible to tailor the subregions to meet the requirements imposed by fast

solvers or by grids.

• Freedom in the solution techniques for subproblems. We are able to choose

different solution techniques for different subproblems. It is also possible to use

different ways to obtain the solution of the same subproblem in the different

stages of computation, allowing us to use an optimal approach at any particular

moment or in any particular location. This is a unique feature of the SAP.

• Freedom in the numerical model for each of subproblem. Special boundary

shapes or local behavior of the solution need a special treatment in the modeling.

The decoupled subproblems allow us to localize the special treatment to the

place where it is needed. Composite grids are a good example of this.
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• Freedom in the number of subproblems. This freedom will permit us to adapt

this algorithm to different degrees of parallelism". [Tan87]

1.2 Development and History

In 1869 Schwarz [Sch69] first developed a method he called an alternating method

to prove the existence of the solution of the Dirichlet problem for the Laplace equation

on a union of two overlapping domains. Soon Neumann [Neu90] observed that a

similar idea could be applied to the solution of the Dirichlet problem in a region

that is the intersection of two other overlapping regions. Later Poincar_ [Poi90]

developed his balayage method, which is similar to Schwarz's method. Poincar@ was

also concerned with existence proofs rather than computation.

During the 1930's many Russian mathematicians applied Schwarz's method to

problems in elastostatics. They treated the solution process of SAP as a search for

the minimum of a variational problem. This new way of thinking provided possibilities

for enlarging application areas. Gorgidz applied the SAP to a plane problem in the

theory of elasticity. Almost at the same time, Mikhlin [Mik34] generalized this idea

to a biharmonic problem. He proved the convergence of the SAP to the solution of

the second elastostatic boundary value problem. A more general proof of this method

for the second boundary value problems of elasticity in three dimensions was sketched

out by Sobolev [Sob36]. He reduced the consideration of convergence of the sequence

of approximations to a study of convergence to the minimum of the integral of strain

energy. He applied the variational method to prove the convergence of the Schwarz

algorithm for the Laplace equation and the equations of elasticity theory, but the

convergence of the Schwarz algorithm was established only in the mean.

In the early 1950's, Kantorovich and Krylov [KK58] gave a set of five sufficient

conditions which guarantee the convergence of the SAP in the continuous domain.

These conditions encompass most of the areas to which the SAP can be applied.

We give the conditions in §1.3. In 1951, Mikhlin [Mik51, Mik65] applied Sobolev's

method to establish the convergence of the algorithm for the general second order

linear elliptic equation.
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After the 1960's people began to apply the SAP to numerical computations rather

than to existence proofs or theoretical analysis. Some new algorithms such as alter-

nating direction implicit methods or Fourier analysis/cyclic reduction methods were

the state of the art at the time, but they could only be applied to rectangular regions.

The SAP was a natural way of applying these methods to a union of rectangular re-

gions.

D'Jakonov [D'J62] derived some work estimates for solving Poisson's equation to

a given precision on overlapping rectangular regions using the SAP. The rectangular

solutions are found by the alternating direction implicit method, or a similar method

of D'Jakonov's, applied to the five-point difference approximation.

Werner [Wer60, Wer63] considered application of the SAP to any linear second-

order elliptic partial differential equation with boundary conditions of the third type

- also called Robin's or mixed boundary conditions. He proved the existence of a

continuous solution and gave error bounds for a solution which sat;,sfies the differential

equation, but only approximates the boundary data. He presented numerical results

for the Laplace equation on an L-shaped region with mixed boundary conditions.

He expressed the rectangular solutions as a double finite Fourier series. Mysovskih

[Mys59], Kang and Wang [KW59] and Miller applied the finite difference analogs to

the SAP. In [Mi165], Miller shows four conditions are sufficient for convergence of the

solution of the numerical SAP to the original continuous problem. We mention them t

in the section to follow. In the same paper he also gives work estimates for several

cases. Fairweather and Mitchell [FM66] applied the SAP to a nine-point difference

approximation on an L-shaped region. Their inner iteration procedure was a modified

alternating direction implicit method.

Dupont [Dup67] generalized their idea to the equation _z. (a_Tu) = p, and derived

work estimates on overlapping rectangular regions. Stoutemyer [Sto72, Sto73] applied

the SAP and Neumann's variant to the Laplace equation on the union and intersection

of two overlapping spherical balls to compute the capacity of a lens. He paid particular

attention to the treatment of singularities in the Poisson kernel and at the corners of

the region. Lions [Lio78] applied the SAP to the variational problem.

As we mentioned earlier, applications of the SAP to composite mesh methods
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have attracted people's attention for some time. Volkov [Vo168] first presented a

second order composite method for the Dirichlet problem for the Laplace equation;

he also used the SAP to solve the system of linear equations. Later, Starius [Sta77]

generalized this idea to linear second order elliptic equations.

Also wor_;_.,: with composite mesh methods, Linden [LinS1] compared and con-

trasted two ways to combine multigrid techniques with the SAP for a model problem.

Stfiben and Trottenberg expound upon Linden's work in [ST82a]. One method uses

multigrid a_ the inner iteration procedure of the SAP. Though the efficiency of this

method is better that of the corresponding SOR method, the total efficiency is limited

by the convergence properties of the SAP. The convergence rate of the SAP depends

on the geometrical situation; roughly, the smaller the overlap of the subdomains, the

slower the convergence. Appendix 4 contains tables which show outer iteration counts

for various Schwarz splittings with a multigrid inner iteration procedure. Because of

the relative slowness of this method St/iben and Trottenberg refer to it as the "naive"

combination of the SAP with multigrid. In their method a multigrid hierarchy of

composite meshes is used; the principle of the SAP is applied only vithin the relax-

ation process for smoothing. The efficiency of this method is empirically observed

to be essentially independent of the overlap. Hackbush [Hac85] also considers the

combination of multigrid and the SAP. These authors mention the concept of mul-

tiprocessing multigrid using the SAP. However, they dismiss the idea of high level

multiprocessing through domain decomposition of the global domain, the "naive" ap-

proach, as ineffective, in part, at least, because of the associated slower convergence

rate [Den88].

Glowinski, Dinh and Periaux [DGP80, GDP80] formulated a conjugate gradient

variant of the SAP for solving the Navier-Stokes equations. Essentially they reduced

the problem to a minimization problem on the intersection of two overlapping regions.

When computer technology advanced to parallel processing, the inherent paral-

lelism in this algorithm obtained new appeal. Kang [KCSQ85] extended the varia-

tional form of the SAP to general second order elliptic partial differential equations

and tried to apply it to parallel computations. Unfortunately, his proof for conver-

gence for an asynchronous version of the SAP was wrong [Tan87].
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Rodrigue [RS84a, RS84b, Rod86, RS85] recast the SAP in terms of numerical

linear algebra so that classical techniques of acceleration could be applied. A Jacobi

splitting of the modified matrix problem v'as studied in these papers.

Analysis and experiments show that the convergence rate of the plain SAP can

be further improved. Many authors have independently found that SOR acceleration

of the SAP works efficiently. Oliger, Skamarock and Tang [OST86] also noticed the

sensitivity of the relaxation parameter is related to the overlap. Theoretical estimates

of the convergence rate and choice of the best relaxation parameter for the model

problem are given. In the same paper mentioned above [KCSQ85], Kang also proved

the convergence of the SOR acceleration for the finite element method. Meier [Mei86]

had also proposed a parallel SOR variant of the SAP.

Some computer scientists are studying the SAP as a method for decomposing a

problem such that different solvers can be used on different subdomains [PR89], with

the hope of diminishing the work needed to solve some computationally expensive

problems. With this strategy, one hopes that on some subdomains computationally

less expensive inner iteration procedures can be used.
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1.3 Sufficient Conditions for Convergence

Several proofs of convergence for the SAP exist [KK58, CH62, KCSQ85]. The

most general case was given by the Russian mathematicians Kantorovich and Krylov

in the 1950's [KK58]. This elucidation of Kantorovich's and Krylov's sufficient con-

ditions is also taken from [Tan87]. They showed that five conditions suffice for the

" SAP to coilverge to the solution of the continuous boundary value problem (1.1).

The five conditions are:

• Uniqueness. Two solutions u and u_ which satisfy equation (1.1) in li, are

bounded, and have identical values on the boundary Fa (except, perhaps, at a

finite set of points), are identically equal in li.

• Monotonicity. Two bounded functions u and u' which satisfy equation (1.1)

in fl and have u > u' on Pn (except, perhaps, at a finite set of 2oints) will

satisfy u > u' everywhere in f_.

• Limit solution. The limit of any monotone and uniformly bounded sequence

of solutions to equation (1.1) is also a solution of (1.1).

• Maximum principle. A solution to (1.1) cannot have either a positive interior

maximum or a negative interior minimum. For linear problems this implies the

monotonicity condition.

• Continuity onto the boundary. If u = f on a boundary segment except at

a point P inside the segment, where f is continuous on this segment, then the

solution u(Q) for Q in _ approaches f(P) as Q _ P.
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1.4 Conditions for Numerical Convergence

The numerical analog to the SAP is straightforward. We can discretize the

problems (1.4)-(1.6), and then solve them numerically. Miller [Mil65] showed that

the following conditions suffice for convergence of the discrete SAP solution to the

continuous problem:

• Existence of a continuous solution. The solution of the continuous prob-

lem (1.1) exists. Thi_ implies that the solutions of problems (1.2) and (1.3)

exist.

• Existence of the discrete solutions. Solutions of the discretized prob-

lems (1.2) and (1.3) exist.

• Convergent discretization. Discrete approximations of (1.2) and (1.3) are

convergent to the continuous solution of (1.2) and (1.3).

• Contraction mapping. There exist contraction numbers Q1 _< 1,Q2 _< 1,

such that Q1Q2 < 1 and

where cl, c2 are perturbations of the boundary data on F_, F_, and ul, u2 are the

perturbed solutions which correspond to ul and u2.

For linear elliptic differential equations we can also express problem (1.1) in an

equivalent variational form; then it is possible to prove that the solution sequence of

the corresponding finite element method is a convergent minimization sequence. The

independen¢ z between convergence and the ordering of the solutions of the subregions

can be easily shown in variational form [KCSQ85]. We can also recast the numerical

analog of the SAP as a modified matrix problem, then prove its convergence. From

analysis of the linear algebra analog of the SAP for the model problem many new

results can be obtained by applying classical acceleration schemes.
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1.5 Minimizing Spatial Locality of Reference

In this thesis, we take a new approach in applying the SAP. For a class of problems

we use the SAP to create an algorithm which is faster and which allows one to solve

problems that were previously unsolvable on a given architecture due to both physical

and virtual memory constraints.

An SAP algorithm can decrease the solution time when it limits the degree of

spatia.I locality 1 to an amount smalle, than the main memory of the computer. In

this case, we are solving a large system of equations, one that ordinarily we could not

solve without storing data on disk. A problem is large if for any reason increasing its

size causes a decrease in the rate of solution in terms of some normalized quantity

such as floating point operations per second. We can decrease the solution time

because accessing data on disk is one to four orders of magnitude slower than access

from the memory closest to the CPU, For example, the memory access time on an

Alliant FX/8 is 170 nanoseconds, whereas the sum of the average rotational latency

and positioning times for the disk is 25.5 milliseconds. 2 A properly constructed SAP

algorithm will result in fewer disk _ccesses.

We could apply the same strategy at a different level of the memory hierarchy

by constructing an SAP algorithm that localizes spatial references to cache or local

memory. The advantage of faster memory access is smaller at this level, usually

offering a two to tenfold improvement. We remark that even though a memory access

differential exists, an SAP algorithm isn't guarantee_; to be an improvement over

the old algorithm. The outer iteration count of the SAP method used in this thesis

exceeds that of doing the inner iteration procedure at the global level. The differential

in memory access time must breach some threshold value.

1See Appendix A.

2Hardware specifications for 10 1/2 inch Winchester disk drive used: 379 megabytes, data transfer
rate 1.9 megabytes/sec, 842 cylinders, 20 tracks per cylinder, 44 sectors per track, 512 bytes per
sector, average rotational latency 7.5 milliseconds and positioning times - 5.5 milliseconds track to
track, 18 milliseconds average and 35 milliseconds maximum.



Chapter 2

Solving Elliptic Differential

Equations

We consider a single second-order partial-differential equation (in two independent

v/_riables)
02tr c32u O2u Ou Ou

A -ff_x2 -4-B Ox O------y+ C -_y2 -4-D (x , y , cox' Oy ) = O. (2.1)

When the value of B 2 - 4AC < 0, the equation is classified as elliptic. Here u is a

function from N2 to N, which is twice differentiable.

2.1 Continuous Boundary Value Problem

Linear boundary value problems are denoted by

£_U = F_(x) x _ fl

(2.2)

£ru = Fr(z) x E F = 0Ft.

Here x = {xi,... ,Xd} ,with d the dimension of the space, and for our purposes d = 2.

Ft is a given domain with boundary F. £n is a linear (elliptic) differential operator

on _ and £r stands for one or several linear boundary operators. F a denotes a given

function on Ft and F r one or several functions on F. We let u* denote the solution

to the continuous problem (2.2), the "exact" solution.

12
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One of the simplest elliptic problems is Poisson's equation in the unit square,

-AU = F

U Iv= ¢ (2.3)

= {(_,y)l0 < • < 1,0< y< 1},

where F and ¢ are given. For the model problem of our computational studies in

Chapter 5 we chose Poisson's equation with F = 10sin(3x + y) and ¢ = sin(3x + y)

on the unit square.

2.2 Discrete Boundary Value Problem

For discrete problems 1, we use the terminology grid functions, grid operators and

grid equations. The discrete analog of (2.2) is denoted by

LnhUh = f_(x) X e f_h

(2.4)

L[_ = f_(_) • c r_.

Here h is a (formal) discretization parameter. The discrete solution to problem 2.4,

which we denote u_, is a grid function defined on f_h [JFh f_ and fr• h are discrete

analogs of F _ and F r. Lh_ and Lhr are grid operators, i.e. mappings between spaces

of grid functions. L_ is also called a discrete or difference operator, Lr a discrete

boundary operator. For simplicity we assume that the discrete boundary equations

are eliminated from (2.4). This is, for example, quite natural in the case of second

order equations with Dirichlet boundary conditions. In this thesis, fl is a rectangular

domain and f_h a rectangular grid "matching well" with f_. f_h is described by

frh _ f_ n Gh. (2.5)

where Gh denotes the infinite grid

Gh-{x=x'h : xE Z_}. (2.6)

1Derivedfrom [ST823].
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Here _-h = (ni hx, x2hu). More specifically, the computational grid flh for the discrete

analog of (2.3) is defined by:

f_h = {(xi, yj) lxi = ihx, yj = jhu, 0 < i < nx + 1, 0 < j < n u + 1 } (2.7)

where hx = 1/(n,_ + 1), h u = 1/(ny + 1), and nx, n u are integers which represent the

number of unknowns in each direction. For simplicity we assume nh ----nx = nu and

h __ hx = hu, a square, uniform mesh.

For the computational grid f_h a corresponding set of grid functions Uh and Fh

are defined by Uh = {Uh " _'_h _ _} and Eh -- {fh " _"_h _ _}. Let Lh be the

linear operator Lh " G(flh) ---*G(f_h), where G(f_h) denotes the linear space of grid

functions on f_h.

Replacing the partial derivatives u_x and uuu in (2.3) by centered difference ap-

proximations at e_,ch grid point (xi, yj), we have the following corresponding second

order finite difference equations"

-ui,j-1 - ui-l,j + 4ui,j - ui+ad - ui,j+l = h2fi,j 1 < i <_nx 1 <_j < n u (2.8)
Ui,O :': ¢i,0; ?20,j -- CO,j; Ui,n_+l "-- ¢i,n_+l; Unx-t-l,j -- Cnx-t-l,j •

Given these difference equations, we formulate a matrix problem with each row of

the matrix Lh corresponding to a difference equation at one of the grid points, ui,j.

Let n = nx x ny denote the rank of Lh. The corresponding linear system of equations,

the grid equation, is denoted

LhUh = fh. (2.9)

Finally, we define the n-vector whose components are the values of the continuous

problem solution u* at the grid point locations in f_h. Let

= {w,,j= e f h}. (2.10)
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2.3 Norms

In this section we define norms ,,,hich we use throughout this thesis.

Definition 2.1 The 12 norm or Euclidean norm of any n-vector v is given by

II_IIE-- _ = _lvil 2.
i=1

Definition 2.2 The infinity or maximum norm of any n-vector v is defined by

Ilvll__-max(Iv,I), 1_ i _ n.

Definition 2.3 When v is any n-vector arising from the 2-D discretization of a par-

tial differential equation the discrete L2 norm of v is given by

The maximum and discreteL2norms are related by the property IlVllh< V_llvll_-

Definition 2.4 The spectral radius of a matriz A is defined by

p(A) = sup{ I_1" _ a_ eigenvalue of A}.

Definition 2.5 The spectral norm of a matrix A is defined by

IIAII _= sup IIAXlIE = sup IIAXllh

Two properties of the spectral norm are

IIA[[ = sup{v/A • _ an eigenvalue of A'A},IAII = p(A), if A = A'. (2.11)
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2.4 Error Definitions

In this section we define terms needed for a discussion of the error, convergence

behavior and choice of stopping criterion.

Depending on the differencing scheme and grid selected, the accuracy is generally

discussed in terms of powers of h, the grid spacing. The difference equation is derived

from a Taylor series expansion. To arrive at the final representation the series is

truncated after a certain number of terms. Therefore, the difference equation is an

approximation. The magnitude of the truncated terms determines the accuracy of

the approximation. Second order accuracy, or O(h 2) accuracy, means that, for h

sufficiently sma!l, the magnitude of the truncated terms is bounded by _. h2, with

a constant.

The solutions of the continuous problem and the discretized problem differ at the

grid point locations because the exact solution of the discrete problem u_ is only an

approximation to the continuous solution u'.

Definition 2.6 The local discretization (or truncation) error is defined to be

the n-vector rh whose components are the amount by which thc "exact" solution (con-

tinuous problem) u" fails to satisfy the discrete equations, T h __ LhWh-- fh --" LhU*-- fh.

The local discretization error is a measure of how well the discrete equations represent

the continuous problem. However, this does not directly determine how well the dis-

crete solution u_ approximates the continuous solution u" at the grid points. IBM84]

Definition 2.7 The global discretization (or truncation) error or the exact

discretization error [ST82b] is defined to be the n-vector eh whose components are

the difference of the discrete problem solution u"h and the continuous problem solution

u" at grid point locations, eh _ Wh -- U"h.

The relationship between the global and local truncation error is given by

Lheh = "rh. (2.12)
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Next we define the error in relation to u_, the dynamic approzimation to, or the

approzimate solution of, u_. The superscript k is the iteration index of an approximate

solution generated by iterative method. Iterative methods are described in §2.6.

Definition 2.8 The algebraic error is defined to be the n-vector e_ whose com-

ponents are the difference of the exact solution u"h of the discrete problem and its

approximate solution u k, ek - u"h - Ukh. lt is also called the iteration error.

Definition 2.9 The residual or defect is defined to be the n-vector r_ whose compo-

nents are the amount by which the approximate solution u_ fails to satisfy the discrete

equations, rkh-- fh- Lh u_.

The defect equation is the relationship between the defect and the algebraic error

Lhe_ = r_. (2.13)

The magnitude of the residual at a grid point is a measure of how closely the approx-

imate solution at the grid point and at its neighboring grid points approximates the

discretization of the partial differential equation at the grid point.

The error of the solution process is the sum of the global and algebraic errors

w_- _ = (w_- u_) + (u;_- _). (2.14)
global error algebraic error

The global error in (2.14) is controlled by the size of h In the case o:" a second order

accurate discretization, for small enough h decreasing the grid spacing by a factor

of two will result in a decrease of the L2-norm of the exact discretization error by a

factor of four. This property becomes useful when verifying the result of a computer

code.

Definition 2.10 The correction is defined to be the n-vector whose components are

th, _ii_,_nc_oft_o co_,c_ti_,_pp_o_i,_t__ot_tio_,,_ - _-1.
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Definition 2.11 Let h denote a fine grid and H denote a coarser grid. The relative

truncation error is defined to be the n-vector rkh whose components are obtained

by subtracting the defect on grid h restricted by the operator I H to grid H, from the

n-vector found by operating on the injection of Uh (by the operator lH) to grid H,

with LH, a coarse grid L:

v_ =_LH(]Huh)- IH(Lhuh- fh).

Note, the definition of the relative truncation error includes a number of terms that

haven't been defined yet. These terms are defined in Chapter 3. r_ is that quantity

which has to be added to the right hand side Ifh to obtain the values of the fine-grid

solution u_ (on _tt-l) by solving the coarse-grid equation. Another measure of error

compares the iterate u_ to the "exact" solution Wh at grid point locations.

Definition 2.12 The root mean square error (RMS) is defined to be the Euclidean

norm of the difference between the discrete problem iterate Ukhand the solution to the

continuous problem u* at grid point locations,

RMS- Huk-whilE or RMS- Ilok-ehHE. (2.15)

2.5 Matrix Properties and Concepts

The definitions and theorems of this section are taken from [Var62].

Definition 2.13 A matrix A is defined to be non-negative, denoted A >_O, provided

ai,j _ 0 for each element (ai,j) of A.

Definition 2.14 A directed graph is strongly connected if, for any ordered pair

of nodes Pi and Pj there exists a directed path PiPtl, P6 Pr2,'", Ptr-i Plt connecting Pi

to Pi.

Theorem 2.1 An n × n complex matrix A is irreducible if and only if its directed

graph G( A ) is strongly connected.
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Definition 2.15 An n x n complex matrix A = (ai,j) is diagonally dominant if
n

la_,_l>_ la_,jl, 1 < i < n. (2.16)
j=l;

Definition 2.16 An n x n complex matrix A = (ai,j) is irreducibly diagonally

dominant if it is both irreducible and diagonally dominant.

Definition 2.17 /in n x n matrix A = (acj) is strictly diagonally dominant if

strict inequality in (2.16) is valid for all 1 < i <_n.

Theorem 2.2 Let A = (ai,j) be an n x n strictly or irreducibly diagonally dominant

complex matrix. Then the matrix A is nonsingular. If all the diagonal entries of A

are in addition positive real numbers, then the eigenvalues Ai of A satisfy

Re Ai >0, l<_iSn.

Corollary. IrA is a Hermitian n x n strictly diagonally dominant or irreducibly diag-

onally dominant matrix with positive diagonal entries, then A is positive definite.

Definition 2.18 Consider expressing the n x n matrix A in the form .4 = M - N,

where M and N are also n x n matrices. If M is nonsingular, we say that this

expression represents a splitting of the matrix A.

Definition 2.19 For n x n real matrices, A, M, and N, A = M- N is a regular

splitting of the matrix A if M is nonsingular with M -1 >_O, and N >_O.

Definition 2.20 A real n x n matrix A = (ai,j) with ai,j <_ 0 for all i 7_ j is an

M-matrix if A is nonsingular, and A -1 > O.

Many matrices arising from the discretization of elliptic partial differential equa-

tions are known to be M-matrices, including those arising from the discretization of

Laplace's equation on a rectangle.

Theorem 2.3 Let A be an n x n M-matrix, and let C be any matrix obtained from

A by setting certain off-diagonal entries of the matrix A to zero. Then, C is also an

M-matrix.
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2.6 Iterative Methods

A variety of methods exists for solving linear systems such as LhUh -- fh. To

solve this linear system where Lh is a given nonsingular n x n matrix, we consider

expressing the matrix Lh in the form Lh = M - N, where M and N are also n x n

matrices. Associated with this splitting is an iterative method. Substituting the

matrix splitting for Lh, adding Nu h to each side and then superscripting Uh with the

iteration index k results in the following general form for an iterative equation:

MUkh+' = Nu_ + fh, k >_O, (2.17)

where u_ is the initial guess. If M and N are chosen properly, at each iteration the

approximate solution uk+l approaches a limiting value. When

lim [1u: -fill =0k---*oo

for some vector norm the corresponding iterative method is called convergent and '5

is a fixed point of LhU h -- fh. One iteration of the method is commonly called a

relaxation sweep. However, in the context of the multigrid algorithm (the inner iter-

ation proceddre of choice for our numerical experiments), one refers to the relaxation

process as smoothing and from here on we use this term.

We arrive at an alternative form of the general iterative equation (2.17) by mul-

tiplying both sides by M -1 giving

U k+l- J_r-lNuk "_- M-'A, (2.18)

provided M is invertible. One is assured M is nor, singular by considering only posi-

tive definite M. In this form of an iterative equation the multiplier of u k, in this case

M -1N , is named the amplification matrix (of the error) or the iteration matrix. In

the case where M and N are derived from a simple splitting of Lh, we also refer to

M -1N as the smoothing matrix S. In more complicated iterative methods the am-

plification matrix may be the product of a number of different matrices, for example,

the amplification matrix described in equation 3.7.
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Theorem 2.4 If A = M- N is a regular splitting of the matrix A and A -1 > O,

then

p(M-1N) P(A-IN)= <1.
1 + p(A -1 N)

Thus, the matrix M -1N is convergent, and the i;erative method

= + A, k >_O,

converges for any initial vector u °. (Theorem 3.13 in [Var62]).

Generally the splitting used, Lh -- M - N, is a regular splitting. One chooses a

splitting such that M -1, the approximate inverse of Lh, is easily invertible. One could

solve LhUh = fh directly by computing the LU factorization of Lh and backsolving but

the computation takes O(n 3) operations, where n is the number of equations in the

linear system. In addition to its large computational expense, a direct solve requires a

prohibitive amount of memory for large systems. Generally, the difference operators

that arise from discretization of partial differential equations result in block banded

matrices. Even though the original matrix Lh is sparse, substantial fill-in occurs

when computing the its LU factors. In practice, one rarely computes and stores

M -1, instead, one stores vectors corresponding to the bands of M and N.

The spectral norm of the amplification matrix M -1N is useful in describing the

error behavior of iterative methods. The norm of the algebraic error at the k-th step

of an iterative method written in the form of equation (2.18) satisfies

provided M -1N is a symmetric matrix, p(M -1N) is called the rate of convergence.

The spectral radius quantifies the amplification properties of the amplification matrix

tlm on the error. A maximum eigenvalue of less than one for the amplification matrix

assures the iterative method reduces the norm of the error during each iteration. The

smaller the spectral radius the greater the rate at which the error is reduced. For

ordinary iterative methods, where the amplification matrix is the smoothing matrix,

the spectral radius of the smoothing matrix must be less than one if the method is

to converge.
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Some common splittings arising from the discretization of partial differential equa-

tions are Jacobi, Gauss-Seidel and SOR, including their point, line and block variants.

Theorems and knowledge about the spectral radius of different classes of matrices aid

in choosing how to split the matrix Lh. Varga [Var62] gives a detailed analysis of these

and other iterative methods. Elsewhere, [Bra77], [MolSlb] and [Net82] have charac-

terized these and other smoothing methods using local mode analysis. Appendix B,

an excerpt from [Bra77], details some of this basic local mode analysis. Example il-

lustrations of matrices that compose the splitting associated with an iterative method

are found in Appendix D.

2.6.1 Defect Correction Formulation

If we make the substitution N = M - L in (2.18) we arrive at yet another form

of the general iterative method,

Ukh+1 = M-I(M- L) u_ + M-l fh,

= Ukh-- M-1L u_ + M-lfn,

Ukh+1 = u_.r M-_(fh- Lug). (2.19)

We call an iterative method written in this form (2.19) a defect correction method,

since the latest iterate u_+1 is the previous iterate u_ corrected by the approximate

inverse times the defect,

u_+1 = u_ + M-'r_. (2.20)

Recall, the defect is related to the algebraic error by the defect equation Lhc k = rkh.

Solving the defect equation is equivalent to solving the original linear system Lhu h --

fh, since uT, = u_ + c_. Therefore we may solve the original linear system (2.9) by

working with the defect equation instead. The inner iteration procedure used in this

thesis is a defect correction method.

Example. Let Lh be decomposed as Lh = D - U - V where D is diagonal, U

is strictly upper triangular, and V is strictly lower triangular. The Gauss-Seidel

iteration is

(D- V) ukh+' = Uu_ + f,
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or

Ukh+' = (D - V) -1Uukh + (D - V)-' f.

This is a defect correction process with S = (D- V)-IU and approximate inverse

(D- V)-',

u_+1 = Ukh+ (D - V)-l(fh - LhU_).

2.7 Convergence

The end result of a direct method is a final, unique solution. In an iterative

method however, each iterate offers another approximate solution. As an iterative

method works its way to completion, u_ should be approaching u_, but when is the

iteration process complete? We need to judge the accuracy of the iterative solution

and determine a stopping point.

The general objective in applying an iterative method to a system of linear equa-

tions is to compute a vector u_ that approximates the exact solution u* at the grid

points (x_,yj) to within a prescribed accuracy ¢ > 0. More precisely, choosing the

norm Ii'lib, for instance, we want to find u_ so that

I1  -w Ll
Since the immediate problem is to approximate u_, we will satisfy (2.21) if

il 2- uXiih-:-liB;,-whllh< _. (2.22)

This says we want the sums of the norms of the algebraic error and the global error to

be smaller than the prescribed tolerance. The first term, the norm of algebraic error

in (2.22), is controlled by the number of iterations, becoming smaller as we perform

more iterations. The second term, the norm of global erroris controlled by the size

of h. "In general it seems best to roughly balance these errors: why go to extreme

measures to reduce the algebraic error, when the global error is comparatively large;

or conversely, why have a poor approximation to a very accurate discrete solution?

Thus, we will attempt to satisfy (2.21) by way of the conditions" [BM84]
C

[]u_- u_lih < _ and Ilu_,- Whllh < -- (2.23)
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2.7.1 Example Behavior of Norms

Table 2.1 demonstrates the typical behavior of four norms monitored while solving

the model problem on a grid with 128 × 128 unknowns. The columns of Table 2.1

show, from left to right, the iteration index, 2 the maximum norm of the residual

vector, the discrete L2 norm of the residual, the RMS error, and the maximum norm

of the vector (u_ - Wh).

k [Ir_ [Ioo I]r_ [lh [I(u_ -- Wh)I[E i[(U_ -- Wh)ll_o

0 3.35x 10+2 1.57x 10+I 8.35x 10-2 1.97x I0-'
1 2.96x 10+I 2.00x 10+0 3.40x 10-3 I.I0x 10-2
2 2.09x I0+° 1.25x I0-' 1.69x lO-4 6.10x 10-4

3 1.38x lO-I 7.48x 10-3 1.58x I0-s 4.19x 10-5

4 8.75x10 -3 4.56x 10-4 1.20x10-5 2.32x 10-5
5 5.45x lO-4 2.77x lO-5 1.22x lO-5 2.34x lO-s

6 3.40x lO-5 1.72x 10-8 1.22x 10-5 2.34x 10-5

Table 2.1" Norms generated solving model problem.

,

II  -w ll II  -w ll
k IIr +,ll/llr ll Ilr +'ll/I}r ll
1 0.0885 0.1269 0.0408 0.0559
2 0.0704 0.0627 0.0498 0.0553
3 0.0661 0.0597 0.0931 0.0688
4 0.0634 0.0610 0.7575 0.5519
5 0.0622 0.0607 1.0206 1.0095
6 0.0624 0.0622 1.0002 1.0004

Table 2.2: Convergence ratios for norms in Table 2.1.

2Each iteration corresponds to one multigrid V cycle (see page 33) done on the global domain.



CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 25

Note, in columns four and five of Table 2.1 the values of the norms charted remain

virtually constant from iterate 4 to iterate 6; whereas, the values of the norms charted

in columns two and three of Table 2.1 keep decreasing at an approximately constant

rate for iterates 4 through 6, see Table 2.2. The behavior of the norms in columns

four and five indicates that the approximate solution is not getting any closer to u*

in the sense of those norms. Note, the exact discretization error for this problem is

2.92 x 10-4, and the iterate at which the ratio of successive RMS error values exceeds

one is the same iterate at which the discrete L2 norm of the residual becomes less

than the norm of the exact discretization error, iterate 5.

2.7.2 Stopping Criteria

Let Ei,j be some pointwise measure of the error at the grid point (xi, yj) E RG.

Let E k be the n-vector whose components are Ei,j for iterate k. For instance, Ei,j

could be the value of

(1) r_, the residual,

(2) u_ - u_-1, the correction,

(3) T_, the truncation error estimate, or

(4) u_ - wh, the error of the solution process,

at the grid point (xi, yj). The method of determining convergence is to track some

measure(s) of the error and stop when that measure of the error is comparatively

small. One takes some norm of the error(s) so that the error information is compressed

into only one or possibly two numbers. Consider stopping criteria of the form
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where I1"11=is some norm of choice and _ is a constant.

In stopping criteria I and 2 above, _ determines when the error is relatively small.

Stopping criteria 1 and 2 are a common convergence test. Method 1 is the typical

method of iterating until some norm of E k, frequently Ill'lth,is than the arbitrarily
chosen tolerance _, say 10-6. Method 2 is the equally common method of iterating

until some norm of E k, again frequently [Iv2 been decreased by a certain order of

magnitude. For instance, if the initial value of the norm was 10 2 and ¢ = 10-6, iterate

until the value of the norm is six order:_ of magnitudes less, 10-4. Unfortunately, in

these methods no theoretical basis exists for choosing the value of _, so its value is

chosen based on empirical experience.

In another convergence test the stopping criterion is the time at which the correc-

tion meets the relationship lu_- U k-1 ] _<_g for every grid point. This is a stopping

criterion of the form of method 1, with I1"11o= I1"11oo-Again, the choice of _ has no

theoretical basis. A potential drawback of this method is that it may require storing

an additional iterate. The logic behind this method is that when the change from one

iteration to the next is small at every point there is no need to continue iterating.

In method 3 the subscripts A and B are meant to distinguish between two different

measures of error. Let us restate the convergence conditions of (2.23) in the format

of method 3,

<tlu -Whllh . (2.24)

with E_ = u_ - u_,, the algebraic error, symbolized by e_ and Es = u_ - wh, the

global error, symbolized by eh. The iteration index of Es is dropped because the

global error doesn't change. This stopping criterion is useful for theoretical studies

of convergence only; as it includes both the exact solution and the solution to the

discrete problem.

Finally, we mention a stopping criterion in the form of method 3 which we can

compute for problems that we do not know the analytical solution. The fact that

this stopping criterion has a theoretical basis for its existence makes it desirable and

more meaningful. The stopping criterion is

4

lir_ Ila < 3 I]T_ ]}h" (2.25)
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Under reasonable smoothness assumptions, and a second order accurate difference

approximation,

472 = rh + O(h2). (2.26)3

An estimate of the local truncation error, _'hk -- the relative truncation error, can be

generated using Richardson's extrapolation [Hac85]. This stopping criterion states

that the iteration process concludes when the norm of the residual error is less than

the estimate of the local truncation error.

The RMS Ratio Stopping Criterion

We define one more stopping criterion which we use in Chapter 5. We base this

stopping criterion on the RMS error, the Euclidean norm of the difference between

the finite difference iterate and u" evaluated at grid point locations, Wh.

Definition 2.21 We say the k-th iterate meets RMS ratio stopping criterion when

_<ll  -w ll .
See Table 2.1 for an example of the behavior of the RMS error -- second column from

the right, and the same column of Table 2.2 for an example of the behavior of the

ratio of successive RMS error values. The RMS error decreases to a minimum and

then rises a small amount away, remaining almost constant from then on. When u_

is relatively far from u" the RMS error experiences a decrease similar to the decrease

experienced by the discrete L2 norm of the residual and the maximum norm of the

residual. When the iterative solution gets close to u_ the RMS error approaches a

constant and the ratio of successive RMS error values becomes close to one.

This RMS ratio stopping criterion marks the time at which the ratio of the RMS

error from one iteration to the next becomes greater or equal to 1.0. There is no

guarantee the ratio will reach a value of 1.0. In a slowly converging problem the ratio

might be greater than .99 but less then 1.0 for more iterations than we would care to

monitor. For example, for some domain decompositions with small overlap, the ratio

approached one very closely, but did not reach a maximum (local) in a reasonable

time frame. When this stopping criterion is met, one might be led to believe that
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the iterative solution u_-1 was a more _ccurate than the iterative solution u_,. This is

reasonable to believe since the nature of a convergent iterative method is to improve

the solution with each succeeding iteration. However, this is not always the case.

In the example problem, when we reach an inflection point of the ratio of solution

norms we could say such that our solution has become as accurate as it is going to

be. However, we might be mistaken. In chaotic variants of the SAP-MG method,

described in a later chapter, the ratios of the RMS error from one iterate to the next

are not even necessarily monotonic decreasing.

2.7.3 Comparing II'lih and I['l[_

For instance, suppose we have a 100 x 100 grid, 10000 unknowns. If the residual

at each grid point is 1.0 x 10-5 except at ten points where the residual is 1.0 x 10-a,

then the sum of squares of the residuals is .000010999. The contribution from the

10,o n s tiros ro tor sot  ointslira1[inh

this case is 3.3 x 10-5, assuming h = .001. If the residual at the ten points was

10 ×  ,so,thon LI_LI, would be 1.0× 10-5. With .llrkllh, even though at ten
points the residual is two orders of magnitude greater than the residuals at the other

9990 points, the value of the norm is of the same order as the norm of a problem

where all 10000 grid point residuals had a value of 1.0 x 10-5. With the [1'[Io_norm,

this would not be the case. Those ten points alone would determine the convergence.

The behavior of the II'lib is such that if there are only a few problem points, overlook

them. The behavior of I1"11o_is such that if there is even one problem point, keep on

solving.

2.8 Dynamic Computation of Stopping Criteria

Consider a domain decomposition of the n point grid f)G into m not necessarily

disjoint subdomains f)l, _2,'", f)m. Define the subdomain index q. Associated with

every subdomain _q is the set of its boundary points Of). Let Ei,j be some pointwise

measure of the error at the grid point (xi,yj) E _a. Let E_c, or E _, be the n-vector
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whose components Ei,j are some pointwise measure of the error at grid points in f_a.

Let Enq be the n-vector whose components Ei,j are some pointwise measure of the

error at grid points (xi,Yj) e _"lq, and 0 for grid points (xi,yj) _. _'_q. For instance,

Ei,j could be the value of

(1) rkh,the residual,

(2) u_ - u_ -1, the correction,

(3) T_, the truncation error estimate, or

(4) u_ - Wh, the error of the solution process,

at the grid point (xi, yj).

When using a dynamically computable stopping criterion, after the solution of any

subdomain is advanced the stopping criterion for fla can be computed. Dynamically

computing the stopping criterien as a Schwarz algorithm visits each of its subdomain

minimizes the locality of reference a program exhibits. It does so by avoiding the

sweep through the iterate and its discrete operator or the previous iterate that would

have been necessary to compute the stopping criterion on g/a after completing the

outer iteration.

Consider stopping criteria of the form

where ii-Ii= is some norm of choice. If al.Ilo is dynamically computable we say these

stopping criteria are dynamically computable also. In the next two sections we demon-

strate how to dynamically compute the li'lth and li']too norms.
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2.8.1 Dynamic/Distributed Computation of II'llh

Recall that the II'llh of an n-vector v on f_a is given by

Ilvllh- h _ Ivil2.
i=1

We define two quantities which allow us to support the dynamic computation of

IIEaollhduring an outer iteration of the SAP. Define the m-vector Sa_ whose compo-

nents Snq are the sums of squares of components of Enq"

-_a_- _ IEi,jl2.
|,J

(z,,u3)6f_q

Similarly, define Sac, a scalar, for the global domain:

SaG = _ IEijI 2.
i,J

(xi,yj)eac

Given Sac, IIEa_llh immediately follows as IIEa_llh= hS__. The starting value of

the quantity SnG is computed after setting the solution vector of f_e to the initial

I guess (unless En_ is the correction).

In our method for dynamically computing the stopping criterion for f_G, we do

not compute I[Ekllh for the global domain _a after each outer iteration as itera-

tive methods typically do. Instead, we use the following procedure for subdomains

£/1, 12_, .-., f_m as each subaomain is visited during the SAP. On entering f_q, we

compute Saq naming it S "nt_r" then we complete the inner iteration procedure on' aq

f_q; but, before exiting flq we again compute Saq naming it c_it Finally, we_ _-'aq •

modify Sac by the difference between cezit the new sum of squares of the com-

ponents of Enq and S _'_t_r the old sum of squares of the components of Eaq; i.e.aq _

snew __ cold qexit _,enter
ac _'ac + ( - ). Therefore after advancing the solution on any subdo--- '-'aq ,Jaq ,

main, [IEacllh is known and any test for convergence on F/G involving [[Eaalih can be

computed.

Note, let RG be the set {IEi,jl: • V i,j such that (xi, yj) 6 fiG} and Rq be the

set {IE_,jl2. V i,j such that (xi, yj) 6 £/q}, then Rq C_Ra V q. If for any (q,q') pair

_"_q N _'_q' ¢ 0 then Rq _ Rq, _ O.
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2.8.2 Dynamic/Distributed Computation of I1"11_

Recall that the [['1]_ of a n-vector v on Ra with grid spacing h is given by

llvlloo- max(Iv,l), I _ i _<n.

Again we define two quantities which allow us to support the dynamic computation

of I[Enal[oo during an outer iteration of the SAP. Define the m-vector Cq whose

components Cnq are the maximum absolute values of components of Enq,

- [I i]Cq_{ Eaq , 1 <_q<_m}.

Similarly, define Cna, a scalar, for the global domain, CnG = [[Eno[l_. The starting

value of the quantity Cno is computed after setting the solution vector of Ra to the

initial guess (unless Ena is the correction which requires u_ and u_).

In our method for dynamically computing the stopping criterion for f_a, we do

not compute I[Ek[l_ for the global domain Ra after each outer iteration as itera-
tive methods typically do. Instead, we use the following procedure for subdomains

ft1, R2, "-, tim as each subdomain is visited during the SAP. During the visit to

each subdomain 9tq, Cn_ is computed. After the inner iteration procedure on _q is

set Cno = [ICno , Caq [I • Therefore, after advancing the solution oncomplete, any

subdomain, [IE_oll_ is known and any test for convergence on Rc involving IlEao[l_
can be computed.



Chapter 3

The Multigrid Method

In §2.6 we mentioned several common iterative methods for solving elliptic equa-

tions. Fourier analysis of these relaxation or smoothing methods, shows they effi-

ciently remove the high frequency error components in the approximate solution. The

notion of iterative methods as smoothers is crucial in the discussion of multigrid. See

Appendix B, an excerpt from [Bra77], for details. Two to three iterations eliminate

most of the high frequency error components [Bra77]. Nonetheless the asymptotic

behavior of these methods, quantified by their convergence rates, was shown to be

slow because they ineffectively smoothed the low frequency error components [Fed62],

[Bak66], [Bra77]. The multigrid method addresses the problem of managing these low

frequency errors by attacking them on coarser grid levels. In the Schwarz method

presented in this thesis we will use the multigrid method for the inner iteration pro-

cedure. Notes about the developers and history of multigrid follow at the end of this

chapter.

The multigrid method uses a multilevel structure to remove the low frequency

components in the error that a smoothing routine is inefficient at removing. It does

this by smoothing the low frequency error components on coarser grids. The relatively

high frequencies on the coarser grid levels which are effectively smoothed correspond

to low error frequencies on the finer grid levels.

Multigrid is an iterative, multilevel defect-correction method which can be used

for solving symmetric, positive definite, linear systems. In this thesis we refer to the

32
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finest grid as the uppermost grid level. Cycle is a synonym for a multigrid iteration.

During one cycle the mui_:igrid method travels from the finest grid down through

coarser grid levels to a coarsest grid and then back up to the finest grid, visiting each

of the intermediate grids along the way. The manner in which the method travels

from one grid level to the next defines the type of multigrid cycle. Figure 3.1 shows

the two most common multigrid cycling procedures, V and W, along with the full

multigrid iteration. Full multigrid, FMG, also called nested iteration, consists of one

of the other types of cycles, prefaced by the bootstrapping of an initial guess from

the coarsest grid to the finest grid.

h • , • • • . • •

2h ........

4h ........ V cycles
8h .......

16h ....

2h . . .

4h ...... W cycle
8h ..........

16h . . .

h • • •

2h . .

4h . . . FMG bootstrap
8h ......

16h .....

Figure 3.1' Grid Schedules for Common Multigrid Cycles

Smoothing is typically done at each grid level. The smoothing iteration that occurs

before moving to a coarser grid is called pre-smoothing. The smoothing iteration that

occurs before moving to a finer grid is called post-smoothing. The purpose of pre-

smoothing is to smooth (damp) the relative high frequency error on the respective grid

levels. The purpose of post-smoothing is to eliminate high frequency error components
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introduced during the interpolation and addition of the defect to the solution residing

at the next higher level.

3.1 Two-grid Algorithm

We begin explaining the details of the multigrid method by considering a two-

level algorithm. Our explanation follows the discussion given by Mol [MolSla]. The

two-grid method is a non-stationary defect correction process in which two different

• _. inverses are used:approxlm,,_e

• Some smoothing method (e.g. Jacobi, Gauss-Seidel) on the fine grid which

damps short wavelength fluctuations in the residual.

• A coarse grid correction which damps the long wavelength fluctuations in the

residual.

Recall, for the discrete analog (2.3) of the linear boundary value problem we

defined a computational grid flh and a corresponding set of grid functions Uh

fit, = {(x,,x2) [ x, = mh, 0 <_m < nh + 1, i = 1,2 } (3.1)

Uh = {uh " Frh --* _} (3.2)

where h = 1(na + 1), nh is an integer, _.nd n - nh X nh. ]he discretized form of the

differential equation resulted in the the linear system of equations denoted by

Lhuh = fh, (3.3)

with Lh an n × n non-singular matrix and with uh and fh n-vectors.

The two-grid method uses an analog of (3.1) and (3.2) on a coarser grid g/h,, that

is, n' < n, with mesh size h' .> h:

To avoid confusion about which grid level we are referring to we assign the index

to the finer grid level and t'- 1 to the coarser grid level. (For future reference _ = 1
_t

will index the coarsest grid and g = M will index the finest grid.) Using this notation,

system (3.3) is now denoted by

L_u _= f_, (3.4)
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with L t :U t --* Ut. Its coarse grid -:::_log fit-1 is now denoted

Lt-lut-1 _ ft-:. (3.5)

with L t-1 : Ut-: _ Up- l

Next we must define a function which maps the fine grid functions to the coarse

grid functions and visa versa. We call the act of transferring the defect equation from

the finer grid _/h to the coarser grid flh' restriction. We denote the restriction matrix

or restriction operator by It_-:,

I_-1 : Ut _ U t-:.

The solution to the defect equation on grid level l- 1 is a correction which we will

interpolate and add to the grid solution of the problem on grid level 2. We call the

act of transferring the correction from the coarser grid F/h, to the finer grid fib prolon-

gation. The prolongation matrix or prolongation operator denoted I__1 interpolates

the correction formed on the coarser grid level f- 1 to grid level 2,

I__1 :U/-1 _ U/.

We can now define the coarse grid correction step of the two-grid method:

u t -- u t + I__, (L(I-1)) -' _-1 (ft_ Ltut).

In the two-grid method the coarse grid problem (3.5) is solved directly.

Finally, combining the smoothing sweeps with the coarse grid correction, we see

one step in the two-grid method consists of Vpresweeps with the smoothing method,

a coarse grid correction step and Vvostsweeps with the smoothing method. A pseu-

docode description of the two-grid method appears in Table 3.1. On level t denote

the pre-smoothing operator by 8/ and the post-smoothing operator by S t. Denote

the approximate inverse of the smoother on level 2, M-: of (2.17), by B t. Take

B l = (I- S*)(Lt) -1
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BeginProc Two-grid Defect Correction Method
//Do t/p_ pre-smoothing operations.
do t/vr_ times

u t .= _l ut + Btff;
enddo

//Form the defect and restrict to the coarser grid.
ft-, := i t-, (ft_ L t ut);
//Solve the defect equation on the coarser grid directly.
ut-1 := (Lt-l)-1 ft-l;
//Prolong the coarser grid solution to the finer grid.
u t := ut + It__ ut-_;
// Do t/po,t smoothing operations.
do t/poottimes

u e := S t ue + Br ft;
enddo

EndProc

Table 3.1" Pseudocode for the two-grid method.

Note that ft-1 is a coarse grid approximation to the residual ft _ Ltu t, not to ft.

The amplification matrix S,worid of one step of the two-grid method is

S,wov,d = (St)_P°" ((Lt) -'- I__, (Lt-') -' I[-') Lt(St) _pr', (3.6)

with S t = I t- B t Lt and _t = i t_ L t B t the amplification matrices of the smoothing

processes.

(Lt) -'- I__ 1 (Lt-') -' I_-'. (3.7)

is called the relative convergence matriz. Hackbusch [Hac85] defines the "approzima-

tion propertf in terms of this matrix.

Several authors, e.g. Hackbusch [nacS0a] and Wesseling [Wes80], have shown un-

der certain assumptions ilS,_o,,,_ll < c < 1 with I111_ suitable norm and c independent

of mesh size 2-t. The two-grid method is completely determined by the discretizations

L t and Lt-l, the restriction matrix Itt-_, the prolongation matrix Itri, a smoothing

method St and the number of pre-smoothing steps - t/v,, and post-smoothing steps -

t/post.
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3.2 The Multigrid Algorithm

The multigrid method makes use of a hierarchy of computational grids Frh, and

corresponding sets of grid functions Uh,, l = M, M - 1, M - 2,..., 1 defined by (3.1)

and (3.2) with h replaced by ht. Here, ht is the grid spacing on grid level l. As l

decreases ht increases, that is, the grids f_h_ become coarser as l gets smaller.

In the two-grid method we solved the coarse grid problem (3.5) directly. The

multigrid method approximates the solution u e-: of the coarse grid by application

of the same two-grid method on the coarse level. So, for g > 2, the error equation

is recursively solved on increasingly coarser grids. When grid level 1 is reached, one

usually solves directly for the defect as the time to do the direct solve is inexpensive

since u 1 will contain few unknowns. See Table 3.2 for a pseudocode description.

BeginProc multigrid method (g, Le, ut, rf, u,r_, upost,I[_1, II -1)
if g = 1 then

u I := (L1)-lfa;
else

// Do rp,.e pre-smoothing operations.
do l/p_ times

ut .= 6orue + Be fe;
enddo

//Form the defect and restrict to the next coarser grid.
ft-, := g-, (ft_ L e ut);
ut-1 := 0;
// Recursively solve on grid g- 1.
do multigrid method (g 1,Lt-1 ue-1 ft-1 it-1 t-2_ , , I/pre, l/post, g--2, It--1 )

endif

// Prolong the coarse grid correction to tile next finer grid.
u t := u g + I__ 1 ug-1;

// Do l/post smoothing operations.
do Uvosttimes

u e := S e u t + Btf*;
enddo

EndProc

Table 3.2: Pseudocode for the multigrid method.
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Up to this point we have said nothing about the details of the multigrid param-

eters we chose. We start by constructing our initial guess by applying the difference

equation to the boundary points. We use V cycles, a direct solve on the coarsest

grid and red-black Gauss-Seidel relaxation for the smoothing routine. We discuss the

issues of grid specification and grid transfer operators in §3.3 and §3.4.

The way we use multigrid in the Schwarz process changes the notion of the cycling

procedure slightly. To better explain when smoothing takes place we introduce four

cycling parameters, pbeg, pdown, pup, ptop,

• pbeg -= number of smoothing iterations on the finest level before cycling begins,

• pdown -- number of smoothing iterations on level e after restriction to level

from _ + 1,

• pup --- number of smoothing iterations on level / after prolongation (from _- 1

to l) on all levels, with the exception of smoothing after prolongation to the

finest level which is a separate case,

• ptop _=number of smoothing iterations on the finest level M after prolongation

from level M - 1.

3.3 Determining Coarse Grid Approximations

Generally, one considers two strategies for determining coarse grid approxima-

tions: coarse grid finite difference approximations (CFA) and coarse grid Galerkin ap-

proximations (CGA). The discussion in this section is derived from [Den82], [Wes84],

and [ABDPS1]. The simplest and most straightforward method of grid coarsening

is standard coarsening. Standard coarsening falls under the category of CFA. For

example, in the simplest case, Ft/ and _e-1 are rectangular grids, the grid points of

f_e-1 are a subset of the grid points of f_e, and the grid spacing he-1 of f_e-1 is twice

the grid spacing he of f_¢. Recall that M indicates the highest level grid. If the above

relationships are to hold true, then the number of grid points on each side of F/M,

riM, is constrained to nM= (ni -- 1) 2 M-1 nt- 1, where ni is the number of grid points
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on each side of f'h [Den82]. We see standard coarsening leads to grids whose size is

always some 'magic' number. In a real problem if one's grid specification is not a

'magic' number, or is an irregular discretization, then an interpolation or transforma-

tion is necessary to use multigrid with standard coarsening. The advantages of CFA

include:

• The definition of L t-1 is independent of the fact that we solve an equation at

level _.

• One needs no additional computations for defining Lt-l, Lt-Z, ... , L 1.

• Minimal storage requirements.

Nonetheless, the ability to maintain arbitrarily sized grids without resorting to a

messy interpolation phase is of utmost importance when studying the Schwarz method.

Any computational study of the method invariably includes measuring the computa-

tional cost as a function of the overlap. A combination of these reasons and others

to be mentioned below led us to abandon the CFA approach.

We built our Schwarz-multigrid program from the core subroutines of Dendy's

blackbox multigrid code, BOXMG [Den82]. The BOXMG code implements multi-

grid using the "correction scheme" as opposed to the "full approximation scheme".

Instead of using standard coarsening, BOXMG implements a more complicated coars-

ening scheme based on CGA. BOXMG allows mixed derivatives and nonselfadjoint

equations. BOXMG works well in the selfadjoint case for smooth or strongly discon-

tinuous coefficients. The user provides a finite difference approximation on the finest

grid, which is uniform and rectangular. Dendy's primary interest was solving the

neutron diffusion equation,

- V. (D(x,y)VU(x,y)) + o'(z,y)U(x,y) = F(x,y), (x,y) E ft, (3.8)

in which D, a and F are piecewise constant. With a(x,y) = 0 and D(x,y) = 1,

equation (3.8) reverts to the simpler case of Poisson's equation. Appendix C gives

details about the memory requirements for BOXMG.
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In CGA a coarser grid fit-1 contains grid points which may not be a subset

of the mesh points of the immediately finer grid fie. We obtain a coarse discrete

approximation on fit-1 using the Galerkin formula

LI-l= (I[_1)* L t I[__.

Some disadvantages of the Galerkin approach are:

• A preprocessing phase is needed to compute LM-1,LM-2, • ..,L 1.

• Only works on linear problems.

• Usually the five- or seven-point grid stencils on grid level M will not be preserved

on the coarser grid levels but become nine-point formulae.

• The definition of L t-1 depends on L t . If the solution of Ltu e = ft is fol-

lowed by a multi-grid iteration for solving Lt+lut+l = ft+l we need matrices

L lt =_ rLt+lp, L le-1 - rL_tp which possibly differ from L e and L e-1 used be-

fore. The matrices r and p are restriction and prolongation operators defined

appropriately. (Pertains to FMG cycle.)

On the other hand the advantages of CGA are:

• Unrestricted number of points in the x and y directions allowed on any grid.

• Automatic generation of possibly irregular difference formula near any bound-

ary.

• Automatic homogenization of rapidly varying coefficients.

• If L e is symmetric (positive definite), and if Ite-1 = (I/__)* then L t-1 = I[__LtI[_l

is also symmetric (positive definite).

Thus, CGA allows one to solve a larger class of problems.
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3.4 Specification of Grid Transfer Operators

Finally, how should we choose prolongation and restriction operators? Brandt

[Bra77] gives the following general result. We say the operator I[_ 1 is of order mp

if polynomials of degree mp - 1 are interpolated exactly, and that I_-1 is of order

m_ if (I_-1)T interpolates polynomials of degree m_ - 1 exactly. If the order of the

differential equation is 2m then we should have

mp + m_ > 2m.

The coding of interpolation can be further complicated by whether the points on the

boundary represent knowns (Dirichlet boundary conditions) or unknowns (Neumann

boundary conditions).

If the finite difference approximation of Eq. (3.8) is a vertex-centered one as

in [ABDPS1], then the classic multigrid method of [Bra77] (II_ 1 = bilinear inter-

polation, Iee-1 = a fixed nine point weighting operator, and the coefficients of L t-1 a

fixed weighting of the coefficients of L e) performs well as long as the discontinuities

in D are not too severe and as long as the internal interfaces do not consist of too

many line segments; otherwise, it performs badly; indeed it can fail to converge in

the fixed mode described above.

Alcouffe et al. [ABDP81] dealt with the situation in which D, a, and f jump by

orders of magnitude across internal interfaces. They considered many possible choices

of I_-1 and I__1. Only one of these choices was found to be robust, that of

I: -1 = (I:-l)*.

The solution they use is as follows: Suppose that at (xi,yj), Le has the pointwise

template

_Q[j (a.9)z,3 -Qi+l,j •



CHAPTER 3. THE MULTIGRID METHOD 42

Form the "vertical sums"

Qi+a,j = Ti+l,j+l '_-Qi+l,j 't-Ri+l,j,

Si+I,j "- -Wi+l,j -aI-Si+l,j -Wi+l,j+l,

(_i+2,j : Ti+2,j -_Qi+2,j -t-Ri+2,j+l.

Then for horizontal lines embedded in the coarse grid, the interpolation II_ x is given

by

i t ut g-1( t--1 i't'l,j) (Qiq-a,j Ui,j -_ Oi+2,j t-1= ui+l,j)/Si+,,j. (a. 10)

(We have just summed Eq. (3.9) vertically to average out its y-dependence.) A similar

formula can be used for vertical lines embedded in the coarse grid rectangles. Then,

at fine grid points centered in coarse grid squares, eui+a,j+ 1 may be obtained from the

difference formula; i.e.,

Uf-l-l,jq-1 -- ( Qi-I'I,j+I tui,j+ 1 "k" Qi+2j+I tui+2,j+l
t ,

+ Wi+l,j+a ui+a,j + Wi+l,j+2 ui+x,j+2 (3.11)
+ R4+lj+l u_,j + Ri+2j+_ ui+2,j+2

"+ Ti+l,j+2 ui,j+ 2 q- Ti+2,j+l ui+2,j ) / Si+I,j+I

The vertical analog of (3.9)-(3.10) completes the definition of//-1.

Prolongation by linear interpolation is inaccurate when u in not locally linear

between coarse grid points. This inaccuracy is severe when D(x,y) in (3.8)is dis-

continuous between coarse grid lines. BOXMG can handle strongly discontinuous

coefficients because it uses the matrix-dependent prolongation described above.

Many variations of the multigrid algorithm have been constructed by choos-

ing different initialization procedures, cycle types, storage schemes, coarsest grid

solvers, smoothing operators, restriction operators, prolongation operators, and pre-

smoothing and post-smoothing iteration counts [ST82a].

3.5 Computational Efficiency

Unlike most iterative methods, when solving symmetric positive definite linear

systems every multigrid cycle reduces the error at each step by a constant factor until
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the roundoff level is reached. This property is very useful when deciding when to stop

solving. Many scientists choose to decrease the residuals by a factor and thus can

explicitly program their code to do the necessary cycle count. Another nice property

of multigrid is that the number of multigrid cycles needed to attain convergence is

independent of the mesh spacing when FM G is used.

Another of the keys to the speed of multigrid is not as many points exist on levels

M - 1, M - 2,..., 1. The total work on all coarser levels for two space dimensions is

about 1/3 of the work on the finest level.

Recall, for iterative methods as expressed in equation (2.17), the spectral radius of

the smoothing matrix Sh must be less than one for the method to achieve convergence

because the Sh is the amplification matrix of the iterative method. It is interesting to

note that for multigrid this is not the case, because the smoothing matrix is only part

of the total amplification matrix. In multigrid the purpose of the smoothing matrix

Sh is to smooth the high frequency error on the grid of interest. An asymptotically

divergent smoother may prove acceptable if the low frequency error components aren't

amplified in the small number of smoothing iterations done on each grid level.

3.6 Historical Comments

Here we present a chronology of the development of multigrid, taken for the most

part from Hackbusch's book [Hac85]. His book includes a comprehensive 20 page

listing of multigird publications.

The first correct two-grid iteration was described by Fedorenko [Fed62]. He em-

phasized the complementary roles of the Jacobi iteration and of the coarse-grid cor-

rection.

It was also Fedorenko [Fed64] who formulated the first multigrid algorithm in 1964

and proved the typical convergence behavior. He described a multigrid method for

the Poisson equation in a square, and he proved that the number of operations is

O(n), where n is the number of grid points. The much more complex situation of

a difference scheme for a second order elliptic equation with variable coefficients in

a rectangle was considered by Bakhvalov [Bak66] in 1966. His main focus was the
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optimal order of complexity achieved by the multigrid solution process rather than

its practical efficiency.

In 1972 Brandt [Bra72] following the papers mentioned above discovered the ef-

ficiency of the multigrid algorithm. He laid emphasis on the combination of the

multigrid process with additional techniques which should yield a "multi-level adap-

tive" method. A precise definition of his multigrid algorithm was given in 1975/1976

(cf. Brandt[Bra76, Bra77]). However, in these and later papers the considerations

about convergence remain very vague. Brandt [Bra77] described a multigrid method

similar to that of Fedorenko and Bakhvalov, and demonstrated its practical useful-

ness. Furthermore, he proposed ideas for adaptive discretization in certain parts of

the region, e.g., in the neighborhood of singularities.

An important step towards convergence analysis was made by Nicolaides [Nic75],

[Nic77]. While his first paper described a two-grid iteration, the second one from 1977

studied the convergence of a finite element discretization. Astrachancev last71] and

Nicolaides applied a multigrid method on finite element problems and gave conver-

gence proofs. Hackbush published an early survey of convergence proofs in [Hac80b].

Other convergence proofs and experiments are given in Chapters 6 and 7 of Hack-

bush [Hac85], by Wesseling in [WesS0], by Greenbaum in [Gre84] and by Mol [MolSla].

Bank and Dupont gave two different convergence proofs in a report from 1977, which

has since been divided. The second part of the report is published in a journal (cf.

Bank-Dupont [BD81]), whereas the first one, containing a new approach is available

only as a report (cf. Bank-Dupont [BDS0]). Chan and Tuminaro survey parallel

multigrid algorithms in [CT87].



Chapter 4

Outer Iterations vs Inner

Iterations

Having discussed the Schwarz alternating procedure in Chapter 1 and the multi-

grid method in Chapter 3 we now turn to the combination of the two algorithms. In

our combined algorithm, SAP-MG, the Schwarz alternating procedure is the outer

iteration procedure and the inner iteration procedure is some type of multigrid cycle

executed some number of times. To establish useful variants of SAP-MG methods we

consider the issues of the amount of overlap between subdomains, subdomain shape

and the choice of inner iteration procedure.

Model Problem

All experiments use the boundary conditions and right hand side of the model

problem described in §2.1. We use a five point grid stencil on the finest grid and

nine point grid stencil on the coarser grids. The smoothing method is colored point

relaxation and we use a uniform nh × nh grid at the finest level.

4.1 Overlap

We need to know the effects and tradeoffs of overlapping subdomains to under-

stand the SAP-MG algorithm. The overlap affects the convergence rate of the

45
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algorithm, communication cost, computational cost and memory use. The extent

to which subdomains overlap affects the rate at which information travels across

pseudo-boundaries. Analysis in the continuous domain shows the greater the overlap

the better the convergence rate.

Both the c,:,mmunication and computational costs are proportional to the overlap.

Obviously, communicating a smaller amount of information le_,ds to lower commu-

nication costs. The computational overhead of SAP-MG per outer iteration roughly

equals the percentage overlap; i.e., with two subdomains, 50% overlap implies 50%

more floating point operations. We show in §4.6 and §4.7 how increasing the overlap,

and thus communication cost and computational cost per outer iteration, decreases

the time to solution because of improved convergence rates. We show in Appendix C

how subdomain overlap affects memory costs.

4.2 Choice of Inner Iteration Procedure

In the continuous domain theoretical model of the Schwarz Alternating Procedure

the convergence analysis assumes obtaining the analytical solution on the subdomain

problem before updating the interior pseudo-boundaries. We could simulate this

modus operandi in the discrete domain by solving on a subdomain until the discrete

L2 norm of the residual was as accurate as the discretization error or a truncation error

estimate. However, in the initial outer iteration of the SAP the information passed

at the pseudo-boundary areas does not approximate the global domain solution with

a high degree of accuracy. We hypothesize spending computational time to solve an

inaccurate subdomain problem accurately is a senseless proposition. Note, in the

discrete domain not only do we update the pseudo-boundary values, but we update

the entire overlapping boundary regions with the latest values.

4.3 Subdomain Shape

The inherent partitioning of the SAP limits the number of grid levels visited. In

the SAP-MG method the subdomains are obviously smaller than the global domain.



CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 48

I II I II II II II II

I Jl I.] II II [ II II II..
I II I i II I ] li II II

I II i ' II I [ II II II

I ] II I i II i li II II

I I II I II I II II II
I II I II I II II II
I II I II I li II II
I II I II I II II II

I II I II I II II II

I II I II II , II II II
I II I I II [ II II II

I II I I II I II II II

I II I I II II II II

I II I I II II II II
I |1 I II tl II II
I II II II _11 II II
I II II II III II II

I II II II It II II
I II II II II II II
I li II II II II II
I II - II II II II II

I I1! II II II II II
I I1! II II II II II
I I1' II II II II II

i II II II II! II III11

I II II II II ! II _II

I II II II iii II li
i II III II II II iii
I I! !11 II II II II !11

til ft3 _5 ft9 flli _13

r ......... .,i

. i--, f_2 f_4
£1] : ' ' f_a 'I I I

I
I I I
I I I
I I I

r "1-- - -i ..... 4- - -_ r -i- .... I 9
/

t I I I
I I

I I

I i i i i
i ! i

| i i ; il

I _ _(")8
J

I I

fls P.6 ', .__:_i9' ',.L '
I I II
I I I

i
I I I

, I
• I _ ........... - , _ * ....

!

, fllo' , q_ [ ,

_"_9 ..... I..... .- ", , 11," ----I
I I
| I

I I

I I

L _ a _ a

_"_13 til4 _'_15 _-_16

Figure 4.2: Sixteen Subdomain Schwarz Splittings (bottom q = 4).



CHAPTER 4. OUTER ITERATIONS VS INNER ITER 4TIONS 49

Recall multigrid derives its speed from its ability to knock out the low frequency

components of the error on the coarser grids. However, on the subdomains :,vecannot

eliminate the lowest frequency wavelengths available to multigrid applied to _G in

at least one of the coordinate directions. Since, the convergence rate of multigrid

is dependent only on the convergence rate of the lowest frequency wavelengths, and

the decomposition of the global domain into subdomains eliminates the possibility

of attacking the lowest frequency wavelengths, we expect the convergence rate of an

SAP-MG method to be slower than that of a multigrid method. Furthermore, as

the number of subdomains increases, and as a result the subdomains get smaller, we

expect that the convergence behavior of SAP-MG becomes less like multigrid and

more like that of the relaxation method.

Tang [Tan87] found for a solver other than multigrid on an equal number of

subdomains, when the global domain was partitioned into a checkerboard of squares

the problem converged much faster than when partitioned into a series of thin strips.

We had hypothesized long thin regions may preserve some of the effect of getting rid of

the lowest frequency components of the error in one direction when using multigrid as

the inner iteration procedure. However, a simple set of initial experiments showed this

not to be the case. Alternating between horizontal and vertical rectangular regions

may conceivably offer advantages over other Schwarz splittings because we can access

the lowest frequencies in both directions. We explore this idea in more detail in §4.8.

The subdomain shape also affects M, the number of grid levels visited. As M

decreases a greater percentage of the total work is done on the coarsest grid(s) during

the direct solves. The operation count of a direct solve is greater than that of a

relaxation so we gain computationally by making nh on the coarsest grid as small

as possible. To maximize the number of grid levels one chooses an equal number of

points in all coordinate directions. Using a semi-coarsening procedure would allow us

to increase the number of grid levels visited for rectangular regions. Semi-coarsening

continues coarsening in the wider direction after coarsening in the narrower direction

stops. However, our code does not include this feature.

We illustrate the number of grid levels visited by SAP-MG in Table 4.1, assuming

the decomposition of a 128 x 128 problem into q x q square subdomains, each of which
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overlaps its nearest neighbors by 50% in the direction of overlap. M is the number

of grid levels visited, nh is the number of grid points on the boundary. Figure 4.2

illustrates the domain decomposition for q = 4.

q 1 2 4 8 16 32

M 6 6 5 4 3 2

na 128 58 51 28 15 7

Table 4.1: Grid information for q x q domain decompositions.

On machines with vector hardware the subdomain shape affects vector length. The

length is proportional to the number of grid points in the direction of vectorization.

It may pay to maintain some degree of vector length by avoiding regions that are

relatively thin in the direction of vectorization.

4.4 Comparing Convergence Criteria

To begin our experiments, we ran SAP-MG on two subdomains using one multi-

grid V cycle for the inner iteration procedure. We varied the overlap between 3 and

123 in increments of 5. An overlap of 128 corresponds to the ordinary multigrid

algorithm. In this experiment we studied the convergence issue, and we show the

effects of varying the overlap. Table 4.2 charts the number of outer iterations to

convergence for four stopping criteria. The columns labeled ARB correspond to the

criterion ]lr ] <10-6 The columns labeled ANS correspond to thestopping stop-

criterionIIr l IlehllE.The columns labeled RMS refer to the RMS ratio in theping

stopping criterion of §2.7.2. The columns labeled TAU refer to the stopping criterion

of IIr_llh < liT:lib. Recall, r_, is the residual of iterate k, eh is the exact discretization

error and rhk is a local truncation error estimate. The criteria of columns ANS, RMS
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Sequential Chaotic Parallel*
Stopping
Criterion ARB ANS RMS TAU ARB ANS RMS TAU

overlap
3 82 52 58 58 *** *** *** ***
8 34 21 26 23 71 47 48 49

13 22 14 18 15 49 34 33 35
18 17 11 14 11 40 27 27 28
23 14 9 12 9 31 21 21 22
28 11 6 9 7 27 19 4 19
33 10 7 6 7 23 16 3 16
38 9 6 6 6 21 15 6 13
43 8 6 6 6 18 12 13 12
48 7 5 5 5 18 13 8 13
53 8 5 5 5 14 10 10 10
58 8 5 5 5 14 10 8 10
63 7 5 5 5 13 10 9 9
68 8 5 5 5 12 8 6 8
73 8 5 5 5 14 9 6 9
78 7 5 5 5 13 8 6 8
83 7 5 5 5 12 9 6 9
88 7 5 4 5 12 9 6 9
93 7 5 4 5 13 9 6 9
98 7 5 5 5 14 10 8 10
103 7 5 4 5 12 9 7 9
108 7 5 4 5 12 9 7 8
113 7 5 4 5 11 8 6 8
118 7 5 4 5 13 10 7 8
123 7 5 4 4 10 7 5 7
128 7 5 5 5 ....

Table 4.2: Outer iteration count versus overlap for the different convergence criteria.
Inner iteration procedure of 1 V cycle. *Representative data since non-reproducible.
*** > 150.
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and TAU have theoretical support. The criterion of the column ARB is a guess,

possibly based on experience. The criteria of columns ANS and RMS depend on

knowing the analytical solution and thus are useful for convergence studies only.

The outer iteration counts for the columns labeled ANS, RMS and TAU ag,'ee with

one another well for the sequential SAP. Also, the outer iteration counts for the

columns labeled ANS, and TAU agree with one another well for the parallel SAP.

In the chaotic parallel method, the column labeled RMS displays odd results. The

reason the outer iteration count is smaller than it ought to be is because the RMS

error was not monotonically decreasing. The ARB criterion obviously leads to more

outer iterations than are necessary for this size problem. These convergence tests are

applied to g/a.

4.5 Parallel Method

In the parallel SAP, at the beginning of each outer iteration, each of the subdo-

mains is parceled out to a processor. The individual processors work independently to

advance their respective subdomain solutions. When the processors have completed

performing the inner iteration procedure on the their respective subdomains they up-

date the solution vector of fla. The value of the solution at a grid point after all the

inner iterations are complete is the value that was computed by the last processor

to update that grid point. Since the update process is non-deterministic for grid

points that reside in multiple regions we name this type of update procedure chaotic

updating. We define a synchronization point between the subdomain processes and

the convergence check. After all processors arrive at the synchronization point they

compute the convergence test for f_5, in parallel by microtasking the loops in the

convergence test. We define yet another synchronization point after the convergence

test; processors reaching this point wait until the convergence test is complete. If

the problem hasn't converged, the processors begin again working on subdomains in

parallel. We present results for two and four processors/subdomains.
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SAP-MG: Two Subdomains

Sequential Chaotic Paralleli

' hmer
Iterations 1 2 3 r 1 2 3 r

overlap
3 58 52 52 53 90 90 83 87
8 23 23 23 23 52 53 51 51

13 15 15 15 15 34 33 32 31
18 11 11 10 11 28 27 26 25
23 9 8 8 8 20 19 20 19
28 7 6 6 6 18 16 18 17
33 7 5 5 5 18 16 16 15
38 6 5 5 5 15 15 13 14
43 6 5 5 5 12 13 12 12
48 5 5 5 5 10 12 11 11
53 5 4 4 4 10 11 10 10
58 5 4 4 4 8 10 10 9
63 5 4 4 4 9 9 9 9
68 5 4 4 4 9 8 8 8
73 5 4 3 4 9 7 8 7
78 5 4 3 3 9 7 7 7
83 5 4 3 3 9 7 7 7
88 5 3 3 3 8 6 7 7
93 5 3 3 3 9 6 5 5
98 5 3 3 3 9 6 5 5
103 5 3 3 3 7 6 5 5
108 5 3 3 3 9 6 5 5
113 5 3 3 2 8 5 5 5
118 5 3 2 2 7 5 5 4
123 4 3 2 2 7 5 4 4
128 5 -- 1 ---

Table 4.3: Experimental results for a study of outer iteration count versus the inner
iteration procedure.
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4.6 Two Subdomain Results

The domain decomposition studied in this section is that labeled SD2a in Fig-

ure 4.1. Table 4.3 charts the experimental results for a study of outer iteration count

versus the inner iteration procedure. Again, we present results for both the sequen-

tial and chaotic parallel SAP. At the top of the columns of data is the indicator of

the inner iteration procedure used. The columns labeled 1, 2, and 3 correspond to

doing 1, 2, and 3 multigrid V cycles for the inner iteration procedure. The results for

the simulated direct solve are in the column labeled r. Its outer iteration count was

minimal, except for the aberration for overlap equal to 18 in the sequential SAP with

a 3 cycle inner iteration procedure. For most of the overlaps increasing the number

of V cycles done during the inner iteration procedure did not decrease the outer iter-

ation count more than one or two cycles. The decrease is barely noticeable in most

cases. As the overlap increased the outer iteration count decreased. For the smallest

overlap, the outer iteration count is an order of magnitude greater than the outer

iteration count for most overlaps. The outer iteration count for the chaotic parallel

SAP is approximately double that of the sequential SAP.

4.7 Four Subdomain Results

The domain decomposition studied in this section is that labeled SD4c in Fig-

ure 4.1. Preliminary experiments showed domain decomposition SD4c to converge

faster than domain decompositions SD4a or SD4b. Since these results mirrored the

assertion of Tang, we decided to only consider square subdomains.

The four subdomain results found in Table 4.4 and Table 4.5 are similar to those

of the two subdomain results. Again the tables chart the experimental results for a

study of outer iteration count versus the inner iteration procedure. The results for the

sequential SAP-MG and chaotic parallel SAP-MG are presented in separate tables.

At the top of the columns of data is the indicator of the inner iteration procedure

used. The columns labeled 1, 2, and 3 correspond to doing 1, 2, and 3 multigrid V

cycles for the inner iteration procedure. The results for the simulated direct solve
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Sequential SAP - 4 Subdomains

Floating Point
Outer Iterations Operations (× 106)

Inner
Iterations 1 2 3 r 1 2 3 r

overlap
3 *** *** *** *** *** *** *** ***
8 46 46 44 44 80.7 119. 161. 143.

13 27 28 27 27 51.6 79.5 107. 101.
18 16 17 17 17 34.3 55.5 74.7 69.6
23 13 13 13 13 30.3 46.1 61.9 57.1
28 8 9 9 9 22.1 36.6 49.0 44.9
33 5 7 5 5 16.2 24.0 31.8 28.3
38 7 6 7 7 22.2 33.3 44.4 38.7
43 7 6 6 6 22.4 30.9 41.0 36.9
48 6 5 5 5 23.3 29.0 38.5 36.0
53 5 5 5 5 20.5 30.4 40.3 38.3
58 5 5 5 5 21.7 32.1 42.6 38.5
63 5 5 5 5 22.6 33.6 44.5 38.9
68 5 5 4 4 24.4 30.7 40.5 39.1
73 5 4 4 4 25.4 31.9 42.1 36.9
78 5 4 4 4 26.7 33.5 44.3 38.8
83 4 4 3 3 23.7 34.8 37.5 35.4
88 4 4 3 3 25.3 30.6 40.1 35.2
93 4 4 3 3 25.3 31.7 41.6 39.3
98 4 4 3 3 26.3 33.2 43.5 39.2
103 4 4 3 3 28.5 34.4 45.1 37.7
108 4 3 2 2 30.3 36.5 37.1 34.9
113 4 3 2 2 31.3 37.7 38.4 33.8
118 4 3 2 2 32.7 39.4 40.0 35.3
123 3 3 2 2 28.0 31.8 41.3 34.1
128 5 -- -- 1 9.0 -- -- m

Table 4.4: Outer iterations and flops versus overlap for 4 square subdomains.
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are in the column labeled _-. These tables also include information about the number

of floating point operations. The charting of the floating point operation count allows

us to determine the most computationally efficient inner iteration procedure.

Comparing these four subdomain results to the two subdomain results, we see

in most cases for a given overlap, the four subdomain method took more iterations

to converge. The operation count data shows that in all cases an inner iteration

procedure of one cycle is the most efficient. These results lend credence to our state-

ment about not bothering to solve a subdomain problem with inaccurate boundary

conditions to a high degree of accuracy.

In the sequential experiment, Table 4.4, the work necessary for the SAP-MG

is over twice that of the ordinary multigrid algorithm for all overlaps except one.

This does not bode well for obtaining high multiprocessing efficiencies. Assuming a

parallel SAP-MG variant has the same outer iteration count as the sequential SAP-

MG variant, (and it probably won't because the sequential SAP-MG always is using

the newest information) computational efficiency for a four processor system is likely

to be less than 50%.

In the chaotic parallel experiment, Table 4.5, we see the outer iteration count

in the chaotic update variant of the parallel SAP-MG is 2 to 4 times that of the

sequential SAP-MG. For a shared memory machine with enough memory to fit the

ordinary multigrid problem, the chaotic update variant of parallel SAP-MG offers no

benefits. The minimum computational cost divided by number of processors (4) is

greater than the cost of solving the global domain using ordinary multigrid. A simple

scheme of averaging solutions (or weighted averaging) in the overlapping regions did

nothing to improve the convergence of the parallel method. In fact, it always made it

worse. We hypothesis the chaotic method of the update is in some sense optimal for

the multigrid method because of the way the error is distributed. The residual error

in the chaotic update is most likely not smooth.
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PSAP - 4 Subdomains - 4 CEs with Chaotic Updating

Floating Point
Outer Iterations Operations (xl0e6)

Inner
Iterations 1 2 3 r 1 2 3 r

overlap
3 *** *** *** *** *** *** *** ***
8 112 107 108 107 192. 284. 483. 442.

13 77 72 72 72 141. 204. 389. 321.
18 51 50 49 49 101. 153. 204. 252.
23 43 42 41 42 91.0 137. 181. 226.
28 36 34 34 32 84.2 123. 166. 191.
33 31 30 30 28 76.8 114. 155. 180.
38 27 24 25 25 72.0 107. 139. 175.
43 24 21 22 22 67.6 104. 129. 164.
48 22 20 21 18 67.6 99.4 134. 139.
53 19 16 19 18 62.0 99.6 128. 150.
58 16 16 17 16 45.1 85.7 122. 144.
63 12 15 17 15 45.5 89.5 127. 137.
68 17 13 15 11 66.5 90.8 122. 111.
73 16 13 13 14 65.6 83.1 111. 142.
78 16 14 14 10 69.0 87.4 125. 121.
83 15 13 14 10 67.6 97.0 130. 125.
88 15 12 13 9 72.2 97.0 139. 117.
93 15 14 14 8 75.0 107. 125. 112.
98 13 12 12 8 69.2 98.1 141. 120.
103 12 11 13 8 67.0 94.3 126. 123.
108 12 11 11 7 71.1 100. 155. 115.
113 12 10 13 10 73.4 95.2 149. 151.
118 9 7 12 8 60.1 73.7 156. 128.
123 9 8 ll 8 62.1 84.9 149. 133.
128 5 -- m 1 9.0 -- --

Table 4.5: Outer iterations and flops versus overlap for 4 square subdomains.
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4.8 Alternating Vertical and Horizontal Subdo-

mains

For the smallest overlaps the outer iteration count increases dramatically as the

overlap goes to zero, because only a small amount of information from one subdomain

transfers over to the other subdomain. Zero overlap implies that the subdomains share

no unknowns. Information is passed only at the boundaries. That is, in the case of

two vertical subdomains, the rightmost unknown of the leftmost subdomain would be

the boundary of the rightmost subdomain and visa versa. As the overlap increases the

computation work per outer iteration increases. Our desire is to minimize the time

to convergence. As an attempt to provide greater communication between opposite

sides of flc we resort to alternating between vertical and horizontal subdomains.

Using this trick on every other outer iteration information travels across an internal

interface that it wasn't traveling across the previous outer iteration. For example,

the domain decomposition alternates between those illustrated in Figure 4.1, SD2a

and Figure 4.1, SD2b.

Sequential SAP-MG Parallel SAP-MG

alternating vertical alternating vertical
overlap

0 83 36 ** 47
1 ** 25 81 37
2 28 2O 58 32
3 22 17 45 29
4 17 14 35 27
5 14 13 28 25
6 12 11 27 23
7 11 10 23 22
8 9 9 23 21

Table 4.6: Comparison of SAP-MG with vertical subdomains against SAP-MG with
alternating vertical and horizontal subdomains for small overlaps.
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Table 4.6 shows a marked improvement for the smallest overlaps. However, the

algorithm still converges in an unfavorable outer iteration count. A ** in the field of

the table means more than 150 outer iterations. The results are for the model problem

of §2.1 solved on a 64 x 64 grid of unknowns with an inner iteration procedure of one

multigrid V cycle, with the cycling parameters of §3.2 equal to one. Convergence

was determined by comparison of the discrete L2 norm of the residual to the li'lIE
norm of the global discretization error. For overlaps exceeding those tabulated this

alternating method showed little if any improvement.

4.9 Conclusion

For the model problem considered, we conclude the inner iteration procedure

should be one multigrid V cycle. We conclude using q square subdomains is better

than using q vertical or horizontal subdomains. We conclude an overlap of in the

neighborhood of 50% results in a more efficient SAP-MG algorithm than one with

a relatively small or large overlap. In exploring chaotic updating we found the con-

vergence rate to be substantially slower for the parallel updating of shared areas.

We saw evidence that supports others' statements that applying parallelism at the

subdomain level in conjunction with multigrid does not result in a faster algorithm.



Chapter 5

Domain Decomposition for Large

Systems

With the current version of the multigrid program and a particular instance of

the Alliant hardware, running the model problem with over 730 x 730 unknowns

uses all the physical memory and incurs heavy overhead because of page faults. As

the multigrid problem size reaches 800 x 800 the computational efficiency decreases

dramatically because of page faulting but the problem does run to completion. When

we ran a 1024 x 1024 multigrid problem the computation starts but the operating

system terminates it, presumably because of insufficient memory for system tables

and/or swap space.

In this chapter we test the hypothesis that by limiting the spatial locality of the

data operated on, through decomposition of the global domain into subdomains, the

page fault rate drastically decreases resulting in a more efficient computation. The

idea is analogous to that of strip-mining vector loops for optimizing cache perfor-

mance, but the optimization occurs at a different level of the memory hierarchy.

Given an elliptic problem, increasing its size will eventually cause its memory

requirements to exceed the size of physical memory. The exact size of the specific

problem for which this happens is not the relevant consideration, since a more compli-

cated problem, e.g., nonconstant coefficients and/or large discontinuities, may have

different storage requirements and as a result have a different memory size threshold.

6O
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Also, the amount of physical memory varies from one computer system to another.

Our concern here is characterizing the general behavior.

We ra,l four experiments to show the usefulness of the SAP in this context. All

experiments use the boundary conditiops and right hand side of the model problem

described in §2.1. The first experiment charts the page fault behavior of ordinary

multigrid as the problem size increases, revealing the need for an improved method.

The second experiment shows how applying additional processors to a multigrid prob-

lem incurring page faults has little effect in decreasing wall clock time to solution.

The third experiment detailed in §5.2 shows the superiority of the SAP-MG method

over multigrid for a specific problem. Finally, §5.3 presents results for SAP-MG with

an extended set of domain decompositions over a range of problem sizes.

Throughout this process we employ all the Alliant CEs using the do loop, mi-

crotasking parallelism facilities provided by the Alliant FX Series hardware and

compiler. 1 In the Alliant FX Series Architecture 'CE' refers to the enhanced compu-

tational element [FXm86]. The 'CE' moniker distinguishs the vector processing CPU

from the interactive processor CPU.

Although we solve using multigrid cycles during the inner iteration procedure in

this thesis, the Schwarz theory states for elliptic problems using any convergent solver

during the inner iteration procedure suffices to reach a global solution [KK58]. We

point this out because multigrid is only one of many solvers used.

The outer iteration procedure is specified as follows: sequentially visit each subdo-

main, while visiting the subdomain, advance the subdomain solution by performing

the inner iteration procedure, update convergence data structure, and update the

global solution, then proceed to the next subdomain until all of the subdomains have

been visited. After all subdomains have been visited check the convergence data

structure to see if the stopping criteria is met, if it is not met, repeat the outer iter-

ation procedure. The inner iteration procedure is 1 V cycle with cycling parameters

pbeg, pdown, pup, prop all set to 1. (Parameters are explained in §3.2.) We construct

the initial guess by applying the diffcrence operator to the boundary points. Timing

begins after initializing the arrays U and F; as a result, the system time to set up

1See Chapter 6.
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Major Time (seconds)
Page VSS

Unknowns Cycle Faults user system wall clock (MB)

700x700 first 0 10.2 1.4 78.6 54.1

avg 0 4.6 .2 5.9

720x720 first 10 10.8 1.0 81.7 57.0

avg 0 4.9 .1 5.7

730x730 first 3 11.0 1.0 81.2 58.5

avg 0 5.0 .2 6.7

740x740 first 223 11.9 4.4 158.9 59.9

avg 225 5.4 1.2 38.0

760x760 first 675 13.0 9.1 229.5 63.3

avg 538 5.9 2.5 73.0

[80x780 first 1458 14.0 8.9 250.5 66.5

avg 1277 6.4 4.3 88.0

800x800 first 4635 15.8 22.5 437.0 70.0

avg 2434 7.0 6.4 215.2

Table 5.1: Page Fault Characterization of Multigrid for Large Systems.
Alliant FX/8- 58.5MB Main Memory.

the pages in which U and F are located is not included. All timed experiments ran

with no other users on the system. The page fault statistics were monitored with

the UNIX system call getrusage. In part, we gathered timing information using the

etime system call, which returns the elapsed user time and elasped system time with

a re,_o_ution _f .01 seconds. We monitored the wall clock time with the high-resolution

timing routir, es provided in the FX/FORTRAN library, hrcget and hrcdelta, whose

resolution is ten microseconds.
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5.1 The Page Fault Behavior of Multigrid

_'irst, we show how the computational efficiency degrades as the problem size

grows when using the mAtigrid method 2. The experimental results in Table 5.1 chart

the page fault behavior as a function of the problem size. The problem size increases

from 700 x 700 unknowns to 800 x 800 unknowns in steps of 10 to 20 unknowns in

both the x and y directions. Each experiment consists of running six consecutive

cycles. The data labeled first corresponds to the first cycle. We list it separately for

two reasons: 1) in the multigrid method we compute the operators in the first cycle

only; 2) during this cycle the operating system must set up any uninitialized page

tables entries. The data labeled avg represents the average of the last five cycles. (We

do not concern ourselves with convergence in the table, the purpose of the table is to

display timing statistics only. The number five isn't meant to relate to convergence.

Choosing six cycles for this experiment is not meant to imply anything about the

convergence rate of multigrid.) The rightmost column lists the virtual set size (VSS)

in units of megabytes (MB) for each process. The data presented reflects the outcome

of a typical trial. The numb,zr of major page faults, and therefore the wall clock time,

varies from one trial to the next. A major page fault happens when replacing a

page results in a write to disk. One calculates the operator construction time by

subtracting the average cycle user time from the first cycle user time.

A problem size that executes without major page faulting incurs nearly all its

system time and extra wall clock time during the first cycle of the multigrid method.

We incur the overhead of setting up the page tables on a once per process basis.

For instance, the 700x700 problem uses about 68 seconds of wall clock time beyond

the computational time in the first cycle. This amounts to over 200% of the wall

clock time to execute the last five cycles. We see the effect of Amdahl's Law; setting

up page tables is highly sequential. Any competing method with similar memory

requiremenZs would incur a similar page table setup overhead.

On this instance of the hardware, for problems with less than 740x740 unknowns

:_,Ve ran this set of experiments on the Alliant FX/8 at Argonne National Laboratory with 58.5

MB of memory partitioned for user space, running version 4.0 of the Alliant Concentrix operating
system and version 4.0.24 of the Alliant FORTRAN compiler.
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no page faults occur. Once major page faults start to occur, the wall clock time

increases sharply and dramatically. This reveals the large spatial locality of the

multigrid algorithm; with each cycle the computation sweeps through the whole vir-

tual address space, not spending any prolonged period of time accessing any localized

subset of the data. The time spent accessing the data associated with a particular

grid point on any level is approximately the same throughout a cycle. Even though

in a conventional multigrid algorithm 3/4 of the time is spent on the finest grid one

cannot say the algorithm is exhibiting good spatial locality because during a visit to

the finest grid, the majority of memory is accessed. The use of multicolor relaxation

schemes, typically for vectorization and parallel processing purposes, makes the local-

ity of reference even worse. The 740x740 problem exceeds the physical memory size

by 1.4 MB, which exceeds the 14,600 physical pages set aside for users by around 350

pages. This 2.4% excess of address space causes the wall clock time per cycle to slow

down by a factor of 5}. A 19.6% excess causes the wall clock time per cycle to slow

down by a factor of 32. The number of page faults per cycle almost doubles every

" time the multigrid problem size grows by 20 grid points in each direction beginning

with 740x740 grid points on up to 800x800 grid points. Clearly the virtual machine

is not so virtuous for this implementation the multigrid algorithm in this instance.

Nonetheless, it does let us run the problem.

Inefficient Multiprocessing When Page Faulting

Table 5.2 compares page fault behavior for the 800 x 800 problem for different

degrees of multiprocessing 3. As in the previous experiments, we present the data from

a representative trial. Using 4 CEs instead of 1 CE only decreases the trial's wall

clock time by 16% overall and an average 25% per cycle. These results presented here

should be compared to the quite favorable parallel processing performance results (for

problem sizes where no page faults occurs) presented in Chapter 6. The wall clock

time to complete the first cycle was nearly the same in all four cases. The greatest

3We ran this set of experiments on an Alliant FX/80, with 50.0 MB of memory partitioned
for user space and four computational elements, running version 4.1.0 of the Alliant Concentrix

operating system. We compiled the code with version 4.0.28 of the FORTRAN compiler.
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deviation from the average wall clock time was 6% for the 3 CE trial. The system

time for the first cycle decreased when using more than 1 CE, which gives a strong

indication of the presence of some parallel work being done by the operating system

itself. From this experiment we conclude that when major page faults are occurring

little if any benefit is realized from having multiple processors available.

Time (seconds)
Major ,,

CEs Outer Page
Iteration Faults user system wall clock

first 1271 46.8 30.6 223.8

1 avg(2-8) 734 26.8 8.2 93.8
total 5144 234.8 88.5 882.3

first 1344 25.7 15.7 219.7

2 avg(2-8) 929 15.1 10.2 93.9
total 6506 131.5 87.7 880.4

first 1414 18.9 18.5 252.8

3 avg(2-8) 753 10.9 6.2 78.8
total 5259 95.7 61.9 806.3

first 1656 15.7 13.7 224.9

4 avg(2-8) 717 9.1 5.1 70.4
total 6677 79.5 50.0 739.7

Table 5.2: Ordinary Multigrid Method
Alliant FX/80- 50 MB Main Memory.
800 × 800 Unknowns (VSS - 69.5 MB).
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5.2 SAP-MG Outperforms Multigrid

Having seen the performance of multigrid, we now consider the SAP-MG method.

We show the superiority of SAP-MG over multigrid for problems whose multigrid

memory requirements exceed the size of physical memory. The computational cost of

SAP-MG, measured in units of floating point operations exceeds multigrid's because of

the combined effects of SAP-MG's slower convergence rate and SAP-MG doing more

work per outer iteration. We hypothesize that once we load the data associated with

a subdomain into memory, page faulting will temporarily cease and the computation

will proceed efficiently.

To verify our hypothesis we solved the model problem on an evenly spaced,

800 x 800, grid with the SAP-MG method with four square subdomains that overlap

each other by 50% as in Figure 4.1, SD4c. That is, the center square of SD4c, the

intersection of all four subdomains is equal to 1/4 the size of one of the subdomains.

Our inner iteration procedure was one multigrid V cycle with cycling parameters set

to unity. The multigrid method had a VSS of 69.5 MB and therefore used all 50 MB

of main memory*. The memory required for this SAP-MG algorithm was 36 MB,

leaving 14 MB of main memory for other jobs. Already we see an advantage, this

SAP-MG variant needed only 51% the memory multigrid needed.

Let us consider three variants of the SAP-MG algorithm and denote them 'A',

'B' and 'C'. In SAP-MG variant 'A' we assume our fine grid operator is the same at

all grid points. Because of this property, if all the subdomains are of the same size

and shape, then they can all share the same data for the difference and grid transfer

operators; that is, these operators need to be computed and stored only for a set

equal to the size of the subdomains. This only works if the differential equation and

boundary conditions have constant coefficients.

In SAP-MG variant 'B' the operators are recomputed on entry to successive sub-

domains during each inner iteration throughout the whole computation. In variant

'B' we trade off the additional computational cost of reconstructing operators for

4We ran this set of experiments on an Alliant FX/80, with 50.0 MB of memory partitioned
for user space and four computational elements, running version 4.1.0 of the Alliant Concentrix
operating system. We compiled the code with version 4.0.28 of the FORTRAN compiler.
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decreased memory needs. An application of this variant would be the case of non-

constant coefficients, unevenly spaced meshes or irregularly shaped regions.

Finally, variant 'C', works under the assumption one has enough memory to store

each of the subdomain operators completely. Variant 'C' maps well to smaller prob-

lems and distributed memory architectures. When considering our SAP-MG method

for a distributed memory architecture, variant 'C', is the only method that has prac-

tical value. However, it is not the method of choice for parallelizing multigrid on dis-

tributed memory architectures because of its slow convergence rate as seen in §5.3. In

Chan's and Tuminaro's survey of parallel multigrid algorithms [CT87], they describe

the common methods for parallelizing on hypercube architectures. We hypothesize

variant 'C' may be of some practical value. For instance, a Cray 2 computer has 64k

double words of local memory. This is enough to divide up a 64 x 64 problem into four

square subdomains, each of which could reside in the local memory of a processor for

the duration of the problem. It is conceivable that due to the faster access time of

the local memory, in spite of the slower convergence rate of the SAP-MG method

its larger outer iteration count, the outer iterations would be computed much faster

and a total improvement may be realized. However, it was not in our best interest to

pursue this idea and we consider variant 'C' no further.

We determine convergence of the SAP-MG method on the model problem by com-

paring the discrete L2 norm of the residual to the norm of exact discretization error.

We used the norm of exact discretization error instead of some arbitrary tolerance.

The method stops doing the outer iteration procedure when the residual norm is

less than the exact discretization error. We discussed the computational aspects of

determining convergence in §2.8. Note, when we used the truncation error estimate

method for the stopping criterion the problem converged in the same number of cycles.

However, our computer code uses five point grid stencils on the finest grid level and

nine point grid stencils on the coarser grid levels and as a result the truncation error

estimate is not theoretically sound. The ideal determinator of convergence would be

a method that dynamically computes the truncation error estimate and discrete L2

norm of the residual.
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Major Time (seconds) Flops

Outer Page Per
Iteration Faults usr i sys I wall clock Unknown

Ordinary Multigrid Method (VSS - 69.5 MB)

-

first 1656 15.7 13.71 224.9 151
2 689 9.1 5.11 71.9 65
3 894 9.1 4.9 I 63.3 65
4 600 9.1 4.91 65.0 65
5 919 9.4 7.41 90.7 65
6 608 9.0 3.9i 61.7 65
7 762 9.1 I 4.81 78.2 65
8 549 9.0 4.71 61.7 65

avg(2-8) 717 9.1! 5.11 70.4 65
total 6677 79.51 50.01 739.7 605

l

SAP-MG -- Four Subdomains (VSS- 36MB)

.... _

Variant A Ifirst : 0 17.0 0.9 I 24.9 152
avg(2-9) 0 14.3 0.01 14.3 115

total 0 131.5 1.01 139.5 1070

Variant B
first 7 25.6 0.91 32.2 264

avg(2-9) 0 25.8 0.01 25.8 264
total 7 232.0 1.0l 239.0 2384

, |

Table 5.3: Detailed Comparison of MG to SAP-MG.
Alliant FX/80 - 4 CEs - 50 MB Main Memory.

Inner Iteration Procedure is V1,1,1,1.800 x 800 Unknowns.
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Table 5.3 reports results for SAP-MG variants 'A' and 'B'. Recall both these

variants only allocate storage for the operators on one subdomain. SAP-MG variant

'A' is the method of choice when the finest grid difference operator is the same at all

grid points. Thus, we compute the difference and grid transfer operators only once,

before we enter the first subdomain. SAP-MG variant 'B' recomputes the operators

on entry to every subdomain throughout the solving process. Variant 'B' is a more

expensive procedure as constructing the operators on a subdomain requires slightly

more time than doing a multigrid V cycle (pbeg, etc. all 1) on that subdomain.

However, variant 'B' solves a wider class of problems.

Table 5.3 compares SAP-MG variant 'A' and SAP-MG variant 'B' to the ordinary

multigrid method. The rows labeled first, avg and total are as described previously

except for the rightmost column which now indicates the number of floating point

operations per unknown required in the associated time frame. Table 5.3 includes the

data for each multigrid cycle for ordinary multigrid to show the deviation in number

of page faults from cycle to cycle. The time per cycle for the SAP-MG variants was

constant to the tenth of a second.

For this problem the page fault behavior exceeds our expectations since the phys-

ical address space exceeds the SAP-MG method's virtual address space. Few, if any,

major page faults occur in this case. The bottom line is a wall clock time of 140

seconds for SAP-MG variant 'A' versus 740 seconds for multigrid. SAP-MG variant

'A' obtains a "speedup" of 5.3 over multigrid for this particular problem even though

the SAP-MG method requires 1.7 times more floating point operations per grid point

to converge. SAP-MG variant 'B' obtains a "speedup" of 3.1 over multigrid for this

particular problem even though the SAP-MG method requires 3.9 times more floating

point operations per grid point to converge.

In conclusion, a SAP-MG algorithm is more efficient than ordinary multigrid for

a class of large systems of equations. With SAP-MG the gains made from minimizing

the main memory, disk and I/O resources used overshadow its increased operation

count.
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Figure 5.1: Schwarz Splittings for q = 3, 5.
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5.3 Increasing the Limits of Linear System Size

In this section we show how domain decomposition allows us to solve problem

sizes that the operating system cannot set up using multigrid 5. In this last set of

experiments we study the outer iteration count of the sequential SAP-MG for four

different domain decompositions and for increasingly larger problems. \'Ve divide tile

global domain of the model problem into q x q square subdomains with q = 2. 3, 5

and 7. Figure 5.1 illustrates the domain decomposition for q = 3 and q = 5. The

domains are numbered in the order they are visited during the outer iteration. Each

subdomain overlaps its neighbors by 50%. We stop iterating when we meet the RMS

ratio convergence criterion described in §2.7.2.

The results appear in Table 5.4. A *** in a field of the table means we could

not solve that problem run using that domain decomposition on the given computer

system. We could not solve it due to insufficient memory or insufficient swap space

(or combination thereof). The combination of swap space on disk and incore memory

was insufficient. We made no attempt to solve the problems with blank entries in the

5 x 5 and 7 x 7 column because of time constraints.

These experiments verify the assertion made in §4.3 that as the number of subdo-

mains increases, and therefore the size of each subdomain decreases, tile convergence

rate per outer iteration becomes slower. Also, as the number of subdomains increases

the convergence rate becomes less and less independent of the number of unknowns.

Using 4 subdomains, q = 2, with 50_ overlap the largest problem that we solved

with a high degree of computational efficiency (over 90%) was 800 x 800 on the

given system. Solving the larger systems necessitated an increase in q. Even though

the SAP-MG methods presented here seem to be computationally inefficiexlt when

compared to ordinary multigrid in the sense of needing greater outer iteration counts

to converge, the SAP-MG method allows us to solve a problem that multigrid is

unable to solve.

_Again we acknowledge the use of the Alliant FX/8 in the ACRF computing facility at Argonne
National Laboratory with 58.5 MB of memory partitioned for user space, running AllialJt Co_lccatrix
4.0, using the Alliant FORTRAN compiler version 4.0.24.)
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Sequential SAP-MG
,.

Domain

Decomposition 2x2 3x3 5x5 7x7
Squares
Global Outer Iteration Count

Unknowns

200x200 7 11 22 26

300x300 7 12 23

400x400 7 12 25 34

500x500 8 12

600x600 8 13 26 38

700x700 8 13

800x800 8 14 27 41

900x900 ?? 14 28

1200x1200 *** 14 29 45

1500x1500 *** *** 29

Table 5.4: Outer Iterations for Various Domain Decompositions versus # of Un-
knowns.
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5.4 Poor Potential for Multiprocessing

In this section we use the results in Table 5.4 to show why parallel processing through

the domain decomposition of the global domain into large grain subdomain tasks has

been discounted. This sequential SAP-MG data gives us a gross indication of what

types of parallel processing efficiencies might be expected. Here we quantify compu-

tational efficiency using operation counts. We make the following overly optimistic

assumptions:

(1) The outer iteration count to convergence for sequential SAP-MG is a lower

bound for any parallel SAP-MG variant.

(2) The work per outer iteration is constant for all SAP-MG domain decompositions

and multigrid.

(3) Communication cost between processors is negligible.

(4) The data associated with each subdomain resides in the memory level closest to

the processor(s) operating on it. That is, no read or write to disk occurs during

the solving process.

Given that multiglid meets tile RMS ratio convergence criterion of §2.7.2 in five

cycles, then under these optimistic assumptions for q = 7 we obtain a dismal parallel

processing efficiency for a 200 x 200 problem of about 20%. For larger problems the

outer iteration count is even higher and the parallel processing efficiency is even lower.

For instance, in the 1200 x 1200 unknowns problem the parallel processing efficiency

diminishes to around 10%. The neglected computational overhead of 50% overlap

would decrease these efficiencies by at least a factor of two. Thus, multiprocessing in

this manner does not make sense.



Chapter 6

Parallelizing Multigrid With

Microtasking

In this chapter we introduce parallelism into the multigrid algorithm through

the use of microtasking Microtasking is a fine grain parallel construct. Virtually all

of the work perfornl_ ; our multigrid code occurs in doubly nested, vectorizable

loops. We review the major loops in §6.8. One can easily take advantage of do

loop/microtasking parallelism in the multigrid algorithm. Coding such algorithms can

be as easy as putting in a compiler directive that says, microtask here. In the future

as compilers become more intelligent or new programming languages are adopted the

procedure will simplify even more; programmers will need to make no alterations to

their codes. Most compilers will detect the parallelism for the user and put in the

microtasking code itself. In fact, the Alliant FORTRAN compiler does just that. One

of the major advantages of this form of parallelism is the user doesn't worry about

synchronization. We intend to show how effective the Alliant FORTRAN compiler

and Alliant FX/8 Series hardware is at automatically parallelizing the do loops in

the Boxmg multigrid code. Boxmg previously ran on a vector processor.

74
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6.1 Alliant FX Series Computer Parallelism

The four modes of do loop parallelism the Alliant FX/8 implements are vec-

tor, concurrent, vector-concurrent (VC) and concurrent-outer-vector-inner

(COVI). Vector parallelism is the normal vector technique for a single processor. The

Alliant FX/8 has a vector length of 32 elements. Processing 32 elements with a vector

instruction is two to four times faster than processing the elements in scalar mode,

depending on the instruction and degree of pipelining achieved in vector mode. Re-

call, Alliant refers to their enhanced vector CPU as a CE. An Alliant system can

devote up to eight CEs (on an FX/8 or FX/80 model computer) to the execution of

a single program. The FX/80 model has faster CEs and a larger cache than an FX/8

model. See the following page for an illustration of the modes of execution. They are

discussed in more detail below.

In the concurrent mode of parallelism each of the p available processors takes the

next available loop index and executes the code inside the loop in scalar mode in

parallel with the other processors. Concurrent parallelism also makes it possible to

call subroutines and functions in parallel.

The vector-concurrent mode of parallelism operates by dividing up the vector(s)

to be processed across the p CEs available. For instance, CE 0 would process element

1 and every p-th element from then on of a given vector up to 32 elements on the

first iteration. CE 1 would process element 2 and every p-th element from then on of

a given vector up to 32 elements on the first iteration. In the case of an outer loop

and an inner loop, only one of the outer loop indices is worked on at a time.

The concurrent-outer-vector-inner mode of parallelism is the method used to par-

allelize multiply nested loops with innermost loops that vectorize. Vector instructions

from the inner loop are executed by each of the p available CEs in parallel. For ex-

ample, an outer loop with an iteration index of four can put four CEs to work in

parallel, each performing the work to be done in the whole inner loop corresponding

to _he particular outer iteration index. Let p be the number of processors available.

Up to p indices of outer loop can be worked on at a time.
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m

Scalar

I,,<2>11A<3/ -7IA<4/I " IAC  92)I
122472 cycles

Vector

IA(I:32)I [A(33:64)1 ... [A(8161:8192)1
24184 cycles

Concurrent Code can be written as a loop:
A(1)" A(9) A(8185)

doi= I,N
A(2) A(10) A(8186)

+ S
,_(3) A(11) A(8187) A(I) h(I)

enddo
A(4) _A(12) .-- A(8188)

A(5) i A(13) A(8189)

h(6) [ A(14) A(8190) Or as an array operation:
A(7)

,_A(15) A(8191) A(I:N) = A(I:N) + S
A(8_____LA(!6) A(8,92)

15970 cycles where N - 8192

Vector-concurrent

A (1:249:8) A(7937:8185:8)

A(2:250:8) A(7938:8186:8)

A(3:251:8) A(7939:8187:8)

A(4:252:8) • • • A(7940:8188:8)

A(5:253:8) A (7941:8189:8)

A(6:254:8) A(7942:8190:8)

Ai 7:255:8) A (7943:8191:8)

A(8:256:8) A(7944:8192:8)

3848 cycles Code can be written as a loop"

Concurrent-outer-vector-inner do J = 1, N
doI=l,N

I

A(1:32,1) [ A(993:1024:1) A(I,J) = A(I,3 . S

A(1:32,2) { A(993:1_7,:2) enddo
A(1:32,3) [ A(993:1024:3) enddo

A(1:32,4) "" I A(993:1024:4)
t Or as an array operation:

A(1:32,5) I A(993:1024:5)
, A(I:N,I:L) = A(1.N,I:L)+ S

A(1:32,6) I A(993:1024:6)

A(I:32,7) ] A(993:1024:7)
where N = 8192 and L = 8

A(1:32,8) [ A(993:1024:8)

4825 cycles
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6.2 Comments About Speedup

Many methods have evolved by which algorithms are compared. Currently it

is popular to report the "speedup" achieved using multiple processors. Too much

emphasis has been placed on how close an algorithm comes to achieving the optimal

theoretical speedup in practice, usually with the number of processors equating to

the optimal speedup.

An important factor often not taken into consideration is the cost of the CPUs

involved. If a vendor sells a system a user at relatively low cost then one shouldn't care

if they achieve parallel efficiencies of 90% to 95%. Vendors price their hardware to

be cost competitive in their perceived market. The parallel efficiency trade-offs vary

from computer to computer. On a relatively low cost computer a parallel inefficiency

of 30% may be an acceptable loss. However, a smaller 10% parallel inefficiency on

an expensize CPU such as those produced by Cray Research Inc. may be completely

unacceptable. The bottom line is how big of a problem can be run in the time you

are willing to wait for it to complete on the hardware you are willing to pa), for.

Amdahl's Law states *hat for a program with serial work fraction s, the maximum

parallel speedup obtainable is bounded by 1/s. This law has led to the assertion that

the serial fraction will dominate execution time eor any large parallel ensemble of

processors, limiting the advantage of the parallel approach. If P is the number of

processors, s is the amount of time spent (by a serial processor) on serial parts of the

program, and p is the amount of work spent (by a serial processor) on parts of the

program that can be done in parallel, then Amdahl's la;; states

(s -+p) (1)
Speedup = = (6.1)

s_-_ s+_P P

where we have normalized total time s + p = 1. For P = 1024 this is a steep function

of s near s = 0 (slope of approximately _p2). This expression is based on the implicit

assumption that p is independent of P. However, one does not generally take a fixed

sized problem and run it on various numbers of processors. In practice, a scientific

computing problem scales with the available processing power. The fixed quantity is

not the problem size but ratber the amount of time a user is willing to wait for an
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answer. When given more computing power the user expands the problem to use the

available hardware.

6.3 Ease of Parallel Implementation

First, the algorithm itself didn't need to be changed. Ali the same routines are

called, in the same order. The cycling procedure stays the same, the test for con-

vergence remains the same and no new data structures are needed. No new common

areas are needed and no synchronization primitives need to be added or thought

about by the programmer. Multigrid is quite often run on vector machines and code

optimized for vectorization most likely compiles into microtasked, parallel code with-

out modification. Obviously vector code always maps to VC mode on an Alliant FX

Series computer. If the compiler doesn't automatically implement the do loop par-

allelism, it identifies the difficulty by putting a comment in the listing file. Generally

inserting a simple compiler direction, in the form of a FORTRAN comment, allows

the parallel mode to be used.

We made a minimal number of changes to our code to get all the parallelism

available; the compiler does the majority of the work. We made two types of changes

to the code. The first was due to a scalar reduction variable used in calculating

the error. The simple and standard solution makes the reduction variable a vector

of length corresponding to the outer loop and reduces the vector to a scalar after

finishing the do loops. This needed to be done in three places and the compiler

pointed out all three.

The other code alteration dealt with the way the code accesses the colored sets of

points. The original code had four nested loops with two of the loops having length

two, including the one concurrency would have been used on. As written the compiler

co_lldn't figure out how it was possible to parallelize the code. One expected this loop

to parallelize since it is the key loop of the whole program. By taking the color control

logic cut of the loop and straightforwardly implementing the loop as at the end of

this chapter the code parallelized into COV! mode.

We observed the following interesting phenomena. COVI mode is the compiler
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method of choice for parallelizing doubly nested loops. Even if the nurnber of outer

iteration indices is less than the number of potentially available processors the com-

piler still implements COVI mode. The compiler doesn't know at compile time the

number of CEs to be used. If the vector length of the inner loop is long, VC mode

would be more appropriate as all available processors could be put to work. In multi-

grid, COVI mode of execution is preferable to VC mode of execution because during

COVI mode of execution the program displays better spatial locality for the doubly

nested do loops as written, resulting in better cache performance.

Results presented in sections to follow show a moderate to high degree of success

for the compiler-generated parallelism.

6.4 Microtasking Limitations

A number of algorithm idiosyncracies in multigrid can hinder the use of and

efficiency of microtasking in speeding up multigrid. If the smoother isn't vectoriz-

able VC parallelism obviously is not applicable. On a machine that only vectorizes

stride one loops such as the NEC SX computer, circa 1987, the code is reduced to

running in scalar mode unless a major overhaul of the data structures is undertaken.

Furthermore, in addition to not being vectorizable, the smoother may not be paral-

lelizable. As the number of processors grows the tendency is for the coupling between

processors to decrease. In this case both the communication time to reach _]_e shared

variables and the contention for shared variables increases. Additionally, assuming a

fixed problem size as the number of processors grows the work per processor on the

inner loop decreases. This situation is mitigated by the fact that in many scientific

applications the problem size scales with the computational power available.

6.5 Do Loop Parallelism Experiments

The multigrid algorithm consists of two logical phase:,. The first phase consists of

setting up of the grid and interpolation operators. The second phase consists of using

these operators to do the multigrid iteration. To test the parallel ef[icie_cy of the



CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASIiING 80

Alliant architecture and its parallelizing compiler on the multigrid algorithm we ran

the following set of experiments. We tested each logical phase separately. The setup

phase testing was nearly the same as the conditions for testing the solving procedure

listed in Table 6.1 with the exception that the type of solving cycle is irrelevant. One

relaxation was done on each grid level.

Experimental Constants

Poisson's Equation
Two Color Relaxation On Finest Grid
Four Color Relaxation On Coarse Grids

Single User on System

Experimental Parameters

Types of Cycles _ of Unknowns Modes of Execution64x64 scalar 1 CE
Setup 128x128 vector 1 CEV

256x256 concurrent 1-8 CEsW
512x512 COVI/VC 1-8 CEs

Output Statistics
User, System and Wall Clock Time

Memory Use
# of Page Faults

Table 6.1: Do Loop Parallelism Experiment

The Alliant FX/8 is a virtual memory machine. To avoid site,,' irl the results we

precede all timings by a cycle to assure the software and hardware page tables and

segment table entries are set up.
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Time (seconds) Speedup

64X64 128×128 256×256 512×512 64×64 128X128 256X256 512x512

CEs
.... i

Scalar Mode of Execution

162.3 161.6 160.9

Concurrent Mode of Execution

1 59.7 157.4 157.5 157.4 1.001 1.00 1.00 1.00
2 30.1 79.3 79.5 79.4 1.981 1.98 1.98 1.98
3 21.4 55.2 54.3 53.8 2.791 2.85 2.90 2.92
4 15.5 40.6 40.7 40.7 3.861 3.87 3.86 3.87
5 13.9 34.2 33.6 33.3 4.301 4.60 4.68 4.77
6 11.8 29.2 28.8 28.2 5.04 I 5.39 5.46 5.58
7 10.7 ' 26.3 25.5 24.7 5.60 I 5.98 6.17 6.37
8 8.3 21.5 21.8 21.7 7.18f 7.32 7.19 7.25

I

Vector Mode of Execution

......

1 13.67 53.8 51.8 50.4 2.59 3.02 3.12 3.19

COVI/VC Mode of Execution

1 13.6 52.2 50.1 49.3 1.00 1.00 1.00 1.00

3 7.2 26.7 25.7 25.4 1.90 1.96 1.95 1.945.1 18.9 18.0 17.5 2.66 2.76 2.78 2.82

i 4.5 14.2 13.7 13.6 2.99 3.68 3.65 3.62
3.4 12.3 11.5 11.3 3.97 4.24 4.36 4.36
3.0 10.7 10.1 9.8 4.59 4.88 4.96 5.03

"9 . .

2.6 9.8 9.0 8.9 0.-4 5 32 5 57 5.54

2.1 8.3 8.1 8.1 6.44 6.29 G.18 6.09(R) (64) (64) (16) (4)

Table 6.2: Do loop parallelism results for setup phase of multigrid.
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6.6 Do Loop Parallelism Results

Tables 6.2, 6.3 and 6.4 show the experimental results for testing the degree of do

loop parallelism inherent in the multigrid algorithm. We used two-color Gauss-Seide]

point relaxation on the finest grid and four-color Gauss-Seidel, point relaxation on the

coarse grids. On the coarsest grid we solved directly. Column one gives the number

of CEs applied to the problem. Listed in columns two through five are the times

in seconds for an experiment. The bottom line of the tables, labeled (R), gives the

number of times the cycle was repeated during the experiment. Columns six through

nine report the observed speedup. The speedup for vector mode is the ratio of vector-

only to scalar (1 CE). The speedups for multiple CE's are the ratio of the execution

times of n CEs over 1 CE _ executing in the same parallelism mode. The scalar

times for the cycling procedures are significantly better than the concurrent times

when executing on 1 processor, especially for the 64 x 64 problem. For example, we

list the percentage extra time spent running concurrent mode for four experiments,

W64 : 42% W12s: 14% V_ :55% V12s :20%.

We attribute the differences to multiprocessing overhead. The percentage overhead is

greatest for the smallest problem as expected. The concurrency overhead is amortized

as the amount of computation work becomes greater.

Interestingly enough the same phenomena doesn't appear in the COVI/VC mode

of execution compared to the vector only mode. We speculate that the COVI/VC

mode of execution might be exhibiting bette, spatial locality and has better cache

performance which offsets the overhead due to multiprocessing synchronization.

Comparing the vector-only results to the scalar results for both V and W cycles

we see healthy speedups. Tile V cycles vectorize 10% better than the W cycles for the

smaller problems, 64 x 64, 128 x 128 and 2-3% better for the 256 x 256 and 512 x ,512

problems.
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Time (seconds) Speedup[
I

i 64×64 128×128 256×256 512x512 64x64 I 128x128 256x256 512x512CEs

Scalar Mode of E_¢e<ution

1 32.7! 144.4 144.2 142.9 _ ,

I ,
Concurrent Mode of Execution

I

1 I 51.1 I 173.9 154.1 157.4 1.00 I 1.00 1.00 1.00
2 I 26.6 I 88.5 78.2 79.2 1.92 I 1.96 1.97 1.99
3 I 19.3 I 61.5 53.5 53.2 2.68 I 2.83 2.88 2.96
4 14.4 I 45.6 40.3 40.4 3.54 I 3.81 3.82 3.90
5 13.0 I 38.6 33.4 33.0 3.92 I 4.50 4.61 4.77
6 11.5 I 33.5 28.6 28.0 4.45 I 5.19 5.39 5.62
7 ] 10.5 I 29.7 25.3 24.6 4.84 I 5.85 6.09 6.40
8 8.8 I 24.8 21.8 22.1 5.77 I 7.01 7.07 7.12

, _

Vector Mode of Execution

...

1 12.01 44.9 44.6 44.2 2.72 I 3.22 3.22 3.23
I,

COVI/VC Mode of Execution

_

1 11.9 I 46.0 44.3 43.6 1.00 1.00 1.00 1.00
2 6.4 I 24.6 23.4 23.3 1.87 1.87 1.89 1.87
3 4.8 I 17.8 16.7 16.4 2.46 2.58 2.65 2.66
4 3.7 I 13.5 13.1 12.9 3.18 3.41 3.38 3.38
5 3.3 I 12.0 11.3 11.1 3.62 3.83 3.92 3.93
6 2.9 I 10.5 10.1 9.9 4.14 4.38 4.38 4.40
7 2.7', 10.0 9.4 9.2 4.40 4.60 4.71 4.74

8 2.3 I 8.9 8.6 8.7 ! 5.23 5.!7 5.15 ,5.01

(R). (64} ! (64) (16) (4) i

Table 6.3: Do loop parallelism results for rnultigrid \" cycle'.
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ii  ime,seconds,,, Speedup
1I 34×64 128×128 256X256 512×512 34×64 I 128×128 256×256 512X512CEs .

Scalar Mode of Execution

-
' [! I

Concurrent Mode of Execution

242.8 225.3 227.0 1.001 1.00 1.00 1.00
123.7 114.8 115.3 1.621 1.96 1.96 1.97

3 127.4 ' 88.8 80.6 79.6 2.19 I 2.73 2.80 2.85

4 20.5 65.0 59.7 60.0 2.90 I 3.74 3.77 3.78
5 19.1 57.2 50.8 49.9 3.131 4.24 4.43 4.55
6 17.1 50.3 43.8 42.7 3.501 4.83 5.14 5.32
7 16.0 45.6 39.5 38.3 3.72! 5.32 5.70 5.93
8 13.3 37.0 33.2 33.1 4.50 6.56 6.79 6.85

Vector Mode of Execution

' I
!

1 19.4 I 72.4 68.3 67.4 2.48! 2.93 3.13 3.16J

COVI/VC Mode of Execution

1 19.9 T2.3 _i7.9 65.9 1.001 1.00 1.00 1.00
2 10.8 39.0 36.3 35.0 1.84 I 1.85 1.87 1.88
3 8.6 29.7 26.6 25.2 2.36! 2.43 2.55 2.61
4 6.3 23.1 21.2 19.7 3.15 3.12 3.20 3.35
5 6.1 21.0 18.1 17.2 3.27 3.44 3.75 3.$3
6 5.6 19.3 16.4 15.4 3.53 3.75 4.14 4.2S
7 5.5 18.4 15.4 14.3 3.64 3.93 4.41 4.(',1
8 4.6 15.9 13.8 13.3 4.32 4.54 4.92 4.95

_ (R) . (64) (64) (16) (4)

Table 6.4" Do loop parallelism results for multigrid W cycle.
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6.6.1 Comparison of Multiprocessing Efficiency of the W

cycle and the V cycle

Table 6.5 compares the multiprocessing efficiency of the W cycle and the V cycle.

When using W cycles the average vector length over a cycle is smaller because a

greater Thus, there has been concern in the multigrid literature about the use of the

W cycle on high performance vector supercomputers. In machines with a global main

memory and no local cache beyond that of the vector registers, longer vector length

results in improved better performance. Machines that fit into this class are the CDC

Cyber computers and the Cray XMP.

Con cu rren t COV I/V C

CEs 64 128 256 512 64 128 256 512

2 18.5 0 .5 0 0 1.0 1.0 -.5
3 22.4 3.7 2.8 3.8 4.2 6.2 3.9 1.9
4 22.1 1.9 1.3 3.2 1.0 9.3 5._ .9
5 25.2 6.1 1.0 4.8 10.7 11.3 4.5 2.6
6 27.1 7.4 4.1 5.6 17.3 10.4 5.8 2.8
7 30.0 9.9 4.9 7.9 20.9 17.0 6.8 2.8
8 28.2 6.8 4.1 3.9 21.1 13.5 4.7 1.2

-,

Table6.5" ( vsp_du_ - l) × lOO, Comparison of V cycle and \¥ cycle microtaskingwspeedup
efficiency.

Memory Hierarchy

On a shared memory machine with an additional level of memory hierarchy

between the registers and main memory, (a cache), longer vectors do not necessarily

imply better performance. The code is said to be executing from memory when the

majority of reads do not result in a cache hit. When the code is exhibiting good
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spatial locality and referencing from cache often it is said to be executing from cache.

[ASM86] studied the performance of common math expressions as a function of vector

length. They found that on the Alliant FX/8 executing from memory was up to 6

times slower than executing from cache. Long vectors tend to overflow the cache and

no longer reside in the cache the next time they are referenced.

The results of Table 6.5 do not include any set up work, only the time spent

during the cycling procedure is included. Table 6.5 shows a significant difference in

microtasking efficiency for very small problems. As problems get larger the difference

fades. Note, we are comparing the multiprocessing efficiency only. We are not stating

W cycles are less efficient, and therefore should not be used. The benefits of W cycles

go beyond the computational efficiency as W cycles reduce the error in a different

fashion than V cycles. For those who prefer using W cycles, the results show for

all but the smallest problems they can do so without contemplating the tradeoff of

computational efficiency on this architecture.

For a 512 x 512 problem the vector length in the relaxation scheme on increasingly

coarser grids is 256, 128, 64, 32, 16 and 8 assuming one CE per inner loop (COVI).

If the inner loops where coded for VC mode then the vector lengths are 32, 16, 8, 4,

2 and 1. If the whole relaxation can take place in cache it makes sense to avoid VC

mode because of the shorter vectors. The average computation efficiency in vector

mode is 12% worse for W cycles in the 128 x 128 problem but the difference diminishes

to 2% for the larger 512 x 512 problem. The W cycle efficiency approaches that of the

V cycle efficiency as the problem size increases to the largest that can fit in memory

without incurring page faults.

6.6.2 Do Loop Parallelism Conclusions

We conclude that multigrid with colored relaxation parallelizes well on the Alliant

FX Series computer. Some may argue a speedup of five out of a possible eight is poor.

However, the cost of adding processors seven and eight in an eight processor system

is relatively small compared to the cost of purchasing the first few processors. Also,

the loops can be rewritten to utilize the cache more efficiently, resulting in better

code performance. We did not do this here because we wanted to deinonstrate the
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ease with which we can introduce parallelism into the multigrid algorithm.

6.7 Reasons for Imperfect Speedup

Programs don't show perfect speedup for many reasons. If we know the potential

causes of slow-down, then we can analyze the program and attempt to minimize

their effects. We see the effects of each of the following in the experimental results

presented in Tables 6.2, 6.3 and 6.4.

Load Imbalance

This situation occurs in the COVI mode when the number of loop iterations, m,

is not an even multiple of the number of CPUs, p. In the worst case rood(ro,p) = 1

and when the end of the outer loop is reached, p- 1 CPUs wait while a single CPU

works on the last of the loop indices. COVI loops with iteration indices less than the

number of processors are a special case of the above. Executing sequential code can

also be classified as load imbalance since only one processor executes the sequential

code, and the others wait. Another type of imbalance occurs when the vector length

is not long enough to amortize the vector startup costs.

Contention for Memory

Another factor is memory bandwidth. As the number of processors increases the

data paths to/from memory are more likely to become saturated. For instance, less

than perfect speedups while multiprocessing with all four CPUs of a Cray XMP/4

have been attributed to bank conflict and memory path saturation. The concurrent

mode of execution shows greater speedup than the COVI/VC mode of execution

because in COVI/VC mode data is being accessed at a rate about 2.5 times faster

than in concurrent mode, possibly running into bus limitations.
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Synchronization Overhead

Another factor is the cost for synchronizing the contention for available loop in-

dices. Some type of synchronization method is required. The loop indices can be

scheduled statically or dynamically. When a concurrency loop is reached the proces-

sors could dynamically request the next available iteration index. The advantage of

this method is potentially better load balancing. The disadvantage of this method is

that the index counter must be encased in a critical section increasing synchroniza-

tion costs. For eight CPUs and a shared memory architecture this works reasonably

well for the amount of work contained in the multigrid loops. In the VC mode on

the Alliant FX/8, when the loop is reached each processor is assigned a vpn, virtual

process number. Each processor then proceeds to do the computation for every pth

vector element. Thus, VC mode statically allocates iterates.

6.8 Code Listing For Major Multigrid Loops

Finally, we list the loops in which the majority of the floating point operations

in our multigrid algorithm occur.
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C 9 point, 4 color relaxation

do 900 icolor = 1 , 4

do 900 j = joeg(icolor) , jl , 2

do 900 i = ibeg(icolor) , il , 2

q(i,3) = ( w( i, j) * q(i-l,j ) + qf(i,j)

$ + w(i+l, j) * q(i+l,j )

$ + s( i, j) * q( i,j-1)

$ + s( i,j+l) * q( i,j+i)

$ +sw( i, j) * q(i-l,j-i)

$ +sw(i+i,j+l) * q(i+l,j+l)

$ +nw(i+l, j) * q(i+l,j-l)

$ +nw( i,j+l) * q(i-l,j+l) )*msor(i,j)

900 continue

C Compute residuals.

do I0 icolor = I , 3

do I0 j = jbeg(icolor) , jl , 2

do I0 i = ibeg(icolor) , il , 2

mtot(i,j) = qf( i,j ) - q( i, j) * o(i,j)

$ + w( i, j) * q(i-l,j )

$ + w(i+i, j) * q(i+l,j )

$ + s( i, j) * q( i,j-l)

$ + s( i,j+l) * q( i,j+l)

$ + sw( i, j) * q(i-l,j-i)

$ + sw(i+l,j+l) * q(i+l,j+l)

$ + nw(i+l, j) * q(i+1,j-l)

$ + nw( i,j+l) * q(i-l,j+l)

I0 acrr(j-l) = acrr(j-l) + mtot(i,j)**2

Relaxation loops: turning the scalar reduction variable into a vector allows the

loop to compile in COVI mode.
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do 10 ic = 3 , iicfl

if = if+2

q(if,jf) = q(if,jf)+qc(ic,2)

a = ci(ic,2,1r),qc(ic,R)+ci(ic,2,11)*qc(ic-l,2)

q(if-l,jf) = q(if-I, jr) +a+sor (if-I, jf,mtot)

I0 continue

.... code for some edge

do 20 jc =3 , jjcfl

jf= jr+2
if=2

q(2,jf) - q(2,jf)+qc(2,jc)

aq = ci(2,jc,la),qc(2,jc)+ci(2,jc,lb)*qc(2,jc-l)

q(2,jf-l) = q(2,jf-l)+aq+mtot(2,jf-l)

do 20 ic = 3 , iicfl

if = if+2

q(if,jf) = q(if,jf) + qc(ic,jc)

a = ci(ic,jc,lr)_qc(ic,jc) + ci(ic,jc,ll)*qc(ic-l,jc)

q(if-l,jf) = q(if-l,jf) + a + mtot(if-l,3f)

aq = ci(ic,jc,la)*qc(ic,3c)+ ci(ic,jc,lb)*qc(ic,jc-l)

q(if,3f-l) = q(if,jf-l) + aq + mtot(if,3f-l)

a = ci(ic-i,3c-l,lsw) * qc(ic-l,3c-l)

1 . ci(ic-l,3c-l,lnw) * qc(ic-l,3c)

1 + ci(ic-l,3c-l,lne) * qc(ic,3c)

1 + ci(ic-l,3c-l,lse) * qc(ic,jc-l)

q(if-l,jf-l) = q(if-l,jf-l) + a + mtot(if-l,3f-l)

20 continue

Interpolate and add loops: Cray version of code compiled without modification.

Loops compiled to COVI mode.



CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 91

jf=O

do 80 j¢ = 2,jjcl

jf = jr+2

if--O

do 80 ic = 2,iicl

if - if+2

qfc(ic,jc) = Ine(ic-l,jc-1) * mtot(if-l,jf-l)

$ + la(ic ,jc ) * mto%(if ,jr-l)

$ +Inw(ic ,jc-l) * mtot(if+l,jf-l)

$ + Ir(ic ,jc ) • mtot(if-l,jf )

$ + mtot (if ,jf )

$ + ll(ic+l,jc ) * mtot(if+l,jf )

$ +ise(ic-l,jc ) * mtot(if-l,jf+l)

$ + Ib(ic ,jc+l) * mtot(if ,jr+l)

$ +Isw(ic ,jc ) • mtot(if+l,jf+l)

80 continue

Relative truncation error loops: Cray version of code compiled with one minor

modification. The compiler pointed out a reduction variable and the standard change

allowed the loop to compile into COVI mode.
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Operator construction loops: Cray version of code compiled without modifica-

tion. All loops compiled to COVI mode. The code for operator construction loops

is many pages long so we summarize the vector content of the loops in the following

table. The iteration order relates to the number of grid points the computation takes

place for, iif is the number of grid points on the finest grid level; iic is the number

of grid points on coarser grid levels. Listed in the "vector instructions" column is

the number of vector instructions that the compiler generated for the loop, excluding

vector reads and writes.

loop vector* iteration
number instructions order purpose

10 2 iif msor, mtot
240 16 iic rhs

5-pt

160 20 iic lr, 11
190 20 iic la, lb
210 39 iic lsw,lse,lnw,lne
220 165 iic w,sw,s,nw,or,msor

9-pt

40 24 iic lr, 11
80 24 iic la, lb
90 54 iic lsw,lse,lnw,lne

110 133 iic w,sw,s,nw
120 107 iic or, msor

Table 6.6: Operator construction. * doesn't include memory references.



Chapter 7

Conclusion

In this thesis we solved an elliptic model problem using variants of the Schwarz

Alternating Procedure. We chose the multigrid method for the inner iteration proce-

dure. Also, we ran experiments to test the multiprocessing efficiency of the multigrid

multigrid method on Alliant FX Series computers.

The standard rationalization for using the SAP is solving problems on irregularly

shaped domains. But we showed that the SAP can also be useful for solving problems

with a large number of unknowns when combined with a multigrid inner iteration

procedure. We used domain decomposition to limit the spatial locality to an area

that can fit into main memory, thus avoiding page faults. The same principle applies

for any multilevel memory hierarchy. Thus, even though SAP-MC executes more

floating point operations, it can execute faster than multigrid in some multilevel

memory hierarchies..

We presented results that show why parallel processing the SAP-MG method

across subdomains generally will not result in an algorithm that runs any faster

that the multigrid method itself run on a single processor. Then, we showed how

the Alliant compiler and FX Series computers efficiently parallelize the multigrid

method (multigrid with colored point relaxation). Furthermore, we showed the task

of parallelizing in this manner is trivial.
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Appendix A

Locality of Reference

The following comments about locality of reference are taken from [Del84]. The
concept of locality tells us that programs tend to reference storage in nonuniform,
highly localized patterns. Locality manifests itself both in time and space. Temporal
locality is locality over time. Spatial locality means that nearby items tend to be
similar. It means a process will tend to concentrate its references in a time interval to
a particular subset of its page, of its virtual data. Actually, locality is quite reasonable
in computer systems, when one considers the way programs are written and data is
organized. In particular,

1. Temporal locahty means storage locations referenced recently are likely to be
referenced in the near future. Supporting this observation are

a) looping,

b) subroutines,

c) stacks, and

d) variables used for counting and totaling.

2. Spatial locality means that storage references tend to be clustered so that
once a location is referenced, it is highly likely that nearby locations will be
referenced. Supporting this observation are

a) array traversals,

b) sequential code execution, and

c) the tendency of programmers to place related definitions near one another.

Deitel states "Perhaps the most significant consequence of storage refence locality is
that a program can run efficiently as long as its favored subset of pages is in primary
storage."
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Appendix B

Local Mode (Fourier) Analysis

The following discussion is taken directly from [Bra77]. Suppose we are interested
in solving the partial differential equation

' 02U(x' Y) F(x y) (2.1)02V(x Y) + c-
LU (x, y) =_a i)x2 i)x2 ,

with some suitable boundary conditions. Denoting Uk and F k approximations of U

and F, respectively, on the grid G k, the usual second-order discretization of (2.1) is

,..k k k k 2U_,_ kU2,B_ 1U2,_+_ +-- U_-I,_ kLkUk U_+I,_ 2U2,_+
_,_ _ a h_, + c h_ = F2,z, (2.2)

where

Uk,z = U(ahk,_hk), Fk,_-- F(ahk,_hk); a,_ integers.

(In the context of multigrid it is important to define the difference equations in this
divided form, without, for example, multiplying throughout by h_., in order to get

the proper relative scale at the different level.) Given an approximation u to U k, a
simple example of a relaxation scheme to improve it is the following.

Gauss-Seidel Relaxation. The points (a,/3) of G k are scanned one by one in some

prescribed order; e.g., lexicographic order. At each point the value u_,_ is replaced
by a new value _,_ such that (2.2) is satisfied. That is _,_ satisfies

k -k fik k -k fik
aU_+l,Z- 2u_,z + _-1,_ u_,_+1 - 2u_,_ + _,_-1 = F k (2 3)

+

where the new values u,,-1,_, u,,,_-i are used since, in the lexicographical order, by
the time (a,_) is scanned new values have already replaced old values at (a- 1,_),
and (a,_- 1).
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A complete pass, scanning in this manner all the points of G k, is called a (Gauss-
Seidel lexicographical) G k relazation sweep. The new approximation fi does not neces-
sarily satisfy (2.2), and further relaxation sweeps may be required to improved it. An
important quantity therefore is the convergence factor, # say, which may be defined
by

#= II_ll/llvll, wherev=U k-u, _=U k-ft, (2.4)

I1"11being any suitable discrete norm.
The rate of convergence of the above relaxation scheme is asymptotically very

slow. That is, except for the first few relaxation sweeps we have # = 1 -O(h_). This
means that we have to perform O(h_ -2) relaxation sweeps to reduce the error an order
of magnitude.

In the multigrid method, however the role of relaxation is not to reduce the error
but to smooth it out; i.e., to reduce the high-frequency components of the error (the
lower frequencies being reduced by relaxation sweeps on coarser grids). In fact, since
smoothing is basically a local process, (high frequencies have short coupling range), we
can analyze it in the interior of Gk by (locally) expanding the error in Fourier series.
This allows us to study separately the convergence rate of each Fourier component,
and in particular, the convergence rate of high frequency components, which is the
rate of smoothing.

Thus to study the 0 = (01,02) Fourier component of the error functions v and
before and after the relaxation sweep, we put

v_,fl = Ao ei(°l_+O_) and _,t_ = fi'o ei(°l_+°_)" (2.5)

Subtracting (2.2) from (2.3), we get the relation

a(vo,+l,_ - 2_o,,_ + _o,-_,_) + c(vo,,_+_ - 2_c_,/_+ "Ucr,/3-,-1) -- O, (2.6)

from which, by (2.5)

(ae i01+ ce i°2)AO + (ac -i°1 + ce -i°2 -- 2a- 2c),40 --=0. (2.7)

Hence the convergence factor of the 0 component is

Ct(0)= "4_eel I aeiO2+cei°2= 2a + 2c - ae -i01 - ce -i02 (2.8)

Define101- max(10 l,1021).In domainsof diameter O(1) the lowest Fourier com-
ponents have 101= O(hk), and their convergence rate therefore is #(0) = ! - O(h_).
Here, however, we are interested in the smoothing factor, which is defined by

/5= max Ct(0), (2.9)
.__<IOl_<,,
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where/_ is the mesh-size ratio and the range p7r _<10]_<7ris the suitable range of high-
frequency components, i.e., the range of components that cannot be approximated
on the coarser grid, because its mesh-size is hk-1 = hk/_. We will assume here that

t3 = ½, which is the usual ratio.
Consider first the case a = c (Poisson equation). A simple calculation shows that

[t = #(r/2, arccos4/5) = .5. This is a very satisfactory rate; it implies that three
relaxations sweeps reduce the high-frequency error-components by almost an order of

magnitude. Similar rates are obtained for general a and c, provided a/c is of moderate
size.

The rate of smoothing is less remarkable in the degenerate case a << c (or c << a).
For instance

71" | a 2 + c 2

/

#(_,0) -- _ a2 d- (c d- 2a) 2'
(2.10)

which approaches 1 as a --_ 0. Thus, for problems with such degeneracy, Gauss-Seidel
relaxation is not a suitable smoothing scheme. But other schemes exist. For example,

Line Relaxation. instead of treating each point (c_,_) of Gk separately, one takes
simultaneously a line of points at a time, where a line is a set of ali points (c_,/3) in G k
with the same a (a vertical line). All the values u_,_ on such a line are simultaneously
replaced by new values _,_ which simultaneously satisfy all the Eqs. (2.2) on that
line. (This is easy and inexpensive to do, since the system of equations to be solved
for each such line is a tridiagonal, diagonally dominant system. See, e.g., in [Wac66].)
As a result, we get the same relation as (2.3) above, except that u_,_+l is replaced by
uo,_+l. Hence, instead of (2.8) we get:

a I (2.11)#(0) = 2(a + c- ccos02) - ae -i°a

from which one can derive the smoothing factor

a a
--max{5-_ _}, (2.12)'a+2c

which is very satisfactory, even in the degenerate case a << c.



Appendix C

Details of Memory Requirements

To simplify the discussion of memory considerations we logically split the memory
requirements into operator space, problem space, and work space. We define some
parameters associated with the memory requirements. NX and NY refer to the
number of grid points inclusive of the boundaries in the x and y directions respectively.
NXY refers to the number of grid points in the subdomain including the boundary.
NFMAX is the total number of grid points in the finest grid and its corresponding

coarser grids for one logical storage entity. Let NCMAX = NFMAX - NXY.
Although BOXMG incurs a storage penalty because it uses nine-point coarse grid

and grid transfer operators its storage requirements are less than or equivalent to that
of its conjugate gradient competitors.

Operator space

Operator space contains the storage necessary for the difference operators on all
M grid levels and the M- 1 grid transfer operators (in the code, the M- 1 pro-
longation and M- 1 restriction operators are derived from the same data). A five
stripe, symmetric difference operator requires 3 × NFMAX . 2 x NCMAX memory
locations. A nine stripe, symmetric difference operator requires 5 × N.FMAX mem-

ory locations. The matrices storing the grid transfer operators require S × NCMAX
locations. All operators remain fixed until the problem meets the convergence crite-
rion.

Problem space

The problem space consists of the data that defines the problem on the finest
grid and the solution. The code solves equations of the form

- V. (D(x,y)_V(x,y)) + a(x,y)g(x,y) = F(x,y), (x,y) E f_. (3.1)
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Each of the matrices D, U, a and F require NXY storage locations. The matrices
D, _r and F are given at the beginning of the problem and U is solved for. The
code uses D and a to build the fine grid difference operator which are then discarded
provided we permanently store the fine grid operator. We only use cr to calculate the
center point of the difference stencil. The center point of the difference star (ko) is
only a function of the grid, D and a. We completely avoid allocating storage for a by
storing it in ko initially. We then use cr to form ko simultaneously overwriting ct. \¥c
avoid allocating storage for D in a similar manner. After initialization the combined
storage requirements for the problem space is 2 x NXY.

Also, we include the data structures that define the domains in the problem space.

Work Space

The code holds residuals and element by element inverses of various matrices in
temporary storage during the multigrid cycle. The memory requirements for arrays of
this type that span all M grid levels are NFMAX for each of msor, mtot and msos.
We only allocate the storage for msos when using a line relaxation smoothing proce-
dure. The memory requirements for arrays that span the M- 1 coarse grid levels are
NCMAX for corrections and NCMAX for right hand sides. Using a direct solve on
the coarsest grid requires the arrays bbd(NXCxNYC) and abd(NXC+2,NXC xNYC).
The parameters NXC and NYC are the number of unknowns in their respective di-
rections on the coarsest grid.

Having defined the logical sections of memory we present a chart of problem,
operator and work space for various domain sizes.
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• 5 stripe 9 stripe

nh !operator operator problem work 5-all 9-all (9-line)

40 12.6 17.3 3.1 8.4 24.2 28.9 31.2
50 18.8 25.9 4.9 12.7 36.4 43.5 47.0
60 26.4 36.5 7.0 18.0 51.4 61.5 66.5
70 35.2 48.8 9.6 24.1 68.8 82.4 89.2
80! 45.8 63.5 12.5 31.3 89.7 107. 116.
90 56.9 79.0 15.8 39.1 111. 134. 145.
100 70.1 97.3 19.5 48.1 137. 165. 178.
150 153.2 213.4 43.9 106.1 303. 363. 393.
200 270.2 376.8 78.1 187.4 535. 642. 695.
250 418.0 583.4 122.1 290.7 830. 996. 1078.
300 599.9 837.7 175.8 417.5 1193. 1431. 1549.
350 812.4 1135. 239.3 566.1 1617. 1940. 2101.
400 1061. 1482. 312.5 739.4 2113. 2534. 2745.

Table C.1: Subdomain memory requirement in kilowords where 1 word corresponds

to the storage needed for one floating point array element.

operator problem work (msos)

5 stripe
point 51% 14 % 35%
line 46 % 13 % 31% 10%

9 stripe
point 59 % 12 % 29%
line 54 % 11% 27% 8%

Table C.2: Breakdown of memory allocation as percentage of total for multigrid.
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pct. 5 stripe 9 stripe
overlap N operator operator problem work 5-all 9-all

(4x 30) 29.5 40.3 7.0 19.5 56.1 66.9
10% 57 27.7 37.4 6.3 4.9 39.0 48.6
30% 52 26.1 34.7 5,3 4.9 36.3 44.9
50% 45 24.2 31.4 4.0 4.9 33.0 40.3

(4x 40) 50.6 69.3 12.5 33.7 96.8 115.5
10% 76 47.8 64.7 11.3 8.4 67.5 84.4
30% 70 45.2 60.4 9.6 8.4 63.2 78.4
50% 60 41.4 54.0 7.0 8.4 56.9 69.5

(4x 50) 75.1 103.6 19.5 50.8 145.4 173.9
10% 95 71.1 96.8 17.6 12.7 101.4 127.1
30% 87 66.8 89.7 14.8 12.7 94.3 117.2
50% 75 61.1 80.2 11.0 12.7 84.8 103.9

(4x 60) 105.7 146.0 28.1 71.8 205.6 245.9
10% 114 100.1 136.8 25.4 18.0 143.5 180.1
30% 105 94.3 127.2 21.5 18.0 133.8 166.6
50% 90 85.8 112.9 15.8 18.0 119.,_ 146.7

(4x 70) 140.8 195.1 38.3 96.2 275. z 329.6
10% 133 133.6 183.0 34.5 24.1 192.' 241.6
30% 122 125.4 169.3 29.1 24.1 178._ 222.4
50% 105 114.1 150.5 21.5 24.1 159.' 196.1

(4x 80) 183.4 254.0 50.0 125.3 358._ 429.3
10% 152 174.2 238.6 45.1 31.3 250.6 315.1
30% 140 163.9 221.5 38.3 31.3 233.5 291.1
50% 120 148.7 196.1 28.1 31.3 208.1 255.6

(4x 90) 227.7 316.1 63.3 156.4 447.4 535.8
10% 171 216.3 297.2 57.1 39.1 312.5 393.4
30% 157 202.8 274.7 48.1 39.1 290.1 362.0
50% 135 184.0 243.4 35.6 39.1 258.7 318.1

(4x100) 280.2 389.1 78.1 192.6 550.9 659.8
10% 190 266.4 366.1 70.5 48.1 385.1 484.8
30% 175 250.4 339.4 59.8 48.1 358.3 447.4
50% 150 226.6 299.7 43.9 48.1 318.7 391.8

Table C.3: Memory requirement in kilowords where 1 word corresponds to a floating
point array element for the 4 color problem. Work space and finest grid difference
operator is shared.



Appendix D

A Matrix Convergence Proof

Efforts to accelerate the Schwarz process in the continuous domain show that us-
ing some type of derivative boundary condition at the pseudo-boundaries of the sub-
domains, as opposed to imposing a Dirichlet boundary condition is beneficial [RS89].
In this section we prove the convergence of matrix splittings in the discrete domain
corresponding to the addition of some degree of derivative boundary conditions at
the pseudo-boundaries in the continuous domain.

We consider on the two-dimensional Helmholtz equation with Dirichlet boundary
conditions:

-/Xu+q2u=f infl= {(x,y)[0<x<l, 0<y< 1)
(4.1)

_lr=¢

where q _ 0, and f and ¢ are given. To simplify our proof, we assume q is constant.
Consider the Dirichlet problem (4.1) and choose a square grid with mesh size

h = 1/(nh + 1) on the domain ft. If we set u_,j = u(ih,jh), i,j = 1,2,...,nh, and
replace the partial derivatives u_ and uyy by central difference approximations, we
arrive at the finite difference equations

--ui,j-1 -- ui-l,j "+ (4 + h2q2)ui, j - ui+l,j - ui,j+l -- h2 fi,j, ] < i,j < nk, (4.2)
Ui,o = ¢i,0; u0j = ¢0j; ui,nh+l = ¢i,-h+1; unh+l,j = Cnh+l,j-

We now formulate the matrix problem with each row of the matrix A correspond-
ing to a difference equation at one of the grid points (zi, xj). Define n -- nh × nh. We
write the matrix form of the n × n system determined by (4.2) as

Aui,j "- fi,j. (4.3)
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The matrix A has the block tridiagonal matrix structure

Define A = h2q 2 and introduce the J matrix, (ones on the subdiagonal, zero
elsewhere) and the L matrix below.

(0 (J
1 0 ! J

1 0 I J

j= 1 0 L= I J .

1 0 I J

1 0 '_h×"h _ I J ),-,×n

Furthermore, let D - D- J- jT (tridiagonal) with/7) = (4 + A)I, so the D in A
above looks like

4+A -i

-1 4 + A -1
--1 4+A --1

--1 4 + A --1
--1 4+A

The standard Gauss-Seidel iterative method can be viewed as having a Dirichlet
boundary condition at each pseudo-boundary. Its splitting A = ]lqgs - A_,, has
Mg, = D - L and Nss = L T. The matrix M s, of the Gauss-Seidel splitting satisfies
the requirements for being an M-matrix [Var62]. [Var62] gives a proof showing the
Gauss-Seidel splitting meets the conditions for regular splitting. The general form of
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the Gauss-Seidel matrix splitting for problem (4.1) is

-I D-J

-I D-J (4.4)
95 "--- •

-1 D-J

-: D-J

ancl

f jT I

jT I

(4.5)
g,_ "-" . •

jT I

k jT

Suppose, for example, we wish to solve problem (4.1) when h = 1/4 implying a
3 x 3 square of unknowns. Then, the numerical operator for this system is

( 4+,, -_ -_ '_
-1 4+ A -1 -1

-1 4+A --1

--1 4+A --1 --1

Aex = -1 -1 4+A --1 --1

-1 -1 4+A --1

--1 4+A --1

-1 -1 4+A -1

-1 -1 4+A
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We illustrate below the corresponding Gauss-Seidel regular splitting.

4+_

- i 4+_
- 1 4+a

-I 4+A

M_ = -i -I 4+A
-I -i 4+A

-I 4+,',

-i -I 4+A
-i -I 4+A

and
/0 1 I

0 1 1
0 1

0 1 1

Net= 0 1 1
0 1

0 1
0 1

0

We want to widen the class of matrix splittingr for which we can prove convergence.
To set up the matrix splitting for the Gauss-Seidel like method used by Rodrigue and
Shah in [RS89], we subtract a portion, 52, from the M-matrix's diagonal and place it
on the diagonal of N. The matrix 52is an n × n diagonal matrix with ai the degree of
derivative conditions selected, {0 _<ai <_2" i = 1,...,n}. We call the new matrices
derived from M and N, P and Q respectively. To fully illustrate we define an example

matrix

0
1

0
1

52e_--- 2 ,
1

0
1

0
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which in turn defines the splitting

(4+A
--1 3+A

-1 4+A
-1 3+A

Pr::- -i -1 2+A
-1 -1 3+A

-1 4+A
-1 -1 3 + A

\ -1 -1 4 + A

(0 1 1
-1 1 1

0 1
-1 1 1

Q_= -2 1 1
-1 1

0 1
' -I 1

0

We takethesplittingA - P - Q suchthatP - D - (L - E and Q = LT - _.

Since diag(A) = diag(P)- diag(Q), we have D = 4 + A - 2E. The M and N of (4.4)
and (4.5) can be compared and contrasted to P and Q which are of the form

f D-J+F,

-I D-J+F_

-I D-J+F,

p = , (4.6)

-I D-J+E

-I D-J+E

_' JT-E I

jT_F. I

jr-_: I (4.7)
Q--

JT-E I

\ JT-E



APPENDIX D. A MATRIX CONVERGENCE PROOF 107

Our goal is to prove the splitting A = P- Q is convergent. Matrices arising
from the discretization of the Helmholtz equation are known to be M-matrices. As a
result A -1 is non-negative. If P-Q were a regular splitting, then by Theorem 2.4 the
iterative method associated with the splitting would be convergent. Unfortunately, by
definition diag(Q) < 0, Q is not non-negative and we do not have a regular splitting.

If we write P as D -wE and Q as wE T then we can apply the Ostrowski-Reich
theorem provided D and P meet certain conditions. Let So be the amplification
matrix p-1Q. Matrices (4.6) and (4.7) illustrate the case of w = 1. When w = 1 the
splitting is similar to an Gauss-Seidel splitting. For w = 1 the off-diagonal elements
of P and Q are the same as the off-diagonal elements of M and N of the Gauss-Seidel

splitting. The difference is a portion of M, E, has been moved to N. When w # 1
the splitting is similar to an SOR splitting.

Now, the main result of this section. For the Dirichlet problem (4.1), we prove
the following theorem:

Theorem D.1 Let A = P- Q be the described above, where A is the difference
operator approximating the differential equation of problem (It.l) and P and Q are

p(So) < 1. Thus, the matrix So is convergent, and the associated iterative method
Px k+l = Qx k + f, k :> O, converges for any initial vector x °.

Proof:

We begin by recalling the Ostrowski-Reich theorem (as it appears in Theorem 3.6
of [Var62]).

Theorem D.2 (O_trowski-Reich) Let A = D- E- E" be an n × n Hermitian
matrix, where D is Hermitian and positive definite, and D- wE is nonsingular for
0 < w < 2. Then p(So) < 1 if and only ifA is positive definile and 0 < w < 2.

The matrix A is known to be positive definite. To use the theorem we must cast A

in terms of the appropriate D and E. We take E = L- E =_ Q = wE T -- w(L- _)T.
Given A, and having chosen Q, to obtain the desired P, D -wE, we choose D to be
the diagonal matrix 4 + A- 2E. Now, having chosen A = D - E- E T, it remair,_
to show

(1) D is Hermitian and positive definite,

(2) D -wE is nonsingular for 0 < w <_2.

Proving (1) is trivial: D is diagonal and has positive real elements - since 4 + A >
2ai for all i. Therefore, D is Hermitian and positive definite. ,
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To show D- wE is nonsingular we prove it is strictly diagonally dominant. To
prove strict diagonal dominance we show that our lower triangular matrix P satisfies
the stricter condition

i--1

min diag(P) > max _ ]pi,ii, 1 <_i .< n. (4.8)I i
j=l

First we consider the right side of inequality (4.8). For our matrix P = D - wE

i--1

m.ax _ Ip,,jl= 2w, 1 < i <_n (4.9)
I j=l

since the E matrix has at most two off-diagonal elements of unity in any one row
and the diagonal matrix D makes no contribution to P's off-diagonal elements. Now
considering the left hand side of inequality (4.8) we have

diag(P) = 4 + A --(2 --w)E. (4.10)

Since the multiplier of E in (4.10) is >__0 the minimum is attained for the element i
at which ai is a maximum. Since, maxi ai _<2, this yields

min[diag(P)] =4+A-4+2w=Z_+2w (4.11)

min[diag(P)] = 4 + A - (2 -w)max[ai] _>A + 2co

Substituting (4.9) and (4.11) into (4.8) gives

£x + 2co > 2w. (4.12)

Obviously (4.12) holds true for any w so the inequality of (4.8) holds true for 0 _<co _
2. Thus D-wE and therefore P is strictly diagonally dominant and as a consequence
nonsingular (Theorem 2.2). Finally, we may apply the Ostrowski-Riech theorem. The

positive definiteness of A and limitation of w to 0 < co < 2 guarantees p(Sw) < 1.
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