UCRL-LR-108186
Distribution Category UC-705

UCRL-LR--108186
DE92 000096

A Domain Decomposition
Algorithm for Solving Large
Elliptic Problems

Matt Patrick Nolan
(M..S. Thesis)

Manuscript date: January 1991

LAWRENCE LIVERMORE NATIONAL LABORATORY uL_

University of California * Livermore, California ¢ 94551

MASTER

CISTRIBUTION OQF THIL GO WAENT I8 UNLIMITED

Abstract

An algorithm which efficiently solves large systems of equations arising from the dis-
cretization of a single second-order elliptic partial differential equation is discussed.
The global domain is partitioned into not necessarily disjoint subdomains which are
traversed using the Schwarz Alternating Procedure. On each subdomain the multi-
grid method is used to advance the solution. The algorithm has the potential to
decrease solution time when data is stored across multiple levels of a memory hierar-
chy. Results are presented for a virtual memory, vector multiprocessor architecture.
A study of choice of inner iteration procedure and subdomain overlap is presented for
a model problem, solved with two and four subdomians, sequentially and in parallel.
Microtasking multiprocessing results are reported for multigrid on the Alliant FX-8
vector-multiprocessor. A convergence proof for a class of matrix splittings for the

two-dimensional Helmholtz equation is given.

Acknowledgements

I would like to express my gratitude to those individuals and institutions that helped
make this work possible. I appreciate the comments and criticism of Dr. John Feo
who was especially helpful during the early stages of organizing this thesis. I thank
Dr. Joel Dendy Jr. for his helpful comments and for providing his multigrid code
which became the basis the multigrid solver used in my thesis. I thank Dr. Garry
Rodrigue for patiently waiting for me to complete my thesis. I express heart felt
appreciation towards a fellow student, now Dr. Bracy Elton; without his expertise in
document preparation, helpful discussions, and moral support I would not finished
my Masters Degree. Finally, to Dr. John Bolstad, I am indebted for all that he taught
me regarding the technical aspects of multigrid and technical writing.

I acknowledge and greatly appreciate the financial support of the Lawrence Liv-
ermore National Laboratory through its Student Employee Program. I thank the
Computing and Mathematics Research Division of Lawrence Livermore National Lab-
oratory and the Advanced Computing Resource Facility of the Mathematics and Com-
puter Science Division at Argonne National Laboratory for the use and availability

of their computer resources.

i

Contents

Abstract

Acknowledgements

1 The Schwarz Alternating Procedure

1.1
1.2
1.3
1.4
1.5

A Two Subdomain Example
Development and History
Sufficient Conditions for Convergence
Conditions for Numerical Convergence

Minimizing Spatial Locality of Reference

2 Solving Elliptic Differential Equations

2.1
2.2
2.3
2.4
2.5
2.6

2.7

2.8

Continuous Boundary Value Problem
Discrete Boundary Value Problem
NOTITIS © « v o o e
Error Definitlons oo e e
Matrix Properties and Concepts
Iterative Methods e
2.6.1 Defect Correction Formulation
CONVETEENCE . . - « o v v v et e e e e e e e e e
2.7.1 Example Behaviorof Norms
2.7.2 Stopping Criteria
2.7.3 Comparing |||l and |||lc - - - - - - - oo
Dynamic Computation of Stopping Criteria

11

© U e

2.8.1 Dynamic/Distributed Computation of ||-[[,
2.8.2 Dynamic/Distributed Computation of ||-||, . . -

3 The Multigrid Method

3.1 Two-grid Algorithm
3.2 The Multigrid Algorithm
3.3 Determining Coarse Grid Approximations
3.4 Specification of Grid Transfer Operators
3.5 Computational Efficiency,
3.6 Historical Comments o

4 Outer Iterations vs Inner Iterations

4.1 Overlap e
4.2 Choice of Inner Iteration Procedure,
4.3 Subdomain Shape L
4.4 Comparing Convergence Criteria
4.5 Parallel Method e
46 Two Subdomain Results
4.7 Four Subdomain Results
4.8 Alternating Vertical and Horizontal Subdomains
4.9 Conclusion v i i e e e e e

5 Domain Decomposition for Large Systems

5.1 The Page Fault Behavior of Multigrid
5.2 SAP-MG Outperforms Multigrid
5.3 Increasing the Limits of Linear System Size

5.4 Poor Potential for Multiprocessing.

6 Parallelizing Multigrid With Microtasking
6.1 Alliant FX Series Computer Parallelism.
6.2 Comments About Speedup L.
6.3 Ease of Parallel Implementation

6.4 Microtasking Limitations

32
34
37
38
41
42
43

45
45
47
47
50
52
54
94
58
59

60
63
66
71
73

6.5 Do Loop Parallelism Experiments 79

6.6 Do Loop Parallelism Results 82
6.6.1 Comparison of Multiprocessing Efficiency of the W cycle and

theVeycle 85

6.6.2 Do Loop Parallelism Conclusions 86

6.7 Reasons for Imperfect Speedup 87

6.8 Code Listing For Major Multigrid Loops 88

7 Counclusion 93

APPENDICES:

A Locality of Reference 94

B Local Mode (Fourier) Analysis 95

C Details of Memory Requirements 98

D A Matrix Convergence Proof 102

Bibliography 109

Contents

Chapter 1

The Schwarz Alternating

Procedure

In the 1860’s Schwarz [Sch69] found that for a region consisting of the union
of two rectangular regions or disks, he could construct a sequence of solutions of
the Laplace equation on these subregions which would converge to the solution of
the Laplace equation on the union. Picard [Pic90] called it “the Schwarz alternating
procedure” and used it to solve a nonlinear elliptic equation in 1890. Mathematicians
now refer to his method as the SAM, Schwarz alternating method, or SAP, Schwarz
alternating procedure. We use the terminology SAP. The following is description of

a simple version of SAP taken from [Tan87]:

1.1 A Two Subdomain Example

Consider the Dirichlet problem for an elliptic operator L

{L(u):f z€N L1)
ulr, =% z€lg

where) is a bounded region in d-dimensional space, I'q is the boundary of Q and
x = {z;,29,-++,z4} is the independent variable, u is a function which maps x to
the real numbers, R, is twice continuously differentiable and continuous up to the

boundary. It is assumed that the solution of this problem exists and is unique.

1

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 2

I2

Iy

Figure 1.1: Two overlapping subdomains.

Schwarz split the solution domain § into two overlapping subdomains €; and §2,.
Let Q2 = ;N0 #0 and let I, g, and I'g,, denote the boundaries of O, Q,
and §);, respectively. We denote by I} that part of I';; lying in §2,, and by T'; that

part of T'y2 lying in §;. Then

as in Figure 1, where
I
Iy
I
I

Iq, =T UTY,

F92 = I‘g U F;,

= I'g N Ta,,

= FQ] n FQ!Q,
I'a N Taq,,

= PQ: N Fnlz

We refer to the dashed lines of Figure 1 which correspond to I'j and I} as pseudo-

boundaries.

From this splitting we formulate two coupled problems

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 3

(

L(uy) = f z €
ﬁumh {¢ x € Iy (1.2)
' u; x €
and)
L(ug) = f z €)y
X Y x€eTly (1.3)
'(12|r‘n2 { u XE r.,.
Clearly, u, the solutlon of (1.1), is the solution of (1.2) and (1.3). It is also clear
that:
U = U, x € (U,
U = u, x €
U, = U, x € Q,.

Thus, problem (1.1) is equivalent to the pair of problems (1.2) and (1.3). Since
there are unknowns which are coupled in the boundary conditions, we cannot solve
the two problems independently. By constructing an initial guess u|r; = 3o, we can

form a sequence {ul ,u2)} 1 > 1, as follows:

L) = f z€
0) _ v x€l; (1.4)
wilra, = 4 40 xer
Ly = f z €
() _ v xel, (1.5)
“2 W, = ui™l x €Ty
L) = f zE,
4) v xel,
u = i 1.6
1 IFnl { u x€ I,,l (1.6)
i=1,2,---

We can now show that the sequence Iug), uz)} will converge to the solutions {u,,u,}
of (1.2) and (1.3) under certain conditions mentioned in §1.3. Then, from the solution
of (1.2) and (1.3), we construct the solution of (1.1).

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 4

Convergence proofs for the continuous problem rely on finding the analytical solu-
tion as each subdomain is visited. For the discrete problem one solves the subdomain
problem using some numerical method. One need not solve with the same numer-
ical method on each subdomain. We call the act of solving on a subdomain (with
a particular numerical method) the inner iteration procedure. We call a sequence of
inner iteration procedures applied to each of the subdomains an outer iteration. Also,
an inner iteration procedure isn’t restricted to an iterative method; it may be some
type of direct solution method, in which case we say the inner iteration procedure
has an iteration count of one. An outer iteration advances the solution for all grid
points in the domain 2. An inner iteration procedure is a method used to advance
the solution of a subdomain problem. Furthermore, in chaotic SAP schemes the inner
iteration procedure on §); may vary from one outer iteration to the next. For some
outer iteration, an inner iteration procedure on €; could be a null iteration where no
update of the unknowns in §2; occurs.

“Unlike some other techniques which usually are precise procedures for solving
problems, the SAP basically gives us only a philosophy for solving a problem. The
freedoms inherent in the SAP provide great opportunities to incorporate many other

techniques in order to obtain good performance.

e Freedom in the geometrical shapes of the subproblems. This freedom makes
it possible to tailor the subregions to meet the requirements imposed by fast

solvers or by grids.

¢ Ireedom in the solution techniques for subproblems. We are able to choose
different solution techniques for different subproblems. It is also possible to use
different ways to obtain the solution of the same subproblem in the different
stages of computation, allowing us to use an optimal approach at any particular

moment or in any particular location. This is a unique feature of the SAP.

e Freedom in the numerical model for each of subproblem. Special boundary
shapes or local behavior of the solution need a special treatment in the modeling.
The decoupled subproblems allow us to localize the special treatment to the

place where it is needed. Composite grids are a good example of this.

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 5

¢ Freedom in the number of subproblems. This freedom will permit us to adapt

this algorithm to different degrees of parallelism”. [Tan87)

1.2 Development and History

In 1869 Schwarz [Sch69] first developed a method he called an alternating method
to prove the existence of the solution of the Dirichlet problem for the Laplace equation
on a union of two overlapping domains. Soon Neumann [Neu90] observed that a
similar idea could be applied to the solution of the Dirichlet problem in a region
that is the intersection of two other overlapping regions. Later Poincaré [Poi90]
developed his balayage method, which is similar to Schwarz’s method. Poincaré was
also concerned with existence proofs rather than computation.

During the 1930’s many Russian mathematicians applied Schwarz’s method to
problems in elastostatics. They treated the solution process of SAP as a search for
the minimum of a variational problem. This new way of thinking provided possibilities
for enlarging application areas. Gorgidz applied the SAP to a plane problem in the
theory of elasticity. Almost at the same time, Mikhlin [Mik34] generalized this idea
to a biharmonic problem. He proved the convergence of the SAP to the solution of
the second elastostatic boundary value problem. A more general proof of this method
for the second boundary value problems of elasticity in three dimensions was sketched
out by Sobolev [Sob36]. He reduced the consideration of convergence of the sequence
of approximations to a study of convergence to the minimum of the integral of strain
energy. He applied the variational method to prove the convergence of the Schwarz
algorithm for the Laplace equation and the equations of elasticity theory, but the
convergence of the Schwarz algorithm was established only in the mean.

In the early 1950’s, Kantorovich and Krylov [KK58] gave a set of five sufficient
conditions which guarantee the convergence of the SAP in the continuous domain.
These conditions encompass most of the areas to which the SAP can be applied.
We give the conditions in §1.3. In 1951, Mikhlin [Mik51, Mik65] applied Sobolev’s
method to establish the convergence of the algorithm for the general second order

linear elliptic equation.

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 6

After the 1960’s people began to apply the SAP to numerical computations rather
than to existence proofs or theoretical analysis. Some new algorithms such as alter-
nating direction implicit methods or Fourier analysis/cyclic reduction methods were
the state of the art at the time, but they could only be applied to rectangular regions.
The SAP was a natural way of applying these methods to a union of rectangular re-
gions.

D’Jakonov [D’J62] derivea some work estimates for solving Poisson’s equation to
a given precision on overlapping rectangular regions using the SAP. The rectangular
solutions are found by the alternating direction implicit method, or a similar method
of D’Jakonov’s, applied to the five-point difference approximation.

Werner [Wer60, Wer63] considered application of the SAP to any linear second-
order elliptic partial differential equation with boundary conditions of the third type
— also called Robin’s or mixed boundary conditions. He proved the existence of a
continuous solution and gave error bounds for a solution which satisfies the differential
equation, but only approximates the boundary data. He presented numerical results
for the Laplace equation on an L-shaped region with mixed boundary conditions.
He expressed the rectangular solutions as a double finite Fourier series. Mysovskih
[Mys59], Kang and Wang [KW59] and Miller applied the finite difference analogs to
the SAP. In [Mil65], Miller shows four conditions are sufficient for convergence of the
solution of the numerical SAP to the original continuous problem. We mention them
in the section to follow. In the same paper he also gives work estimates for several
cases. Fairweather and Mitchell [FM66] applied the SAP to a nine-point difference
approximation on an L-shaped region. Their inner iteration procedure was a modified
alternating direction implicit method.

Dupont [Dup67] generalized their idea to the equation V - (aVu) = p, and derived
work estimates on overlapping rectangular regions. Stoutemyer [Sto72, Sto73] applied
the SAP and Neumann’s variant to the Laplace equation on the union and intersection
of two overlapping spherical balls to compute the capacity of a lens. He paid particular
attention to the treatment of singularities in the Poisson kernel and at the corners of
the region. Lions [Lio78] applied the SAP to the variational problem.

As we mentioned earlier, applications of the SAP to composite mesh methods

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 7

have attracted people’s attention for some time. Volkov [Vol68] first presented a
second order composite method for the Dirichlet problem for the Laplace equation;
he also used the SAP to solve the system of linear equations. Later, Starius [Sta77]
generalized this idea to linear second order elliptic equations.

Also worki~g¢ with composite mesh methods, Linden [Lin81] compared and con-
trasted two ways to combine multigrid techniques with the SAP for a model problem.
Stiiben and Trottenberg expound upon Linden’s work in [ST82a]. One method uses
multigrid as the inner iteration procedure of the SAP. Though the efficiency of this
method is better that of the corresponding SOR method, the total efficiency is limited
by the convergence properties of the SAP. The convergence rate of the SAP depends
on the geometrical situation; roughly, the smaller the overlap of the subdomains, the
slower the convergence. Appendix 4 contains tables which show outer iteration counts
for various Schwarz splittings with a multigrid inner iteration procedure. Because of
the relative slowness of this method Stiiben and Trottenberg refer to it as the “naive”
combination of the SAP with multigrid. In their metkod a multigrid hierarchy of
composite meshes is used; the principle of the SAP is applied only vithin the relax-
ation process for smoothing. The efficiency of this method is empirically observed
to be essentially independent of the overlap. Hackbush [Hac85] also considers the
combination of multigrid and the SAP. These authors mention the concept of mul-
tiprocessing multigrid using the SAP. However, they dismiss the idea of high level
multiprocessing through domain decomposition of the global domain, the “naive” ap-
proach, as ineffective, in part, at least, because of the associated slower convergence
rate [Den88].

Glowinski, Dinh and Periaux [DGP80, GDP80] formulated a conjugate gradient
variant of the SAP for solving the Navier-Stokes equations. Essentially they reduced
the problem to a minimization problem on the intersection of two overlapping regions.

When computer technology advanced to parallel processing, the inherent paral-
lelism in this algorithm obtained new appeal. Kang [KCSQ85] extended the varia-
tional form of the SAP to general second order elliptic partial differential equations
and tried to apply it to parallel computations. Unfortunately, his proof for conver-

gence for an asynchronous version of the SAP was wrong [Tan87].

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 8

Rodrigue [RS84a, RS84b, Rod86, RS85] recast the SAP in terms of numerical
linear algebra so that classical techniques of acceleration could be applied. A Jacobi
splitting of the modified matrix problem v-as studied in these papers.

Analysis and experiments show that the convergence rate of the plain SAP can
be further improved. Many authors have independently found that SOR acceleration
of the SAP works efficiently. Oliger, Skamarock and Tang [OST86] also noticed the
sensitivity of the relaxation parameter is related to the overlap. Theoretical estimates
of the convergence rate and choice of the best relaxation parameter for the model
problem are given. In the same paper mentioned above [KCSQ85], Kang also proved
the convergence of the SOR acceleration for the finite element method. Meier [Mei86]
had also proposed a parallel SOR variant of the SAP.

Some computer scientists are studying the SAP as a method for decomposing a
problem such that different solvers can be used on different subdomains [PR89], with
the hope of diminishing the work needed to solve some computationally expensive
problems. With this strategy, one hopes that on some subdomains computationally

less expensive inner iteration procedures can be used.

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 9

1.3 Sufficient Conditions for Convergence

Several proofs of convergence for the SAP exist [KK58, CH62, KCSQ85]. The
most general case was given by the Russian mathematicians Kantorovich and Krylov
in the 1950’s [KK58]. This elucidation of Kantorovich’s and Krylov’s sufficient con-
ditions is also taken from [Tan87]. They showed that five conditions suffice for the
SAP to converge to the solution of the continuous boundary value problem (1.1).

The five conditions are:

e Uniqueness. Two solutions u and u’ which satisfy equation (1.1) in Q, are
bounded, and have identical values on the boundary I'q (except, perhaps, at a

finite set of points), are identically equal in 2.

e Monotonicity. Two bounded functions u and u’ which satisfy equation (1.1)
in Q and have u > u’ on I'q (except, perhaps, at a finite set of Loints) will

satisfy u > u’ everywhere in 2.

o Limit solution. The limit of any monotone and uniformly bounded sequence

of solutions to equation (1.1) is also a solution of (1.1).

e Maximum principle. A solution to (1.1) cannot have either a positive interior
maximum or a negative interior minimum. For linear problems this implies the

monotonicity condition.

e Continuity onto the boundary. If u = f on a boundary segment except at
a point P inside the segment, where f is continuous on this segment, then the
solution u(Q) for Q in Q approaches f(P) as @ — P.

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 10

1.4 Conditions for Numerical Convergence

The numerical analog to the SAP is straightforward. We can discretize the
problems (1.4)-(1.6), and then solve them numerically. Miller [Mil65] showed that
the following conditions suffice for convergence of the discrete SAP solution to the

continuous problem:

e Existence of a continuous solution. The solution of the continuous prob-
lem (1.1) exists. This implies that the solutions of problems (1.2) and (1.3)

exist.

e Existence of the discrete solutions. Solutions of the discretized prob-
lems (1.2) and (1.3) exist.

e Convergent discretization. Discrete approximations of (1.2) and (1.3) are

convergent to the continuous solution of (1.2) and (1.3).

e Contraction mapping. There exist contraction numbers @; < 1,Q, < 1,
such that Q;Q, < 1 and

luy —]| < @i,
||u2 - dz” < Q2€2,

where €, ¢; are perturbations of the boundary data on I'}, I'}, and 4, u; are the

perturbed solutions which correspond to u; and u,.

For linear elliptic differential equations we can also express problem (1.1) in an
equivalent variational form; then it is possible to prove that the solution sequence of
the corresponding finite element method is a convergent minimization sequence. The
independenc : between convergence and the ordering of the solutions of the subregions
can be easily shown in variational form [KCSQ85]. We can also recast the numerical
analog of the SAP as a modified matrix problem, then prove its convergence. From
analysis of the linear algebra analog of the SAP for the model problem many new

results can be obtained by applying classical acceleration schemes.

CHAPTER 1. THE SCHWARZ ALTERNATING PROCEDURE 11

1.5 Minimizing Spatial Locality of Reference

In this thesis, we take a new approach in applying the SAP. For a class of problems
we use the SAP to create an algorithm which is faster and which allows one to solve
problems that were previously unsolvable on a given architecture due to both physical
and virtual memory constraints.

An SAP algorithm can decrease the solution time when it limits the degree of
spatial locality! to an amount smalle. than the main memory of the computer. In
this case, we are solving a large system of equations, one that ordinarily we could not
solve without storing data on disk. A problem is large if for any reason increasing its
size causes a decrease in the rate of solution in terms of some normalized quantity
such as floating point operations per second. We can decrease the solution time
because accessing data on disk is one to four orders of magnitude slower than access
from the memory closest to the CPU. For example, the memory access time on an
Alliant FX/8 is 170 nanoseconds, whereas the sum of the average rotational latency
and positioning times for the disk is 25.5 milliseconds.? A properly constructed SAP
algorithm will result in fewer disk accesses.

We could apply the same strategy at a different level of the memory hierarchy
by constructing an SAP algorithm that localizes spatial references to cache or local
memory. The advantage of faster memory access is smaller at this level, usually
offering a two to tenfold improvement. We remark that even though a memory access
differential exists, an SAP algorithm isn’t guaranteec to be an improvement over
the old algorithm. The outer iteration count of the SAP method used in this thesis
exceeds that of doing the inner iteration procedure at the global level. The differential

in memory access time must breach some threshold value.

1See Appendix A.

2Hardware specifications for 10 1/2 inch Winchester disk drive used: 379 megabytes, data transfer
rate 1.9 megabytes/sec, 842 cylinders, 20 tracks per cylinder, 44 sectors per track, 512 bytes per
sector, average rotational latency 7.5 milliseconds and positioning times — 5.5 milliseconds track to
track, 18 milliseconds average and 35 milliseconds maximum.

Chapter 2

Solving Elliptic Differential

Equations

We consider a single second-order partial-differential equation (in two independent

variables)
8*u 0%u 0%*u Ou Ou
A5zt Boray T o TP gy

When the value of B> — 4AC < 0, the equation is classified as elliptic. Here u is a

) = 0. (2.1)
function from R? to R, which is twice differentiable.

2.1 Continuous Boundary Value Problem

Linear boundary value problems are denoted by

£2U = F9(z) TeN
(2.2)
£fU = Fl(z) zeTl =00
Here ¢ = {z;,---, x4} ,with d the dimension of the space, and for our purposes d = 2.

Q) is a given domain with boundary T. £% is a linear (elliptic) differential operator
on and £T stands for one or several linear boundary operators. F*® denotes a given
function on Q and FT one or several functions on I'. We let u* denote the solution

to the continuous problem (2.2), the “exact” solution.

12

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 13

One of the simplest elliptic problems is Poisson’s equation in the unit square,

—AU =F
Ulr= ¢ (2.3)
Q={(z,y)|0<z<1,0<y <1},

where F and ¢ are given. For the model problem of our computational studies in
Chapter 5 we chose Poisson’s equation with F' = 10sin(3z + y) and ¢ = sin(3z + y)

on the unit square.

2.2 Discrete Boundary Value Problem

For discrete problems!, we use the terminology grid functions, grid operators and

grid equations. The discrete analog of (2.2) is denoted by

Lilu, = fil(z) T € Qy
(2.4)

Liuy = fl(z) z €.

Here h is a (formal) discretization parameter. The discrete solution to problem 2.4,
which we denote uj, is a grid function defined on 2, UT,. fi! and f} are discrete
analogs of F® and F'. L% and L! are grid operators, i.e. mappings between spaces
of grid functions. L? is also called a discrete or difference operator, L} a discrete
boundary operator. For simplicity we assume that the discrete boundary equations
are eliminated from (2.4). This is, for example, quite natural in the case of second
order equations with Dirichlet boundary conditions. In this thesis, §) is a rectangular

domain and §; a rectangular grid “matching well” with Q. Q, is described by
Q= QNG ' (2.5)
where G} denotes the infinite grid

Gv={z=k-h : k€ Z*}. (2.6)

'Derived from [ST82a).

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 14

Here k-h = (k1 kg, Kohy). More specifically, the computational grid 2, for the discrete
analog of (2.3) is defined by:

th{(xiayj)le’_‘ihx’ yj=jhy’ 0<:<n;+1, OSany+1} (27)

where h, = 1/(nz + 1), hy = 1/(ny + 1), and ng, ny are integers which represent the
number of unknowns in each direction. For simplicity we assume n, = n, = ny and
h = h, = hy, a square, uniform mesh.

For the computational grid Q; a corresponding set of grid functions U, and Fj
are defined by Uy = {up : Qx — R} and Fr = {fa : Q» — R}. Let L, be the
linear operator L : G{Q) — G(Q4), where G(4;) denotes the linear space of grid
functions on .

Replacing the partial derivatives u,, and uy, in (2.3) by centered difference ap-
proximations at ¢ach grid point (z;,y;), we have the following corresponding second
order finite difference equations:

—Uijoy = Uimy + Ui = Uip; — Ui = RS, 1<isn, 1<j<n, (2.8)

Uio = Bi0; Uo,j = D05} Uiny+1 = Diny+1s Ung+1,j = Prot1,5-

Given these difference equations, we formulate a matrix problem with each row of
the matrix Lj, corresponding to a difference equation at one of the grid points, u; ;.
Let n = n. x n, denote the rank of L. The corresponding linear system of equations,
the grid equation, is denoted

Lhuh = fh. (29)

Finally, we define the n-vector whose components are the values of the continuous

problem solution u* at the grid point locations in Q. Let

W, = {W,"j = u‘(a:,-,yj),\/ (.’L‘,‘,:EJ') (S Qh} (210)

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 15

2.3 Norms

In this section we define norms which we use throughout this thesis.

Definition 2.1 The l; norm or Euclidean norm of any n-vector v is given by

n
lollg = VoTv = || D il
=1

Definition 2.2 The infinity or maximum norm of any n-vector v is defined by
il = max(|vi]), 1 <2< n.

Definition 2.3 When v is any n-vector arising from the 2-D discretization of a par-

tial differential equation the discrete L, norm of v is given by

Ivll, = h\i > vl
=1

The maximum and discrete L, norms are related by the property ||v||, < Vvl

Definition 2.4 The spectral radius of a matriz A is defined by
p(A) = sup{ |A| : A an eigenvalue of A}.

Definition 2.5 The spectral norm of a matriz A is defined by

A
HA“ = sup H m”E = su ”A‘I”h
Izlizzo 1Zlls a0 il

Two properties of the spectral norm are

{ Al = sup{v/A:) an eigenvalue of A*A}, (211)

Al = p(A), if A= A"

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 16

2.4 Error Definitions

In this section we define terms needed for a discussion of the error, convergence
behavior and choice of stopping criterion.

Depending on the differencing scheme and grid selected, the accuracy is generally
discussed in terms of powers of h, the grid spacing. The difference equation is derived
from a Taylor series expansion. To arrive at the final representation the series is
truncated after a certain number of terms. Therefore, the difference equation is an
approximation. The magnitude of the truncated terms determines the accuracy of
the approximation. Second order accuracy, or O(h?) accuracy, means that, for A
sufficiently small, the magnitude of the truncated terms is bounded by 8- A%, with 3
a constant.

The solutions of the continuous problem and the discretized problem differ at the
grid point locations because the exact solution of the discrete problem uj is only an

approximation to the continuous solution u*.

Definition 2.6 The local discretization (or truncation) error is defined to be
the n-vector 7, whose components are the amount by which the “ezact” solution (con-

tinuous problem) u* fails to satisfy the discrete equations, T, = Lywp— f = Lyu*—fj,.

The local discretization error is a measure of how well the discrete equations represent
the continuous problem. However, this does not directly determine how well the dis-

crete solution u} approximates the continuous solution u* at the grid points. [BM84]

Definition 2.7 The global discretization (or truncation) error or the exact
discretization error [ST82b] is defined to be the n-vector e, whose components are
the difference of the discrete problem solution u} and the continuous problem solution

u* at grid point locations, e, = w; — u;j.
The relationship between the global and local truncation error is given by

Lheh = Th- (2.12)

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 17

Next we define the error in relation to uf, the dynamic approzimation to, or the
approzimate solution of, u;. The superscript £ is the iteration index of an approximate

solution generated by iterative method. Iterative methods are described in §2.6.

Definition 2.8 The algebraic error is defined to be the n-vector € whose com-
ponents are the difference of the ezact solution u} of the discrete problem and its

approzimate solution uf, €& = u} — uf. It is also called the iteration error.

Definition 2.9 Theresidual or defect is defined to be the n-vector rf whose compo-
nents are the amount by which the approzimate solution uf fails to satisfy the discrete

equations, r¥ = fi — Lyuf.
The defect equation is the relationship between the defect and the algebraic error
Lyef =rf. (2.13)

The magnitude of the residual at a grid point is a measure of how closely the approx-
imate solution at the grid point and at its neighboring grid points approximates the
discretization of the partial differential equation at the grid point.

The error of the solution process is the sum of the global and algebraic errors

Wh—up = (Wh—u;) + (uf —up). (2.14)

——

globa?f error algebraic error

The global error in (2.14) is controlled by the size of h. In the case o® a second order
accurate discretization, for small enough h decreasing the grid spacing by a factor
of two will result in a decrease of the L,-norm of the exact discretization error by a
factor of four. This property becomes useful when verifying the result of a computer

code.

Definition 2.10 The correction is defined to be the n-vector whose components are

the difference of two consecutive approrimate solutions, uf — uf~!.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 18

Definition 2.11 Let h denote a fine grid and H denote a coarser grid. The relative
truncation error is defined to be the n-vector Tf whose components are obtained
by subtracting the defect on grid h restricted by the operator If! to grid H, from the
n-vector found by operating on the injection of uy (by the operator f,{{) to grid H,
with Ly, a coarse grid L:

’Tk = Ly(f,{{uh) - If(Lhuh - fh)

Note, the definition of the relative truncation error includes a number of terms that
haven’t been defined yet. These terms are defined in Chapter 3. 7¥ is that quantity
which has to be added to the right hand side I f, to obtain the values of the fine-grid
solution uj (on ¢°!) by solving the coarse-grid equation. Another measure of error

compares the iterate uf to the “exact” solution w, at grid point locations.

Definition 2.12 Theroot mean square error (RMS) is defined to be the Euclidean
norm of the difference between the discrete problem iterate uf and the solution to the

continuous problem u* at grid point locations,

RMS = ”uﬁ - wh"E or RMS = ”eﬁ - eh"E. (2.15)

2.5 Matrix Properties and Concepts

The definitions and theorems of this section are taken from [Var62].

Definition 2.13 A matriz A is defined to be non-negative, denoted A > 0, provided
a;j > 0 for each element (a;;) of A.

Definition 2.14 A directed graph is strongly connected if, for any ordered pair
of nodes P; and P; there ezists a directed path P,P,,P,P,,---,P._, P, connecting P;
to P;.

J

Theorem 2.1 An n x n compler matriz A is irreducible if and only if its directed

graph G(A) s strongly connected.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 19

Definition 2.15 An n X n complez matriz A = (a;;) is diagonally dominant if

laiil > 3 laisl, 1<i<n (2.16)
T
Definition 2.16 An n X n complezx matriz A = (a;;) is irreducibly diagonally

dominant if it is both irreducible and diagonally dominant.

Definition 2.17 An n X n matriz A = (a;;) is strictly diagonally dominant if
strict inequality in (2.16) is valid for all 1 <1 < n.

Theorem 2.2 Let A = (a;;) be an n x n strictly or irreducibly diagonally dominant
complex matriz. Then the matriz A is nonsingular. If all the diagonal entries of A

are in addition positive real numbers, then the eigenvalues \; of A satisfy

Re \; > 0, 1<:1<n.

Corollary. If A is a Hermitian n X n strictly diagonally dominant or irreducibly diag-

onally dominant matriz with positive diagonal entries, then A is positive definite.

Definition 2.18 Consider expressir.y the n x n matriz A in the form A =M — N,
where M and N are also n x n matrices. If M is nonsingular, we say that this

ezxpression represents a splitting of the matriz A.

Definition 2.19 For n x n real matrices, A, M, and N, A= M — N is a regular
splitting of the matriz A if M is nonsingular with M~! >0, and N > 0.

Definition 2.20 A real n x n matriz A = (a;;) with a;,; < 0 for all ¢t # j is an
M-matrix if A is nonsingular, and A™! > 0.

Many matrices arising from the discretization of elliptic partial differential equa-
tions are known to be M-matrices, including those arising from the discretization of

Laplace’s equation on a rectangle.

Theorem 2.3 Let A be an n x n M-matriz, and let C be any matriz obtained from
A by setting certain off-diagonal entries of the matriz A to zero. Then, C is also an

M -matriz.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 20

2.6 Iterative Methods

A variety of methods exists for solving linear systems such as Lyu, = f,. To
solve this linear system where L, is a given nonsingular n X n matrix, we consider
expressing the matrix Ly in the form L, = M — N, where M and N are also n x n
matrices. Associated with this splitting is an iterative method. Substituting the
matrix splitting for L;, adding Nu, to each side and then superscripting u, with the

iteration index k results in the following general form for an iterative equation:
Muft' = Nuf + f,, k>0, (2.17)

where u) is the initial guess. If M and N are chosen properly, at each iteration the

approximate solution uf*! approaches a limiting value. When

lim |uf = 4|l =0
k— 00 h

for some vector norm the corresponding iterative method is called convergent and @
is a fixed point of Lyu, = fi. One iteration of the method is commonly called a
relaxztion sweep. However, in the context of the multigrid algorithm (the inner iter-
ation procedure of choice for our numerical experiments), one refers to the relaxation
process as smoothing and from here on we use this term.

We arrive at an alternative form of the general iterative equation (2.17) by mul-

tiplying both sides by M ™! giving
ubtl = M='Nuf + M7 fy, (2.18)

provided M is invertible. One is assured M is nonsingular by considering only posi-
tive definite M. In this form of an iterative equation the multiplier of uf, in this case
M-'N | is named the amplification matriz (of the error) or the iteration matriz. In
the case where M and N are derived frorn a simple splitting of L, we also refer to
M~IN as the smoothing matrix S. In more complicated iterative methods the am-
plification matrix may be the product of a number of different matrices, for example,

the amplification matrix described in equation 3.7.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 21

Theorem 2.4 If A = M — N is a regular splitting of the matriz A and A~* > 0,

then
p(AT'N)

1+ p(A-IN)

Thus, the matriz M~ !N is convergent, and the iierative method

p(M™'N) = <1

Muf™ = Nuf + fu, k>0,
converges for any initial vector u°. (Theorem 3.13 in [Var62)).

Generally the splitting used, L, = M — N, is a regular splitting. One chooses a
splitting such that M1, the approzimate inverse of Ly, is easily invertible. One could
solve Lyu, = f) directly by computing the LU factorization of L, and backsolving but
the computation takes O(n3) operations, where n is the number of equations in the
linear system. In addition to its large computational expense, a direct solve requires a
prohibitive amount of memory for large systems. Generally, the difference operators
that arise from discretization of partial differential equations result in block banded
matrices. Even though the original matrix L, is sparse, substantial fill-in occurs
when computing the its LU factors. In practice, one rarely computes and stores
M~ instead, one stores vectors corresponding to the bands of M and N.

The spectral norm of the amplification matrix M~!' N is useful in describing the
error behavior of iterative methods. The norm of the algebraic error at the k-th step
of an iterative method written in the form of equation (2.18) satisfies

[+ e < [N e, = ecarmy e,

provided M~'N is a symmetric matrix. p(M~'N) is called the rate of convergence.
The spectral radius quantifies the amplification properties of the amplification matrix
on the error. A maximum eigenvalue of less than one for the amplification matrix
assures the iterative method reduces the norm of the error during each iteration. The
smaller the spectral radius the greater the rate at which the error is reduced. For
ordinary iterative methods, where the amplification matrix is the smoothing matrix,
the spectral radius of the smoothing matrix must be less than one if the method is

to converge.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 22

Some common splittings arising from the discretization of partial differential equa-
tions are Jacobi, Gauss-Seidel and SOR, including their point, line and block variants.
Theorems and knowledge about the spectral radius of different classes of matrices aid
in choosing how to split the matrix L,. Varga [Var62] gives a detailed analysis of these
and other iterative methods. Elsewhere, [Bra77], [Mol81b] and [Ket82] have charac-
terized these and other smoothing methods using local mode analysis. Appendix B,
an excerpt from [Bra77], details some of this basic local mode analysis. Example il-
lustrations of matrices that compose the splitting associated with an iterative method

are found in Appendix D.

2.6.1 Defect Correction Formulation

If we make the substitution N = M — L in (2.18) we arrive at yet another form

of the general iterative method,

uktl = MY (M — L) uf + M7 fy,
= ub-MLuf+ M,
ukt = uk - MU f — Luf). (2.19)

We call an iterative method written in this form (2.19) a defect correction method,
since the latest iterate ui“ is the previous iterate uf corrected by the approximate
inverse times the defect,

uk*t! = ok + M7'rf. (2.20)

Recall, the defect is related to the algebraic error by the defect equation Lief = rf.

Solving the defect equation is equivalent to solving the original linear system Lju, =
fx, since u; = uf + ek. Therefore we may solve the original linear system (2.9) by
working with the defect equation instead. The inner iteration procedure used in this
thesis is a defect correction method.

Exampie. Let L; be decomposed as L, = D — U — V where D is diagonal, U
is strictly upper triangular, and V is strictly lower triangular. The Gauss-Seidel
iteration is

(D= V) up*! = Ui + f,

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 23

or
ubt! = (D = V) 'Uuf + (D - V)71f.
This is a defect correction process with S = (D — V)~'U and approximate inverse
(D-V),
upt! = uf + (D = V)7 (fu — Lyuy).

2.7 Convergence

The end result of a direct method is a final, unique solution. In an iterative
method however, each iterate offers another approximate solution. As an iterative
method works its way to completion, uf should be approaching uj}, but when is the
iteration process complete? We need to judge the accuracy of the iterative solution
and determine a stopping point.

The general objective in applying an iterative method to a system of linear equa-
tions is to compute a vector uf that approximates the exact solution u* at the grid
points (z;,y;) to within a prescribed accuracy ¢ > 0. More precisely, choosing the

norm ||-||,, for instance, we want to find u} so that
”uﬁ - wh“h <e. (2.21)
Since the immediate problem is to approximate uj, we will satisfy (2.21) if

=

”uﬁ —u,

L lup — will, <e. (2.22)

This says we want the sums of the norms of the algebraic error and the global error to
be smaller than the prescribed tolerance. The first term, the norm of algebraic error
in (2.22), is controlled by the number of iterations, becoming smaller as we perform
more iterations. The second term, the norm of global erroris controlled by the size
of h. “In general it seems best to roughly balance these errors: why go to extreme
measures to reduce the algebraic error, when the global error is comparatively large;
or conversely, why have a poor approximation to a very accurate discrete solution?

Thus, we will attempt to satisfy (2.21) by way of the conditions” [BM84]

. € .
uk —wif, <50 and o —wall, < 5 (2.23)

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 24

2.7.1 Example Behavior of Norms

Table 2.1 demonstrates the typical behavior of four norms monitored while solving
the model problem on a grid with 128 x 128 unknowns. The columns of Table 2.1
show, from left to right, the iteration index,? the maximum norm of the residual
vector, the discrete Ly norm of the residual, the RMS error, and the maximum norm

of the vector (uf — wy).

A el | ek = w5 | [k = wm]
0|l 3.35 x 102 | 1.57 x 10t | 8.35 x 1072 1.97 x 107!
1| 2.96 x 10*! | 2.00 x 10*° | 3.40 x 1073 1.10 x 1072
2 1 2.09 x 10*%° | 1.25 x 10! 1.69 x 104 6.10 x 104
31138x10"!|748x10"3] 1.58 x 10~° 4.19 x 10~%
4 | 8.75x 1073 | 4.56 x 10~ 1.20 x 10~° 2.32 x 10~°
5| 5.45 x 104 | 2.77 x 1073 1.22 x 1073 2.34 x 1073
6| 3.40 x107% | 1.72 x 10~ 1.22 x 10~° 2.34 x 10-°

Table 2.1: Norms generated solving model problem.

k k
uf—wal, | [k -wi
3 k+1 k k+1 k “ E ©

I Lo O A I ol A 1

u - W u - W
“ h h E h h oo

1 0.0885 0.12¢2 0.0408 0.0559
2 0.0704 0.0627 0.0498 0.0553
3 0.0661 0.0597 0.0931 0.0688
4 0.0634 0.0610 0.7575 0.5519
) 0.0622 0.0607 1.0206 1.0095
6 0.0624 0.0622 1.0002 1.0004

Table 2.2: Convergence ratios for norms in Table 2.1.

2Each iteration corresponds to one multigrid V cycle (see page 33) done on the global domain.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 25

Note, in columns four and five of Table 2.1 the values of the norms charted remain
virtually constant from iterate 4 to iterate 6; whereas, the values of the norms charted
in columns two and three of Table 2.1 keep decreasing at an approximately constant
rate for iterates 4 through 6, see Table 2.2. The behavior of the norms in columns
four and five indicates that the approximate solution is not getting any closer to u*
in the sense of those norms. Note, the exact discretization error for this problem is
2.92 x 1074, and the iterate at which the ratio of successive RMS error values exceeds
one is the same iterate at which the discrete L, norm of the residual becomes less

than the norm of the exact discretization error, iterate 5.

2.7.2 Stopping Criteria

Let E;; be some pointwise measure of the error at the grid point (z;,y;) € Q.
Let E*¥ be the n-vector whose components are E; ; for iterate k. For instance, E;;

could be the value of
(1) rk, the residual,
(2) uf —uf~!, the correction,
(3) T,’f, the truncation error estimate, or
(4) uf — wy, the error of the solution process,

at the grid point (z;,y;). The method of determining convergence is to track some
measure(s) of the error and stop when that measure of the error is comparatively
small. One takes some norm of the error(s) so that the error information is compressed

into only one or possibly two numbers. Consider stopping criteria of the form
k
(1) |E 10 < e,

(2) |E*|, < ellE o,

® el < 123

D’

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 26

where ||| 5 is some norm of choice and ¢ is a constant.

In stopping criteria 1 and 2 above, € determines when the error is relatively small.
Stopping criteria 1 and 2 are a common convergence test. Method 1 is the typical
method of iterating until some norm of E*, frequently ”rf1 ”h, is less than the arbitrarily
chosen tolerance ¢, say 107%. Method 2 is the equally common method of iterating
until some norm of E¥, again frequently "rﬁ “h, has been decreased by a certain order of
magnitude. For instance, if the initial value of the norm was 10% and € = 1079, iterate
until the value of the norm is six orders of magnitudes less, 10~*. Unfortunately, in
these methods no theoretical basis exists for choosing the value of €, so its value is
chosen based on empirical experience.

In another convergence test the stopping criterion is the time at which the correc-
tion meets the relationship ‘uﬁ - uﬁ'll < ¢ for every grid point. This is a stopping
criterion of the form of method 1, with ||-||g = ||||.,- Again, the choice of € has no
theoretical basis. A potential drawback of this method is that it may require storing
an additional iterate. The logic behind this method is that when the change from one
iteration to the next is small at every point there is no need to continue iterating.

In method 3 the subscripts A and B are meant to distinguish between two different
measures of error. Let us restate the convergence conditions of (2.23) in the format
of method 3,

Juk = k], <k = wall,. (2:29)
with EX = uf — u}, the algebraic error, symbolized by ef and Ep = u} — wy, the
global error, symbolized by e,. The iteration index of Ep is dropped because the
global error doesn’t change. This stopping criterion is useful for theoretical studies
of convergence only; as it includes both the exact solution and the solution to the
discrete problem.

Finally, we mention a stopping criterion in the form of method 3 which we can
compute for problems that we do not know the analytical solution. The fact that
this stopping criterion has a theoretical basis for its existence makes it desirable and

more meaningful. The stopping criterion is

|#£], < %”Tf“h- (2.25)

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 27

Under reasonable smoothness assumptions, and a second order accurate difference
approximation, .
57h = Th+ O(R?). (2.26)

An estimate of the local truncation error, 7f -- the relative truncation error, can be
generated using Richardson’s extrapolation [[{ac85]. This stopping criterion states
that the iteration process concludes when the norm of the residual error is less than

the estimate of the local truncation error.

The RMS Ratio Stopping Criterion

We define one more stopping criterion which we use in Chapter 5. We base this
stopping criterion on the RMS error, the Euclidean norm of the difference between

the finite difference iterate and u* evaluated at grid point locations, wy,.

Definition 2.21 We say the k-th iterate meets RMS ratio stopping criterion when
it = = k-l o

See Table 2.1 for an example of the behavior of the RMS error — second column from
the right, and the same column of Table 2.2 for an example of the behavior of the
ratio of successive RMS error values. The RMS error decreases to a minimum and
then rises a small amount away, remaining almost constant from then on. When u}
is relatively far from u* the RMS error experiences a decrease similar to the decrease
experienced by the discrete L, norm of the residual and the maximum norm of the
residual. When the iterative solution gets close to uj the RMS error approaches a
constant and the ratio of successive RMS error values becomes close to one.

This RMS ratio stopping criterion marks the time at which the ratio of the RMS
error from one iteration to the next becomes greater or equal to 1.0. There is no
guarantee the ratio will reach a value of 1.0. In a slowly converging problem the ratio
might be greater than .99 but less then 1.0 for more iterations than we would care to
monitor. For example, for some domain decompositions with small overlap, the ratio
approached one very closely, but did not reach a maximum (local) in a reasonable

time frame. When this stopping criterion is met, one might be led to believe that

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 28

the iterative solution uf™?

was a more iccurate than the iterative solution u%. This is
reasonable to believe since the nature of a convergent iterative method is to improve
the solution with each succeeding iteration. However, this is not always the case.
In the example problem, when we reach an inflection point of the ratio of solution
norms we could say such that our solution has become as accurate as it is going to
be. However, we might be mistaken. In chaotic variants of the SAP-MG method,
described in a later chapter, the ratios of the RMS error from one iterate to the next

are not even necessarily monotonic decreasing.

2.7.3 Comparing |||, and |||

For instance, suppose we have a 100 x 100 grid, 10000 unknowns. If the residual
at each grid point is 1.0 X 10~° except at ten points where the residual is 1.0 x 1073,
then the sum of squares of the residuals is .000010999. The contribution from the
set of 10 points is 10 times greater than that from the set of 9990 points. “rﬁ"h in
this case is 3.3 x 107°, assuming h = .001. If the residual at the ten points was
1.0 x 1073 also, then "rﬁ“h would be 1.0 x 107°. With "rﬁ“h, even though at ten
points the residual is two orders of magnitude greater than the residuals at the other
9990 points, the value of the norm is of the same order as the norm of a problem
where all 10000 grid point residuals had a value of 1.0 x 10~°. With the |-||_, norm,
this would not be the case. Those ten points alone would determine the convergence.
The behavior of the ||-||, is such that if there are only a few problem points, overlook
them. The behavior of ||-|| , is such that if there is even one problem point, keep on

solving.

2.8 Dynamic Computation of Stopping Criteria

Consider a domain decomposition of the n point grid Q¢ into m not necessarily
disjoint subdomains ;,Q,,---,Q,,. Define the subdomain index q. Associated with
every subdomain (2, is the set of its boundary points Q. Let E;; be some pointwise

measure of the error at the grid point (z;,y;) € Qg. Let Eq,, or E*, be the n-vector

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 29

whose components E; ; are some pointwise measure of the error at grid points in Qg.
Let Eq, be the n-vector whose components E;; are some pointwise measure of the
error at grid points (z;,y;) € €, and 0 for grid points (z;,y;) &€ €. For instance,
E; ; could be the value of

(1) rf, the residual,

(2) uf —uf!, the correction,

(3) 7F, the truncation error estimate, or

(4) uf — wy, the error of the solution process,

at the grid point (z;,y;).

When using a dynamically computable stopping criterion, after the solution of any
subdomain is advanced the stopping criterion for)¢ can be computed. Dynamically
computing the stopping critericn as a Schwarz algorithm visits each of its subdomain
minimizes the locality of reference a program exhibits. It does so by avoiding the
sweep through the iterate and its discrete operator or the previous iterate that would
have been necessary to compute the stopping criterion on Q¢ after completing the
outer iteration.

Consider stopping criteria of the form
' k
(1) |E |EJ <e,

2) | E*, <<l

@ |£4], <1128l

where ||-||g is some norm of choice. If ||-||5 is dynamically computable we say these
stopping criteria are dynamically computable also. In the next two sections we demon-

strate how to dynamically compute the ||-||, and ||-||., norms.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 30

2.8.1 Dynamic/Distributed Computation of |-||,

Recall that the ||-||, of an n-vector v on (g is given by

vll, = h~i2|v,-|"’.
i=1

We define two quantities which allow us to support the dynamic computation of
| Eqgll, during an outer iteration of the SAP. Define the m-vector ?Qq whose compo-

nents S, are the sums of squares of components of Eq_:

rad — 2
Se, = D Bl
(20,37)EQ

Similarly, define Sq ., a scalar, for the global domain:

Soc = 2. |Eul
(=373
Given Sqg, ||Eagll, immediately follows as || Eqgll, = h\/.S_'Q;. The starting value of
the quantity Sq, is computed after setting the solution vector of Qg to the initial
guess (unless Egq . is the correction).

In our method for dynamically computing the stopping criterion for g, we do
not compute ”E" Hh for the global domain §)¢ after each outer iteration as itera-
tive methods typically do. Instead, we use the following procedure for subdomains
1, Qq, --+, O, as each subaomain is visited during the SAP. On entering 2,, we
compute Sq,, naming it Sg’;te'; then we complete the inner iteration procedure on
Qy; but, before exiting §),, we again compute Sg , naming it Sf,?t. Finally, we
modify Sq, by the difference between S&xq“, the new sum of squares of the com-
ponents of Fq_ and Sf{;‘", the old sum of squares of the components of Eg ; i.e.,
Sgew = S + (Sffl“ — Sgnter). Therefore, after advancing the solution on any subdo-
main, ||Eq.||, is known and any test for convergence on Q¢ involving || Eqs||, can be
computed.

Note, let Rg be the set {|E;;|*: V i,j such that (z;,;) € Qc} and R, be the
set {|Ei;|>: V1,j such that (zi,y;) € Q,}, then R, C R V ¢. If for any (g,¢') pair
Q, Ny # 0 then R,N Ry # 0.

CHAPTER 2. SOLVING ELLIPTIC DIFFERENTIAL EQUATIONS 31

2.8.2 Dynamic/Distributed Computation of ||-|| .

Recall that the ||:||_, of a n-vector v on Q¢ with grid spacing h is given by
[0l = max(Jvi]), 1<2<n.

Again we define two quantities which allow us to support the dynamic computation
of ||Eqsll,, during an outer iteration of the SAP. Define the m-vector C, whose

components Cq, are the maximum absolute values of components of Eq_,

Uq = {HEQq

, 1 <¢<m}

oo

Similarly, define Cq,, a scalar, for the global domain, Cq, = ||Eqsll,,. The starting
value of the quantity Cq, is computed after setting the solution vector of Q¢ to the
initial guess (unless Egq is the correction which requires uj and u}).

In our method for dynamically computing the stopping criterion for g, we do
not compute HE""OO for the global domain Q¢ after each outer iteration as itera-
tive methods typically do. Instead, we use the following procedure for subdomains
2, Qq, -+, Q,, as each subdomain is visited during the SAP. During the visit to
each subdomain Q,, Cq, is computed. After the inner iteration procedure on , is

complete, set Cq, = “CQG,CQq . Therefore, after advancing the solution on any

o]
subdomain, ||Eq.|l,, is known and any test for convergence on Q¢ involving || Eq||.,

can be computed.

Chapter 3

The Multigrid Method

In §2.6 we mentioned several common iterative methods for solving elliptic equa-
tions. Fourier analysis of these relaxation or smoothing methods, shows they efhi-
ciently remove the high frequency error components in the approximate solution. The
notion of iterative methods as smoothers is crucial in the discussion of multigrid. See
Appendix B, an excerpt from [Bra77], for details. Two to three iterations eliminate
most of the high frequency error components [Bra77]. Nonetheless the asymptotic
behavior of these methods, quantified by their convergence rates, was shown to be
slow because they ineffectively smoothed the low frequency error components [Fed62],
[Bak66], [Bra77]. The multigrid method addresses the problem of managing these low
frequency errors by attacking them on coarser grid levels. In the Schwarz method
presented in this thesis we will use the multigrid method for the inner iteration pro-
cedure. Notes about the developers and history of multigrid follow at the end of this
chapter.

The multigrid method uses a multilevel structure to remove the low frequency
components in the error that a smoothing routine is inefficient at removing. It does
this by smoothing the low frequency error components on coarser grids. The relatively
high frequencies on the coarser grid levels which are effectively smoothed correspond
to low error frequencies on the finer grid levels.

Multigrid is an iterative, multilevel defect-correction method which can be used

for solving symmetric, positive definite, linear systems. In this thesis we refer to the

32

CHAPTER 3. THE MULTIGRID METHOD 33

finest grid as the uppermost grid level. Cycle is a synonym for a multigrid iteration.
During one cycle the muitigrid method travels from the finest grid down through
coarser grid levels to a coarsest grid and then back up to the finest grid, visiting each
of the intermediate grids along the way. The manner in which the method travels
from one grid level to the next defines the type of multigrid cycle. Figure 3.1 shows
the two most common multigrid cycling procedures, V and W, along with the full
multigrid iteration. Full multigrid, FMG, also called nested iteration, consists of one
of the other types of cycles, prefaced by the bootstrapping of an initial guess from
the coarsest grid to the finest grid.

2h

4h V cycles
8h
16h

2h . . .
4h W cycle
8h

16h

2h

4h FMG bootstrap
8h

16h

Figure 3.1: Grid Schedules for Common Multigrid Cycles

Smoothing is typically done at each grid level. The smoothing iteration that occurs
before moving to a coarser grid is called pre-smoothing. The smoothing iteration that
occurs before moving to a finer grid is called post-smoothing. The purpose of pre-
smoothing is to smooth (damp) the relative high frequency error on the respective grid

levels. The purpose of post-smoothing is to eliminate high frequency error components

CHAPTER 3. THE MULTIGRID METHGD 34

introduced during the interpolation and addition of the defect to the solution residing

at the next hLigher level.

3.1 Two-grid Algorithm

We begin explaining the details of the multigrid method by considering a two-
level algorithm. Our explanation follows the discussion given by Mol [Mol8la]. The
two-grid method is a non-stationary defect correction process in which two different

approximete inverses are used:

e Some smoothing method (e.g. Jacobi, Gauss-Seidel) on the fine grid which

damps short wavelength fluctuations in the residual.

e A coarse grid correction which damps the long wavelength fluctuations in the

residual.

Recall, for the discrete analog (2.3) of the linear boundary value problem we

defined a computational grid §2, and a corresponding set of grid functions U,
Q= {(z1,22) |zi=mh, 0<m<np+1,:=1,2} (3.1)

Un = {up: Q - R} (3.2)

where h = 1/(ny + 1), n, is an integer, «nd n = n; X n,;. The discretized form of the

differential equation resulted in the the linear system of equations denoted by
Lyup = fi, (3.3)

with L, an n x n non-singular matrix and with u, and f, n-vectors.

The two-grid method uses an analog of (3.1) and (3.2) on a coarser grid Q, that
is, n’ < n, with mesh size b’ > h:

To avoid confusion about which grid level we are referring to we assign the index
€ to the finer grid level and £ —1 to the coarser grid level. (For future reference ¢ = 1
will index the coarsest grid and € = A will index the finest grid.) Using this notation,
system (3.3) is now denoted by

L% = ¢ (3.4)

CHAPTER 3. THE MULTIGRID METHOD 35

with Lf: U — U*. Its coarse grid - zalog Q,_; is now denoted
L1yt = [, (3.5)

with L¢-1: Ut — UL,

Next we must define a function which maps the fine grid functions to the coarse
grid functions and visa versa. We call the act of transferring the defect equation from
the finer grid Q;, to the coarser grid Qs restriction. We denote the restriction matriz

or restriction operator by If™!,

Ie‘] . U£ g Ul_l.

The solution to the defect equation on grid level £—1 is a correction which we will
interpolate and add to the grid solution of the problem on grid level £. We call the
act of transferring the correction from the coarser grid £ to the finer grid 2, prolon-
gation. The prolongation matriz or prolongation operator denoted If_, interpolates

the correction formed on the coarser grid level £ — 1 to grid level ¢,
If, U = U
We can now define the coarse grid correction step of the two-grid method:
u' = ul 4+ I (LUD)T I (= L),

In the two-grid method the coarse grid problem (3.5) is solved directly.

Finally, combining the smoothing sweeps with the coarse grid correction, we see
one step in the two-grid method consists of v,,. sweeps with the smoothing method,
a coarse grid correction step and vy, sweeps with the smoothing method. A pseu-
docode description of the two-grid method appears in Tzble 3.1. On level £ denote
the pre-smoothing operator by $% and the post-smoothing operator by S¢. Denote
the approximate inverse of the smoother on level ¢, M~ of (2.17), by B®. Take
Bt = (I1- 5% (LY.

CHAPTER 3. THE MULTIGRID METHOD 36

BeginProc Two-grid Defect Correction Method
// Do vyee pre-smoothing operations.
do vp,e times
ut ;= §¢ut 4+ BUfY
enddo
// Form the defect and restrict to the coarser grid.
fl—l = I;_l (fl _ Lt ul);
// Solve the defect equation on the coarser grid directly.
ut—l o= (Ll—l)—l fl—-l;
// Prolong the coarser grid solution to the finer grid.
ul =l 4+ IE WY
/] Do vy smoothing operations.
do vpost times
ul ;= S ul + BfY
enddo
EndProc

Table 3.1: Pseudocode for the two-grid method.

Note that f¢! is a coarse grid approximation to the residual f¢ — Lfu‘, not to ft.

The amplification matrix S,.. g Of one step of the two-grid method is
Suwo gria = (54 7ot (L)1 = Ify (L*1)71 IE7Y) L8, (3.6)

with S¢ = I — B L* and §* = I*— L! B? the amplification matrices of the smoothing
processes.

(L™ = I, (LY I (3.7)

is called the relative convergence matriz. Hackbusch [Hac85] defines the “approrima-
tion property’ in terms of this matrix.

Several authors, e.g. Hackbusch [Hac80a] and Wesseling [Wes80], have shown un-
der certain assumptions ||Se gria]| < ¢ < 1 with ||-|| a suitable norm and c independent
of mesh size 27¢. The two-grid method is completely determined by the discretizations
Lt and L', the restriction matrix If'l, the prolongation matrix If_,, a smoothing
method S¢ and the number of pre-smoothing steps - v,.. and post-smoothing steps -

Vpost .

CHAPTER 3. THE MULTIGRID METHOD 37

3.2 The Multigrid Algorithm

The multigrid method makes use of a hierarchy of computational grids 2, and
corresponding sets of grid functions Uy, { = M, M —1,M —2,---,1 defined by (3.1)
and (3.2) with h replaced by h;. Here, h; is the grid spacing on grid level {. As
decreases h; increases, that is, the grids {2, become coarser as [gets smaller.

In the two-grid method we solved the coarse grid problem (3.5) directly. The

£-1

multigrid method approximates the solution u‘~* of the coarse grid by application

of the same two-grid method on the coarse level. So, for £ > 2, the error equation
is recursively solved on increasingly coarser grids. When grid level 1 is reached, one
usually solves directly for the defect as the time to do the direct solve is inexpensive

1

since u' will contain few unknowns. See Table 3.2 for a pseudocode description.

BeginProc multigrid method (€, L%, u’, £, Vpres Vposts I5—1, IF71)
if £ =1 then
ul c= (Ll)_lflg

else

// Do v, pre-smoothing operations.

do vy times

ul = S0yl 4 Btf¢,

enddo

// Form the defect and restrict to the next coarser grid.

fl—] - If—l (fl _ LE ul);

ut=1:=0;

/] Recursively solve on grid £ — 1.

do multigrid method (£ ~ 1, L=, u*=1, £ wpre, Vpost, 120, IE22)
endif
// Prolong the coarse grid correction to the next finer grid.
ul:=uf + If_l uf-1;
// Do 05 smoothing operations.
do vp,se times

uf = St ut + BEfE
enddo

EndProc

Table 3.2: Pseudocode for the multigrid method.

CHAPTER 3. THE MULTIGRID METHOD 38

Up to this point we have said nothing about the details of the multigrid param-
eters we chose. We start by constructing our initial guess by applying the difference
equation to the boundary points. We use V cycles, a direct solve on the coarsest
grid and red-black Gauss-Seidel relaxation for the smoothing routine. We discuss the
issues of grid specification and grid transfer operators in §3.3 and §3.4.

The way we use multigrid in the Schwarz process changes the notion of the cycling
procedure slightly. To better explain when smoothing takes place we introduce four

cycling parameters, pbeg, pdown, pup, ptop,
e pbeg = number of smoothing iterations on the finest level before cycling begins,

e pdown = number of smoothing iterations on level ¢ after restriction to level £
from ¢ + 1,

e pup = number of smoothing iterations on level £ after prolongation (from £—1
to ¢) on all levels, with the exception of smoothing after prolongation to the

finest level which is a separate case,

e ptop = number of smoothing iterations on the finest level M after prolongation
from level M — 1.

3.3 Determining Coarse Grid Approximations

Generally, one considers two strategies for determining coarse grid approxima-
tions: coarse grid finite difference approximations (CFA) and coarse grid Galerkin ap-
proximations (CGA). The discussion in this section is derived from [Den82], [Wes84],
and [ABDP81]. The simplest and most straightforward method of grid coarsening
is standard coarsening. Standard coarsening falls under the category of CFA. For
example, in the simplest case, {1y and 2, are rectangular grids, the grid points of
e are a subset of the grid points of Q,, and the grid spacing he_; of Qs is twice
the grid spacing h, of §2,. Recall that M indicates the highest level grid. If the above
relationships are to hold true, then the number of grid points on each side of Q,,,

np, is constrained to na = (ny —1) 2! 41, where n; is the number of grid points

CHAPTER 3. THE MULTIGRID METHOD 39

on each side of 2; [Den82]. We see standard coarsening leads to grids whose size is
always some ‘magic’ number. In a real problem if one’s grid specification is not a
‘magic’ number, or is an irregular discretization, then an interpolation or transforma-
tion is necessary to use multigrid with standard coarsening. The advantages of CFA

include:

o The definition of L~ is independent of the fact that we solve an equation at

level £.
o One needs no additional computations for defining L*~! L2 ... L*,
e Minimal storage requirements.

Nonetheless, the ability to maintain arbitrarily sized grids without resorting to a
messy interpolation phase is of utmost importance when studying the Schwarz method.
Any computational study of the method invariably includes measuring the computa-
tional cost as a function of the overlap. A combination of these reasons and others
to be mentioned below led us to abandon the CFA approach.

We built our Schwarz-multigrid program from the core subroutines of Dendy’s
blackbox multigrid code, BOXMG [Den82]. The BOXMG code implements multi-
grid using the “correction scheme” as opposed to the “full approximation scheme”.
Instead of using standard coarsening, BOXMG implements a more complicated coars-
ening scheme based on CGA. BOXMG allows mixed derivatives and nonselfadjoint
equations. BOXMG works well in the selfadjoint case for smooth or strongly discon-
tinuous coefficients. The user provides a finite difference approximation on the finest
grid, which is uniform and rectangular. Dendy’s primary interest was solving the

neutron diffusion equation,

in which D, ¢ and F are piecewise constant. With o(z,y) = 0 and D(z,y) = 1,
equation (3.8) reverts to the simpler case of Poisson’s equation. Appendix C gives

details about the memory requirements for BOXMG.

CHAPTER 3. THE MULTIGRID METHOD 40

In CGA a coarser grid §2,_; contains grid points which may not be a subset
of the mesh points of the immediately finer grid Q,. We obtain a coarse discrete

approximation on 2,_; using the Galerkin formula
L = (15—1)* Lf If—l'
Some disadvantages of the Galerkin approach are:
e A preprocessing phase is needed to compute LM~ LM-2 ... [
e Only works on linear problems.

e Usually the five- or seven-point grid stencils on grid level M will not be preserved

on the coarser grid levels but become nine-point formulae.

e The definition of L! depends on L¢ If the solution of L‘u® = f* is fol-
lowed by a multi-grid iteration for solving L‘*!'u®*! = f*! we need matrices
L't = rL*p, L1 = rL"p which possibly differ from L¢ and L' used be-
fore. The matrices r and p are restriction and prolongation operators defined

appropriately. (Pertains to FMG cycle.)
On the other hand the advantages of CGA are:
e Unrestricted number of points in the x and y directions allowed on any grid.

e Automatic generation of possibly irregular difference formula near any bound-

ary.
e Automatic homogenization of rapidly varying coefficients.

e If L’ is symmetric (positive definite), and if I;™? = (If_,)* then L' = If_ LI},

is also symmetric (positive definite).

Thus, CGA allows one to solve a larger class of problems.

CHAPTER 3. THE MULTIGRID METHOD 41

3.4 Specification of Grid Transfer Operators

Finally, how should we choose prolongation and restriction operators? Brandt
[Bra77] gives the following general result. We say the operator I;_, is of order m,
if polynomials of degree m, — 1 are interpolated exactly, and that If7! is of order
m, if (J1)T interpolates polynomials of degree m, — 1 exactly. If the order of the

differential equation is 2m then we should have
m, + m, > 2m.

The coding of interpolation can be further complicated by whether the points on the
boundary represent knowns (Dirichlet boundary conditions) or unknowns (Neumann
boundary conditions).

If the finite difference approximation of Eq. (3.8) is a vertex-centered one as
in [ABDPS81], then the classic multigrid method of [Bra77) (I{_, = bilinear inter-
polation, I{~! = a fixed nine point weighting operator, and the coefficients of L a
fixed weighting of the coefficients of L‘) performs well as long as the discontinuities
in D are not too severe and as long as the internal interfaces do not consist of too
many line segments; otherwise, it performs badly; indeed it can fail to converge in
the fixed mode described above.

Alcouffe et al. [ABDPS81] dealt with the situation in which D, ¢, and f jump by
orders of magnitude across internal interfaces. They considered many possible choices

of I}7! and I{_,. Only one of these choices was found to be robust, that of
15-1 = (I;—l)"

The solution they use is as follows: Suppose that at (z;,y;), L, has the pointwise

template

_T¢ _W¢ _ Rt
Ti.j+1 W 1+1 Ri+l,j+l
14 ¢ 4
- St,] - i+].j . (3.9)

i'j

- Rf, j - Wf j -T J

CHAPTER 3. THE MULTIGRID METHOD 42

Form the “vertical sums”

Qivr; = Tiy1j+1 +Qit1; +Riy,
Sivi; = Wiy +Si4 Wit 4,
Qize; = Tize; +Qis2; +Rigz 41

Then for horizontal lines embedded in the coarse grid, the interpolation If_, is given
by

(If-y ubyr;) = (Qivns ul3' + Qisa uiii;)/ Sivr e (3.10)
(We have just summed Eq. (3.9) vertically to average out its y-dependence.) A similar
formula can be used for vertical lines embedded in the coarse grid rectangles. Then,
at fine grid points centered in coarse grid squares, uf,, ;,, may be obtained from the

difference formula; i.e.,

¥4 _ . . £ . . 14
Uiy 01 = (Qigrjar Uij4 Qit2,j+1 Uit2 j+1
e Lt
Witi541 Yigr, Wit1,542 Uig1 42 (3.11)

+
+

1+1,7+1 Yy 5 +2,5+2 Yig2,5+42
.+.

+ + 4+~

e Lt o
Tig1542 W 42 Tivo 41 Uigo;) / Sit1,501

The vertical analog of (3.9)-(3.10) completes the definition of If_,.

Prolongation by linear interpolation is inaccurate when u in not locally linear
between coarse grid points. This inaccuracy is severe when D(z,y) in (3.8) is dis-
continuous between coarse grid lines. BOXMG can handle strongly discontinuous
coefficients because it uses the matrix-dependent prolongation described above.

Many variations of the multigrid algorithm have been constructed by choos-
ing different initialization procedures, cycle types, storage schemes, coarsest grid
solvers, smoothing operators, restriction operators, prolongation operators, and pre-

smoothing and post-smoothing iteration counts [ST82a].

3.5 Computational Efficiency

Unlike most iterative methods, when solving symmetric positive definite linear

systems every multigrid cycle reduces the error at each step by a constant factor until

CHAPTER 3. THE MULTIGRID METHOD 43

the roundoff level is reached. This property is very useful when deciding when to stop
solving. Many scientists choose to decrease the residuals by a factor and thus can
explicitly program their code to do the necessary cycle count. Another nice property
of multigrid is that the number of multigrid cycles needed to attain convergence is
independent of the mesh spacing when FMG is used.

Another of the keys to the speed of multigrid is not as many points exist on levels
M—-—1,M-2,-.-,1. The total work on all coarser levels for two space dimensions is
about 1/3 of the work on the finest level.

Recall, for iterative methods as expressed in equation (2.17), the spectral radius of
the smoothing matrix S, must be less than one for the method to achieve convergence
because the S, is the amplification matrix of the iterative method. It is interesting to
note that for multigrid this is not the case, because the smoothing matrix is only part
of the total amplification matrix. In multigrid the purpose of the smoothing matrix
Sk is to smooth the high frequency error on the grid of interest. An asymptotically
divergent smoother may prove acceptable if the low frequency error components aren’t

amplified in the small number of smoothing iterations done on each grid level.

3.6 Historical Comments

Here we present a chronology of the development of multigrid, taken for the most
part from Hackbusch’s book [Hac85]. His book includes a comprehensive 20 page
listing of multigird publications.

The first correct two-grid iteration was described by Fedorenko [Fed62]. He em-
phasized the complementary roles of the Jacobi iteration and of the coarse-grid cor-
rection.

It was also Fedorenko [Fed64] who formulated the first multigrid algorithm in 1964
and proved the typical convergence behavior. He described a multigrid method for
the Poisson equation in a square, and he proved that the number of operations is
O(n), where n is the number of grid points. The much more complex situation of
a difference scheme for a second order elliptic equation with variable coefficients in

a rectangle was considered by Bakhvalov [Bak66] in 1966. His main focus was the

CHAPTER 3. THE MULTIGRID METHOD 44

optimal order of complexity achieved by the multigrid solution process rather than
its practical efficiency.

In 1972 Brandt [Bra72] following the papers mentioned above discovered the ef-
ficiency of the multigrid algorithm. He laid emphasis on the combination of the
multigrid process with additional techniques which should yield a “multi-level adap-
tive” method. A precise definition of his multigrid algorithm was given in 1975/1976
(cf. Brandt[Bra76, Bra77]). However, in these and later papers the considerations
about convergence remain very vague. Brandt [Bra77] described a multigrid method
similar to that of Fedorenko and Bakhvalov, and demonstrated its practical useful-
ness. Furthermore, he proposed ideas for adaptive discretization in certain parts of
the region, e.g., in the neighborhood of singularities.

An important step towards convergence analysis was made by Nicolaides [Nic75],
[Nic77]. While his first paper described a two-grid iteration, the second one from 1977
studied the convergence of a finite element discretization. Astrachancev [Ast71] and
Nicolaides applied a multigrid method on finite element problems and gave conver-
gence proofs. Hackbush published an early survey of convergence proofs in [Hac80b].
Other convergence proofs and experiments are given in Chapters 6 and 7 of Hack-
bush [Hac85], by Wesseling in [Wes80], by Greenbaum in [Gre84] and by Mol [Mol81a).
Bank and Dupont gave two different convergence proofs in a report from 1977, which
has since been divided. The second part of the report is published in a journal (cf.
Bank-Dupont [BD81]), whereas the first one, containing a new approach is available
only as a report (cf. Bank-Dupont [BD80]). Chan and Tuminaro survey parallel
multigrid algorithms in [CT87].

Chapter 4

Outer Iterations vs Inner

Iterations

Having discussed the Schwarz alternating procedure in Chapter 1 and the multi-
grid method in Chapter 3 we now turn to the combination of the two algorithms. In
our combined algorithm, SAP-MG, the Schwarz alternating procedure is the outer
iteration procedure and the inner iteration procedure is some type of multigrid cycle
executed some number of times. To establish useful variants of SAP-MG methods we
consider the issues of the amount of overlap between subdomains, subdomain shape

and the choice of inner iteration procedure.

Model Problem

All experiments use the boundary conditions and right hand side of the model
problem described in §2.1. We use a five point grid stencil on the finest grid and
nine point grid stencil on the coarser grids. The smoothing method is colored point

relaxation and we use a uniform n, x ny grid at the finest level.

4.1 Overlap

We need to know the effects and tradeoffs of overlapping subdomains to under-

stand the SAP-MG algorithm. The overlap affects the convergence rate of the

45

46

o e e e e e e e e e = e e -

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS

SD2b

Figure 4.1: Schwarz Splittings

||||||||||||||| 1 L
1 1 1]
| 1 | _ 1
1 1 1 1 1
1 1 | 1 1
1 i |] t
1 1 1 1 i
t 1 1 1 |
1 1] ,% 1 ~ }
' 1 1 1 |
J 1 1 Q 1 A 1 G (P
G o - G
'S o] < " "
1 1 1 1 1
1 1 1 1 i
1 i l e H, 1 1
| 1 | ~ -« 1 1
o " < | S _ "
1 1) ! ! S NN J
———) [A JR ! i
1)
1 1
rTTT T T e/ 2 +
I 1 1 i o
' 1 1 1 ~
) 1 ! | a
t 1 1 1 (5]
|||||||||||||||||||| - 1 [R R
. | 1 1
! - ! “ A bl
_ S _ s R R "
“ " _Q 1 (@ | "
[, T]
1"~~~ 777 T] ~ '
| I S | S _
| g " b
” ot | D | A 1
! < " «n i 4.
_ o S
S

SD2a

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 47

algorithm, communication cost, computational cost and memory use. The extent
to which subdomains overlap affects the rate at which information travels across
pseudo-boundaries. Analysis in the continuous domain shows the greater the overlap
the better the convergence rate.

Both the cymmunication and computational costs are proportional to the overlap.
Obviously, communicating a smaller amount of information leads to lower commu-
nication costs. The computational overhead of SAP-MG per outer iteration roughly
equals the percentage overlap; i.e., with two subdomains, 50% overlap implies 50%
more floating point operations. We show in §4.6 and §4.7 how increasing the overlap,
and thus communication cost and computational cost per outer iteration, decreases
the time to solution because of improved convergence rates. We show in Appendix C

how subdomain overlap affects memory costs.

4.2 Choice of Inner Iteration Procedure

In the continuous domain theoretical model of the Schwarz Alternating Procedure
the convergence analysis assumes obtaining the analytical solution on the subdomain
problem before updating the interior pseudo-boundaries. We could simulate this
modus operandi in the discrete domain by solving on a subdomain until the discrete
L, norm of the residual was as accurate as the discretization error or a truncation error
estimate. However, in the initial outer iteration of the SAP the information passed
at the pseudo-boundary areas does not approximate the global domain solution with
a high degree of accuracy. We hypothesize spending computational time to solve an
inaccurate subdomain problem accurately is a senseless proposition. Note, in the
discrete domain not only do we update the pseudo-boundary values, but we update

the entire overlapping boundary regions with the latest values.

4.3 Subdomain Shape

The inherent partitioning of the SAP limits the number of grid levels visited. In
the SAP-MG method the subdomains are obviously smaller than the global domain.

48

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS

lllllllllllllllllllllllllllllllll

I
_Ql i -« B e aF mmmmmmmmm— =
=
! ! G ' 0 | t ©,
v —
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ~] Q _Q. Q_
(Rt Badiiied -G) 1 1 |
Fo= “ 1 1 1 1
[| | | |
_Q .3 | i i I
I e ettt it — Lt St B L Sttt) \
Antiis B -G | | 1 1 1 1 [1
I« " 1 1 1 | 1) ' i
e) 1 ' 1 1 1 1 |
' G ! + + 1 + + + 1 1
B B e n 1 ™ [P o - = —— L e - - - — [
.|..-..14...||«|||..||..||..|||..||||||||“Q S 1o~ oo 1 o
' g i 1S) ;
b S ! i 1 1 1 G
e 1 ; . T T .
Satuts Ittt Onuv 1 "] 1 N 1
|||||||||||||||||||||||||||||||||] | I 1 ' 1 [|
! o0 " [g . r|tl~|l+ﬁlll... "
'] X R <
! ' 1) 1
e T Oy N ! nw.m _n.l_\.w... OM_
P e e -G G _ L X
! ! 1 1 1 [
.Qno | Lt 1 Bt g L i (it 2 '
! L_5 1 1 ! 1 1 [' 1
il Sttt i | N o ! |
L CCJCIIIIITIIITIIIIIIIIIIIIIIIIE Ne ! ! L ! _ !
Vo " 1 - - - I T Im———— =
! | 1 1)
' & ! ' o '
Bt R -9 1) i 1
e G _ 1 1 1 1)
[’y —
) ! 1 120 nwn..v ' S
e ! | S '
! ! _Q + + +
ety Rl bl il didb il Q‘l [R T) b e oem e e e e - - . - 4

Figure 4.2: Sixteen Subdomain Schwarz Splittings (bottom ¢ = 4).

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 49

Recall multigrid derives its speed from its ability to knock out the low frequency
components of the error on the coarser grids. However, on the subdomains we cannot
eliminate the lowest frequency wavelengths available to multigrid applied to Qg in
at least one of the coordinate directions. Since, the convergence rate of multigrid
is dependent only on the convergence rate of the lowest frequency wavelengths, and
the decomposition of the global domain into subdomains eliminates the possibility
of attacking the lowest frequency wavelengths, we expect the convergence rate of an
SAP-MG method to be slower than that of a multigrid method. Furthermore, as
the number of subdomains increases, and as a result the subdomains get smaller, we
expect that the convergence behavior of SAP-MG becomes less like multigrid and
more like that of the relaxation method.

Tang [Tan87] found for a solver other than multigrid on an equal number of
subdomains, when the global domain was partitioned into a checkerboard of squares
the problem converged much faster than when partitioned into a series of thin strips.
We had hypothesized long thin regions may preserve some of the effect of getting rid of
the lowest frequency components of the error in one direction when using multigrid as
the inner iteration procedure. However, a simple set of initial experiments showed this
not to be the case. Alternating between horizontal and vertical rectangular regions
may conceivably offer advantages over other Schwarz splittings because we can access
the lowest frequencies in both directions. We explore this idea in more detail in §4.8.

The subdomain shape also affects M, the rumber of grid levels visited. As M
decreases a greater percentage of the total work is done on the coarsest grid(s) during
the direct solves. The operation count of a direct solve is greater than that of a
relaxation so we gain computationally by making n,; on the coarsest grid as small
as possible. To maximize the number of grid levels one chooses an equal number of
points in all coordinate directions. Using a semi-coarsening procedure would allow us
to increase the number of grid levels visited for rectangular regions. Semi-coarsening
continues coarsening in the wider direction after coarsening in the narrower direction
stops. However, our code does not include this feature.

We illustrate the number of grid levels visited by SAP-MG in Table 4.1, assuming

the decomposition of a 128 x 128 problem into ¢ x ¢ square subdomains, each of which

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 50

overlaps its nearest neighbors by 50% in the direction of overlap. M is the number
of grid levels visited. nj is the number of grid points on the boundary. Figure 4.2

illustrates the domain decomposition for ¢ = 4.

M| 6 (6|5 |4|3]|2

n, | 128 | 58 {51 |28 |15 | 7

Table 4.1: Grid information for ¢ x ¢ domain decompositions.

On machines with vector hardware the subdomain shape affects vector length. The
length is proportional to the number of grid points in the direction of vectorization.
It may pay to maintain some degree of vector length by avoiding regions that are

relatively thin in the direction of vectorization.

4.4 Comparing Convergence Criteria

To begin our experiments, we ran SAP-MG on two subdomains using one multi-
grid V cycle for the inner iteration procedure. We varied the overlap between 3 and
123 in increments of 5. An overlap of 128 corresponds to the ordinary multigrid
algorithm. In this experiment we studied the convergence issue, and we show the
effects of varying the overlap. Table 4.2 charts the number of outer iterations to
convergence for four stopping criteria. The columns labeled ARB correspond to the
stopping criterion “rﬁ”h < 107%. The columns labeled ANS correspond to the stop-
ping criterion “rﬁ”h < ||len]|g. The columns labeled RMS refer to the RMS ratio in the
stopping criterion of §2.7.2. The columns labeled TAU refer to the stopping criterion
of ”rﬂ‘h < U'r,’f“h Recall, rf is the residual of iterate k, e, is the exact discretization

error and 7/ is a local truncation error estimate. The criteria of columns ANS, RMS

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 51

Sequential Chaotic Parallel*
Stopping
Criterion | ARB | ANS | RMS | TAU || ARB | ANS | RMS | TAU
overlap

3 82 52 58 58 % % %k %K% % % % % K %k

8 34 21 26 23 71 47 48 49

13 22 14 18 15 49 34 33 35
18 17 11 14 11 40 27 27 28
23 14 9 12 9 31 21 21 22
28 11 6 9 7 27 19 4 19
33 10 7 6 7 23 16 3 16
38 9 6 6 6 21 15 6 13
43 8 6 6 6 18 12 13 12
48 7 5 5 5 18 13 8 13
53 8 5 5 5 14 10 10 10
58 8 5 5 5 14 10 8 10
63 7 5 5 5 13 10 9 9
68 8 5 5 5 12 8 6 8
73 8 5 5 5 14 9 6 9
78 7 5 5 5 13 8 6 8
83 7 5 5 5 12 9 6 9
88 7 5 4 5 12 9 6 9
93 7 5 4 5 13 9 6 9
98 7 5 5 5 14 10 8 10
103 7 5 4 5 12 9 7 9
108 7 5 4 5 12 9 7 8
113 7 5 4 5 11 8 6 8
118 7 5 4 5 13 10 7 8
123 7 5 4 4 10 7 5 7
128 7 5 5 5 - - - -

Table 4.2: Outer iteration count versus overlap for the different convergence criteria.

Inner iteration procedure of 1 V cycle. *Representative data since non-reproducible.
**x > 150.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 52

and TAU have theoretical support. The criterion of the column ARB is a guess,
possibly based on experience. The criteria of columns ANS and RMS depend on
knowing the analytical solution and thus are useful for convergence studies only.
The outer iteration counts for the columns labeled ANS, RMS and TAU ag.ee with
one another well for the sequential SAP. Also, the outer iteration counts for the
columns labeled ANS, and TAU agree with one another well for the parallel SAP.
In the chaotic parallel method, the column labeled RMS displays odd results. The
reason the outer iteration count is smaller than it ought to be is because the RMS
error was not monotonically decreasing. The ARB criterion obviously leads to more
outer iterations than are necessary for this size problem. These convergence tests are

applied to Qg.

4.5 Parallel Method

In the parallel SAP, at the beginning of each outer iteration, each of the subdo-
mains is parceled out to a processor. The individual processors work independently to
advance their respective subdomain solutions. When the processors have completed
performing the inner iteration procedure on the their respective subdomains they up-
date the solution vector of Q0. The value of the solution at a grid point after all the
inner iterations are complete is the value that was computed by the last processor
to update that grid point. Since the update process is non-deterministic for grid
points that reside in multiple regions we name this type of update procedure chaotic
updating. We define a synchronization point between the subdomain processes and
the convergence check. After all processors arrive at the synchronization point they
compute the convergence test for ()¢ in parallel by microtasking the loops in the
convergence test. We define yet another synchronization point after the convergence
test; processors reaching this point wait until the convergence test is complete. If
the problem hasn’t converged, the processors begin again working on subdomains in

parallel. We present results for two and four processors/subdomains.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 53

SAP-MG: Two Subdomains
Sequential Chaotic Parallel
Inner
Iterations | 1 | 2 | 3 | 7 1 2 3 T

overlap
3 581525253 90| 90| 83| 87
8 231231231231 52| 53| 51| 51
13 1511515115 34| 33| 32| 31
18 11111011 28| 27| 26| 25
23 9| 8| 8| 8|t 20| 19| 20| 19
28 71 61 6| 614 18| 16| 18| 17
33 71 5] 5| 5| 18| 16| 16| 15
38 6| 5| 5| 5| 15| 15| 13| 14
43 6| 5| 5| 5| 12| 13| 12| 12
48 5! 5| 5 5 10| 12| 11| 11
53 5| 4| 4] 44 10| 11} 10| 10
58 5| 4| 41| 4 81 10| 10 9
63 5| 4| 4| 4 9 9 9 9
68 5| 4| 41 4 9 8 8 8
73 51 4| 31| 4 9 7 8 7
78 51 4 3] 3 9 7 7 7
83 5 4| 31 3 9 7 7 7
88 51 3] 3| 3 8 6 7 7
93 51 31 3] 3 9 6 5 5
98 51 31 3| 3 9 6 5 5
103 51 3| 31| 3 7 6 5 5
108 51 3| 31| 3 9 6 5 5
113 5|1 3| 3] 2 8 5 5 5
118 5 3 2 2 7 5 5 4
123 41 3] 2| 2 7 5 4 4
128 S5{—i— | 1l|l—|—|—|—

Table 4.3: Experimental results for a study of outer iteration count versus the inner
iteration procedure.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 54

4.6 Two Subdomain Results

The domain decomposition studied in this section is that labeled SD2a in Fig-
ure 4.1. Table 4.3 charts the experimental results for a study of outer iteration count
versus the inner iteration procedure. Again, we present results for both the sequen-
tial and chaotic parallel SAP. At the top of the columns of data is the indicator of
the inner iteration procedure used. The columns labeled 1, 2, and 3 correspond to
doing 1, 2, and 3 multigrid V cycles for the inner iteration procedure. The results for
the simulated direct solve are in the column labeled 7. Its outer iteration count was
minimal, except for the aberration for overlap equal to 18 in the sequential SAP with
a 3 cycle inner iteration procedure. For most of the overlaps increasing the number
of V cycles done during the inner iteration procedure did not decrease the outer iter-
ation count more than one or two cycles. The decrease is barely noticeable in most
cases. As the overlap increased the outer iteration count decreased. For the smallest
overlap, the outer iteration count is an order of magnitude greater than the outer
iteration count for most overlaps. The outer iteration count for the chaotic parallel

SAP is approximately double that of the sequential SAP.

4.7 Four Subdomain Results

The domain decomposition studied in this section is that labeled SD4c in Fig-
ure 4.1. Preliminary experiments showed domain decomposition SD4c to converge
faster than domain decompositions SD4a or SD4b. Since these results mirrored the
assertion of Tang, we decided to only consider square subdomains.

The four subdomain results found in Table 4.4 and Table 4.5 are similar to those
of the two subdomain results. Again the tables chart the experimental results for a
study of outer iteration count versus the inner iteration procedure. The results for the
sequential SAP-MG and chaotic parallel SAP-MG are presented in separate tables.
At the top of the columns of data is the indicator of the inner iteration procedure
used. The columns labeled 1, 2, and 3 correspond to doing 1. 2, and 3 multigrid V

cycles for the inner iteration procedure. The results for the simulated direct solve

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS

Sequential SAP - 4 Subdomains
Floating Point
Outer Iterations Operations (x10°)
Inner
Iterations | 1 2 3 T 1 2 3 T
overlap

3 % % % %k X % %k % % 3 % % %% % % % % XKk k%%
8 46 | 46 | 44 | 44 | 80.7 | 119. | 161. | 143.
13 27| 28| 27| 27 51.6 | 79.5 | 107. | 101.
18 16| 17| 17| 17| 34.3 |55.5| 74.7 | 69.6
23 13| 13| 13| 13| 30.3 |46.1 | 61.9 | 57.1
28 8 9 9 9| 22.1 | 36.6 | 49.0 | 44.9
33 5 7 5 51 16.2 | 24.0 | 31.8 | 28.3
38 7 6 7 71 22.2 |33.3|44.4 | 38.7
43 7 6 6 6 || 22.4 | 30.9 | 41.0 | 36.9
48 6 5 5 51 23.3 {29.0|38.5|36.0
53 5 5 5 51 20.5 | 30.4 | 40.3 | 38.3
58 5 5 5 5 21.7 | 32.1 | 42.6 | 38.5
63 5 5 5 51 22.6 | 33.6 | 44.5 | 38.9
68 5 5 4 4 || 24.4 | 30.7 | 40.5 | 39.1
73 5 4 4 41254 {31.9]42.1|36.9
78 5 4 4 41 26.7 | 33.5 | 44.3 | 38.8
83 4 4 3 3237348375354
88 4 4 3 31 25.3 | 30.6 | 40.1 | 35.2
93 4 4 3 3253 |31.7|41.6 | 39.3
98 4 4 3 3 26.3|33.2]43.5|39.2
103 4 4 3 31 28.5 (344 |45.1 |37.7
108 4 3 2 21 30.3|36.5|37.1 1349
113 4 3 2 2 1131.337.7]|38.4]338
118 4 3 2 2| 32.7 | 39.4 | 40.0 | 35.3
123 3 3 2 21 28.0 | 31.8 |41.3 | 34.1
128 5] —| — 1 90| —| —| —

Table 4.4: Outer iterations and flops versus overlap for 4 square subdomains.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 56

are in the column labeled 7. These tables also include information about the number
of floating point operations. The charting of the floating point operation count allows
us to determine the most computationally efficient inner iteration procedure.

Comparing these four subdomain results to the two subdomain results, we see
in most cases for a given overlap, the four subdomain method took more iterations
to converge. The operation count data shows that in all cases an inner iteration
procedure of one cycle is the most efficient. These results lend credence to our state-
ment about not bothering to solve a subdomain problem with inaccurate boundary
conditions to a high degree of accuracy.

In the sequential experiment, Table 4.4, the work necessary for the SAP-MG
is over twice that of the ordinary multigrid algorithm for all overlaps except one.
This does not bode well for obtaining high muitiprocessing efficiencies. Assuming a
parallel SAP-MG variant has the same outer iteration count as the sequential SAP-
MG variant, (and it probably won’t because the sequential SAP-MG always is using
the newest information) computational efficiency for a four processor system is likely
to be less than 50%.

In the chaotic parallel experiment, Table 4.5, we see the outer iteration count
in the chaotic update variant of the parallel SAP-MG is 2 to 4 times that of the
sequential SAP-MG. For a shared memory machine with enough memory to fit the
ordinary multigrid problem, the chaotic update variant of parallel SAP-MG offers no
benefits. The minimum computational cost divided by number of processors (4) is
greater than the cost of solving the global domain using ordinary multigrid. A simple
scheme of averaging solutions (or weighted averaging) in the overlapping regions did
nothing to improve the convergence of the parallel method. In fact, it always made it
worse. We hypothesis the chaotic method of the update is in some sense optimal for
the multigrid method because of the way the error is distributed. The residual error

in the chaotic update is most likely not smooth.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS

PSAP - 4 Subdomains - 4 CEs with Chaotic Updating
Floating Point
Outer Iterations Operations (x10e6)
Inner
Iterations | 1 2 3 T 1 2 3 T
overlap

3 % %k % K%k %k kA %k kK% * kK %K%k %k % %k * %k %k
8 112 | 107 | 108 | 107 || 192. | 284. | 483. | 442.
13 TTL 72| 72| T2 | 141.| 204. | 389. | 321.
18 511 50| 49| 49 | 101. | 153. | 204. | 252.
23 43| 42| 41| 42 91.0 ; 137. | 181. | 226.
28 36 | 34| 34| 32| 84.2|123.|166. | 191.
33 31| 30| 30| 28| 76.8 | 114. | 155. | 180.
38 27| 24| 25| 25| 72.0 | 107. | 139. | 175.
43 24 | 21| 22| 22| 67.6|104. | 129. | 164.
48 22| 20| 21| 18 || 67.6|99.4 | 134. | 139.
53 19| 16| 19| 18| 62.0 { 99.6 | 128. | 150.
58 16 | 16| 17| 16 | 45.1 | 85.7 | 122. | 144.
63 12| 15| 17| 15 45.5 | 89.5 | 127. | 137.
68 17 13| 15| 11| 66.5|90.8 | 122. | 111.
73 16| 13| 13| 14 | 65.6 | 83.1 | 111. | 142.
78 16 | 14| 14| 10| 69.0 | 87.4 | 125. | 121.
83 15| 13| 14| 10 || 67.6 | 97.0 | 130. | 125.
88 15| 12| 13 9| 72.2 | 97.0 | 139. | 117.
93 15| 14| 14 8 || 75.0 | 107. | 125. | 112.
98 13| 12| 12 8 1 69.2 | 98.1 | 141. | 120.
103 12 11| 13 8| 67.0 | 94.3 | 126. | 123.
108 12 11| 11 71 71.1 | 100. | 155. | 115.
113 12| 10| 13| 10| 73.4 | 95.2 | 149. | 151.
118 9 7| 12 8 || 60.1 | 73.7 | 156. | 128.
123 9 g1 11 8 || 62.1 | 84.9 | 149. | 133.
128 5/ —| — 14 90| —| —| —

Table 4.5: Outer iterations and flops versus overlap for 4 square subdomains.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS

R
co

4.8 Alternating Vertical and Horizontal Subdo-

mains

For the smallest overlaps the outer iteration count increases dramatically as the
overlap goes to zero, because only a small amount of information from one subdomain
transfers over to the other subdomain. Zero overlap implies that the subdomains share
no unknowns. Information is passed only at the boundaries. That is, in the case of
two vertical subdomains, the rightmost unknown of the leftmost subdomain would be
the boundary of the rightmost subdomain and visa versa. As the overlap increases the
computation work per outer iteration increases. Our desire is to minimize the time
to convergence. As an attempt to provide greater communication between opposite
sides of {0¢ we resort to alternating between vertical and horizontal subdomains.
Using this trick on every other outer iteration information travels across an internal
interface that it wasn’t traveling across the previous outer iteration. For example,
the domain decomposition alternates between those illustrated in Figure 4.1, SD2a
and Figure 4.1, SD2b.

Sequential SAP-MG Parallel SAP-MG
alternating | vertical | alternating | vertical
overlap

0 83 36 o 47
1 . 25 81 37
2 28 20 58 32
3 22 17 45 29
4 17 14 35 27
3 14 13 28 25
6 12 11 27 23
7 11 10 23 22
8 9 9 23 21

Table 4.6: Comparison of SAP-MG with vertical subdomains against SAP-MG with
alternating vertical and horizontal subdomains for small overlaps.

CHAPTER 4. OUTER ITERATIONS VS INNER ITERATIONS 59

Table 4.6 shows a marked improvement for the smallest overlaps. However, the
algorithm still converges in an unfavorable outer iteration count. A ** in the field of
the table means more than 150 outer iterations. The results are for the model problem
of §2.1 solved on a 64 x 64 grid of unknowns with an inner iteration procedure of one
multigrid V cycle, with the cycling parameters of §3.2 equal to one. Convergence
was determined by comparison of the discrete Ly norm of the residual to the ||| g
norm of the global discretization error. For overlaps exceeding those tabulated this

alternating method showed little if any improvement.

4.9 Conclusion

For the modcl problem considered, we conclude the inner iteration procedure
should be one multigrid V cycle. We conclude using ¢ square subdomains is better
than using ¢ vertical or horizontal subdomains. We conclude an overlap of in the
neighborhood of 50% results in a more efficient SAP-MG algorithm than one with
a relatively small or large overlap. In exploring chaotic updating we found the con-
vergence rate to be substantially slower for the parallel updating of shared areas.
We saw evidence that supports others’ statements that applying parallelism at the

subdomain level in conjunction with multigrid does not result in a faster algorithm.

Chapter 5

Domain Decomposition for Large

Systems

With the current version of the multigrid program and a particular instance of
the Alliant hardware, running the model problem with over 730 x 730 unknowns
uses all the physical memory and incurs heavy overhead because of page faults. As
the multigrid problem size reaches 800 x 800 the computational efficiency decreases
dramatically because of page faulting but the problem does run to completion. When
we ran a 1024 x 1024 multigrid problem the computation starts but the operating
system terminates it, presumably because of insufficient memory for system tables
and/or swap space.

In this chapter we test the hypothesis that by limiting the spatial locality of the
data operated on, through decomposition of the global domain into subdomains, the
page fault rate drastically decreases resulting in a more efficient computation. The
idea is analogous to that of strip-mining vector loops for optimizing cache perfor-
mance, but the optimization occurs at a different level of the memory hierarchy.

Given an elliptic problem, increasing its size will eventually cause its memory
requirements to exceed the size of physical memory. The exact size of the specific
problem for which this happens is not the relevant consideration, since a more compli-
cated problem, e.g., nonconstant coefficients and/or large discontinuities, may have

different storage requirements and as a result have a different memory size threshold.

60

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 61

Also, the amount of physical memory varies from one computer system to another.
Our concern here is characterizing the general behavior.

We ran four experiments to show the usefulness of the SAP in this context. All
experiments use the boundary conditions and right hand side of the model problem
described in §2.1. The first experiment charts the page fault behavior of ordinary
multigrid as the problem size increases, revealing the need for an improved method.
The second experiment shows how applying additional processors to a multigrid prob-
lem incurring page faults has little effect in decreasing wall clock time to solution.
The third experiment detailed in §5.2 shows the superiority of the SAP-MG method
over multigrid for a specific problem. Finally, §5.3 presents results for SAP-MG with
an extended set of domain decompositions over a range of problem sizes.

Throughout this process we employ all the Alliant CEs using the do loop, mi-
crotasking parallelism facilities provided by the Alliant FX Series hardware and
compiler.! In the Alliant FX Series Architecture ‘CE’ refers to the enhanced compu-
tational element [FXm86). The ‘CE’ moniker distinguishs the vector processing CPU
from the interactive processor CPU.

Although we solve using multigrid cycles during the inner iteration procedure in
this thesis, the Schwarz theory states for elliptic problems using any convergent solver
during the inner iteration procedure suffices to reach a global solution [KK58). We
point this out because multigrid is only one of many solvers used.

The outer iteration procedure is specified as follows: sequentially visit each subdo-
main, while visiting the subdomain, advance the subdomain solution by performing
the inner iteration procedure, update convergence data structure, and update the
global solution, then proceed to the next subdomain until all of the subdomains have
been visited. After all subdomains have been visited check the convergence data
structure to see if the stopping criteria is met, if it is not met, repeat the outer iter-
ation procedure. The inner iteration procedure is 1 V cycle with cycling parameters
pbeg, pdown, pup, ptop all set to 1. (Parameters are explained in §3.2.) We construct
the initial guess by applying the diffcrence operator to the boundary points. Timing

begins after initializing the arrays U and F; as a result, the system time to set up

1See Chapter 6.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 62

Major Time (seconds)

Page VSS

Unknowns | Cycle | Faults || user | system | wall clock || (MB)

700x700 | first 0 | 10.2 1.4 78.6 || 54.1
avg 04y 4.6 2 5.9

720x720 | first 10 || 10.8 1.0 81.7 || 57.0
avg 0] 4.9 1 5.7

730x730 | first 3| 11.0 1.0 81.2 || 58.5
avg 0| 5.0 2 6.7

740x740 | first 223 || 11.9 4.4 158.9 | 59.9
avg 225 || 5.4 1.2 38.0

760x760 | first 675 || 13.0 9.1 229.5 | 63.3
avg 538 || 5.9 2.5 73.0

180x780 | first 1458 | 14.0 8.9 250.5 || 66.5
avg 1277 || 6.4 4.3 88.0

800x800 | first 4635 | 15.8 22.5 437.0 | 70.0
avg 2434 || 7.0 6.4 215.2

Table 5.1: Page Fault Characterization of Multigrid for Large Systems.
Alliant FX/8 - 58.5MB Main Memory.

the pages in which U and F are located is not included. All timed experiments ran
with no other users on the system. The page fault statistics were monitered with
the UNIX system call setrusage. In part, we gathered timing information using the
etime system call, which returns the elapsed user time and elasped system time with
a resolution of .01 seconds. We monitored the wall clock time with the high-resolution
tirning routines provided in the FX/FORTRAN library, hrcget and hrcdelta, whose

resolution is ten microseconds.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 63

5.1 The Page Fault Behavior of Multigrid

First, we show how the computational efficiency degrades as the problem size
grows when using the m_ltigrid method?. The experimental results in Table 5.1 chart
the page fault behavior as a function of the problem size. The problem size increases
from 700 x 700 unknowns to 800 x 800 unknowns in steps of 10 to 20 unknowns in
both the z and y directions. Each experiment consists of running six consecutive
cycles. The data labeled first corresponds to the first cycle. We list it separately for
two reasons: 1) in the multigrid method we compute the operators in the first cycle
only; 2) during this cycle the operating system must set up any uninitialized page
tables entries. The data labeled avg represents the average of the last five cycles. (We
do not concern ourselves with convergence in the table, the purpose of the table is to
display timing statistics only. The number five isn’t meant to relate to convergence.
Choosing six cycles for this experiment is not meant to imply anything about the
convergence rate of multigrid.) The rightmost column lists the virtual set size (VSS)
in units of megabytes (MB) for each process. The data presented reflects the outcome
of a typical trial. The numb-r of major page faults, and therefore the wall clock time,
varies from one trial to the next. A major page fault happens when replacing a
page results in a write to disk. One calculates the operator construction time by
subtracting the average cycle user time from the first cycle user time.

A probiem size that executes without major page faulting incurs nearly all its
system time and extra wall clock time during the first cycle of the multigrid method.
We incur the overhead of setting up the page tables on a once per process basis.
For instance, the 700x 700 problem uses about 68 seconds of wall clock time beyond
the computational time in the first cycle. This amounts to over 200% of the wall
clock time to execute the last five cycles. We see the effect of Amdahl’s Law; setting
up page tables is highlv sequential. Any competing method with similar memory
requirements would incur a similar page table setup overhead.

On this instance of the hardware, for problems with less than 740x 740 unknowns

2We ran this set of experiments on the Alliant FX/8 at Argonne National Laboratory with 58.5
MB of memory partitioned for user space, running version 4.0 of the Alliant Concentrix operating
system and version 4.0.24 of the Alliant FORTRAN compiler.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 64

no page faults occur. Once major page faults start to occur, the wall clock time
increases sharply and dramatically. This reveals the large spatial locality of the
multigrid algorithm; with each cycle the computation sweeps through the whole vir-
tual address space, not spending any prolonged period of time accessing any localized
subset of the data. The time spent accessing the data associated with a particular
grid point on any level is approximately the same throughout a cycle. Even though
in a conventional multigrid algorithm 3/4 of the time is spent on the finest grid one
cannot say the algorithm is exhibiting good spatial locality because during a visit to
the finest grid, the majority of memory is accessed. The use of multicolor relaxation
schemes, typically for vectorization and parallel processing purposes, makes the local-
ity of reference even worse. The 740x 740 problem exceeds the physical memory size
by 1.4 MB, which exceeds the 14,600 physical pages set aside for users by around 350
pages. This 2.4% excess of address space causes the wall clock time per cycle to slow
down by a factor of 5%. A 19.6% excess causes the wall clock time per cycle to slow
down by a factor of 32. The number of page faults per cycle almost doubles every
time the multigrid problem size grows by 20 grid points in each direction beginning
with 740x 740 grid points on up to 800x800 grid points. Clearly the virtual machine
is not so virtuous for this implementation the multigrid algorithm in this instance.

Nonetheless, it does let us run the problem.

Inefficient Multiprocessing When Page Faulting

Table 5.2 compares page fault behavior for the 800 x 800 problem for different
degrees of multiprocessing®. As in the previous experiments, we present the data from
a representative trial. Using 4 CEs instead of 1 CE only decreases the trial’s wall
clock time by 16% overall and an average 25% per cycle. These results presented here
should be compared to the quite favorable parallel processing performance results (for
problem sizes where no page faults occurs) presented in Chapter 6. The wall clock

time to complete the first cycle was nearly the same in all four cases. The greatest

3We ran this set of experiments on an Alliant FX/80, with 50.0 MB of memory partitioned
for user space and four computational elements, running version 4.1.0 of the Alliant Concentrix
operating system. We compiled the code with version 4.0.28 of the FORTRAN compiler.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 65

deviation from the average wall clock time was 6% for the 3 CE trial. The system
time for the first cycle decreased when using more than 1 CE, which gives a strong
indication of the presence of some parallel work being done by the operating system
itself. From this experiment we conclude that when major page faults are occurring

little if any benefit is realized from having multiple processors available.

Major Time (seconds)

CEs | Outer Page
Iteration || Faults || user | system | wall clock

first 1271 || 46.8| 30.6 223.8
1 | avg(2-8) | 734 || 26.8 8.2 93.8
total | 5144 || 234.8 | 88.5 882.3

first 1344 || 25.7| 157 219.7
2 |avg(2-8) || 929 | 151 | 102 93.9
total | 6506 | 131.5| 87.7 880.4

first 1414 || 18.9| 185 252.8
3 |avg(28) | 753 || 10.9 6.2 78.8
total || 5259 || 957 61.9 806.3

first 1656 15.7 13.7 224.9
4 | avg(2-8) 717 9.1 5.1 70.4
total 6677 79.5 50.0 739.7

Table 5.2: Ordinary Multigrid Method
Alliant FX/80 ~ 50 MB Main Memory.
800 x 800 Unknowns (VSS - 69.5 MB).

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 66

5.2 SAP-MG Outperforms Multigrid

Having seen the performance of multigrid, we now consider the SAP-MG method.
We show the superiority of SAP-MG over multigrid for problems whose multigrid
memory requirements exceed the size of physical memory. The computational cost of
SAP-MG, measured in units of floating point operations exceeds multigrid’s because of
the combined effects of SAP-MG’s slower convergence rate and SAP-MG doing more
work per outer iteration. We hypothesize that once we load the data associated with
a subdomain into memory, page faulting will temporarily cease and the computation
will proceed efficiently.

To verify our hypothesis we solved the model problem on an evenly spaced,
800 x 800, grid with the SAP-MG method with four square subdomains that overlap
each other by 50% as in Figure 4.1, SD4c. That is, the center square of SD4c, the
intersection of all four subdomains is equal to 1/4 the size of one of the subdomains.
Our inner iteration procedure was one multigrid V cycle with cycling parameters set
to unity. The multigrid method had a VSS of 69.5 MB and therefore used all 50 MB
of main memory*. The memory required for this SAP-MG algorithm was 36 MB,
leaving 14 MB of main memory for other jobs. Already we see an advantage, this
SAP-MG variant needed only 51% the memory multigrid needed.

Let us consider three variants of the SAP-MG algorithm and denote them ‘A’,
‘B’ and ‘C’. In SAP-MG variant ‘A’ we assume our fine grid operator is the same at
all grid points. Because of this property, if all the subdomains are of the same size
and shape, then they can all share the same data for the difference and grid transfer
operators; that is, these operators need to be computed and stored only for a set
equal to the size of the subdomains. This only works if the differential equation and
boundary conditions have constant coefficients.

In SAP-MQG variant ‘B’ the operators are recomputed on entry to successive sub-
domains during each inner iteration throughout the whole computation. In variant

‘B’ we trade off the additional computational cost of reconstructing operators for

4We ran this set of experiments on an Alliant FX/80, with 50.0 MB of memory partitioned
for user space and four computational elements, running version 4.1.0 of the Alliant Concentrix
operating system. We compiled the code with version 4.0.28 of the FORTRAN compiler.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 67

decreased memory needs. An application of this variant would be the case of non-
constant coefficients, unevenly spaced meshes or irregularly shaped regions.

Finally, variant ‘C’, works under the assumption one has enough memory to store
each of the subdomain operators completely. Variant ‘C’ maps well to smaller prob-
lems and distributed memory architectures. When considering our SAP-MG method
for a distributed memory architecture, variant ‘C’, is the only method that has prac-
tical value. However, it is not the method of choice for parallelizing multigrid on dis-
tributed memory architzctures because of its slow convergence rate as seen in §5.3. In
Chan’s and Tuminaro’s survey of parallel multigrid algorithms [CT87], they describe
the common methods for parallelizing on hypercube architectures. We hypothesize
variant ‘C’ may be of some practical value. For instance, a Cray 2 computer has 64k
double words of local memory. This is enough to divide up a 64 x 64 problem into four
square subdomains, each of which could reside in the local memory of a processor for
the duration of the problem. It is conceivable that due to the faster access time of
the local memory, in spite of the slower convergence rate of the SAP-MG method —
its larger outer iteration count, the outer iterations would be computed much faster
and a total improvement may be realized. However, it was not in our best interest to
pursue this idea and we consider variant ‘C’ no further.

We determine convergence of the SAP-MG method on the model problem by com-
paring the discrete L, norm of the residual to the norm of exact discretization error.
We used the norm of exact discretization error instead of some arbitrary tolerance.
The method stops doing the outer iteration procedure when the residual norm is
less than the exact discretization error. We discussed the computational aspects of
determining convergence in §2.8. Note, when we used the truncation error estimate
method for the stopping criterion the problem converged in the same number of cycles.
However, our computer code uses five point grid stencils on the finest grid level and
nine point grid stencils on the coarser grid levels and as a result the truncation error
estiraate is not theoretically sound. The ideal determinator of convergence would be
a method that dynamically computes the truncation error estimate and discrete L,

norm of the residual.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS

Outer
Iteration

Major
Page
Faults

Time (seconds)

usr

sys

wall clock

Flops
Per
Unknown

Ordinary Multigrid Method (VSS - 69.5 MB)

=
[
%)
(o

00 1O Ut W N

avg(2-8)
total

1656
689

894

600

919

608

762

549

717

6677

15.7
9.1
9.1
9.1
9.4
9.0
9.1
9.0
9.1

79.5

13.7
5.1
4.9
4.9
1.4
3.9
4.8
4.7
3.1

50.0

224.9
71.9
63.3
65.0
90.7
61.7
78.2
61.7
70.4

739.7

151
65

65

65

65

65

65

65

65

605

SAP-MG — Four Subdomains (VSS — 36MB)

Variant A
first 0 17.0 | 0.9 24.9 152
avg(2-9) 0 143 | 0.0 14.3 115
total 0 131.5| 1.0 139.5 1070

Variant B
first 7 25.6 | 0.9 32.2 264
avg(2-9) 0 25.8 | 0.0 25.8 264
total 7 232.0 | 1.0 239.0 2384

Table 5.3: Detailed Comparison of MG to SAP-MG.
Alliant FX/80 - 4 CEs - 50 MB Main Memory.

Inner Iteration Procedure is V] ;1. 800 x 800 Unknowns.

68

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 69

Table 5.3 reports results for SAP-MG variants ‘A’ and ‘B’. Recall both these
variants only allocate storage for the operators on one subdomain. SAP-MG variant
‘A’ is the method of choice when the finest grid difference operator is the same at all
grid points. Thus, we compute the difference and grid transfer operators only once,
before we enter the first subdomain. SAP-MG variant ‘B’ recomputes the operators
on entry to every subdomain throughout the solving process. Variant ‘B’ is a more
expensive procedure as constructing the operators on a subdomain requires slightly
more time than doing a multigrid V cycle (pbeg, etc. all 1) on that subdomain.
However, variant ‘B’ solves a wider class of problems.

Table 5.3 compares SAP-MG variant ‘A’ and SAP-MG variant ‘B’ to the ordinary
multigrid method. The rows labeled first, avg and total are as described previously
except for the rightmost column which now indicates the number of floating point
operations per unknown required in the associated time frame. Table 5.3 includes the
data for each multigrid cycle for ordinary multigrid to show the deviation in number
of page faults from cycle to cycle. The time per cycle for the SAP-MG variants was
constant to the tenth of a second.

For this problem the page fault behavior exceeds our expectations since the phys-
ical address space exceeds the SAP-MG method’s virtual address space. Few, if any,
major page faults occur in this case. The bottom line is a wall clock time of 140
seconds for SAP-MG variant ‘A’ versus 740 seconds for multigrid. SAP-MG variant
‘A’ obtains a “speedup” of 5.3 over multigrid for this particular problem even though
the SAP-MG method requires 1.7 times more floating point operations per grid point
to converge. SAP-MG variant ‘B’ obtains a “speedup” of 3.1 over multigrid for this
particular problem even though the SAP-MG method requires 3.9 times more floating
point operations per grid point to converge.

In conclusion, a SAP-MG algorithm is more efficient than ordinary multigrid for
a class of large systems of equations. With SAP-MG the gains made from minimizing
the main memory, disk and I/O resources used overshadow its increased operation

count.

70

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGF, SYSTEMS

P e e e e = = - o

P o e e e e = =

P m e —m— P e mm—m e —— = 4
1 2 1] $ i
n i c - = ' 0
c ! [Nesl | ! G
' l] i
t 1] 1
l 1 i]
' 1] 1
! 1]
l|||||;+|||4 T ' B DA B FT T
| N]] v ' i
1 (I l [I I ! 1
..Ill_ll+,lll-ﬁ.. Bt e)]
50 ™ | t
I por . +
b Tl — Tl <« !
c Lo G S D IR c
B ndudied ulh dadutiadindh § N ’ 1~ N 1
; 1]t) 1 1] [1
i (N ,] o |]
\ 1ot) i o] !
T+ , t ——+ 1 i
lllllll T-=--" Ll e et [N PEUGR S R
2 1 « | mu ! »
i e !
c _ S 'S _ c
llllll Yl—rll".u T 'Illl——"l"l||J r "IllT*"l"
) Vo \ 1 (I]]
RN T A W AR B et o e 3]
— g 1 — -+
=)
N] o~ (] o~
oN —
c G c 1S [
Lo o :
SRS S A | SRS AL R | !
r I 1 r _* _ hl t
| I 1] (N | '
| 1o i 1 Vo | 1
+ +—— 1 4 +——+ | !
IIIIIII 4+ ——= [SO U DU P (IS b e e e e e e - — -2
] I ' [
! |] !
' 1 1)
—) e !
S ! 2 'S o)
: S — S _
C e G- ____.

llllllllllll

e e e = e e = =

1
1 1
1 1
i 1
1 1
|)
D) «]
(32
(o S '
_ X c
i 1
llllll g!l_l"l-._ _-lllll.l_l"llld
1 1 1 1 i
[T YN -) 1
} 1 +
-3 I o o
(o] 1S C
] 1 1
R L W !
" 1 1 | ° l
1 1 | | 1
1 t 1 ! !
—+ T 1 1
llllll +.I|’L (8 Ill-lll—ll'lllllb
1 1
| 1
| 1
- ! © ! _
1 1
S G _ S
b e e e e m e oam e e

Figure 5.1: Schwarz Splittings for q = 3, 5.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 71

5.3 Increasing the Limits of Linear System Size

In this section we show how domain decomposition allows us to solve problem
sizes that the operating system cannot set up using multigrid®. In this last set of
experiments we study the outer iteration count of the sequential SAP-MG for four
different domain decompositions and for increasingly larger problems. We divide the
global domain of the model problem into ¢ x ¢ square subdomains with ¢ = 2, 3, 5
and 7. Figure 5.1 illustrates the domain decomposition for ¢ = 3 and ¢ = 5. The
domains are numbered in the order they are visited during the outer iteration. Each
subdomain overlaps its neighbors by 50%. We stop iterating when we meet the RMS
ratio convergence criterion described in §2.7.2.

The results appear in Table 5.4. A *** in a field of the table means we could
not solve that problem run using that domain decomposition on the given computer
system. We could not solve it due to insufficient memory or insufficient swap space
(or combination thereof). The combination of swap space on disk and incore memory
was insufficient. We made no attempt to solve the problems with blank entries in the
5x5 and 7x7 column because of time constraints.

These experiments verify the assertion made in §4.3 that as the number of subdo-
mains increases, and therefore the size of each subdomain decreases, the convergence
rate per outer iteration becomes slower. Also, as the number of subdomains increases
the convergence rate becomes less and less independent of the number of unknowns.

Using 4 subdomains, ¢ = 2, with 50% overlap the largest problem that we solved
with a high degree of computational efficiency (over 90%) was 800 x 800 on the
given system. Solving the larger systems necessitated an increase in ¢. Even though
the SAP-MG methods presented here seem to be computationally inefficient when
compared to ordinary multigrid in the sense of needing greater outer iteration counts
to converge, the SAP-MG method allows us to solve a problem that multigrid is

unable to solve.

®Again we acknowledge the use of the Alliant FX/8 in the ACRF computing facility at Argonne
National Laboratory with 58.5 MB of memory partitioned for user space, running Alliant Concentrix
4.0, using the Alliant FORTRAN compiler version 4.0.24.)

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS

Sequential SAP-MG

Domain
Decomposition | 2x2 | 3x3 | 5x5 | 7x7
Squares
Global Outer Iteration Count
Unknowns
200x200 71 11| 22 26
300x300 71 12 23
400x400 71 12 25 34
500x500 8| 12
600x600 8| 13| 26 38
700x700 81 13
800x800 8| 14| 27 41
900x900 7?71 14| 28
1200x1200 141 29 45
1500x1500 *ak | kAE 29

72

Table 5.4: Outer Iterations for Various Domain Decompositions versus # of Un-

knowns.

CHAPTER 5. DOMAIN DECOMPOSITION FOR LARGE SYSTEMS 73

5.4 Poor Potential for Multiprocessing

In this section we use the results in Table 5.4 to show why parallel processing through
the domain decomposition of the global domain into large grain subdomain tasks has
been discounted. This sequential SAP-MG data gives us a gross indication of what
types of parallel processing efficiencies might be expected. Here we quantify compu-
tational efficiency using operation counts. We make the following overly optimistic

assumptions:

(1) The outer iteration count to convergence for sequential SAP-MG is a lower

bound for any parallel SAP-MG variant.

(2) The work per outer iteration is constant for all SAP-MG domain decompositions

and multigrid.
(3) Communication cost between processors is negligible.

(4) The data associated with each subdomain resides in the memory level closest to
the processor(s) operating on it. That is, no read or write to disk occurs during

the solving process.

Given that multigiid meets the RMS ratio convergence criterion of §2.7.2 in five
cycles, then under these optimistic assumptions for ¢ = 7 we obtain a dismal parallel
processing efficiency for a 200 x 200 problem of about 20%. For larger problems the
outer iteration count is even higher and the parallel processing efficiency is even lower.
For instance, in the 1200 x 1200 unknowns problem the parallel processing efficiency
diminishes to around 10%. The neglected computational overhead of 50% overlap
would decrease these efficiencies by at least a factor of two. Thus, multiprocessing in

this manner does not make sense.

Chapter 6

Parallelizing Multigrid With
Microtasking

In this chapter we introduce parallelism into the multigrid algorithm through
the use of microtasking Microtasking is a fine grain parallel construct. Virtually all
of the work perforni - our multigrid code occurs in doubly nested, vectorizable
loops. We review the major loops in §6.8. One can easily take advantage of do
loop/microtasking parallelism in the multigrid algorithm. Coding such algorithms can
be as easy as putting in a compiler directive that says, microtask here. In the future
as compilers become more intelligent or new programming languages are adopted the
procedure will simplify even more; programmers will need to make no alterations to
their codes. Most compilers will detect the parallelism for the user and put in the
microtasking code itself. In fact, the Alliant FORTRAN compiler does just that. One
of the major advantages of this form of parallelism is the user doesn’t worry about
synchronization. We intend to show how effective the Alliant FORTRAN compiler
and Alliant FX/8 Series hardware is at automatically parallelizing the do loops in

the Boxmg multigrid code. Boxmg previously ran on a vector processor.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 75

6.1 Alliant FX Series Computer Parallelism

The four modes of do loop parallelism the Alliant FX/8 implements are vec-
tor, concurrent, vector-concurrent (VC) and concurrent-outer-vector-inner
(COVI). Vector parallelism is the normal vector technique for a single processor. The
Alliant FX/8 has a vector length of 32 elements. Processing 32 elements with a vector
instruction is two to four times faster than processing the elements in scalar mode,
depending on the instruction and degree of pipelining achieved in vector mode. Re-
call, Alliant refers to their enhanced vector CPU as a CE. An Alliant system can
devote up to eight CEs (on an FX/8 or FX/80 model computer) to the execution of
a single program. The FX/80 model has faster CEs and a larger cache than an I'X/8
model. See the following page for an illustration of the modes of execution. They are
discussed in more detail below.

In the concurrent mode of parallelism each of the p available processors takes the
next available loop index and executes the code inside the loop in scalar mode in
parallel with the other processors. Concurrent parallelism also makes it possible to
call subroutines and functions in parallel.

The vector-concurrent mode of parallelism operates by dividing up the vector(s)
to be processed across the p CEs available. For instance, CE 0 would process element
1 and every p-th element from then on of a given vector up to 32 elements on the
first iteration. CE 1 would process element 2 and every p-th element from then on of
a given vector up to 32 elements on the first iteration. In the case of an outer loop
and an inner loop, only one of the outer loop indices is worked on at a time.

The concurrent-outer-vector-inner mode of parallelism is the method used to par-
allelize multiply nested loops with innermost loops that vectorize. Vector instructions
from the inner loop are executed by each of the p available CEs in parallel. Tor ex-
ample, an outer loop with an iteration index of four can put four CEs to work in
parallel, each performing the work to be done in the whole inner loop corresponding
to the particular outer iteration index. Let p be the number of processors available.

Up to p indices of outer loop can be worked on at a time.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 76

Scalar
A(D)[[A(2)[|A(3)||A(4)[|A(B)[|A(6)||A(T){|A(8)|]|A(9) A(8192)
122472 cycles
Vector
(AT [KGEo0)
24184 cycles
Concurrent Code can be written as a loop:
A1) A(9) A(8185)
dol=1,N
| A(2) A(10) A(8186) M
a{3) A(11) A(8187) (ﬁ(l) =A() +5
A(4) A(12) A(8188) endao
A(5) A(13) A(8189)
A(6) A(14) A(8190) Or as an array operation:
A(7) A(15) A(8191) A(1:N) = A(1:N) + S
A(8) A(16) | A(8192)

15970 cycles

Vector-concurrent

A(1:249:8) A(7937:8185:8)
A(2:250:8) A(7938:8186:8)
A(3:251:8) A(7939:8187:8)
A(4:252:8) A(7940:8188:8)
A(5:253:8) A(7941:8189:8)
A(6:254:8) A(7942:8190:8)
hA(7:255:8) A(7943:8191:8)
A(8:256:8) A(7944:8192:8)

3848 cycles

Concurrent-outer-vector-inner

A(1:32,1) A(993:1024:1)
A(1:32,2) A(993:1221:2)
A(1:32,3) A(993:1024:3)
A(1:32,4) A{993:1024:4)
A(1:32,5) A(993:1024:5)
A{1:32,6} A(923:1024:6)
A(1:32,7) A(993:1024:7)
A(1:32,8) l A(993:1024:8)

4825 cycles

where M = 8192

Code can be written as a loop:

doJ=1,N
dolI=1,N
A(LLJ) = A(1,s: + S
enddo
enddo

Or as an array operation:
A(L:N,I:'L) = A(I:N.1:L) + S

where N = 8192 and L = 8

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 77

6.2 Comments About Speedup

Many methods have evolved by which algorithms are compared. Currently it
is popular to report the “speedup” achieved using multiple processors. Too much
emphasis has been placed on how close an algorithm comes to achieving the optimal
theoretical speedup in practice, usually with the number of processors equating to
the optimal speedup.

An important factor often not taken into consideration is the cost of the CPUs
involved. If a vendor sells a system a user at relatively low cost then one shouldn’t care
if they achieve parallel efficiencies of 90% to 95%. Vendors price their haraware to
be cost competitive in their perceived market. The parallel efficiency trade-offs vary
from computer to computer. On a relatively low cost computer a parallel inefficiency
of 30% may be an acceptable loss. However, a smaller 10% parallel inefficiency on
an expensize CPU such as those produced by Cray Research Inc. may be completely
unacceptable. The bottom line is how big of a problem can be run in the time you
are willing to wait for it to complete on the hardware you are willing to pay for.

Amdahl’s Law states *hat for a program with serial work fraction s, the maximum
parallel speedup obtainable is bounded by 1/s. This law has led to the assertion that
the serial fraction will dominate execution time for any large parallel ensemble of
processors, limiting the advantage of the parallel approach. If P is the number of
processors, s is the amount of time spent (by a serial processor) on serial parts of the
program, and p is the amount of work spent (by a serial processor) on parts of the

program that can be done in parallel, then Amdahl’s law states

(s +p) (1)
Speedup = ST E =5 z (6.1)

where we have normalized total time s +p = 1. For P = 1024 tnis is a steep function
of s near s = 0 (slope of approximately —P?). This expression is based on the implicit
assumption that p is independent of P. However, one does .10t generally take a fixed
sized problem and run it on various numbers of processors. In practice, a scientific
computing problem scales with the available prccessing power. The fixed quantity is

not the problem size but rather the amount of time a user is willing to wait for an

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 78

answer. When given more computing power the user expands the problem to use the

available hardware.

6.3 Ease of Parallel Implementation

First, the algorithm itself didn’t need to be changed. All the same routines are
called, in the same order. The cycling procedure stays the same, the test for con-
vergence remains the same and no new data structures are needed. No new common
areas are needed and no synchronization primitives need to be added or thought
about by the programmer. Multigrid is quite often run on vector machines and code
optimized for vectorization most likely compiles into microtasked, parallel code with-
out modification. Obviously vector code always maps to VC mode on an Alliant FX
Series computer. If the compiler doesn’t automatically implement the do loop par-
allelism, it identifies the difficulty by putting a comment in the listing file. Generally
inserting a simple compiler direction, in the form of a FORTRAN comment, allows
the parallel mode to be used.

We made a minimal number of changes to our code to get all the parallelism
available; the compiler does the majority of the work. We made two types of changes
to the code. The first was due to a scalar reduction variable used in calculating
the error. The simple and standard solution makes the reduction variable a vector
of length corresponding to the outer loop and reduccs the vector to a scalar after
finishing the do loops. This needed to be done in three places and the compiler
pointed out all three.

The other code alteration dealt with the way the code accesses the colored sets of
points. The original code had four nested loops with two of the loops having length
two, including the one concurrency would have been used on. As written the compiler
couldn’t figure out how it was possible to parallelize the code. One expected this loop
to parallelize since it is the key loop of the whole program. By taking the color control
logic cut of the loop and straightforwardly implementing the loop as at the end of
this chapter the code parallelized into COVT mode.

We observed the following interesting phenomena. COVI mode is the compiler

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 79

method of choice for parallelizing doubly nested loops. Even if the number of outer
iteration indices is less than the number of potentially available processors the com-
piler still implements COVI mode. The compiler doesn’t know at compile time the
number of CEs to be used. If the vector length of the inner loop is long, VC mode
would be more appropriate as all available processors could be put to work. In multi-
grid, COVI mode of execution is preferable to VC mode of execution because during
COVI mode of execution the program displays better spatial locality for the doubly
nested do loops as written, resulting in better cache performance.

Results presented in sections to follow show a moderate to high degree of success

for the compiler-generated parallelism.

6.4 Microtasking Limitations

A number of algorithm idiosyncracies in multigrid can hinder the use of and
efficiency of microtasking in speeding up multigrid. If the smoother isn’t vectoriz-
able VC parallelism obviously is not applicable. On a machine that only vectorizes
stride one loops such as the NEC SX computer, circa 1987, the code is reduced to
running in scalar mode unless a major overhaul of the data structures is undertaken.
Furthermore, in addition to not being vectorizable, the smoother may not be paral-
lelizable. As the number of processors grows the tendency is for the coupling between
processors to decrease. In this case both the communication time to reach the shared
variables and the contention for shared variables increases. Additionally, assuming a
fixed problem size as the number of processors grows the work per processor on the
inner loop decreases. This situation is mitigated by the fact that in many scientific

applications the problem size scales with the computational power available.

6.5 Do Loop Parallelism Experiments

The multigrid algorithm consists of two logical phasec. The first phase consists of
setting up of the grid and interpolation operators. The second phase consists of using

these operators to do the multigrid iteration. To test the parallel efficiency of the

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 80

Alliant architecture and its parallelizing compiler on the multigrid algorithm we ran
the following set of experiments. We tested each logical phase separately. The setup
phase testing was nearly the same as the conditions for testing the solving procedure
listed in Table 6.1 with the exception that the type of solving cycle is irrelevant. One

relaxation was done on each grid level.

Experimental Constants

Poisson’s Equation
Two Color Relaxation On Finest Grid
Four Color Relaxation On Coarse Grids
Single User on System

Experimental Parameters

of Unknowns Modes of Execution
Type;:tfu(;ycles 64x64 scalar 1 CE
Vv 128x128 vector 1 CE
W 256x256 concurrent 1-8 CEs
512x512 COVI/VC 1-8 CEs

Output Statistics
User, System and Wall Clock Time

Memory Use
of Page Faults

Table 6.1: Do Loop Parallelism Experiment

The Alliant FX/8 is a virtual memory machine. To avoid skc.w in the results we
precede all timings by a cycle to assure the software and hardware page tables and

segment table entries are set up.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING

Time (seconds) Speedup
€464 | 128x128 | 256x256 | 512x512 || 64x64 | 128x128 | 256X256 | 512Xx512
CEs
Scalar Mode of Execution
1 35.4 162.3 161.6 160.9 —_ —_ —_— —_—
Concurrent Mode of Execution
1 59.7 157.4 157.5 157.4 1.00 1.00 1.00 1.00
2 30.1 79.3 79.5 79.4 1.98 1.98 1.98 1.98
3 21.4 55.2 54.3 53.8 2.79 2.85 2.90 2.92
4 15.5 40.6 40.7 40.7 3.86 3.87 3.86 3.87
5 13.9 34.2 33.6 33.3 4.30 4.60 4.68 4.77
6 11.8 29.2 28.8 28.2 5.04 5.39 5.46 5.58
7 10.7 26.3 25.5 24.7 5.60 5.98 6.17 6.37
8 8.3 21.5 21.8 21.7 7.18 7.32 7.19 7.25
Vector Mode of Execution
1 13.67 53.8 51.8 50.4 2.59 3.02 3.12 3.19
COVI/VC Mode of Execution
1 13.6 52.2 50.1 49.3 1.00 1.00 1.00 1.00
2 7.2 26.7 25.7 25.4 1.90 1.96 1.95 1.94
3 5.1 18.9 18.0 17.5 2.66 2.76 2.78 2.82
4 4.5 14.2 13.7 13.6 2.99 3.68 3.65 3.62
5 3.4 12.3 11.5 11.3 3.97 4.24 4.36 4.30
6 3.0 10.7 10.1 9.8 4.59 4.88 4.96 5.03
7 2.6 9.8 9.0 8.9 5.24 5.32 5.57 5.54
8 2.1 8.3 8.1 8.1 6.44 6.29 6.18 6.09
(R) | (64) | (64) (16) (4)

Table 6.2: Do loop parallelism results for setup phase of multigrid.

81

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 82

6.6 Do Loop Parallelism Results

Tables 6.2, 6.3 and 6.4 show the experimental results for testing the degree of do
loop parallelism inherent in the multigrid algorithm. We used two-color Gauss-Seidel
point relaxation on the finest grid and four-color Gauss-Seidel, point relaxation on the
coarse grids. On the coarsest grid we solved directly. Column one gives the number
of CEs applied to the problem. Listed in columns two through five arc the times
in seconds for an experiment. The bottom line of the tables, labeled (R), gives the
number of times the cycle was repeated during the experiment. Columns six through
nine report the observed speedup. The speedup for vector mode is the ratio of vector-
only to scalar (1 CE). The speedups for multiple CE’s are the ratio of the execution
times of n CEs over 1 CE — executing in the same parallelism mode. The scalar
times for the cycling procedures are significantly better than the concurrent times
when executing on 1 processor, especially for the 64 x 64 problem. For example, we

list the percentage extra time spent running concurrent mode for four experiments,
W64 : 42% ngg : 14% V64 . 55% ‘/128 . 20%

We attribute the differences to multiprocessing overhead. The percentage overhead is
greatest for the smallest problem as expected. The concurrency overhead is amortized
as the amount of computation work becomes greater.

Interestingly enough the same phenomena doesn’t appear in the COVI/VC mode
of execution compared to the vector only mode. We speculate that the COVI/VC
mode of execution might be exhibiting bette. spatial locality and has better cache
performance which offsets the overhead due to multiprocessing synchronization.

Comparing the vector-only results to the scalar results for both V and W cycles
we see healthy speedups. The V cycles vectorize 10% better than the W cycles for the
smaller problems, 64 x 64, 128 x 128 and 2-3% better for the 256 x 256 and 512 x 512

problems.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING

Time (seconds) Speedup
64x64 | 128x128 | 256x256 | 512x512 || 64x64 | 128x128 | 256x256 | 512x512
CEs
Scalar Mode of Exesution
1 32.7 | 144.4 | 144.2 | 1429 —— e — —_—
Concurrent Mode of Execution
1 51.1 | 173.9 | 154.1 | 1574 | 1.00 1.00 1.00 1.00
2 26.6 | 88.5 78.2 79.2 1.92 1.96 1.97 1.99
3 19.3 | 61.5 53.5 53.2 268 | 2.83 2.88 2.96
4 14.4 45.6 40.3 40.4 3.54 3.81 3.82 3.90
5 13.0 | 38.6 33.4 33.0 3.92 | 4.50 4.61 4.77
6 11.5 | 33.5 28.6 28.0 445 | 5.19 5.39 5.62
7 10.5 | 29.7 25.3 24.6 484 | 5.85 6.09 6.40
8 8.8 24.8 21.8 22.1 577 | 7.01 7.07 7.12
Vector Mode of Execution
1 12.0 | 44.9 44.6 44 .2 2.72 | 3.22 3.22 3.23
COVI/VC Mode of Execution
1 11.9 | 46.0 44.3 43.6 1.00 1.00 1.00 1.00
2 6.4 24.6 23.4 23.3 1.87 1.87 1.89 1.87
3 4.8 17.8 16.7 16.4 2.46 | 2.58 2.65 2.60
4 3.7 13.5 13.1 12.9 3.18 | 3.41 3.38 3.38
5 3.3 12.0 11.3 11.1 3.62 | 3.83 3.92 3.93
6 2.9 10.5 10.1 9.9 4.14 | 4.38 4.38 4.40
7 2.7 10.0 9.4 9.2 4.40 4.60 4.71 4.74
8 2.3 8.9 8.6 8.7 523 | 5.17 5.15 5.01
(R) | (64) | (64) (16) (4)

Table 6.3: Do loop parallelism results for multigrid V cycle.

83

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING

Time (seconds) Speedup
64x64 | 128x128 | 256x256 | 512x512 || 64x64 | 128x128 | 256x256 | 512x512
CEs
Scalar Mode of Execution
1 48.3 | 212.2 | 214.0 | 213.3 —— —_— —_— —
Concurrent Mode of Execution
1 70.0 | 242.8 | 225.3 | 227.0 || 1.00 | 1.00 1.00 1.00
2 37.0 | 123.7 114.8 115.3 1.62 1.96 1.96 1.97
3 27.4 | 88.8 80.6 79.6 2.19 | 2.73 2.80 2.85
4 20.5 | 65.0 59.7 60.0 2.90 | 3.74 3.77 3.78
5 19.1 | 57.2 50.8 49.9 3.13 | 4.24 4.43 4.55
6 17.1 | 50.3 43.8 42.7 3.50 | 4.83 5.14 5.32
7 16.0 | 45.6 39.5 38.3 3.72 | 5.32 5.70 5.93
8 13.3 | 37.0 33.2 33.1 4.50 | 6.56 6.79 6.85
Vector Mode of Execution
1 194 | 724 68.3 67.4 2.48 | 2.93 3.13 3.16
COVI/VC Mode of Execution
1 19.9 72.3 W7.9 65.9 1.00 | 1.00 1.00 1.00
2 10.8 | 39.0 36.3 35.0 1.84 | 1.85 1.87 1.88
3 8.6 29.7 26.6 25.2 2.36 | 2.43 2.55 2.61
4 6.3 23.1 21.2 19.7 3.15 | 3.12 3.20 3.35
5 6.1 21.0 18.1 17.2 3.27 | 3.44 3.75 3.83
6 5.6 19.3 16.4 15.4 3.53 3.75 4.14 4.29
7 5.5 18.4 15.4 14.3 3.64 | 3.93 4.41 4.¢1
8 4.6 15.9 13.8 13.3 432 | 4.54 4.92 4.95
® |60 | 64 | a6 | @

Table 6.4: Do loop parallelism results for multigrid W cycle.

84

[T N

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING

0
(&1

6.6.1 Comparison of Multiprocessing Efficiency of the W
cycle and the V cycle

Table 6.5 compares the multiprocessing efficiency of the W cycle and the V cycle.
When using W cycles the average vector length over a cycle is smaller because a
greater Thus, there has been concern in the multigrid literature about the use of the
W cycle on high performance vector supercomputers. In machines with a global main
memory and no local cache beyond that of the vector registers, longer vector length
results in improved better performance. Machines that fit into this class are the CDC

Cyber computers and the Cray XMP.

Concurrent COVI/VC
CEs | 64 |128 256|512 | 64 | 128 | 256 | 512
2 (185 0 5 0 0 1.0 { 1.0 | -5
3 1224|3728 |38 4262|3919
4 12211191332} 10|93 |56 .9
5 125261 |10 4.8 10.7]11.3]45 |26
6 [271|74 |41 |56 173|104 58 | 2.8
7 1300}99|49|791]209|170) 68 | 2.8
8 12826814139 |21.1 13547 1.2
Table 6.5: (:,“—Z&‘Z“P— — 1) x 100, Comparison of V cycle and W cycle microtasking
speedup

efficiency.

Memory Hierarchy

On a shared memory machine with an additional level of memory hierarchy
between the registers and main memory, (a cache), longer vectors do not necessarily
imply better performance. The code is said to be executing from memory when the

majority of reads do not result in a cache hit. When the code is exhibiting good

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 86

spatial locality and referencing from cache often it is said to be executing from caclie.
[ASM86] studied the performance of common math expressions as a function of vector
length. They found that on the Alliant FX/8 executing from memory was up to 6
times slower than executing from cache. Long vectors tend to overflow the cache and
no longer reside in the cache the next time they are referenced.

The results of Table 6.5 do not include any set up work, only the time spent
during the cycling procedure is included. Table 6.5 shows a significant difference in
microtasking efficiency for very small problems. As problems get larger the difference
fades. Note, we are comparing the multiprocessing efficiency only. We are not stating
W cycles are less efficient, and therefore should not be used. The benefits of W cycles
go beyond the computational efficiency as W cycles reduce the error in a different
fashion than V cycles. For those who prefer using W cycles, the results show for
all but the smallest problems they can do so without contemplating the tradeoff of
computational efficiency on this architecture.

For a 512 x 512 problem the vector length in the relaxation scheme on increasingly
coarser grids is 256, 128, 64, 32, 16 and 8 assuming one CE per inner loop (COVI).
If the inner loops where coded for VC mode then the vector lengths are 32, 16, 8, 4,
2 and 1. If the whole relaxation can take place in cache it makes sense to avoid VC
mode because of the shorter vectors. The average computation efficiency in vector
mode is 12% worse for W cycles in the 128 x 128 problem but the difference diminishes
to 2% for the larger 512 x 512 problem. The W cycle efficiency approaches that of the
V cycle efficiency as the problem size increeses to the largest that can fit in memory

without incurring page faults.

6.6.2 Do Loop Parallelism Conclusions

We conclude that multigrid with colored relaxation parallelizes well on the Alliant
FX Series computer. Some may argue a speedup of five out of a possible eight is poor.
However, the cost of adding processors seven and eight in an eight processor system
is relatively small compared to the cost of purchasing the first few processors. Also,
the loops can be rewritten to utilize the cache more efficiently, resulting in better

code performance. We did not do this here because we wanted to demonstrate the

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 87
ease with which we can introduce parallelism into the multigrid algorithm.

6.7 Reasons for Imperfect Speedup

Programs don’t show perfect speedup for many reasons. If we know the potential
causes of slow-down, then we can analyze the program and attempt to minimize
their effects. We see the effects of each of the following in the experimental results
presented in Tables 6.2, 6.3 and 6.4.

Load Imbalance

This situation occurs in the COVI mode when the number of loop iterations, m,
is not an even multiple of the number of CPUs, p. In the worst case mod(m,p) = 1
and when the end of the outer loop is reached, p — 1 CPUs wait while a single CPU
works on the last of the loop indices. COVI loops with iteration indices less than the
number of processors are @ special case of the above. Executing sequential code can
also be classified as load imbalance since only one processor executes the sequential
code, and the others wait. Another type of imbalance occurs when the vector length

is not long enough to amortize the vector startup costs.

Contention for Memory

Another factor is memory bandwidth. As the number of processors increases the
data paths to/from memory are more likely to become saturated. For instance, less
than perfect speedups while multiprocessing with all four CPUs of a Cray XMP/4
have been attributed to bank conflict and memory path saturation. The concurrent
mode of execution shows greater speedup than the COVI/VC mode of execution
because in COVI/VC mode data is being accessed at a rate about 2.5 times faster

than in concurrent mode, possibly running into bus limitations.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 88

Synchronization Overhead

Another factor is the cost for synchronizing the contention for available loop in-
dices. Some type of synchronization method is required. The loop indices can be
scheduled statically or dynamically. When a concurrency loop is reached the proces-
sors could dynamically request the next available iteration index. The advantage of
this method is potentially better load balancing. The disadvantage of this method is
that the index counter must be encased in a critical section increasing synchroniza-
tion costs. For eight CPUs and a shared memory architecture this works reasonably
well for the amount of work contained in the multigrid loops. In the VC mode on
the Alliant FX/8, when the loop is reached each processor is assigned a vpn, virtual
process number. Each processor then proceeds to do the computation for every pth

vector element. Thus, VC mode statically allocates iterates.

6.8 Code Listing For Major Multigrid Loops

Finally, we list the loops in which the majority of the floating point operations

in our multigrid algorithm occur.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICKROTASKING

C 9 point, 4 color relaxation

do 900 icolor =1 , 4

do 900 j = joveg(icolor) , ji , 2

= ibeg(icolor) , il , 2

do 900 i

q(i,j) = C w(i, 3)
$ + w(i+t, 3)
$ +s(C i, 3J)
$ + s(i,j+1)
$ +sw(i, 3J)
$ +sw(i+1,j+1)
$ +nw(i+l, 3)
$ +nw(1i,j+1)

900 continue

C Compute residuals.

do 10 icolor

1,3

*

*

*

*

*

*

*

*

q(i-1,j)
q(i+1,j)
q(1,j-1)
q(1i,j+1)
q(i-1,3j-1)
q(i+1,j+1)
q(i+1,j-1)
q(i-1,j+1)

do 10 j = jbeg(icolor) , j1 , 2

do 10 1
mtot(i,j)

+

P P P B H H & B
+

+

= ibeg(icolor) , i1 , 2

qgfC 1,7)
w(i, 3J)
w(i+l, j)
sC i, 3)
sC 1i,j+1)
sw(1, 3)
sw(i+l,j+1)
nw(i+1, j)

nw(1i,j+1)

*

*

%k

*

19 aerr(j-1) = aerr(j-1)

Relaxation loops: turning the scalar

loop to compile in COVI mode.

q(i, 3
q(i-1,j)
q(i+1,j)
q(i,j-1)
q(i,j+1)
q(i-1,j-1)
q(i+1,j+1)
q(i+1,j-1)
q(i-1,j+1)

+ qf(i,3)

)*msor(i,j)

* o(i,3)

+ mtot(1,j)**2

89

reduction variable into a vector allows the

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 90

do 10
if

ic = 3 , iicf1l

= if+2

q(if,jf) = q(if,jf)+qc(ic,2)

a

ci(ic,2,1r)*qc(ic,2)+ci(ic,2,11)*qc(ic-1,2)

q(if-1,jf) = q(if-l,jf)+a+sor(if—1,jf,mtot)

10 continue

.. code for some edge

do 20
jf
if

je =3 , jjcft
= jE+2
=2

q(2,3jf) = q(2,jf)+qc(2,jc)

aq = ci(2,jc,la)*qc(2,jc)+ci(2,jc,1b)*qc(2,jc-1)
q(2,jf-1) = q(2,jf-1)+aq+mtot(2,jf-1)

do 20 ic = 3 , iicf1l

if = if+2
q(if,jf) = q(if,jf) + qc(ic,je)
a = ci(ic,jc,1lr)*gc(ic,jc) + ci(ic,jc,11)*qc(ic-1,jc)
q(if-1,j£) = q(if-1,j) + a + mtot(if-1,jf)
aq = ci(ic,jc,la)*qc(ic,jc) + ci(ic,jc,1b)*qc(ic,jec-1)
q(if,jf-1) = q(if,jf-1) + aq + mtot(if,jf-1)
a = ci(ic-1,jc-1,1sw) * gc(ic-1,jc-1)
+ ci(ic-1,jc-1,1nw) * qc(ic-1,jc)
+ ci(ic-1,jc-1,1ne) * gc(ic,jc)

+ ci(ic-1,jc-1,1se) * gc(ic,jc-1)

q(if-1,j£-1) = q(if-1,j£-1) + a + mtot(if-1,jf-1)

20 continue

Interpolate and add loops: Cray version of code compiled without modification.

Loops compiled to COVI mode.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 91

jf = 0
do 80 jc = 2,jjcl
Jf = jE+2
if =0
do 80 ic = 2,1iicl
if = 1f+2
gfc(ic,jc) = 1lne(ic-1,jc-1) * mtot(if-1,jf-1)

$ + la(ic ,jc) * mtot(if ,jf-1)
$ +1lnw(ic ,jc-1) * mtot(if+1,jf-1)
$ + 1r(ic ,jc) * mtot(if-1,jf)
$ + mtot(if ,jf)
$ + 11(ic+1l,jc) * mtot(if+1,jf)
$ +lse(ic-1,jc) * mtot(if-1,jf+1)
$ + 1b(ic ,jc+1) * mtot(if ,jf+1)
$ +1lsw(ic ,jc) * mtot(if+1,jf+1)

80 continue

Relative truncation error loops: Cray version of code compiled with one minor
modification. The compiler pointed out a reduction variable and the standard change

allowed the loop to compile into COVI mode.

CHAPTER 6. PARALLELIZING MULTIGRID WITH MICROTASKING 92

Operator construction loops: Cray version of code compiled without modifica-
tion. All loops compiled to COVI mode. The code for operator construction loops
is many pages long so we summarize the vector content of the loops in the following
table. The iteration order relates to the number of grid points the computation takes
place for, iif is the number of grid points on the finest grid level; iic is the number
of grid points on coarser grid levels. Listed in the “vector instructions” column is
the number of vector instructions that the compiler generated for the loop, excluding

vector reads and writes.

loop vector™ iteration
number | instructions | order purpose

10 2 iif msor, mtot
240 16 iic rhs

5-pt

160 20 lic Ir, 11

190 20 iic la, 1b

210 39 iic Isw,lse,Inw,Ine
220 165 iic W,SW,S,NW,0r,msor
9-pt

40 24 iic Ir, Il

80 24 iic la, Ib

90 54 iic Isw,lse,lnw,lne
110 133 iic W,SW,S,NW
120 107 iic or, msor

Table 6.6: Operator construction. * doesn’t include memory references.

Chapter 7
Conclusion

In this thesis we solved an elliptic model problem using variants of the Schwarz
Alternating Procedure. We chose the multigrid method for the inner iteration proce-
dure. Also, we ran experiments to test the multiprocessing efficiency of the multigrid
multigrid method on Alliant FX Series computers.

The standard rationalization for using the SAP is solving problems on irregularly
shaped domains. But we showed that the SAP can also be useful for solving problems
with a large number of unknowns when combined with a multigrid inner iteration
procedure. We used domain decomposition to limit the spatial locality to an area
that can fit into main memory, thus avoiding page faults. The same principle applies
for any multilevel memory hierarchy. Thus, even though SAP-MG executes more
floating point operations, it can execute faster than multigrid in some multilevel
memory hierarchies..

We presented results that show why parallel processing the SAP-MG method
across subdomains generally will not result in an algorithm that runs any faster
that the multigrid method itself run on a single processor. Then, we showed how
the Alliant compiler and FX Series computers efficiently parallelize the multigrid
method (multigrid with colored point relaxation). Furthermore, we showed the task

of parallelizing in this manner is trivial.

93

Appendix A

Locality of Reference

The following comments about locality of reference are taken from [Dei84]. The
concept of locality tells us that programs tend to reference storage in nonuniform,
highly localized patterns. Locality manifests itself both in time and space. Temporal
locality is locality over time. Spatial locality means that nearby items tend to be
similar. It means a process will tend to concentrate its references in a time interval to
a particular subset of its page, of its virtual data. Actually, locality is quite reasonable
in computer systems, when one considers the way programs are written and data is
organized. In particular,

1. Temporal locality means storage locations referenced recently are likely to be
referenced in the near future. Supporting this observation are
a) looping,
b) subroutines,
c) stacks, and
d) variables used for counting and totaling.

2. Spatial locality — means that storage references tend to be clustered so that
once a location is referenced, it is highly likely that nearby locations will be
referenced. Supporting this observation are

a) array traversals,

b) sequential code execution, and

¢) the tendency of programmers to place related definitions near one another.
Deitel states “Perhaps the most significant consequence of storage refence locality is

that a program can run efficiently as long as its favored subset of pages is in primary
storage.”

94

Appendix B

Local Mode (Fourier) Analysis

The following discussion is taken directly from [Bra77]. Suppose we are interested
in solving the partial differential equation

*U(z,y) , 0*U(z,y)
92 | ba?

LU(z,y)=a = F(z,y) (2.1)
with some suitable boundary conditions. Denoting U* and F k approximations of U
and F, respectively, on the grid G¥, the usual second-order discretization of (2.1) is

2]

hi hi

LkU:’ﬂ =a ! - F:,B’ (2.2)

where

Uk 5 = U(ahy, Bhi), Frp=F(ah,Bhi); a,B integers.

(In the context of multigrid it is important to defire the difference equations in this
divided form, without, for example, multiplying throughout by A%, in order to get
the proper relative scale at the different level.) Given an approximation u to U k a
simple example of a relaxation scheme to improve it is the following.

Gauss-Seidel Relazation. The points (a, 3) of G* are scanned one by one in some
prescribed order; e.g., lexicographic order. At each point the value u, g is replaced
by a new value i, 5 such that (2.2) is satisfied. That is @, g satisfies

k -k —k k ~k —k
Jlatis 2igp+ Uo-1p | Map+1 = 2Ug p+ Ug g

1 k
= F* 2.3)
B2 R 4 (

where the new values @q_1.g, %la,3-1 are used since, in the lexicographical order, by
the time (a,) is scanned new values have already replaced old values at (a — 1, 8),

and (a,8 —1).

95

APPENDIX B. LOCAL MODE (FOURIER) ANALYSIS 96

A complete pass, scanning in this manner all the points of G*, is called a (Gauss-
Seidel lexicographical) G* relazation sweep. The new approximation @ does not neces-
sarily satisfy (2.2), and further relaxation sweeps may be required to improved it. An
important quantity therefore is the convergence factor, p say, which may be defined
by

p=|o) /|||, wherev=U*~u, v=U*-ug, (2.4)

|I-]| being any suitable discrete norm.

The rate of convergence of the above relaxation scheme is asymptotically very
slow. That is, except for the first few relaxation sweeps we have u = 1 — O(k%). This
means that we have to perform O(h;?) relaxation sweeps to reduce the error an order
of magnitude.

In the multigrid method, however the role of relaxation is not to reduce the error
but to smooth it out; i.e., to reduce the high-frequency components of the error (the
lower frequencies being reduced by relaxation sweeps on coarser grids). In fact, since
smoothing is basically a local process, (high frequencies have short coupling range), we
can analyze it in the interior of G* by (locally) expanding the error in Fourier series.
This allows us to study separately the convergence rate of each Fourier component,
and in particular, the convergence rate of high frequency components, which is the
rate of smoothing.

Thus to study the 8 = (4,,0,) Fourier component of the error functions v and v
before and after the relaxation sweep, we put

i(614620)

Va,3 = Age and B, p = Age'Cro+02P) (2.5)

Subtracting (2.2) from (2.3), we get the reiation
a(Vas1,8 — 200, + Da-1,8) + (Va,841 — 20a,8 + Vap-1) = 0, (2.6)
from which, by (2.5)
(ae® + ce®)Ag + (ae™ + ce™% — 2a — 2¢) 4y = 0. (2.7)
Hence the convergence factor of the § component is

aei® 4 ceifs
2a + 2c — ae~t1 — ce~ih2

i,

u(0) = A,

Define |6| = max(|6,],|02|). In domains of diameter O(1) the lowest Fourier com-
ponents have |#| = O(hky), and their convergence rate therefore is u(6) = 1 — O(h%).
Here, however, we are interested in the smoothing factor, which is defined by

A= max p(0), (2.9)

APPENDIX B. LOCAL MODE (FOURIER) ANALYSIS 97

where j is the mesh-size ratio and the range p7 < |0| < 7 is the suitable range of high-
frequency components, i.e., the range of components that cannot be approximated
on the coarser grid, because its mesh-size is hx_y = hi/p. We will assume here that
p = 3, which is the usual ratio.

Consider first the case a = ¢ (Poisson equation). A simple calculation shows that
i = p(r/2,arccos4/5) = .5. This is a very satisfactory rate; it implies that three
relazations sweeps reduce the high-frequency error-components by almost an order of
magnitude. Similar rates are obtained for general a and ¢, provided a/c is of moderate
size.

The rate of smoothing is less remarkable in the degenerate case a <« ¢ (or ¢ < a).

For instance
T a? + c?
— = 2.
4(5:0) \]a2+(c+2a)2, (2.10)

which approaches 1 as @ — 0. Thus, for problems with such degeneracy, Gauss-Seidel
relaxation is not a suitable smoothing scheme. But other schemes exist. For example,

Line Relazation. instead of treating each point (a, 8) of G* separately, one takes
simultaneously a line of points at a time, where a line is a set of all points («, 8) in G*
with the same « (a vertical line). All the values u4 3 on such a line are simultaneously
replaced by new values 4, 5 which simultaneously satisfy all the Eqs. (2.2) on that
line. (This is easy and inexpensive to do, since the system of equations to be solved
for each such line is a tridiagonal, diagonally dominant system. See, e.g., in [Wac66].)
As a result, we get the same relation as (2.3) above, except that uq g4+ is replaced by
Ua,p+1. Hence, instead of (2.8) we get:

a

u(0) =

from which one can derive the smoothing factor

()
2(a + ¢ — ccos by) — ae~'% (2.11)

a
a + 26}’ (*
which is very satisfactory, even in the degenerate case a < c.

i = max{572,

o
[
o
—

Appendix C

Details of Memory Requirements

To simplify the discussion of memory considerations we logically split the memory
requirements into operator space, problem space, and work space. We define some
parameters associated with the memory requirements. NX and NY refer to the
number of grid points inclusive of the boundaries in the x and y directions respectively.
NXY refers to the number of grid points in the subdomain including the boundary.
NFMAX is the total number of grid points in the finest grid and its corresponding
coarser grids for one logical storage entity. Let NCMAX = NFMAX - NXY.

Although BOXMG incurs a storage penalty because it uses nine-point coarse grid
and grid transfer operators its storage requirements are less than or equivalent to that
of its conjugate gradient competitors.

Operator space

Operator space contains the storage necessary for the difference operators on all
M grid levels and the M — 1 grid transfer operators (in the code, the M — 1 pro-
longation and M — 1 restriction operators are derived from the same data). A five
stripe, symmetric difference operator requires 3 x NFMAX +2x N CMAX memory
locations. A nine stripe, symmetric difference operator requires 5 x NF'M AX mem-
ory locations. The matrices storing the grid transfer operators require 8 x NCMAX
locations. All operators remain fixed until the problem meets the convergence crite-
rion.

Problem space

The problem space consists of the data that defines the problem on the finest
grid and the solution. The code solves equations of the form

— V- (D(z,y)VU(z,y)) + o(z,y)U(z,y) = F(z,y), (z,y) € (3.1)

98

APPENDIX C. DETAILS OF MEMORY REQUIREMENTS 99

Each of the matrices D, U, o and F require NXY storage locations. The matrices
D, o0 and F are given at the beginning of the problem and U is solved for. The
code uses D and o to build the fine grid difference operator which are then discarded
provided we permanently store the fine grid operator. We only use ¢ to calculate the
center point of the difference stencil. The center point of the difference star (ko) is
only a function of the grid, D and 0. We completely avoid allocating storage for o by
storing it in ko initially. We then use o to form ko simultaneously overwriting . Wc
avoid allocating storage for D in a similar manner. After initialization the combined
storage requirements for the problem space is 2 x NXY'.

Also, we include the data structures that define the domains in the problem space.

Work Space

The code holds residuals and element by element inverses of various matrices in
temporary storage during the multigrid cycle. The memory requirements for arrays of
this type that span all M grid levels are NFMAX for each of msor, mtot and msos.
We only allocate the storage for msos when using a line relaxation smoothing proce-
dure. The memory requirements for arrays that span the M — 1 coarse grid levels are
NCMAX for corrections and NCMAX for right hand sides. Using a direct solve on
the coarsest grid requires the arrays bbd(NXCxNYC) and abd(NXC+2,NXCxNYC).
The parameters NXC and NYC are the number of unknowns in their respective di-
rections on the coarsest grid.

Having defined the logical sections of memory we present a chart of problem,
operator and work space for various domain sizes.

APPENDIX C. DETAILS OF MEMORY REQUIREMENTS

100

5 stripe | 9 stripe
n, | operator | operator ; problem | work | 5-all 9-all | (9-line)
40 12.6 17.3 3.1 8.4 24.2 | 289 31.2
50 18.8 25.9 4.9 12.7 | 36.4 | 43.5 47.0
60 26.4 36.5 7.0 18.0 | 514 | 61.5 66.5
70 35.2 48.8 9.6 24.1 | 68.8| 824 89.2
80 45.8 63.5 12.5 31.3 | 89.7| 107. 116.
90 56.9 79.0 15.8 39.1 | 111.| 134. 145.
100 70.1 97.3 19.5 48.1 | 137.| 165. 178.
150 | 153.2 213.4 43.9 106.1 | 303.| 363. 393.
200 | 270.2 376.8 78.1 i87.4 | 535. | 642. 695.
250 | 418.0 583.4 122.1 |290.7 | 830. | 996. 1078.
300 | 599.9 837.7 175.8 | 417.5 | 1193. | 1431. 1549.
350 | 8124 1135. 239.3 | 566.1 | 1617. | 1940. 2101.
400 | 1061. 1482. 312.5 | 739.4 | 2113. | 2534. 2745.

Table C.1: Subdomain memory requirement in kilowords where 1 word corresponds
to the storage needed for one floating point array element.

operator | problem | work | (msos)
5 stripe
point 51 % 14% | 35%
line 46 % 13% | 31% | 10%
9 stripe
point 59 % 12% | 29%
line 54 % 1% |27% | 8%

Table C.2: Breakdown of memory allocation as percentage of total for multigrid.

APPENDIX C. DETAILS OF MEMORY REQUIREMENTS

pct. 5 stripe | 9 stripe
overlap N operator | operator | problem | work | 5-all | 9-all
(4x 30) 29.5 40.3 7.0 19.5 | 56.1 | 66.9
10% 57 27.7 37.4 6.3 4.9 | 39.0 | 48.6
30% 52 26.1 34.7 5.3 4.9 | 36.3 | 44.9
50% 45 24.2 31.4 4.0 4.9 | 33.0 | 40.3
(4x 40) 50.6 69.3 12.5 33.7 | 96.8 | 115.5
10% 76 47.8 64.7 11.3 84 | 67.5 | 84.4
30% 70 45.2 60.4 9.6 84 | 63.2 | 784
50% 60 41.4 54.0 7.0 84 | 56.9 | 69.5
(4x 50) 75.1 103.6 19.5 50.8 | 145.4 | 173.9
10% 95 71.1 96.8 17.6 12.7 | 101.4 | 127.1
30% 87 66.8 89.7 14.8 12.7 | 94.3 | 117.2
50% 75 61.1 80.2 11.0 12.7 | 84.8 | 103.9
(4x 60) 105.7 146.0 28.1 71.8 | 205.6 | 245.9
10% 114 100.1 136.8 25.4 18.0 | 143.5 | 180.1
30% 105 94.3 127.2 21.5 18.0 | 133.8 | 166.6
50% 90 85.8 112.9 15.8 18.0 | 119.5 | 146.7
(4x 70) 140.8 195.1 38.3 96.2 | 275.4 | 329.6
10% 133 133.6 183.0 34.5 24.1 | 192.2 | 241.6
30% 122 125.4 169.3 29.1 24.1 | 178.5 | 222.4
50% 105 114.1 150.5 21.5 24.1 | 159.7 | 196.1
(4x 80) 183.4 254.0 50.0 125.3 | 358.6 | 429.3
10% 152 174.2 238.6 45.1 31.3 | 250.6 | 315.1
30% 140 163.9 221.5 38.3 31.3 | 233.5|291.1
50% 120 148.7 196.1 28.1 31.3 | 208.1) 255.6
(4x 90) | 227.7 316.1 63.3 156.4 | 447.4 | 535.8
10% 171 216.3 297.2 57.1 39.1 | 312.5 | 393.4
30% 157 202.8 274.7 48.1 39.1 |290.1 | 362.0
50% 135 184.0 243.4 35.6 39.1 | 258.7 | 318.1
(4x100) | 280.2 389.1 78.1 192.6 | 550.9 | 659.8
10% 190 266.4 366.1 70.5 48.1 | 385.1 | 484.8
30% 175 250.4 339.4 59.8 48.1 | 358.3 | 447.4
50% 150 226.6 299.7 43.9 48.1 | 318.7 | 391.8

101

Table C.3: Memory requirement in kilowords where 1 word corresponds to a floating
point array element for the 4 color problem. Work space and finest grid difference
operator is shared.

Appendix D

A Matrix Convergence Proof

Efforts to accelerate the Schwarz process in the continuous domain show that us-
ing some type of derivative boundary condition at the pseudo-boundaries of the sub-
domains, as opposed to imposing a Dirichlet boundary condition is beneficial [RS89].
In this section we prove the convergence of matrix splittings in the discrete domain
corresponding to the addition of some degree of derivative boundary conditions at
the pseudo-boundaries in the continuous domain.

We consider on the two-dimensional Helmholtz equation with Dirichlet boundary
conditions: '

{—Au+q2u=f inQ={(z,y)|0<z<l, 0<y<l} (4.1)

ulr= ¢

where ¢ # 0, and f and ¢ are given. To simplify our proof, we assume ¢ is constant.

Consider the Dirichlet problem (4.1) and choose a square grid with mesh size
h = 1/(ny + 1) on the domain . If we set u;; = u(th,jh), i,7 = 1,2,...,n4, and
replace the partial derivatives u,, and u,, by central difference approximations, we
arrive at the finite difference equations

~Ujo1 — Uimr; + (4 + R2@P)u, j — wigy ; — w01 = i, 1 <1,) <ny,

4.2
Uio = @i0; Uoj = D055 Uimp41 = Pimpt1s Unptl,j = Prpt1,)- (4.2)

We now formulate the matrix problem with each row of the matrix A correspond-

ing to a difference equation at one of the grid points (z;,z;). Define n = n, x n,. We
write the matrix form of the n x n system determined by (4.2) as

A‘L‘,"J' = fi,j' (43)

102

APPENDIX D. A MATRIX CONVERGENCE PROOF 103

The matrix A has the block tridiagonal matrix structure

(D -1)
-1 D -1
-1 D -I
-1 Db -I
\ -1 D)
Define A = h?3? and introduce the J matrix, (ones on the subdiagonal, zero

elsewhere) and the L matrix below.

-0
~

\ 10/, \ I

nxn

Furthermore, let D = D — J — J7 (tridiagonal) with D = (4 + A)I, so the D in A
above looks like

[4+A -1
-1 44+4A -1
A -1 4+4A -1
D= . .
-1 4+A -1
\ -1 4+A

The standard Gauss-Seidel iterative method can be viewed as having a Dirichlet
boundary condition at each pseudo-boundary. Its splitting A = M, — N, has
My, = D — L and N, = LT. The matrix M,, of the Gauss-Seidel splitting satisfies
the requirements for being an M-matrix [Var62]. [Var62] gives a proof showing the
Gauss-Seidel splitting meets the conditions for regular splitting. The general form of

APPENDIX D. A MATRIX CONVERGENCE PROOF

the Gauss-Seidel matrix splitting for problem (4.1) is

and

(D-J
-1 D-J
-1 D-J
\
[JT 1
JT 1
JT

-1 D-J
-1 D-J}
\
JT 1
JT}

104

(4.4)

Suppose, for example, we wish to solve problem (4.1) when h = 1/4 implying a

3 x 3 square of unknowns. Then, the numerical operator for this system is

[4+a
-1

-1
44+ A
-1

-1
4+4

APPENDIX D. A MATRIX CONVERGENCE PROOF

We illustrate below the corresponding Gauss-Seidel regular splitting.

and

[4+
-1 444
—1 444
-1 444
-1 —1 444
-1 -1 4+a
-1 4+A
-1 -1 444
\ -1 -1 4+s)
01 1
01 1
0 1
01 1
N = 01 1
0 1
01
01
\ 0

We want to widen the class of matrix splittings for which we can prove convergence.
To set up the matrix splitting for the Gauss-Seidel like method used by Rodrigue and
Shah in [RS89], we subtract a portion, X, from the M-matrix’s diagonal and place it
on the diagonal of N. The matrix ¥ is an n x n diagonal matrix with o; the degree of
derivative conditions selected, {0 < 0; < 2:7=1,...,n}. We call the new matrices
derived from M and N, P and @ respectively. To fully illustrate we define an example

¥ matrix

(8]

APPENDIX D. A MATRIX CONVERGENCE PROOF

which in turn defines the splitting

106

[4+ A \
-1 3+A
-1 44+ A
-1 3+ A
P.. = —1 -1 24A ,
-1 -1 34A
—1 44+ A
~1 -1 3+A
\ ~1 -1 4+ 4
[0 1 1
-1 1 1
0 1
-1 1 1
Qez = -2 1 1
—1 1
0 1
-1 1
\ 0

We take the splitting A = P — Q such that P=D — (L —X) and @ = LT -%.
Since diag(A) = diag(P) — diag(Q), we have D = 44+ A —2%. The M and N of (4.4)
and (4.5) can be compared and contrasted to P and ¢ which are of the form

(D-J+z

~I D-J+Z

-1 D-J+Z

-1 D-J+4E

-1 D-J+X

JT-% I
JT-%

)

APPENDIX D. A MATRIX CONVERGENCE PROOF 107

Our goal is to prove the splitting A = P — @ is convergent. Matrices arising
from the discretization of the Helmholtz equation are known to be M-matrices. As a
result A~! is non-negative. If P —(@Q were a regular splitting, then by Theorem 2.4 the
iterative method associated with the splitting would be convergent. Unfortunately, by
definition diag(Q) < 0, @ is not non-negative and we do not have a regular splitting.

If we write P as D — wE and Q as wET then we can apply the Ostrowski-Reich
theorem provided D and P meet certain conditions. Let S, be the amplification
iatrix P~1Q. Matrices (4.6) and (4.7) illustrate the case of w = 1. When w =1 the
splitting is similar to an Gauss-Seidel splitting. For w = 1 the off-diagonal elements
of P and @ are the same as the off-diagonal elements of M and N of the Gauss-Seidel
splitting. The difference is a portion of M, X, has been moved to N. When w # 1
the splitting is similar to an SOR splitting.

Now, the main result of this section. For the Dirichlet problem (4.1), we prove
the following theorem:

Theorem D.1 Let A = P — @ be the described above, where A is the difference
operator approrimating the differential equation of problem (4.1) and P and Q) are
as specified in (4.6) and (4.7) respectively. If {0 < o0, <2 :i =1,...,n} then
p(S.) < 1. Thus, the matriz S, is convergent, and the associated iterative method
Pz*+! = Qz* + f, k > 0, converges for any initial vector z°.

Proof:

We begin by recalling the Ostrowski-Reich theorem (as it appears in Theorem 3.6
of [Var62]).

Theorem D.2 (Ostrowski-Reich) Let A = D — E — E* be an n x n Hermitian
matriz, where D is Hermitian and positive definite, and D — wE is nonsingular for
0 <w <2 Then p(S.) <1 if and only if A is positive definiie and 0 < w < 2.

The matrix A is known to be positive definite. To use the theorem we must cast A
in terms of the appropriate D and E. Wetake E = L—- X = Q = wET = w(L-%)7.
Given A, and having chosen @, to obtain the desired P, D — wE, we choose D to be
the diagonal matrix 4 + A — 2X. Now, having chosen A = D — E — ET it remairs
to show

(1) D is Hermitian and positive definite,
(2) D —wE is nonsingular for 0 < w < 2.

Proving (1) is trivial: D is diagonal and has positive real elements - since 4 + A >
20; for all :. Therefore, D is Hermitian and positive definite.

APPENDIX D. A MATRIX CONVERGENCE PROOF 108

To show D — wF is nonsingular we prove it is strictly diagonally dominant. To
prove strict diagonal dominance we show that our lower triangular matrix P satisfies
the stricter condition

i—1

min diag(P) > max Y _ |pi;|, 1<i<n. (4.8)

=1
First we consider the right side of inequality (4.8). For our matrix P = D —wkE
i-1
max »_ |pi;| = 2w, 1<i<n (4.9)
1 =

since the F' matrix has at most two off-diagonal elements of unity in any one row
and the diagonal matrix D makes no contribution to P’s off-diagonal elements. Now
considering the left hand side of inequality (4.8) we have

diag(P) =4+ A — (2 — w)X. (4.10)

Since the multiplier of ¥ in (4.10) is > 0 the minimum is attained for the element %
at which o; is a maximum. Since, max; o; < 2, this yields

min [diag(P)] =44+ A -44+2w=A0A+2w (4.11)
min[diag(P)] =4+ A — (2 ~w)max[os;] > A+ 2w
Substituting (4.9) and (4.11) into (4.8) gives
A+ 2w > 2. (4.12)

Obviously (4.12) holds true for any w so the inequality of (4.8) holds true for 0 < w <
2. Thus D—wFE and therefore P is strictly diagonally dominant and as a consequence
nonsingular (Theorem 2.2). Finally, we may apply the Ostrowski-Riech theorem. The
positive definiteness of A and limitation of w to 0 < w < 2 guarantees p(S,,) < 1.

Bibliography

[ABDP81] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J.W. Painter. The Multigrid

[ASMS86]

[AstT1]

[Bak66)

[BDS0)

[BD81)

[BM84]

[Bra72]

[Bra76]

Method for the Diffusion Equation with Strongly Discontinuous Coefhi-
cients. SIAM J. SISSC, 2(4):430-454, 1981.

Walid Abu-Sufah and Allen D. Maloney. Experimental Results for Vec-
tor Processing on the Alliant FX/8. Technical Report CSRD Rpt. No.

539, Center for Supercomputing Research and Development, Univeristy
of Illinois, Urbana, Illinois, 1986.

G. P. Astrakhantsev. An iterative method of solving elliptic net problems.
U.S.S.R Computational Math. and Math. Phys., 11(2):171-182, 1971.

N. S. Bakhvalov. O=r the convergence of a relaxation method with natural
constraints on the elliptic operator. U.S.S.R Computational Math. and
Math. Phys., 6(5):101-135, 1966.

R. E. Bank and T. F. Dupont. Analysis of a two-level scheme for solving
finite element equations. Technical Report CNA-159, University of Texas
at Austin, 1980.

R. E. Bank and T. F. Dupont. An optimal order process for solving elliptic
finite element equations. Math. Comp., 36:35-51, 1981.

W. Briggs and S. McCormick. Introduction. In Stephen F. McCormick,
editor, Multigrid Methods, chapter 1, pages 1-30. Society for Industrial
and Applied Mathematics, Philedelphia, Penn., 1984.

A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical
solutions to boundary-value problems. In Cabannes - Temam, chapter 1,
pages 82-89. 1972.

A. Brandt. Multi-level adaptive techniques. Technical Report RC 6026,
IBM TJ Research Center, Yorktown Heiglhts, 1976.

109

BIBLIOGRAPHY 110

[Bra77]

[CH62]

(CT87]

[Dei84]

[Den82]

[Den88]
[DGP80)

[D'J62)

[Dup67)

[Fed62]

[Fed64)

[FM66]

[FXm86]

A. Brandt. Multi-level adaptive solutions to boundary-value problems.
Math. Comp., 31:333-390, 1977.

R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 2.
Willey, New York, 1962.

Tony F. Chan and Ray S. Tuminaro. A Survey of Parallel Multigrid Algo-
rithms. Technical Rzport RIACS 87.22, Research Institute for Advanced

Computer Science, NASA Ames Research Center, Corso Tenuto a lspra,
August 1987.

Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley
Publishing Company, Reading, Mass, 1984.

J. E. Dendy. Black Box Multigrid. Journal of Computational Physics,
48:366-386, 1982.

Joel E. Dendv 1988. Personal communication.

R. V. Dinh, R. Glowinski, and J. Periaux. Applications of domain decom-
position methods for Navier-Stokes equations. Technical report, INF-LAB,
France, 1980.

E. G. D’Jakonov. A method for solving Poisson’s equation. Soviet Math,
3:320-323, 1962.

T. Dupont. On the Existence of an Iterative Method for the Solution of
Elliptic Difference Equation with an Improved work estimate. Technical

report, Centro Tenuto Internationale Mathmatico Estivo, Corso Tenuto a
Ispra, 1967.

R. P. Fedorenko. A relaxation method for solving ellipitc difference equa-
tions. U.S.S.R Computational Math. and Math. Phys., 1(5):1092-1096,
1962.

R. P. Fedorenko. The speed of convergence of an iterative process. U.5.5.R
Computational Math. and Math. Phys., 3(4):227-235, 1964.

G. Fairweather and A. Mitchell. Some computational results of an im-
proved ADI method for the Dirchlet problem. Computer J., 9:298-307,
1966.

FX/Series Architecture Manual. Alliant Computer Systems Corporation,
Acton, Mass., 1986. Part number 300-00001-B.

BIBLIOGRAPHY 111

(GDPS80)

[Gre84]

[Hac80a)

[Hac80b]

[Hac85]

[Kan81]

[KCSQ85]

[Ket82]

[KK58]

[KW59]

[Lin81]

[Lio78]

R. Glowinski, Q. V. Dinh, and J. Periaux. Domain decomposition methods

for nonlinear problems in fluid dynamics. Technical report. INRIA, France,
1980.

A. Greenbaum. Analysis of a multigrid method as an iterative technique
for solving linear systems. SI4AM Journal on Scientific and Statistical
Computing, 21(3):473-485, June 1984.

W. Hackbusch. Convergence of multi-grid iterations applied to difference
equations. Math. Comp., 34:425~-441), 1980.

Wolfgang Hackbusch. Survey of Convergence Proofs for Multi-grid It-
erations. In J. Frehse, D. Pallaschke, and U. Trottenberg, editors, Spe-
cial Topis of Applied Mathematics. North-Holland, Amsterdam-New York-
Oxford, 1980.

W. Hackbusch. Multi-Grid Methods and Appplications. Springer-Verlag,
Berlin, 1985.

Lishan Kang. The Schwarz Algorithm. Wuhan University Journal, pages
88-88, 1981. Natural Science Edition, Special Issue of Mathematics,
China.

L. Kang, Y. Chen, L. Sun, and H. Quan. A Class of New Asynchronous
Parallel Algorithms for Solving Partial Differential Equations. Technical
Report 19, Wuhan University, Wuhan, China, 1985.

Rob Kettler. Analysis and comparison of relaxation schemes in robust
multigrid and preconditioned conjugate gradient methods. Technical Re-
port 82-17, Delft Univerisity of Technology, 1982.

L. V. Kantorovich and V. I. Krylov. Appozimate Methods of Higher Anal-
ysis. P. Noordhoff, Ltd., Groningen, Netherlands, 1958.

L. S. Kang and D. R. Wang. Lectures on the Finite Difference Method.
Wuhan Unversity Press., China, 1959.

J. Linden. Mehrgitterverfahren fiir die Poisson-Gleichung in Kreis und
Ringgebiet unter Verwendung lokaler Koordinaten. Master’s thesis, In-
stitut ’ur Angewandte Mathematik, Universitit Bonn, January 1981.
Diplomarbeit.

P. L. Lions. Interpretation stochastique de la méthode alternee de schwarz.
Technical Report 286, C. R. Acad. Sc, Paris, 1978.

BIBLIOGRAPHY 112

[Meig6]

[Mik34]

[Mik51]

[Mik65]

[Mil65]

[Mol81a]

[Mol81b)]

[Mys59]

[Neu90]

[Nic75]

[Nic77]

[0STS6]

[Pic90]

U. Meier. Two parallel SOR variants of the Schwarz Alternating Proce-
dure. Technical Report 5710, Zentralinstitut fiir Angewandte Mathematik,
Julich, West Germany, 1986.

S. G. Mikhlin. The method of succesive approximations applied to the
biharmonic problem. Trudy Seism, 34:1-14, 1934.

S. G. Mikhlin. On the Schwarz Algorithm. Doklady Akademia Nauk
U.5.S.R., LXXVII(4):569-571, 1951.

S. G. Mikhlin. The Problem of the Minimum of a Quadratic Functional.
1965.

K. Miller. Numerical analogs to the Schwarz Alternating Procedure. Nu-
merische Mathematik, 7:91-103, 1965.

W. J. A. Mol. On the choice of suitable operators and parameters in
muitigrid methods. Technical Report NW 107/81, Mathematisch Cen-
trum, Amsterdam, 1981.

W. J. A. Mol. Smoothing and coarse grid approximation properties of
multigrid methods. Technical Report NW 110/81, Mathematisch Cen-
trum, Amsterdam, 1981.

I. P. Mysovskih. The finite difference method for solving the Dirichlet
problem in the rectangular region. XUEBAO of Kirin University, 1:39-
45, 1959.

C. Neumann. Zur theorie des logrithmischen und newton’schen potentials.
Leipziger Berichte, 22:264-321, 1890.

R. A. Nicolaides. On multiple grid and and related techniques for solving
discrete elliptic systems. J. Comput. Phys., 19:418-431, 1975.

R. A. Nicolaides. On the £? convergence of an algorithm for solving finite
element equation. Math. Comp., 31:892-906, 1977.

Joseph Oliger, William Skamarock, and Wei-Pai Tang. Schwarz Alter-
nating Method and its SOR accelerations. Technical report, Stanford
University, Computer Science Department, 1986.

E. Picard. Memoire sur la theorie des equations aux derivees partiells

et la methode des approximations successives. J. Math. Pures et Appl.,
4(6):145-210, 1890.

BIBLIOGRAPHY 113

[Poi90]

[PR8Y]

[Rod86)

[RS84a]

[RS84b)

[RS85]

[RS89)

[Sch69]

[Sim84]

[Sob36]

[ST82a]

H. Poincaré. Sur les equations aux derivees partielles de la physique mé,th~
ematique. Amer. J. Math., 12:211-294, 1890.

A. Louise Perkins and G. Rodrigue. A Domain Decomposition Method for
Solving A 2-Dimensional Viscous Burgers’ Equation. Journal of Applied
Numerical Methods, 1989.

Garry Rodrigue. Inner/outer Iterative Methods and Numerical Schwarz
Algorithms. Parallel Computing, 2:205-218, 1986.

G. Rodrigue and J. Simon. A generalization of the numerical Schwarz
algorithm. In R. Glowinski and J. Lions, editors, Computing Methods
in Applied Sciences and Engineering VI, pages 273-283. North-Holland,
Amsterdam-New York-Oxford, 1984.

G. Rodrigue and J. Simon. Jacobi Splittings and the Method of Over-
lapping Domains for Solving Elliptic PDEs. In R. Vichnevetsky and
R. Stepleman, editors, Advances in Computer Methods for Partial Dif-
ferenstial Equations V, pages 383-386. IMACS, June 1984.

G. Rodigue and P. Saylor. Inner/outer Iterative Methods and Numerical
Schwarz Algorithms -II. In Proceedings of the IBM Conference on Vector
and Parallel Computations for Scientific Computing. IBM, 1985.

Garry Rodrigue and Shantilal Shah. Pseudo-Boundary conditions to ac-
celerate parallel Schwarz methods. UCRL 100893, Lawrence Livermore
National Laboratory, April 1989.

H. A. Schwarz. Ueber einige Abbildungsaufgaben. Jour. f. dei reine und
angew. Math., 70:105~120, 1869.

Jeff Herbert Simon. Domain Decomposition for Solving Elliptic Partial
Differential Equations on Multiprocessors. Master’s thesis, Univeristy of
Califonia Davis, May 1984.

S. L. Sobolev. I’Algorithme de Schwarz dans la théoire de 1’élasticité.
Comptes Rendus (Doklady) de l’academie des Sciences de I’URSS, 1V
(VIII)(6 (110)):235-238, 1936.

Klaus Stiben and Ulrich Trottenberg. Multigrid Methods: Fundamental
Algorithms, Model Problem Analysis and Applications. In A. Dold and
B. Eckmann, editors, Multigrid Methods, pages 1-150, 1982. Proceedings
of the Conference Held at Ko6ln-Porz, November 23-27, 1981.

BIBLIOGRAPHY 114

[ST82b]

[Sta77]

[Sto72]

[Sto73]

[Tan87]

[Var62]

[Vol68]

[Wac66)]

[Wer60]

[Wer63]

[Wes80]

[Wes84]

Klaus Stiiben and Ulrich Trottenberg. Multigrid Methods: Fundamen-
tal Algorithms, Model Problem Analysis and Applications. In Multi-
grid Methods, Lecture Notes im Mathematics, volume 960, Berlin, 1982.
Springer-Verlag.

G. Starius. Composite mesh difference methods for elliptic boundary value
problems. Numerische Mathematik, 28:243-258, 1977.

D. Stoutemyer. Numerical Implementation of the Schwarz Alternating
Procedure for Elliptic Partial Differential Equations. PhD thesis, Stanford
University, Stanford, CA 94305, 1972.

D. Stoutemyer. Numerical Implementation of the Schwarz Alternating
Procedure for Elliptic Partial Differential Equations. SIAM J. Numer.
Anal., 10(2):308-326, 1973.

Wei Pai Tang. Schwarz Splitting and Template Operators. PhD thesis,
Stanford University, 1987.

R. S. Varga. Matriz Iterative Analysis. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1962.

E. Volkov. The Method of Composite Meshes for Finite and Infinite Region
with Piecewise Smooth boundary. Technical Report 96, Steklov Institue
of Mathematics, 1968.

E. L. Wachspress. Iterative Solution of Elliptic Systems and Applications
to the Nuetron Diffusion Equations of Reactor Physics. Prentice-Hall,
Englewood Cliffs, N. J., 1966.

H. Werner. Schwarz’s alternating method for boundary value problems of
the third kind. Technical report, University of Southern California, 1960.

H. Werner. Anwendungen und Fehlerabschaetzungen fuer das al-
ternierende Verfahren von H.A. Schwarz. ZAMM, 43:55-61, 1963.

P. Wesseling. The rate of convergence in the multiple grid method. In
G. A. Watson, editor, Lecture Notes in Math 773, pages 164-184. Springer,
Berlin, 1986. Numerical analysis. Proceedings, Dundee, June 1979.

P. Wesseling. Linear Multigrid Methods. In Stephen F. McCormick, edi-
tor, Multigrid Methods, chapter 2, pages 57-72. Society for Industrial and
Applird Mathematics, Philedelphia, Penn., 1984.

FILMED
(227N 7

