
SANDIA REPORT
SAND89 —2989 • UC-Jo5
Unlimited Release
Printed July 1991

MERLIN II - A Computer Program to
Transfer Solution Data Between Finite
Element Meshes

D. K. Gartling

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

SF2900Q(8-81) OfSTRfBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161
NTIS price codes
Printed copy: AOS
Microfiche copy: A01

SAND—89-2989

DE91 018130
SAND89-2989

Unlimited Release
Printed July 1991

MERLIN II -
A COMPUTER PROGRAM TO TRANSFER

SOLUTION DATA
BETWEEN FINITE ELEMENT MESHES

D. K. Gartling
Computational Fluid Dynamics Division

Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT
The MERLIN II program is designed to transfer data between finite element meshes
of arbitrary geometry. The program is structured to accurately interpolate previously
computed solutions onto a given mesh and format the resulting data for immediate use
in another analysis program. Data from either two-dimensional or three-dimensional
meshes may be considered. The theoretical basis and computational algorithms used in
the program are described and complete user instructions are presented. Several example
problems are included to demonstrate program usage.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

Contents

1 Introduction 1

2 Scope of Program 2

3 Search and Interpolation Procedures 4

3.1 Mesh Search... 4

3.2 Element Search.. 5

3.3 Interpolation ... 6

4 User Guide 8

4.1 Program Limits.. 8

4.2 Input Syntax... 9

4.3 Title and Comment Cards... 11

4.4 MESH-A Command Card ... 12

4.5 MESH-B Command Card ... 13

4.6 VARIABLES Command Card... 14

4.7 TIMEPLANE Command Card... 15

4.8 EXECUTE Command Card.. 16

4.9 File Usage.. 17

4.10 File Formats... 17

4.11 Access to the Code... 19

4.12 FORTRAN Coding and System Dependencies.. 20

5 Example Problems 21

5.1 Cylinder to Rectangle Data Transfer... 21

5.2 Sphere to Y-Block Data Transfer.. 23

5.3 Engineering Example.. 27

hi

6 References 33

Appendix A The Element Search Algorithm 35

Appendix B Summary of Input Commands 37

iv

1 Introduction

The need to transfer data between different computational meshes is a frequently oc­
curring problem in the area of computational mechanics. Typically, such data transfers
become important when considering the solution of interdisciplinary problems in which
the coupling between the relevant physical phenomena is relatively weak. In the present
context, a problem is defined to be weakly coupled if the analysis of the participat­
ing physical processes may be carried out in a sequential manner (e.g., thermal-stress
analysis); strongly coupled problems demand the simultaneous solution of the relevant
physical phenomena (e.#., fluid-structure interaction). Though numerical solutions to
weakly coupled problems have been successfully analyzed in the past, the interface be­
tween computational procedures was often of an ad hoc nature. As computer simulations
have become more sophisticated, an increased demand has developed for the routine
analysis of weakly coupled problems in general and of thermal-stress analysis problems
in particular. In an effort to automate and streamline the needed data transfer process for
such problems, a general interpolation program, called MERLIN II, has been developed.
This code represents a significantly expanded and enhanced version of the program first
documented in [1],

The MERLIN II program was designed primarily to alleviate the following problems
that frequently occur in the computer analysis of weakly coupled problems. In particular,
MERLIN II allows

• the use of significantly different computational meshes for each simulation as a
result of differing resolution requirements for each physical phenomena.

• the use of different computational meshes for each simulation as a result of the
incorporation of special analysis features in one of the computations (e.g., the use
of slide lines in a structural analysis which is unimportant in the thermal problem).

• the use of different computational meshes for each simulation due to the involvement
of several analysts with different modeling requirements and/or personal preferences
for mesh generation and analysis software.

In addition, MERLIN II can be employed as a rudimentary rezone program in which
complete data fields from one simulation are simply transferred to a new mesh and the
analysis continued. The new mesh may be needed because of unacceptable distortion
in Lagrangian mesh descriptions or to increase/redistribute mesh resolution in Eulerian
descriptions.

In the following section the general scope of the MERLIN II program is outlined. The
third section briefly describes the algorithms that are used to interpolate data from one
mesh to another. Finally, the last two sections provide complete instructions for use of
the program, comments on the installation of the code and several examples to illustrate
program capabilities.

1

2 Scope of Program

The primary motivation for the development of the MERLIN II program was the need
to routinely transfer solution data between various computational mechanics codes. The
original version of MERLIN performed this type of function mainly in the context of
transferring two-dimensional, temperature data from a heat conduction program to a
stress analysis program. Though the principal area of application is still assumed to be
in the analysis of thermal-stress problems, a program with more general capability was
desired.

To assist in the following discussion, it is appropriate to define a weakly coupled prob­
lem with generic properties. Let a physical process {e.g., heat conduction) be simulated
on a computational mesh, labeled A, that occupies a spatial domain 0^. A subsequent
physical process {e.g., elastic stress analysis) is simulated on mesh B that spans the
domain 1)#. The process to be simulated on mesh B requires data from the problem
previously computed on mesh A. The MERLIN II program was designed to carry out
the required data transfer from mesh A to mesh B.

A number of limitations had to be placed on the scope of the data transfer program in
order to make the data handling and interpolation problems tractable. First, the analysis
procedures for all of the weakly coupled processes were assumed to be based on the finite
element method. Though it is recognized that a great deal of engineering analysis is
performed with computational techniques other than the finite element method, there
are a number of unresolved difficulties associated with interfacing general computational
grids. For example, the topological structure of an integrated finite difference, lumped
parameter mesh does not permit standard interpolation procedures to be employed. Such
difficulties are not present in finite element based codes where a simple data structure
allows interpolation to be carried out efficiently and accurately.

With regard to geometric restrictions, MERLIN II assumes that the physical region,
f!#, modeled by mesh B, coincides with or is a subdomain of the region, modeled by
mesh A. In essence this restriction implies that the solution data from the first simulation
can be interpolated onto the second grid but extrapolation is not considered. Also,
implicit in this assumption is the requirement that the origin of the coordinate systems
used for each mesh coincide and the units chosen for length scales be identical.

The search and interpolation algorithms employed in MERLIN II are quite general
with regard to their applicability to finite element meshes and the types of finite elements
used in a simulation. The code was initially designed to accommodate most of the popular
linear and quadratic, isoparametric elements in both two and three dimensions. Other
elements can be added with simple modifications to a few subroutines. However, despite
this algorithmic generality, MERLIN II is still limited in its applicability to a set of specific
analysis packages. This lack of overall generality was dictated primarily by the wide
variety of data formats encountered in the various finite element codes. In the present

2

version of MERLIN II, data transfer is limited to those codes which support the GENESIS
[2] and EXODUS [3] file formats. These data formats were established at Sandia to
simplify the input and output of data from finite element based mechanics programs.
The GENESIS format provides a standard file for inputting mesh and boundary condition
data to an analysis code; EXODUS provides a standard format for transforming solution
data to a post-processing graphics program or to another analysis code. Though only
the GENESIS and EXODUS formats are actively supported in MERLIN II, the addition
of other formats would require relatively straightforward modifications to the program.

Finally, the concepts used in MERLIN II could form the basis for an elementary re­
zone capability within a larger program. Mechanics codes that use a Lagrangian mesh
description often require a rezoned mesh to be generated and the dependent variables
transferred to the new mesh. Eulerian-based codes could also require rezoning if the
spatial (mesh) resolution requirements change significantly during the course of a solu­
tion or if Lagrangian features, such as free surfaces, are modeled. Given the old and
new (rezoned) mesh descriptions, MERLIN II could function as the dependent variable
interpolator for the mechanics program. In such a case, MERLIN II would be tailored
to the specific program and probably made into a series of subroutines within the larger
program.

3

3 Search and Interpolation Procedures

The present section briefly outlines the procedures used by MERLIN II to interpolate
data from one mesh to another. For purposes of this discussion it is convenient to refer
to the previous definitions for a weakly coupled problem. The mesh on which a solution
has been previously computed is denoted as mesh A; the mesh to which the solution is
to be interpolated is mesh B.

The computational procedure used in MERLIN II naturally divides itself into three
phases: i) the reading and storing of A and B mesh data, u) mesh searching and
interpolation of the solution, and m) the writing of the necessary output files. As the
first and third steps are simply problems of data formatting and bookkeeping, they need
not be considered here in any detail. Rather the discussion will be focused on the search
and interpolation procedures. Also, the development will be in terms of the general
three-dimensional case; the two-dimensional algorithms follow by direct analogy.

For each nodal point Pb with coordinates (xb-iVb, zb) in mesh B the following se­
quence of operations is performed:

1. MESH SEARCH: A search of mesh A is made to locate the element or group of
elements which may contain node point PB(xB,yB, zb)-

2. ELEMENT SEARCH: A Newton iteration procedure is used to find the local
isoparametric element coordinates (s^, r^) that describe the position of point
Pb within the element from mesh A.

3. INTERPOLATION: For a given set of local element coordinates (s^, r^), the
finite element basis functions may be used to compute the value of the dependent
variable at point Pb from the mesh A solution.

Each of these operations is described in more detail in the following sections.

3.1 Mesh Search

The determination of which element in mesh A contains a given point, Pb, can become
a very time consuming process if standard, sequential search methods are employed.
However, a significant improvement in the search procedure can be realized by presorting
the elements in mesh A into subgroups or bins according to their spatial location. During
a search, mesh point Pb can then be quickly tested for general spatial location and located
within a particular bin. The number of elements that must be carefully screened for each
Pb can thus be (significantly) reduced from the total number of elements in mesh A to the
maximum number of elements in a bin. MERLIN II implements the presorting algorithm

4

by construction of a rectangular parallelepiped (box) that surrounds the mesh A region,
Cl a- Each edge of the box is subdivided to form a rectangular grid of nx x ny x nz cells
or bins. A simple test on the coordinates of each element in mesh A locates it within
one or more bins; a list of elements for each bin is constructed for subsequent use in the
mesh search portion of the code. Note that the number of bins constructed in the presort
procedure is specified by the user and an optimal grid will be mesh dependent. The
examples provided in a later section demonstrate the trade-offs and efficiencies associated
with the presort procedure.

Upon completion of the presorting procedure, the search for the location of each
point Pb within element mesh A continues in a two stage process - a “coarse” search
which eliminates all elements in a particular bin from consideration except those in the
“neighborhood” of point Pb and a “refined” search that finally locates the specific element
in A that contains point Pb- The coarse search procedure is based on the construction of
a circumscribing sphere (circle in two dimensions) for each element in the selected bin.
If point Pb is found to lie within a particular sphere (circle), that element is retained for
further testing; when point Pb is outside the sphere (circle) that element is omitted from
further consideration.

The refined portion of the search is used to finally decide if the point Pb is within
an element. Several techniques could be used for this task, depending mainly on the
type of finite element being tested. For low order, straight-sided elements (e.g., four
node, two-dimensional quadrilaterals or eight node, three-dimensional bricks), geometric
procedures could be used, as was done in the earlier version of MERLIN. Generally,
the testing for the presence of a point within a higher order, curved sided element is of
sufficient complexity to preclude the use of geometrically based methods. MERLIN II
was designed to accommodate a wide variety of both high and low order elements. For
simplicity in code design, a single procedure that was applicable to all element types
was desired. Such an approach, which is more analytic in nature and appeals to the
basic nature of the isoparametric mapping procedure, is the use of Newton’s method.
As this refined mesh search procedure is conveniently combined with the element search
algorithm, its detailed description will be given in the next section.

3.2 Element Search

Having determined that point Pb is located in the vicinity of an element, it is then
required that the actual position of point Pb within the element be obtained. This
“local” description of the coordinates for point Pb are most conveniently expressed in
terms of the “natural” or normalized coordinates for the element [4]. Introducing the
idea of isoparametric elements [5,6] permits the spatial description for the element to be
written as

5

x = $T(s,t,r) x

y = $T(s,t,r) y

0 = 3>T(s, r) z

(1)

where are vectors of element shape functions, x, y and z are vectors containing the
spatial coordinates for the nodal points of an element and superscript T denotes the
transpose of a vector. The variables 3, t and r are the normalized “local” coordinates
for the element. For mesh point Pb located in an element of mesh A, equation (1) then
becomes

xB = ®T(sA,tA,rA) xA

Vb = ®T(sA,tA,rA) yA (2)

zB = $T(sA,tA,rA) zA

and the problem is to find the coordinate values for sA,tA and rA that satisfy (2). As
the element shape functions are usually nonlinear functions of s, f and r, the equations in
(2) cannot generally be directly solved for sA,tA and rA values. Within the MERLIN II
program, the solution of (2) is carried out through the use of Newton’s method. Details
of the procedure are given in Appendix A.

The solution of equation (2) produces the sA,tA and rA coordinates corresponding
to point Pb and located in a particular element of mesh A. As noted previously, the
“refined” mesh and element search procedures were combined into a single procedure.
Upon obtaining the sA,tA and rA coordinates for point PB from the Newton procedure,
a check is made to ensure that s^, t^ and rA lie completely within the mesh A element.
When M, \tA\, and \rA\ < 1, point PB is within the element and the search procedure
ends. If |, \tA|, or |r^| > 1, point Pb is outside of the element in question, and the
search for the location of point PB within the A mesh is continued.

It should be noted that in all inequality tests used in MERLIN II, there are toler­
ances incorporated to allow for finite precision arithmetic and the small differences that
naturally occur in different mesh descriptions. Length tolerances are generally based on
some small percentage of a typical element dimension.

3.3 Interpolation

The local coordinates that describe the location of point PB within a particular element
of mesh A are computed and stored as the result of the search procedure described above.
The last remaining task in the overall algorithm is the interpolation of the solution for

6

the points in mesh B. The solution for mesh A is known in terms of the nodal values of
the dependent variable for each element in the mesh. Thus, for each mesh A element the
following relation is available

T(s,t,r) = *T(s,t,r)T (3)

where T(s, t, r) is the dependent variable at a point s, t, r in the element, ^ is a vector of
element shape functions that describes the variation of the variable within the element
and T is a vector of nodal point values of the dependent variable. When the local
coordinates for a point Pb within an element are available, as from the search procedure,
the value of the dependent variable at point Pb is given by

TpB(sA,tA,rA) = ^T(sA,tA,rA) (4)

Within MERLIN II, the above computation is carried out for each node in the B mesh.
The resulting interpolated solution for B is properly formatted and written to a disk file
for later use.

The above procedure was described in terms of a problem that required only one
variable to be interpolated and that did not involve a time-dependent solution. MERLIN
II is sufficiently general to accommodate both of these complications. When the mesh
A solution contains more than one variable, MERLIN II will interpolate any specified
variable or set of variables onto the B mesh. The relation in (4) is used repetitively for
each set of nodal point variables, T. Further, if the mesh A solution is time-dependent,
MERLIN II will transfer data at all of the computed times or at times specified by the
user. In this latter case, a linear interpolation in time is performed on the mesh A data.

7

4 User Guide

The MERLIN II program was specifically designed to be a user-oriented tool that facili­
tates the transfer of data between finite element meshes. In keeping with this philosophy,
a conscious effort was made to minimize the data input to the program and to simplify
access to the code. The following sections provide descriptions of the data cards nec­
essary to use the MERLIN II program, comments on how to access the program and
a description of the files needed by the program. A section on coding and computer
implementation is also included to assist in installation and possible modifications of the
code.

4.1 Program Limits

The basic version of the MERLIN II program is structured to accommodate the transfer
of data between relatively large two- and three-dimensional finite element meshes. The
code is dynamically dimensioned and has no specific limits on the sizes of the A and
B meshes that may be considered. There are, however, some other limits that must be
observed.

One limitation of the program concerns the types of finite elements that may occur
in the A and B meshes. Presently, MERLIN II recognizes the following element types: •

• TRI3 - three node, linear triangular element (2D)

• TRIG - six node, quadratic triangular element (2D)

• QUAD4 - four node, linear quadrilateral element (2D)

• QUADS - eight node, quadratic quadrilateral element (2D)

• QUAD9 - nine node, quadratic quadrilateral element (2D)

• TETRA4 - four node, linear tetrahedral element (3D)

• TETRA10 - ten node, quadratic tetrahedral element (3D)

• PRISM6 - six node, linear prism element (3D)

• PRISM15 - fifteen node, quadratic prism element (3D)

• BRICKS - eight node, linear brick element (3D)

• BRICK20 - twenty node, quadratic brick element (3D)

• BRICK27 - twenty seven node, quadratic brick element (3D)

8

This list could be expanded to include other, more specialized, elements through minor
code modification. Also, note that in order to describe each of these elements, a con­
vention for locally numbering the nodes within an element is required. The convention
followed in MERLIN II is based on the EXODUS [3] standard; nodal point numbering
runs counterclockwise around element edges with corner nodes listed first, followed by
mid-edge nodes, if they are present.

The program is also limited to consideration of twenty variables, or less, in the mesh
A solution and subsequent interpolation procedure. More variables could be treated by
increasing several dimension statements in the code. Note also that the solution data
supplied from the A mesh must be defined at the element nodal points; integration point
data or element based data is not considered. Finally, as noted previously, the input and
output formats recognized by MERLIN II are limited to the GENESIS [2] and EXODUS
[3] standards.

4.2 Input Syntax

The structure of an input data set for the MERLIN II program is straightforward and
consists of five command cards and associated data. Each command sequence is delimited
by a specific form of termination command. To further simplify the data input, MERLIN
II is equipped with a free field input routine to eliminate the problem of remembering
several fixed field formats. In describing the data associated with each input card the
following conventions and restrictions will be observed:

(a) Upper case bold face words indicate required command and termination words,
e.g., MESH-A.

(b) Lower case words and symbols imply that an alphanumeric or numerical value for
the specified variable is expected, e.g., iprint.

(c) All input data are specified in a free field format with successive variables separated
by commas. All alphanumeric input data is limited to ten characters under this
format; all alphanumeric input must be in upper case format.

(d) The $ character may be used to end an input line. The remaining space on the line
can be used for comments.

(e) The * character may be used to continue an input line onto a second data card. The
continuation character should follow the last comma on the card to be continued.

(f) Italics indicate optional parameters which may be omitted by using successive com­
mas in the variable list. If the omitted parameter is not followed by any required
parameters, no additional commas need be specified.

9

(g) () indicate the data type for a particular input variable, i.e., alphanumeric or
character (C), real (R) or integer (I).

(h) < > indicate the default value for an optional parameter.

(i) The contents of each input card are indicated by underlining.

In the following sections, the input to MERLIN II is described in roughly the order
that data would normally be supplied to the code. For convenience, a summary of the
input commands is collected in Appendix B.

10

4.3 Title and Comment Cards

The title or header card must be the first card in an input data set for any particular
problem. A $ symbol must appear in Column 1; the remaining 79 columns are available
for a problem title. The problem title is used to label printed output. The title card is
of the following form:

$ THIS IS AN EXAMPLE OF A PROBLEM TITLE

Following the title card, a number of comment cards may be included to provide
a description of the particular problem, codes used to produce the solution, etc. Up
to 10 comment lines may be specified; each line begins with a $ leaving the remaining
79 columns available for descriptive text. The comment lines are reproduced at the
beginning of the printed output listing. Comment lines have the following form:

$ THESE ARE EXAMPLES OF COMMENT LINES
$ UP TO 10 LINES OF PROBLEM DESCRIPTION MAY
$ BE INCLUDED ON THESE CARDS

11

4.4 MESH-A Command Card

The data describing properties of the A mesh, on which a solution has been previously
computed, is input through the MESH-A command. This command and its associated
data cards have the following form:

MESH-A, format
element type, element block id

END

where

format (C) < EXODUS > : specifies the input file format for the data from mesh A. In
the current version of MERLIN II this parameter should only be set to EXODUS.

element type (C) : indicates the type(s) of element(s) used to generate the solution
on the A mesh. The permissible element types include: TRI3, TRIG, QUAD4,
QUADS, QUAD9, TETRA4, TETRA10, PRISM6, PRISM15, BRICKS, BRICK20,
BRICK27. These elements are defined in Section 4.1.

element block id (I) : is the previously assigned identifier for a block of elements in the
mesh. The elements in this block are expected to all be of the same material and
be the same type of finite element (see Note 1).

Notes:

1) The element block identifiers are assigned during the mesh generation operation
and must be recalled for use in the element specification. One and only one data
card for each element block must appear in the input deck. See reference [2] for
further information on the use of block identifiers.

12

4.5 MESH-B Command Card

The properties of mesh B, onto which the solution is to be interpolated, are input through
the MESH-B command. This command and its associated data cards have the following
form:

MESH-B, format
element type, element block id

END

where

format (C) < EXODUS > : specifies the input/output file format for the data from mesh
B. In the current version of MERLIN II this parameter should only be set to
EXODUS.

element type (C) : indicates the type(s) of element(s) used in the B mesh. The permis­
sible element types include: TRI3, TRIG, QUAD4, QUADS, QUAD9, TETRA4,
TETRA10, PRISM6, PRISM15, BRICKS, BRICK20, BRICK27. These elements
are defined in Section 4.1.

element block id (I) : is the previously assigned identifier for a block of elements in the
mesh. The elements in this block are expected to all be of the same material and
be the same type of finite element (see Note 1).

Notes:

1) The element block identifiers are assigned during the mesh generation operation
and must be recalled for use in the element specification. One and only one data
card for each element block must appear in the input deck. See reference [2] for
further information on the use of block identifiers.

13

4.6 VARIABLES Command Card

The specification of the data fields that are to be interpolated from the A mesh to the B
mesh are input through the VARIABLES command. The form of this command and
its associated data cards is given by:

VARIABLES
variable name, default exterior value

END

where

variable name (C) : specifies the name of the variable that is to be interpolated (see Note
!)•

default exterior value (R) < 0.0 > : specifies the value to be given to mesh B nodes that
fall outside of the region spanned by mesh A (see Note 2).

Notes:

1) The variable names used here must correspond to the names used to define the
variables in the EXODUS file for mesh A. These names will depend on the analysis
code used to produce the mesh A solution.

2) For each variable to be interpolated a default value should be defined. If a node in
mesh B falls outside of the A mesh, the default exterior value will be assigned to
the B node.

14

4.7 TIMEPLANE Command Card

The TIMEPLANE command is used to specify the times at which the mesh A solution
is to be interpolated to mesh B. This command is required even when the solution on
mesh A is independent of time. The form of the command and its data card is as follows:

TIMEPLANE
option, parameterl, parameter^, ...
END

where

option (C) : indicates which of the timewise interpolation schemes is to be employed.
There are three methods of selecting the time planes when data are transferred
between meshes. When the “option” parameter is set equal to ALL, all of the time
planes found in the mesh A solution file are interpolated onto mesh B. There are
no additional parameters with this option. When “option” is set to INCREMENT,
data from mesh A is transferred to mesh B at constant intervals as specified by
the parameters 1 through 3. For this option parameterl = tinitiai, parameter2 =
tfinal and parameters = At. Interpolation occurs between meshes starting at tinitial
and running through t]inai in time steps equal to At. When “option” is set to
SPECIFIED, data from mesh A is transferred to mesh B at those times specified in
the parameter list. In this case, parameterl should be set to the number of times
to be specified. The remaining parameters in the list are set to the actual times at
which data is to be interpolated onto the B mesh. The current version of MERLIN
II requires that parameterl be less than or equal to 125 under this option.

15

4.8 EXECUTE Command Card

The actual search and interpolation process in MERLIN II is initiated by the EXE­
CUTE command. This command causes the code to perform the necessary data trans­
fer processes and format the output files. Program termination occurs at the end of this
command when the STOP command is encountered. This command has the following
form:

EXECUTE, nx,ny, nz, nelbin,printout
STOP

where

nx,ny,nz (I) < 1 > : specifies the number of grid cells (bins) to be used in partitioning
the mesh A region (see Note 1).

nelbin (I) < 2x NUMELA/NUMBIN > : specifies the maximum number of elements al­
lowed in any given bin (see Note 1).

printout (C) < SUMMARY > : indicates the amount of printed output that is generated
during program execution. For printout set to SUMMARY or left blank, a minimal
amount of output is generated. When printout is set to DETAILED or DEBUG,
an increasing amount of information is output regarding the location of the mesh
B nodes within mesh A.

Notes:

1) The selection of the grid cell parameters must be coordinated with the definition
of nelbin. Prior to sorting of the elements in mesh A, it is usually not possible to
predict the maximum number of elements that will be located in a particular bin.
The parameter nelbin serves as a sizing parameter to allocate space for the element
list for each bin. The default value for nelbin is set to the total number of elements
in mesh A when nx=ny=nz=l (i.e., when only one grid cell is defined). When more
than one grid cell is defined, the default for nelbin is the total number of elements
in mesh A (NUMELA) divided by the total number of grid cells (NUMBIN) times
two. By setting the nelbin parameter to a relatively small value, it can also serve
as an indicator when too many elements are found in a bin and the search process
will be impeded. In this latter case, the number of grid cells should be increased.

16

4.9 File Usage

The nature of the tasks performed by MERLIN II necessarily requires that a number of
files be attached to the program for the input and output of data. All of the files used
by the program are listed in the following table along with a brief description of their
function, their internal FORTRAN identification and format type.

When files are to be attached to a MERLIN II job or saved after processing, the unit
numbers used in the program execution statements must conform to those indicated in
the following table. File names are arbitrary but must conform to the syntax rules for
the particular operating system. A utility program from the SUPES library [7] obtains
needed file names from the operating system for use in opening files during program
execution. All files are opened in the OPNFIL subroutine. Prior to program execution,
the proper relation between file name and unit number must be established via a system
command; appropriate commands for a variety of operating systems are described in [7].

Unit FORTRAN
Number Name File Usage File Type

5 NIN Input file Formatted
6 NOUT Output file Formatted
10 NTPO Scratch Unformatted
11 NTP1 Free field input Unformatted
12 NTP2 Mesh &: solution data, mesh A (EXODUS) Unformatted
13 NTP3 Mesh data, mesh B (GENESIS) Unformatted
14 NTP4 Mesh Sz solution data, mesh B (EXODUS) Unformatted
15 NTP5 Interpolated solution, mesh B Unformatted

To understand the relationship between MERLIN II and its required files, reference
should be made to Figure 1. This schematic indicates the interaction between the analysis
codes and the files needed to successfully complete a data transfer. Most of the files shown
in the table and Figure 1 that are of concern to the user have standard formats and their
utility is self-explanatory. Note that there are three output files. Unit 6 contains printed
output from the execution of MERLIN II. Unit 14 contains an EXODUS file with mesh
and interpolated solution data for mesh B that can be used with a graphics program to
verify the accuracy of the interpolation process. Finally, unit 15 contains the interpolated
solution field for mesh B that is formatted for direct use in a mechanics program.

4.10 File Formats

The disk files used in MERLIN II are generally sequential access, unformatted files. The
specific formats for the GENESIS and EXODUS files are well documented in [2,3] and
need not be given here. The only other file format that is of concern to the user involves
the interpolated solution data that goes to the mechanics code and is written to unit 15.

17

Disk File
Mesh & Solution Data

(EXODUS)

Mesh A

Exodus Format

Mesh B

Mechanics Code
FormatOutput

Scratch

Mesh Data

Mechanics

Mechanics

Generator

Generator

MERLIN II

(EXODUS)

Figure 1: Schematic of data flow to and from MERLIN II.

Data for unit 15 is written with the following series of unformatted FORTRAN write
statements

IF (NUMVAR.GT.1) THEN
WRITE (NTP5) NUMNOD,NUMVAR
END IF

DO 10 NT=1jNTIMES
WRITE (NTP5) TIME(NT), ((S0LN(I,J,NT), J=l,NUMNOD), 1=1,NUMVAR)

10 CONTINUE

where

NUMNOD : is the number of nodes in the mesh

NUMVAR : is the number of dependent variables listed under the VARIABLES command

TIME : is the current time

S0LN(I,J) : is the two-dimensional array containing the dependent variables. The de­
pendent variables are listed 1 through NUMVAR in the order in which they appear in
the mesh A EXODUS file.

4.11 Access to the Code

The source version of MERLIN II is maintained on the central file system (CFS) of
the Central Computer Facility at Sandia National Laboratories. The program may be
accessed by the following MASS utility [8] command

? get filnam : /FEC0DES/MERLIN/MERLIN2

The filnam parameter is the local file name for the code on the host computer. This is
the standard UNIX1 version of the program (source code) that is designed to run on the
Sandia National Laboratories mainframe and distributed computers.

1unix is a trademark of AT&T Bell Laboratories

19

A script for executing MERLIN II is also available from the Sandia Engineering
Analysis Code ACCESS System (SEACAS) [9]. This system is supported on the Cen­
tral Computing Facility Unices CRAY computers and the Directorate 1500 Local Area
Networks. Access to MERLIN II through SEACAS consists of a single-line, UNIX-style
command with a variety of options for file specification and data conversion.

The utility library needed for the execution of MERLIN II is available for several
computer systems. Access to these routines varies depending on the particular operating
system. Instructions for accessing and loading these routines are available in [7],

4.12 FORTRAN Coding and System Dependencies

The MERLIN II program is written in ANSI standard FORTRAN 77 and should therefore
be usable on any computer system that supports such a compiler. The program was
developed primarily for use on large mainframe computers, such as the CRAY-1S, CRAY
X-MP and CRAY Y-MP, though it is also functional on smaller computers such as VAX,
STARDENT and SUN. The code makes use of a few system dependent utilities. To
increase portability of the code, most of the system dependencies have been isolated in
a few subroutines that are located in a utility library that accompanies the main code.
The utility library [7] includes such functions as calls to the date and time functions,
routines needed for the dynamic memory manager algorithm and the free field reader
used for decoding input to the code. The library routines are heavily commented to ease
the task of converting these utilities to other computers. MERLIN II can be configured
(via SUBROUTINE OPNSSD) to make use of a Solid State Disk (SSD) on CRAY computers,
if such a device is available.

A dynamic memory manager is used in MERLIN II to allocate and release computer
memory during program execution. Under this algorithm, the individual vectors and
arrays needed by the program are stored in (noncontiguous) blocks of memory under a
single vector name. Pointers indicating the location of individual arrays within memory
are maintained by the memory manager as is the allocation of needed storage space.
Further details on the memory manager and its operation are given in [7]. Some com­
puter systems may not permit execution time changes in dynamic memory allocation;
modifications to the code and memory manager to handle this case are outlined in [7].

20

5 Example Problems

Three example problems are included in this section to demonstrate the use of the MER­
LIN II program and provide some verification of its capabilities. The first two problems
are contrived two- and three-dimensional examples that were developed to test the ability
of the program to accommodate dissimilar geometries and element types in the A and B
meshes. The third example illustrates the use of the program for an engineering analysis.

5.1 Cylinder to Rectangle Data Transfer

The first test problem consists of a steady state, heat conduction solution that was
generated on the cylindrical section shown in Figure 2. The linear conduction problem
was solved using the COYOTE II [10] finite element program; the mesh in Figure 2
was generated by the internal mesh generator in COYOTE II and consists of nine node
quadrilateral and six node triangular elements. A contour plot of the isotherms produced
for this problem are shown in Figure 3.

For purposes of this example, the rectangular region indicated in Figure 3 was dis­
cretized using four node linear elements via the FASTQ program [11]. MERLIN II was
used to interpolate the COYOTE II solution from the cylindrical domain in Figure 3 onto
the rectangular mesh. The results of the interpolation procedure are shown in Figure 4.
The input data required by MERLIN II to perform this task is listed below. Note that
mesh A (the cylinder) was only partitioned into a single grid cell due to the small size of
the problem.

$EXAMPLE PROBLEM 1 FOR MERLIN II
MESH-A,EXODUS
QUAD9,1
TRIG,2
END
MESH-B,EXODUS
QUAD4,1
END
VARIABLES
TEMP,100.
END
TIMEPLANE
ALL
END
EXECUTE,,,,,SUMMARY
STOP

MERLIN II input for Example Problem 1

21

EXAMPLE 1 FOR MERUN II - MESH-A

X AXIS

Figure 2: Finite element mesh for example problem 1 (Mesh A)

MESH-B

X AXIS

Figure 3: Temperature contours for mesh A. Location of Mesh B is indicated.

22

EXAMPLE 1 FOR MERUN II - MESH-B

d----
0.0

~l ■ I ' I-------------------- '-------------------- 1

5.0 10.0 15.0 20.0
X AXIS

Figure 4: Temperature contours for solution interpolated to mesh B.

5.2 Sphere to Y-Block Data Transfer

The second example represents a test of a three-dimensional geometry and consists of
the transfer of a diffusion solution on a sphere to an embedded rectangular block with
a Y shaped cross-section. Shown in Figure 5 is the mesh developed for one-half of the
solid sphere; the discretization was produced using the FASTQ program [11] and the
GEN3D utility [12] and contains approximately 9200 eight-node hexahedral elements.
The solid sphere was subjected to a uniform volumetric heat source and a constant surface
temperature. The steady-state heat conduction problem was solved using COYOTE II
[10]. Plots of the surface temperature on the half-sphere and a quarter section of the
sphere are shown in Figure 6.

The mesh B geometry for this example consisted of a rectangular block with the cross-
sectional shape of a Y as shown in Figure 7. The mesh in Figure 7 was also produced
using FASTQ and GEN3D and contains approximately 4200 eight-node hex elements.
The center of the Y section was located at the center of the sphere and the front face of
the Y was coplanar with the face of the half sphere. Shown in Figure 8 is the temperature
field as transferred to the Y block by MERLIN II. The characteristic spherical pattern
of the isotherms is clearly evident on the Y geometry.

To demonstrate the effects of partitioning the mesh A region into grid cells or bins, a
series of data transfers were computed. Listed in the following table are the results from
eight runs where the number of grid cells were uniformly increased in all three coordinate
directions. Three additional runs were performed in which the number of cells in the z
direction (perpendicular to the face of the half sphere) was half the number of cells in

23

the x-y plane. It is clear from the execution times that a significant improvement in code
performance can be achieved by presorting the elements in the A mesh. Also, there is
an optimal grid configuration, where the work done in sorting the elements in mesh A
is balanced by the search procedure within each bin. Though the optimal subdivision
of mesh A will not usually be known a priori, some experimentation and experience can
produce a near optimal or acceptable configuration.

Grid Cells Execution Time
nx ny nz seconds

1 1 1 280
2 2 2 74
3 3 3 46
4 4 4 26
5 5 5 19
6 6 6 18
7 7 7 19
8 8 8 23
4 4 2 35
6 6 3 19
8 8 4 17

Figure 5: Finite element mesh for example problem 2 (Mesh A).

24

Figure 6: Temperature contours for Mesh A.

25

figure 8:

26

5.3 Engineering Example

The final example concerns a data interpolation process that was required to perform
a stress analysis of an electromagnetically loaded structure. Shown in Figure 9 is a
schematic of the upper half of an axisymmetric diode for the Particle Beam Fusion Accel­
erator II (PBFA II). The simulation problem consists of determining the time-dependent
magnetic field, currents and heating induced in the structure due to the application of a
time varying current in the coils. The magnitude of the applied current is sufficiently large
that magnetic pressure loads and Joule heating in the structure can affect the structural
response of the diode components. MERLIN II is required to transfer the temperature
and load data computed in the magnetic diffusion simulation over the entire geometry to
a simpler structural analysis mesh that contains only the solid components of interest.
Further details of the analysis are given in [13].

Figure 10 illustrates two views of the mesh used for the magnetic diffusion problem;
the first figure shows the entire mesh while the second figure shows the mesh for the vac­
uum region with the solid components removed. This mesh was generated by FASTQ [11]
and contains approximately 7500 four-node quadrilateral elements. The time-dependent
magnetic diffusion and heat transfer problem was simulated using the TORO code [13].
Contour plots of the temperature and the magnitude of the magnetic pressure, as com­
puted by TORO, are shown in Figures 11 and 12. Note that the contour plots show the
fields at a time when the current applied to the main coil (Coil 1) is at a maximum.

The computational mesh used for the structural analysis is shown in Figure 13 and was
also generated using the FASTQ program. This model contains only the solid components
of interest and disregards most of the vacuum region. The magnetic and temperature
fields were transfered to this mesh by MERLIN II with the temperature and magnetic
pressure results shown in Figures 14 and 15. Note that all timeplanes computed in the
magnetic diffusion simulation were transferred to the structural mesh.

27

0.245

0.2 10

VACUUM

0.175

0.140

STAINLESS STEEL
COPPER

0.105

STAINLESS
STEEL

0.070
COIL 2TITANIUM

VACUUM

BRASS
COIL 3

0.000

0.000 0.035 0.070 0.105 0.140 0.175 0.2 10 0.245

Figure 9: Schematic of PBFA II diode.

28

Figure 10: Finite element mesh for diode problem (mesh A).

29

Figure 11: Temperature field in the diode at the peak of the current pulse.

pxpy

I
25.00E + 9
2 0.83E + 9
1 6.67E + 9
12.50E + 9
8.33E + 9
4. 17E + 9
O.OOE + 9

* = 2 1.70E+S

Figure 12: Magnitude of the magnetic pressure in the diode at the peak of the current
pulse.

30

0.105

fvj

]. 0 9 0 -

D.075

D . 0 6 0

D.045

] . 0 3 0

D.0 15

l
0.030 0.045 0.0 60 0.075 O.OSO 0.1 05 0.1 20 0.1 35

Figure 13: Finite element mesh for structural analysis of PBFA II diode (mesh B).

31

TEMP

342.0
335.0
328.0
32 1.0
3 14.0
307.0
300.0

* = 3 4 8.4

Figure 14: Temperature contours for solution interpolated to mesh B.

PXPY

2 5.00E + 9
2 0.8 3E + 9
16.67E + 9
12.50E + 9
8.33E + 9
4. 1 7 E + 9
0.00E + 9

* = 2 1.7 OE'+S

Figure 15: Magnetic pressure for solution interpolated to mesh B.

32

6 References

1. D. K. Gartling, “MERLIN - A Computer Program to Transfer Data Between Fi­
nite Element Meshes,” SAND81-0463, Sandia National Laboratories, Albuquerque,
N.M. (1981)

2. L. M. Taylor, D. P. Flanagan and W. C. Mills-Curran, “The Genesis Finite Element
Mesh File Format,” SAND86-0910, Sandia National Laboratories, Albuquerque,
N.M. (1986)

3. W. C. Mills-Curran, A. P. Gilkey and D. P. Flanagan, “EXODUS : A Finite El­
ement File Format for Pre- and Postprocessing,” SAND87-2997, Sandia National
Laboratories, Albuquerque, N.M. (1988)

4. 0. C. Zienkiewicz, 11 The Finite Element Method," McGraw-Hill, London, 1977

5. I. Ergatoudis, B. M. Irons and 0. C. Zienkiewicz, “Curved, Isoparametric, ‘Quadri­
lateral’, Elements for Finite Element Analysis,” Int. J. Solids Structures,v 4, 31-42
(1968)

6. E. B. Becker, G. F. Carey and J. T. Oden, '"''Finite Elements, An Introduction,
Volume /,” Prentice Hall, New Jersey, 1981

7. J. R. Red-Horse, W. C. Mills-Curran and D. P. Flanagan, “SUPES Version 2.1 -
A Software Utilities Package for the Engineering Sciences,” SAND90-0247, Sandia
National Laboratories, Albuquerque, N.M. (1990)

8. “MASS Reference Manual,” Version 1.0, Sandia National Laboratories, Albuquerque,
N.M. (1983)

9. G. D. Sjaardema, “Sandia Engineering Analysis ACCESS System: Update (4/22/91),”
memo to distribution, April 22,1991, Sandia National Laboratories, Albuquerque,
New Mexico

10. D. K. Gartling,“COYOTE II - A Finite Element Computer Program for Nonlinear
Heat Conduction Problems,” SAND86-1844, Sandia National Laboratories, Albu­
querque, N.M. (to be published)

11. T. D. Blacker, “FASTQ Users Manual, Version 1.2,” SAND88-1326, Sandia Na­
tional Laboratories, Albuquerque, N.M. (1988)

12. A. P. Gilkey and G. D. Sjaardema, “GEN3D : A Genesis Database 2D to 3D Trans­
formation Program,” SAND89-0485, Sandia National Laboratories, Albuquerque,
N.M. (1989)

13. D. K. Gartling, “TORO - A Finite Element Program for Two-Dimensional Magnetic
Diffusion Problems,” SAND91-1491, Sandia National Laboratories, Albuquerque,
N.M. (to be published)

33

C
O 4^

Appendix A - The Element Search Algorithm

The spatial coordinates for a point Pb located within an isoparametric finite element
“A” are described by the following equations

xB = $T{s,t,r) xA

yB = $T{s,t,r) yA (Al)

zB = $r(s,f,r) zA

where $ is a vector of element shape functions, xA,yA,ZA are vectors containing the
spatial coordinates for the nodal points of element “A” and superscript T denotes a vector
transpose. The variables s, t and r are the normalized, “local” coordinates for the element
(-l<M,r<+l) [4].

During the interpolation procedure used in MERLIN II, it is required that the s,t,r
coordinates corresponding to a given xB,yB, zB and xA, Ya? zA be computed. In general,
the shape functions, 3>, are sufficiently complex to preclude an analytic inversion of
equation (A.l). MERLIN II employs an iterative procedure based on Newton’s method
to solve (A.l) for s,t and r.

Equation (A.l) may be conveniently written as a system of nonlinear equations of the
form

f (s) = 0 (A2)

with

and

f /l 1 T
XB - $ XA

II

II yB - $TyA
l /a . . zB - ^rzA ,

s
s = < t

r

Writing a Taylor series expansion for (A.2) produces

df
f (s) = f(s0 + As) = f(s0) +

ds
(s-s0) +

80

Truncating the expansion after the linear term leads to

df
f(so) +

ds
(s - So) = 0

80

35

or
df
ds so

(s - So) = f(s0)

This last relation suggests the iterative solution procedure defined by

sn+l =sn_

(/1.3)

(AA)

where
r 9R 9A dji I

ds dt dr

df dj2 dh. dh.
ds sn

ds dt dr

d/3 d/3 dh
- ds dt dr -

and superscript n indicates the iteration number. Equation (A.4) defines the iterative
algorithm used in MERLIN II to compute the s,t,r variables.

The components of the Jacobian, J, are easily computed once the basis functions,
3>, for each element have been specified. MERLIN II has a library of basis functions
corresponding to the most commonly used two-dimensional and three-dimensional ele­
ments. Other elements could be added to MERLIN II by including the basis functions
and derivatives to the Jacobian computation within the code.

36

Appendix B - Summary of Input Commands

In this section all of the command and data cards recognized by MERLIN II are sum­
marized. No attempt is made to define the parameters on each input line since these
descriptions are available in the main text.

Title and Comments :

$ A TITLE LINE
$ A SERIES
$ OF
$ COMMENT LINES

MESH-A Command :

MESH-A, format
element type, block id

END

MESH-B Command :

MESH-B, format
element type, block id

END

VARIABLES Command :

VARIABLES
variable name, default exterior value

END

37

TIMEPLANE Command :

TIMEPLANE
option, parameterl, parameter2, ...
END

EXECUTE Command :

EXECUTE, nx, ny, nz,ndbin,printout
STOP

38

Distribution:

University of Texas (2)
Department of Aerospace Engineering

and Engineering Mechanics
Austin, Texas 78712

Attn: E. B. Becker
G. F. Carey

R. I. Tanner
University of Sydney
Department of Mechanical Engineering
Sydney, New South Wales 2006
Australia

T. J. R. Hughes
Stanford University
Division of Applied Mechanics
Department of Mechanical Engineering
Stanford, California 94305

Lawrence Livermore National (2)
Laboratory

P. 0. Box 808
Livermore, California 94550

Attn: P. M. Gresho
G. Goudreau

M. Engelman
Fluid Dynamics International
500 Davis Street, Suite 600
Evanston, Illinois 60201

Purdue University (2)
School of Engineering and Technology
799 W. Michigan Street
Indianapolis, Indiana 46202

Attn: H. Akay
A. Ecer

J. N. Reddy
Virginia Polytechnic Institute and

State University
Engineering Science and Mechanics
Blacksburg, Virginia 24061

Hibbitt, Karlsson & Sorrensen, Inc. (2)
100 Medway St.
Providence, Rhode Island 02906

Attn: L. M. Taylor
D. P. Flanagan

V. D. Murty
University of Portland
Department of Engineering
Portland, Oregon 97203

S. E. Benzeley
Brigham Young University
Department of Civil Engineering
Provo, Utah 84601

H. P. Wang
General Electric Company
Research and Development Center
Process Technology Branch
Schenectady, New York 12301

S. W. Key
McNeal-Schwendler Corp.
815 Colorado Blvd.
Los Angeles, California 90041

M. Crochet
Universite Catholique de Louvain
Unite de Mecanique Applique
B-1348
Louvain-la-Neuve
Belgium

39

Sandia Internal:

1425 J. H. Biffle
1425 S. W. Attaway
1425 T. D. Blacker
1425 M. L. Blanford
1425 J. Jung
1425 S. T. Montgomery
1425 J. A. Schutt
1425 W. R. Witkowski
1510 J. C. Cummings
1511 J. S. Rottler
1511 D. K. Gartling (25)
1511 R. R. Eaton
1511 R. C. Givler
1511 P. L. Hopkins
1511 M. J. Martinez
1511 P. A. Sackinger
1511 P. R. Schunk
1512 A. C. Ratzel
1512 M. R. Baer
1512 A. S. Geller
1512 M. W. Glass
1513 R. D. Skocypec
1513 R. L. Akau
1513 R. G. Baca
1513 B. L. Bainbridge
1513 C. E. Hickox
1513 R. E. Hogan
1513 S. N. Kempka
1513 J. L. Moya
1513 V. F. Nicolette
1513 V. J. Romero
1513 C. E. Sisson
1514 H. S. Morgan
1514 J. G. Arguello
1514 V. L. Bergmann
1514 S. N. Burchett
1514 R. S. Chambers
1514 E. P. Chen
1514 E. L. Hoffman
1514 J. F. Holland
1514 R. L. Johnson
1514 J. R. Koteras
1514 M. K. Nielsen

1514 C. M. Stone
1514 B. J. Thorne
1514 J. R. Weatherby
1514 G. W. Wellman
1540 J. R. Asay
1541 J. M. McGlaun
1544 J. R. Asay (acting)
1544 K. W. Metzinger
1544 G. D. Sjaardema
1544 P. P. Stirbis
1544 R. K. Thomas
1545 D. R. Martinez
1550 C. W. Peterson
8240 C. W. Robinson
8241 G. A. Benedetti
8242 M. R. Birnbaum
8243 M. L. Callabresi
8244 C. M. Hartwig
8245 R. J. Kee
3141 S. A. Landenberger (5)
3145 Document Processing (8)

for DOE/OSTI
3151 G. C. Claycomb (3)
8523 R. C. Christman

40 * U.S. GOVERNMENT PRINTING OFFICE 1991 - 573-122/40185

Org. Bldg. Name Rec'd by Org. Bldg. Name Rec'd by

