
SANDIA REPORT
SAND89 —2989 • UC-Jo5 
Unlimited Release 
Printed July 1991

MERLIN II - A Computer Program to 
Transfer Solution Data Between Finite 
Element Meshes

D. K. Gartling

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550 
for the United States Department of Energy 
under Contract DE-AC04-76DP00789

SF2900Q(8-81) OfSTRfBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image 
products. Images are produced from the best available 
original document.



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government, any agency thereof or any of their 
contractors or subcontractors. The views and opinions expressed herein do 
not necessarily state or reflect those of the United States Government, any 
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced 
directly from the best available copy.

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
PO Box 62
Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service 
US Department of Commerce 
5285 Port Royal Rd 
Springfield, VA 22161
NTIS price codes 
Printed copy: AOS 
Microfiche copy: A01



SAND—89-2989

DE91 018130
SAND89-2989

Unlimited Release 
Printed July 1991

MERLIN II -
A COMPUTER PROGRAM TO TRANSFER

SOLUTION DATA
BETWEEN FINITE ELEMENT MESHES

D. K. Gartling
Computational Fluid Dynamics Division 

Sandia National Laboratories 
Albuquerque, New Mexico 87185

ABSTRACT
The MERLIN II program is designed to transfer data between finite element meshes 
of arbitrary geometry. The program is structured to accurately interpolate previously 
computed solutions onto a given mesh and format the resulting data for immediate use 
in another analysis program. Data from either two-dimensional or three-dimensional 
meshes may be considered. The theoretical basis and computational algorithms used in 
the program are described and complete user instructions are presented. Several example 
problems are included to demonstrate program usage.
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1 Introduction

The need to transfer data between different computational meshes is a frequently oc­
curring problem in the area of computational mechanics. Typically, such data transfers 
become important when considering the solution of interdisciplinary problems in which 
the coupling between the relevant physical phenomena is relatively weak. In the present 
context, a problem is defined to be weakly coupled if the analysis of the participat­
ing physical processes may be carried out in a sequential manner (e.g., thermal-stress 
analysis); strongly coupled problems demand the simultaneous solution of the relevant 
physical phenomena (e.#., fluid-structure interaction). Though numerical solutions to 
weakly coupled problems have been successfully analyzed in the past, the interface be­
tween computational procedures was often of an ad hoc nature. As computer simulations 
have become more sophisticated, an increased demand has developed for the routine 
analysis of weakly coupled problems in general and of thermal-stress analysis problems 
in particular. In an effort to automate and streamline the needed data transfer process for 
such problems, a general interpolation program, called MERLIN II, has been developed. 
This code represents a significantly expanded and enhanced version of the program first 
documented in [1],

The MERLIN II program was designed primarily to alleviate the following problems 
that frequently occur in the computer analysis of weakly coupled problems. In particular, 
MERLIN II allows

• the use of significantly different computational meshes for each simulation as a 
result of differing resolution requirements for each physical phenomena.

• the use of different computational meshes for each simulation as a result of the 
incorporation of special analysis features in one of the computations (e.g., the use 
of slide lines in a structural analysis which is unimportant in the thermal problem).

• the use of different computational meshes for each simulation due to the involvement 
of several analysts with different modeling requirements and/or personal preferences 
for mesh generation and analysis software.

In addition, MERLIN II can be employed as a rudimentary rezone program in which 
complete data fields from one simulation are simply transferred to a new mesh and the 
analysis continued. The new mesh may be needed because of unacceptable distortion 
in Lagrangian mesh descriptions or to increase/redistribute mesh resolution in Eulerian 
descriptions.

In the following section the general scope of the MERLIN II program is outlined. The 
third section briefly describes the algorithms that are used to interpolate data from one 
mesh to another. Finally, the last two sections provide complete instructions for use of 
the program, comments on the installation of the code and several examples to illustrate 
program capabilities.
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2 Scope of Program

The primary motivation for the development of the MERLIN II program was the need 
to routinely transfer solution data between various computational mechanics codes. The 
original version of MERLIN performed this type of function mainly in the context of 
transferring two-dimensional, temperature data from a heat conduction program to a 
stress analysis program. Though the principal area of application is still assumed to be 
in the analysis of thermal-stress problems, a program with more general capability was 
desired.

To assist in the following discussion, it is appropriate to define a weakly coupled prob­
lem with generic properties. Let a physical process {e.g., heat conduction) be simulated 
on a computational mesh, labeled A, that occupies a spatial domain 0^. A subsequent 
physical process {e.g., elastic stress analysis) is simulated on mesh B that spans the 
domain 1)#. The process to be simulated on mesh B requires data from the problem 
previously computed on mesh A. The MERLIN II program was designed to carry out 
the required data transfer from mesh A to mesh B.

A number of limitations had to be placed on the scope of the data transfer program in 
order to make the data handling and interpolation problems tractable. First, the analysis 
procedures for all of the weakly coupled processes were assumed to be based on the finite 
element method. Though it is recognized that a great deal of engineering analysis is 
performed with computational techniques other than the finite element method, there 
are a number of unresolved difficulties associated with interfacing general computational 
grids. For example, the topological structure of an integrated finite difference, lumped 
parameter mesh does not permit standard interpolation procedures to be employed. Such 
difficulties are not present in finite element based codes where a simple data structure 
allows interpolation to be carried out efficiently and accurately.

With regard to geometric restrictions, MERLIN II assumes that the physical region, 
f!#, modeled by mesh B, coincides with or is a subdomain of the region, modeled by 
mesh A. In essence this restriction implies that the solution data from the first simulation 
can be interpolated onto the second grid but extrapolation is not considered. Also, 
implicit in this assumption is the requirement that the origin of the coordinate systems 
used for each mesh coincide and the units chosen for length scales be identical.

The search and interpolation algorithms employed in MERLIN II are quite general 
with regard to their applicability to finite element meshes and the types of finite elements 
used in a simulation. The code was initially designed to accommodate most of the popular 
linear and quadratic, isoparametric elements in both two and three dimensions. Other 
elements can be added with simple modifications to a few subroutines. However, despite 
this algorithmic generality, MERLIN II is still limited in its applicability to a set of specific 
analysis packages. This lack of overall generality was dictated primarily by the wide 
variety of data formats encountered in the various finite element codes. In the present
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version of MERLIN II, data transfer is limited to those codes which support the GENESIS 
[2] and EXODUS [3] file formats. These data formats were established at Sandia to 
simplify the input and output of data from finite element based mechanics programs. 
The GENESIS format provides a standard file for inputting mesh and boundary condition 
data to an analysis code; EXODUS provides a standard format for transforming solution 
data to a post-processing graphics program or to another analysis code. Though only 
the GENESIS and EXODUS formats are actively supported in MERLIN II, the addition 
of other formats would require relatively straightforward modifications to the program.

Finally, the concepts used in MERLIN II could form the basis for an elementary re­
zone capability within a larger program. Mechanics codes that use a Lagrangian mesh 
description often require a rezoned mesh to be generated and the dependent variables 
transferred to the new mesh. Eulerian-based codes could also require rezoning if the 
spatial (mesh) resolution requirements change significantly during the course of a solu­
tion or if Lagrangian features, such as free surfaces, are modeled. Given the old and 
new (rezoned) mesh descriptions, MERLIN II could function as the dependent variable 
interpolator for the mechanics program. In such a case, MERLIN II would be tailored 
to the specific program and probably made into a series of subroutines within the larger 
program.
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3 Search and Interpolation Procedures

The present section briefly outlines the procedures used by MERLIN II to interpolate 
data from one mesh to another. For purposes of this discussion it is convenient to refer 
to the previous definitions for a weakly coupled problem. The mesh on which a solution 
has been previously computed is denoted as mesh A; the mesh to which the solution is 
to be interpolated is mesh B.

The computational procedure used in MERLIN II naturally divides itself into three 
phases: i) the reading and storing of A and B mesh data, u) mesh searching and
interpolation of the solution, and m) the writing of the necessary output files. As the 
first and third steps are simply problems of data formatting and bookkeeping, they need 
not be considered here in any detail. Rather the discussion will be focused on the search 
and interpolation procedures. Also, the development will be in terms of the general 
three-dimensional case; the two-dimensional algorithms follow by direct analogy.

For each nodal point Pb with coordinates (xb-iVb, zb) in mesh B the following se­
quence of operations is performed:

1. MESH SEARCH: A search of mesh A is made to locate the element or group of 
elements which may contain node point PB(xB,yB, zb)-

2. ELEMENT SEARCH: A Newton iteration procedure is used to find the local
isoparametric element coordinates (s^, r^) that describe the position of point
Pb within the element from mesh A.

3. INTERPOLATION: For a given set of local element coordinates (s^, r^), the
finite element basis functions may be used to compute the value of the dependent 
variable at point Pb from the mesh A solution.

Each of these operations is described in more detail in the following sections.

3.1 Mesh Search

The determination of which element in mesh A contains a given point, Pb, can become 
a very time consuming process if standard, sequential search methods are employed. 
However, a significant improvement in the search procedure can be realized by presorting 
the elements in mesh A into subgroups or bins according to their spatial location. During 
a search, mesh point Pb can then be quickly tested for general spatial location and located 
within a particular bin. The number of elements that must be carefully screened for each 
Pb can thus be (significantly) reduced from the total number of elements in mesh A to the 
maximum number of elements in a bin. MERLIN II implements the presorting algorithm
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by construction of a rectangular parallelepiped (box) that surrounds the mesh A region, 
Cl a- Each edge of the box is subdivided to form a rectangular grid of nx x ny x nz cells 
or bins. A simple test on the coordinates of each element in mesh A locates it within 
one or more bins; a list of elements for each bin is constructed for subsequent use in the 
mesh search portion of the code. Note that the number of bins constructed in the presort 
procedure is specified by the user and an optimal grid will be mesh dependent. The 
examples provided in a later section demonstrate the trade-offs and efficiencies associated 
with the presort procedure.

Upon completion of the presorting procedure, the search for the location of each 
point Pb within element mesh A continues in a two stage process - a “coarse” search 
which eliminates all elements in a particular bin from consideration except those in the 
“neighborhood” of point Pb and a “refined” search that finally locates the specific element 
in A that contains point Pb- The coarse search procedure is based on the construction of 
a circumscribing sphere (circle in two dimensions) for each element in the selected bin. 
If point Pb is found to lie within a particular sphere (circle), that element is retained for 
further testing; when point Pb is outside the sphere (circle) that element is omitted from 
further consideration.

The refined portion of the search is used to finally decide if the point Pb is within 
an element. Several techniques could be used for this task, depending mainly on the 
type of finite element being tested. For low order, straight-sided elements (e.g., four 
node, two-dimensional quadrilaterals or eight node, three-dimensional bricks), geometric 
procedures could be used, as was done in the earlier version of MERLIN. Generally, 
the testing for the presence of a point within a higher order, curved sided element is of 
sufficient complexity to preclude the use of geometrically based methods. MERLIN II 
was designed to accommodate a wide variety of both high and low order elements. For 
simplicity in code design, a single procedure that was applicable to all element types 
was desired. Such an approach, which is more analytic in nature and appeals to the 
basic nature of the isoparametric mapping procedure, is the use of Newton’s method. 
As this refined mesh search procedure is conveniently combined with the element search 
algorithm, its detailed description will be given in the next section.

3.2 Element Search

Having determined that point Pb is located in the vicinity of an element, it is then 
required that the actual position of point Pb within the element be obtained. This 
“local” description of the coordinates for point Pb are most conveniently expressed in 
terms of the “natural” or normalized coordinates for the element [4]. Introducing the 
idea of isoparametric elements [5,6] permits the spatial description for the element to be 
written as
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x = $T(s,t,r) x 

y = $T(s,t,r) y 

0 = 3>T(s, r) z

(1)

where are vectors of element shape functions, x, y and z are vectors containing the 
spatial coordinates for the nodal points of an element and superscript T denotes the 
transpose of a vector. The variables 3, t and r are the normalized “local” coordinates 
for the element. For mesh point Pb located in an element of mesh A, equation (1) then 
becomes

xB = ®T(sA,tA,rA) xA

Vb = ®T(sA,tA,rA) yA (2)

zB = $T(sA,tA,rA) zA

and the problem is to find the coordinate values for sA,tA and rA that satisfy (2). As 
the element shape functions are usually nonlinear functions of s, f and r, the equations in 
(2) cannot generally be directly solved for sA,tA and rA values. Within the MERLIN II 
program, the solution of (2) is carried out through the use of Newton’s method. Details 
of the procedure are given in Appendix A.

The solution of equation (2) produces the sA,tA and rA coordinates corresponding 
to point Pb and located in a particular element of mesh A. As noted previously, the 
“refined” mesh and element search procedures were combined into a single procedure. 
Upon obtaining the sA,tA and rA coordinates for point PB from the Newton procedure, 
a check is made to ensure that s^, t^ and rA lie completely within the mesh A element. 
When M, \tA\, and \rA\ < 1, point PB is within the element and the search procedure 
ends. If |, \tA|, or |r^| > 1, point Pb is outside of the element in question, and the 
search for the location of point PB within the A mesh is continued.

It should be noted that in all inequality tests used in MERLIN II, there are toler­
ances incorporated to allow for finite precision arithmetic and the small differences that 
naturally occur in different mesh descriptions. Length tolerances are generally based on 
some small percentage of a typical element dimension.

3.3 Interpolation

The local coordinates that describe the location of point PB within a particular element 
of mesh A are computed and stored as the result of the search procedure described above. 
The last remaining task in the overall algorithm is the interpolation of the solution for
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the points in mesh B. The solution for mesh A is known in terms of the nodal values of 
the dependent variable for each element in the mesh. Thus, for each mesh A element the 
following relation is available

T(s,t,r) = *T(s,t,r)T (3)

where T(s, t, r) is the dependent variable at a point s, t, r in the element, ^ is a vector of 
element shape functions that describes the variation of the variable within the element 
and T is a vector of nodal point values of the dependent variable. When the local 
coordinates for a point Pb within an element are available, as from the search procedure, 
the value of the dependent variable at point Pb is given by

TpB(sA,tA,rA) = ^T(sA,tA,rA) (4)

Within MERLIN II, the above computation is carried out for each node in the B mesh. 
The resulting interpolated solution for B is properly formatted and written to a disk file 
for later use.

The above procedure was described in terms of a problem that required only one 
variable to be interpolated and that did not involve a time-dependent solution. MERLIN 
II is sufficiently general to accommodate both of these complications. When the mesh 
A solution contains more than one variable, MERLIN II will interpolate any specified 
variable or set of variables onto the B mesh. The relation in (4) is used repetitively for 
each set of nodal point variables, T. Further, if the mesh A solution is time-dependent, 
MERLIN II will transfer data at all of the computed times or at times specified by the 
user. In this latter case, a linear interpolation in time is performed on the mesh A data.
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4 User Guide

The MERLIN II program was specifically designed to be a user-oriented tool that facili­
tates the transfer of data between finite element meshes. In keeping with this philosophy, 
a conscious effort was made to minimize the data input to the program and to simplify 
access to the code. The following sections provide descriptions of the data cards nec­
essary to use the MERLIN II program, comments on how to access the program and 
a description of the files needed by the program. A section on coding and computer 
implementation is also included to assist in installation and possible modifications of the 
code.

4.1 Program Limits

The basic version of the MERLIN II program is structured to accommodate the transfer 
of data between relatively large two- and three-dimensional finite element meshes. The 
code is dynamically dimensioned and has no specific limits on the sizes of the A and 
B meshes that may be considered. There are, however, some other limits that must be 
observed.

One limitation of the program concerns the types of finite elements that may occur 
in the A and B meshes. Presently, MERLIN II recognizes the following element types: •

• TRI3 - three node, linear triangular element (2D)

• TRIG - six node, quadratic triangular element (2D)

• QUAD4 - four node, linear quadrilateral element (2D)

• QUADS - eight node, quadratic quadrilateral element (2D)

• QUAD9 - nine node, quadratic quadrilateral element (2D)

• TETRA4 - four node, linear tetrahedral element (3D)

• TETRA10 - ten node, quadratic tetrahedral element (3D)

• PRISM6 - six node, linear prism element (3D)

• PRISM15 - fifteen node, quadratic prism element (3D)

• BRICKS - eight node, linear brick element (3D)

• BRICK20 - twenty node, quadratic brick element (3D)

• BRICK27 - twenty seven node, quadratic brick element (3D)
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This list could be expanded to include other, more specialized, elements through minor 
code modification. Also, note that in order to describe each of these elements, a con­
vention for locally numbering the nodes within an element is required. The convention 
followed in MERLIN II is based on the EXODUS [3] standard; nodal point numbering 
runs counterclockwise around element edges with corner nodes listed first, followed by 
mid-edge nodes, if they are present.

The program is also limited to consideration of twenty variables, or less, in the mesh 
A solution and subsequent interpolation procedure. More variables could be treated by 
increasing several dimension statements in the code. Note also that the solution data 
supplied from the A mesh must be defined at the element nodal points; integration point 
data or element based data is not considered. Finally, as noted previously, the input and 
output formats recognized by MERLIN II are limited to the GENESIS [2] and EXODUS 
[3] standards.

4.2 Input Syntax

The structure of an input data set for the MERLIN II program is straightforward and 
consists of five command cards and associated data. Each command sequence is delimited 
by a specific form of termination command. To further simplify the data input, MERLIN 
II is equipped with a free field input routine to eliminate the problem of remembering 
several fixed field formats. In describing the data associated with each input card the 
following conventions and restrictions will be observed:

(a) Upper case bold face words indicate required command and termination words, 
e.g., MESH-A.

(b) Lower case words and symbols imply that an alphanumeric or numerical value for 
the specified variable is expected, e.g., iprint.

(c) All input data are specified in a free field format with successive variables separated 
by commas. All alphanumeric input data is limited to ten characters under this 
format; all alphanumeric input must be in upper case format.

(d) The $ character may be used to end an input line. The remaining space on the line 
can be used for comments.

(e) The * character may be used to continue an input line onto a second data card. The 
continuation character should follow the last comma on the card to be continued.

(f) Italics indicate optional parameters which may be omitted by using successive com­
mas in the variable list. If the omitted parameter is not followed by any required 
parameters, no additional commas need be specified.
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(g) ( ) indicate the data type for a particular input variable, i.e., alphanumeric or
character (C), real (R) or integer (I).

(h) < > indicate the default value for an optional parameter.

(i) The contents of each input card are indicated by underlining.

In the following sections, the input to MERLIN II is described in roughly the order 
that data would normally be supplied to the code. For convenience, a summary of the 
input commands is collected in Appendix B.
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4.3 Title and Comment Cards

The title or header card must be the first card in an input data set for any particular 
problem. A $ symbol must appear in Column 1; the remaining 79 columns are available 
for a problem title. The problem title is used to label printed output. The title card is 
of the following form:

$ THIS IS AN EXAMPLE OF A PROBLEM TITLE

Following the title card, a number of comment cards may be included to provide 
a description of the particular problem, codes used to produce the solution, etc. Up 
to 10 comment lines may be specified; each line begins with a $ leaving the remaining 
79 columns available for descriptive text. The comment lines are reproduced at the 
beginning of the printed output listing. Comment lines have the following form:

$ THESE ARE EXAMPLES OF COMMENT LINES
$ UP TO 10 LINES OF PROBLEM DESCRIPTION MAY
$ BE INCLUDED ON THESE CARDS

11



4.4 MESH-A Command Card

The data describing properties of the A mesh, on which a solution has been previously 
computed, is input through the MESH-A command. This command and its associated 
data cards have the following form:

MESH-A, format
element type, element block id

END

where

format (C) < EXODUS > : specifies the input file format for the data from mesh A. In 
the current version of MERLIN II this parameter should only be set to EXODUS.

element type (C) : indicates the type(s) of element(s) used to generate the solution 
on the A mesh. The permissible element types include: TRI3, TRIG, QUAD4, 
QUADS, QUAD9, TETRA4, TETRA10, PRISM6, PRISM15, BRICKS, BRICK20, 
BRICK27. These elements are defined in Section 4.1.

element block id (I) : is the previously assigned identifier for a block of elements in the 
mesh. The elements in this block are expected to all be of the same material and 
be the same type of finite element (see Note 1).

Notes:

1) The element block identifiers are assigned during the mesh generation operation 
and must be recalled for use in the element specification. One and only one data 
card for each element block must appear in the input deck. See reference [2] for 
further information on the use of block identifiers.
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4.5 MESH-B Command Card

The properties of mesh B, onto which the solution is to be interpolated, are input through 
the MESH-B command. This command and its associated data cards have the following 
form:

MESH-B, format
element type, element block id

END

where

format (C) < EXODUS > : specifies the input/output file format for the data from mesh 
B. In the current version of MERLIN II this parameter should only be set to 
EXODUS.

element type (C) : indicates the type(s) of element(s) used in the B mesh. The permis­
sible element types include: TRI3, TRIG, QUAD4, QUADS, QUAD9, TETRA4, 
TETRA10, PRISM6, PRISM15, BRICKS, BRICK20, BRICK27. These elements 
are defined in Section 4.1.

element block id (I) : is the previously assigned identifier for a block of elements in the 
mesh. The elements in this block are expected to all be of the same material and 
be the same type of finite element (see Note 1).

Notes:

1) The element block identifiers are assigned during the mesh generation operation 
and must be recalled for use in the element specification. One and only one data 
card for each element block must appear in the input deck. See reference [2] for 
further information on the use of block identifiers.
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4.6 VARIABLES Command Card

The specification of the data fields that are to be interpolated from the A mesh to the B 
mesh are input through the VARIABLES command. The form of this command and 
its associated data cards is given by:

VARIABLES
variable name, default exterior value

END

where

variable name (C) : specifies the name of the variable that is to be interpolated (see Note 
!)•

default exterior value (R) < 0.0 > : specifies the value to be given to mesh B nodes that
fall outside of the region spanned by mesh A (see Note 2).

Notes:

1) The variable names used here must correspond to the names used to define the 
variables in the EXODUS file for mesh A. These names will depend on the analysis 
code used to produce the mesh A solution.

2) For each variable to be interpolated a default value should be defined. If a node in 
mesh B falls outside of the A mesh, the default exterior value will be assigned to 
the B node.
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4.7 TIMEPLANE Command Card

The TIMEPLANE command is used to specify the times at which the mesh A solution 
is to be interpolated to mesh B. This command is required even when the solution on 
mesh A is independent of time. The form of the command and its data card is as follows:

TIMEPLANE
option, parameterl, parameter^, ...
END

where

option (C) : indicates which of the timewise interpolation schemes is to be employed. 
There are three methods of selecting the time planes when data are transferred 
between meshes. When the “option” parameter is set equal to ALL, all of the time 
planes found in the mesh A solution file are interpolated onto mesh B. There are 
no additional parameters with this option. When “option” is set to INCREMENT, 
data from mesh A is transferred to mesh B at constant intervals as specified by 
the parameters 1 through 3. For this option parameterl = tinitiai, parameter2 = 
tfinal and parameters = At. Interpolation occurs between meshes starting at tinitial 
and running through t]inai in time steps equal to At. When “option” is set to 
SPECIFIED, data from mesh A is transferred to mesh B at those times specified in 
the parameter list. In this case, parameterl should be set to the number of times 
to be specified. The remaining parameters in the list are set to the actual times at 
which data is to be interpolated onto the B mesh. The current version of MERLIN 
II requires that parameterl be less than or equal to 125 under this option.
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4.8 EXECUTE Command Card

The actual search and interpolation process in MERLIN II is initiated by the EXE­
CUTE command. This command causes the code to perform the necessary data trans­
fer processes and format the output files. Program termination occurs at the end of this 
command when the STOP command is encountered. This command has the following 
form:

EXECUTE, nx,ny, nz, nelbin,printout
STOP

where

nx,ny,nz (I) < 1 > : specifies the number of grid cells (bins) to be used in partitioning 
the mesh A region (see Note 1).

nelbin (I) < 2x NUMELA/NUMBIN > : specifies the maximum number of elements al­
lowed in any given bin (see Note 1).

printout (C) < SUMMARY > : indicates the amount of printed output that is generated 
during program execution. For printout set to SUMMARY or left blank, a minimal 
amount of output is generated. When printout is set to DETAILED or DEBUG, 
an increasing amount of information is output regarding the location of the mesh 
B nodes within mesh A.

Notes:

1) The selection of the grid cell parameters must be coordinated with the definition 
of nelbin. Prior to sorting of the elements in mesh A, it is usually not possible to 
predict the maximum number of elements that will be located in a particular bin. 
The parameter nelbin serves as a sizing parameter to allocate space for the element 
list for each bin. The default value for nelbin is set to the total number of elements 
in mesh A when nx=ny=nz=l (i.e., when only one grid cell is defined). When more 
than one grid cell is defined, the default for nelbin is the total number of elements 
in mesh A (NUMELA) divided by the total number of grid cells (NUMBIN) times 
two. By setting the nelbin parameter to a relatively small value, it can also serve 
as an indicator when too many elements are found in a bin and the search process 
will be impeded. In this latter case, the number of grid cells should be increased.
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4.9 File Usage

The nature of the tasks performed by MERLIN II necessarily requires that a number of 
files be attached to the program for the input and output of data. All of the files used 
by the program are listed in the following table along with a brief description of their 
function, their internal FORTRAN identification and format type.

When files are to be attached to a MERLIN II job or saved after processing, the unit 
numbers used in the program execution statements must conform to those indicated in 
the following table. File names are arbitrary but must conform to the syntax rules for 
the particular operating system. A utility program from the SUPES library [7] obtains 
needed file names from the operating system for use in opening files during program 
execution. All files are opened in the OPNFIL subroutine. Prior to program execution, 
the proper relation between file name and unit number must be established via a system 
command; appropriate commands for a variety of operating systems are described in [7].

Unit FORTRAN
Number Name File Usage File Type

5 NIN Input file Formatted
6 NOUT Output file Formatted
10 NTPO Scratch Unformatted
11 NTP1 Free field input Unformatted
12 NTP2 Mesh &: solution data, mesh A (EXODUS) Unformatted
13 NTP3 Mesh data, mesh B (GENESIS) Unformatted
14 NTP4 Mesh Sz solution data, mesh B (EXODUS) Unformatted
15 NTP5 Interpolated solution, mesh B Unformatted

To understand the relationship between MERLIN II and its required files, reference 
should be made to Figure 1. This schematic indicates the interaction between the analysis 
codes and the files needed to successfully complete a data transfer. Most of the files shown 
in the table and Figure 1 that are of concern to the user have standard formats and their 
utility is self-explanatory. Note that there are three output files. Unit 6 contains printed 
output from the execution of MERLIN II. Unit 14 contains an EXODUS file with mesh 
and interpolated solution data for mesh B that can be used with a graphics program to 
verify the accuracy of the interpolation process. Finally, unit 15 contains the interpolated 
solution field for mesh B that is formatted for direct use in a mechanics program.

4.10 File Formats

The disk files used in MERLIN II are generally sequential access, unformatted files. The 
specific formats for the GENESIS and EXODUS files are well documented in [2,3] and 
need not be given here. The only other file format that is of concern to the user involves 
the interpolated solution data that goes to the mechanics code and is written to unit 15.
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Figure 1: Schematic of data flow to and from MERLIN II.



Data for unit 15 is written with the following series of unformatted FORTRAN write 
statements

IF (NUMVAR.GT.1) THEN 
WRITE (NTP5) NUMNOD,NUMVAR 
END IF

DO 10 NT=1jNTIMES
WRITE (NTP5) TIME(NT), ((S0LN(I,J,NT), J=l,NUMNOD), 1=1,NUMVAR) 

10 CONTINUE

where

NUMNOD : is the number of nodes in the mesh

NUMVAR : is the number of dependent variables listed under the VARIABLES command 

TIME : is the current time

S0LN(I,J) : is the two-dimensional array containing the dependent variables. The de­
pendent variables are listed 1 through NUMVAR in the order in which they appear in 
the mesh A EXODUS file.

4.11 Access to the Code

The source version of MERLIN II is maintained on the central file system (CFS) of 
the Central Computer Facility at Sandia National Laboratories. The program may be 
accessed by the following MASS utility [8] command

? get filnam : /FEC0DES/MERLIN/MERLIN2

The filnam parameter is the local file name for the code on the host computer. This is 
the standard UNIX1 version of the program (source code) that is designed to run on the 
Sandia National Laboratories mainframe and distributed computers.

1unix is a trademark of AT&T Bell Laboratories
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A script for executing MERLIN II is also available from the Sandia Engineering 
Analysis Code ACCESS System (SEACAS) [9]. This system is supported on the Cen­
tral Computing Facility Unices CRAY computers and the Directorate 1500 Local Area 
Networks. Access to MERLIN II through SEACAS consists of a single-line, UNIX-style 
command with a variety of options for file specification and data conversion.

The utility library needed for the execution of MERLIN II is available for several 
computer systems. Access to these routines varies depending on the particular operating 
system. Instructions for accessing and loading these routines are available in [7],

4.12 FORTRAN Coding and System Dependencies

The MERLIN II program is written in ANSI standard FORTRAN 77 and should therefore 
be usable on any computer system that supports such a compiler. The program was 
developed primarily for use on large mainframe computers, such as the CRAY-1S, CRAY 
X-MP and CRAY Y-MP, though it is also functional on smaller computers such as VAX, 
STARDENT and SUN. The code makes use of a few system dependent utilities. To 
increase portability of the code, most of the system dependencies have been isolated in 
a few subroutines that are located in a utility library that accompanies the main code. 
The utility library [7] includes such functions as calls to the date and time functions, 
routines needed for the dynamic memory manager algorithm and the free field reader 
used for decoding input to the code. The library routines are heavily commented to ease 
the task of converting these utilities to other computers. MERLIN II can be configured 
(via SUBROUTINE OPNSSD) to make use of a Solid State Disk (SSD) on CRAY computers, 
if such a device is available.

A dynamic memory manager is used in MERLIN II to allocate and release computer 
memory during program execution. Under this algorithm, the individual vectors and 
arrays needed by the program are stored in (noncontiguous) blocks of memory under a 
single vector name. Pointers indicating the location of individual arrays within memory 
are maintained by the memory manager as is the allocation of needed storage space. 
Further details on the memory manager and its operation are given in [7]. Some com­
puter systems may not permit execution time changes in dynamic memory allocation; 
modifications to the code and memory manager to handle this case are outlined in [7].
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5 Example Problems

Three example problems are included in this section to demonstrate the use of the MER­
LIN II program and provide some verification of its capabilities. The first two problems 
are contrived two- and three-dimensional examples that were developed to test the ability 
of the program to accommodate dissimilar geometries and element types in the A and B 
meshes. The third example illustrates the use of the program for an engineering analysis.

5.1 Cylinder to Rectangle Data Transfer

The first test problem consists of a steady state, heat conduction solution that was 
generated on the cylindrical section shown in Figure 2. The linear conduction problem 
was solved using the COYOTE II [10] finite element program; the mesh in Figure 2 
was generated by the internal mesh generator in COYOTE II and consists of nine node 
quadrilateral and six node triangular elements. A contour plot of the isotherms produced 
for this problem are shown in Figure 3.

For purposes of this example, the rectangular region indicated in Figure 3 was dis­
cretized using four node linear elements via the FASTQ program [11]. MERLIN II was 
used to interpolate the COYOTE II solution from the cylindrical domain in Figure 3 onto 
the rectangular mesh. The results of the interpolation procedure are shown in Figure 4. 
The input data required by MERLIN II to perform this task is listed below. Note that 
mesh A (the cylinder) was only partitioned into a single grid cell due to the small size of 
the problem.

$EXAMPLE PROBLEM 1 FOR MERLIN II
MESH-A,EXODUS
QUAD9,1
TRIG,2
END
MESH-B,EXODUS 
QUAD4,1 
END
VARIABLES 
TEMP,100.
END
TIMEPLANE
ALL
END
EXECUTE,,,,,SUMMARY 
STOP

MERLIN II input for Example Problem 1
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EXAMPLE 1 FOR MERUN II - MESH-A

X AXIS

Figure 2: Finite element mesh for example problem 1 (Mesh A)

MESH-B

X AXIS

Figure 3: Temperature contours for mesh A. Location of Mesh B is indicated.
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EXAMPLE 1 FOR MERUN II - MESH-B
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Figure 4: Temperature contours for solution interpolated to mesh B.

5.2 Sphere to Y-Block Data Transfer

The second example represents a test of a three-dimensional geometry and consists of 
the transfer of a diffusion solution on a sphere to an embedded rectangular block with 
a Y shaped cross-section. Shown in Figure 5 is the mesh developed for one-half of the 
solid sphere; the discretization was produced using the FASTQ program [11] and the 
GEN3D utility [12] and contains approximately 9200 eight-node hexahedral elements. 
The solid sphere was subjected to a uniform volumetric heat source and a constant surface 
temperature. The steady-state heat conduction problem was solved using COYOTE II 
[10]. Plots of the surface temperature on the half-sphere and a quarter section of the 
sphere are shown in Figure 6.

The mesh B geometry for this example consisted of a rectangular block with the cross- 
sectional shape of a Y as shown in Figure 7. The mesh in Figure 7 was also produced 
using FASTQ and GEN3D and contains approximately 4200 eight-node hex elements. 
The center of the Y section was located at the center of the sphere and the front face of 
the Y was coplanar with the face of the half sphere. Shown in Figure 8 is the temperature 
field as transferred to the Y block by MERLIN II. The characteristic spherical pattern 
of the isotherms is clearly evident on the Y geometry.

To demonstrate the effects of partitioning the mesh A region into grid cells or bins, a 
series of data transfers were computed. Listed in the following table are the results from 
eight runs where the number of grid cells were uniformly increased in all three coordinate 
directions. Three additional runs were performed in which the number of cells in the z 
direction (perpendicular to the face of the half sphere) was half the number of cells in
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the x-y plane. It is clear from the execution times that a significant improvement in code 
performance can be achieved by presorting the elements in the A mesh. Also, there is 
an optimal grid configuration, where the work done in sorting the elements in mesh A 
is balanced by the search procedure within each bin. Though the optimal subdivision 
of mesh A will not usually be known a priori, some experimentation and experience can 
produce a near optimal or acceptable configuration.

# Grid Cells Execution Time
nx ny nz seconds

1 1 1 280
2 2 2 74
3 3 3 46
4 4 4 26
5 5 5 19
6 6 6 18
7 7 7 19
8 8 8 23
4 4 2 35
6 6 3 19
8 8 4 17

Figure 5: Finite element mesh for example problem 2 (Mesh A).

24



Figure 6: Temperature contours for Mesh A.
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figure 8:
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5.3 Engineering Example

The final example concerns a data interpolation process that was required to perform 
a stress analysis of an electromagnetically loaded structure. Shown in Figure 9 is a 
schematic of the upper half of an axisymmetric diode for the Particle Beam Fusion Accel­
erator II (PBFA II). The simulation problem consists of determining the time-dependent 
magnetic field, currents and heating induced in the structure due to the application of a 
time varying current in the coils. The magnitude of the applied current is sufficiently large 
that magnetic pressure loads and Joule heating in the structure can affect the structural 
response of the diode components. MERLIN II is required to transfer the temperature 
and load data computed in the magnetic diffusion simulation over the entire geometry to 
a simpler structural analysis mesh that contains only the solid components of interest. 
Further details of the analysis are given in [13].

Figure 10 illustrates two views of the mesh used for the magnetic diffusion problem; 
the first figure shows the entire mesh while the second figure shows the mesh for the vac­
uum region with the solid components removed. This mesh was generated by FASTQ [11] 
and contains approximately 7500 four-node quadrilateral elements. The time-dependent 
magnetic diffusion and heat transfer problem was simulated using the TORO code [13]. 
Contour plots of the temperature and the magnitude of the magnetic pressure, as com­
puted by TORO, are shown in Figures 11 and 12. Note that the contour plots show the 
fields at a time when the current applied to the main coil (Coil 1) is at a maximum.

The computational mesh used for the structural analysis is shown in Figure 13 and was 
also generated using the FASTQ program. This model contains only the solid components 
of interest and disregards most of the vacuum region. The magnetic and temperature 
fields were transfered to this mesh by MERLIN II with the temperature and magnetic 
pressure results shown in Figures 14 and 15. Note that all timeplanes computed in the 
magnetic diffusion simulation were transferred to the structural mesh.
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Figure 9: Schematic of PBFA II diode.
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Figure 10: Finite element mesh for diode problem (mesh A).
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Figure 11: Temperature field in the diode at the peak of the current pulse.
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Figure 12: Magnitude of the magnetic pressure in the diode at the peak of the current 
pulse.
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Figure 13: Finite element mesh for structural analysis of PBFA II diode (mesh B).
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Figure 14: Temperature contours for solution interpolated to mesh B.
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Figure 15: Magnetic pressure for solution interpolated to mesh B.
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Appendix A - The Element Search Algorithm

The spatial coordinates for a point Pb located within an isoparametric finite element 
“A” are described by the following equations

xB = $T{s,t,r) xA

yB = $T{s,t,r) yA (Al)

zB = $r(s,f,r) zA

where $ is a vector of element shape functions, xA,yA,ZA are vectors containing the 
spatial coordinates for the nodal points of element “A” and superscript T denotes a vector 
transpose. The variables s, t and r are the normalized, “local” coordinates for the element
(-l<M,r<+l) [4].

During the interpolation procedure used in MERLIN II, it is required that the s,t,r 
coordinates corresponding to a given xB,yB, zB and xA, Ya? zA be computed. In general, 
the shape functions, 3>, are sufficiently complex to preclude an analytic inversion of 
equation (A.l). MERLIN II employs an iterative procedure based on Newton’s method 
to solve (A.l) for s,t and r.

Equation (A.l) may be conveniently written as a system of nonlinear equations of the 
form

f (s) = 0 (A2)

with

and

f /l 1 T
XB - $ XA

II

II yB - $TyA
l /a . . zB - ^rzA ,

s
s = < t

r

Writing a Taylor series expansion for (A.2) produces

df
f (s) = f(s0 + As) = f(s0) +

ds
(s-s0) +

80

Truncating the expansion after the linear term leads to

df
f(so) +

ds
(s - So) = 0

80
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or
df
ds so

(s - So) = f(s0)

This last relation suggests the iterative solution procedure defined by

sn+l =sn_

(/1.3)

(AA)

where
r 9R 9A dji I

ds dt dr

df dj2 dh. dh.
ds sn

ds dt dr

d/3 d/3 dh
- ds dt dr -

and superscript n indicates the iteration number. Equation (A.4) defines the iterative 
algorithm used in MERLIN II to compute the s,t,r variables.

The components of the Jacobian, J, are easily computed once the basis functions, 
3>, for each element have been specified. MERLIN II has a library of basis functions 
corresponding to the most commonly used two-dimensional and three-dimensional ele­
ments. Other elements could be added to MERLIN II by including the basis functions 
and derivatives to the Jacobian computation within the code.
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Appendix B - Summary of Input Commands

In this section all of the command and data cards recognized by MERLIN II are sum­
marized. No attempt is made to define the parameters on each input line since these 
descriptions are available in the main text.

Title and Comments :

$ A TITLE LINE
$ A SERIES
$ OF
$ COMMENT LINES

MESH-A Command :

MESH-A, format 
element type, block id

END

MESH-B Command :

MESH-B, format 
element type, block id

END

VARIABLES Command : 

VARIABLES
variable name, default exterior value

END
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TIMEPLANE Command : 

TIMEPLANE
option, parameterl, parameter2, ...
END

EXECUTE Command :

EXECUTE, nx, ny, nz,ndbin,printout
STOP
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