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ABSTRACT 

Previous analyses of the von Neumann stability of the WONDY wavecode 

(based on the von Neumann-Richtmye~. artificial viscosity method) assumed 

a mechanical stress-strain relation; i.e., they assumed the stress p to 

depend only-on the mass ~ensity p. In a thermodynamic equation of state 

pis allowed to depend also on the specific entropy S (or on the specific. 

internal energy e). If p does not depend one (or s), .then the GrUn~isen 
.. parameter r is zero. Herein a von Neumann stability wialysia of WONDY 

is done for the· more general case when r F 0. The result of this analysis 

·is the requirement that the timestep be less than the product of the 

material increment ·and a certain function f of the acoustic 'mpedance (a), 

artificial viscosity coefficient A, and r. In a region of comp~ession if 

Ar ·> o, then f(a,A,r) is smaller than f(a,A,O) •. Therefore, the more 

general stability analysis yields the result that the timestep restric-

. tion now in WONDY may be insufficient . for stability in certain regions 

of certain calculations. 
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1.· INTRODUCTION 

Wavecodes based on the artificial viscosity method of von Neumann­

Richtmyer [1] (e.g., CHARTD, PUFF, WONDY, etc.) require timestep restric­

tions in order to be stable in the sense of von Neumann (see [2]). 

Previous stability analyses of the von Ne~-Richtmyer method were 

done by J. von Neumann and R. Richtmyer in 1950 (see [1]), G. N. White 

in 1954 (see [3], p. 13), and R. J. Thompson in i966 (see the appendix 

of [4]). Those. stability analyses were done for what essentially amounts 

· to mechanical stress-strain relations. That is, in the course of those · 

ana~ses, simplifying assumptions were made which essentially amount to 

assuming that the pressure was dependent only on the mass density •. If 

the pressure does not·· depend on the spec.ific internal ent;!rgy, then the 

GrUrieisen parameter is zero. Herein the stability analysis is done for 

the more general case when the parameter may be nonzero. 

Section two gives the notation, nomenclature, and a description of 

the WONDY difference scheme. 

Section three gives some lemmas about quadratic inequalities and 

stability;. these are the main mathematical tools useu in section fo\~. 

Section four· gives· the main results about the time step·. restrictions. 

·required for the von Neumann. stability of WONDY. 

·section five gives A. summary, conclusions, .and recommendations about 

moulfying the timestep restrictions in WONDY and CHART D • 
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2. NOTATION AND NOMENClATURE 

The equation 

(2.1) 

expre·sses the conservation of' volume; t is time; 1-l is material coordinate; 

V is· specif'ic voli.lme; V -is the reciprocal of' t.he m.aoo ·density p; and u 

is specif'ic momentum.. The equation 

au· oa 
at = - oj..l 

expresses the conservation of' momentum; a is the total stress (taken 

positive in compression); it is composed of' a viscous stress q and an 

inviscid stress p; i.e., 

o=p+q. 

The conservation of' energy law leads.to 

(2.2) 

(2.3) 

OE ®a 
at = - q.,. (2.4) 

E is the svecific t,otal ·energy;. it is compo~ed of' the. EJpec:i fie Internal 

1 2 energy e and the specif'ic kinetic energy 2 u i.e., 

1 2 
E = e +- u (~.5) 2 

The equation 

(2.6) 



follaws from the chain rule and definitions of p and T; T is the absolute 

temperature; and S is the specific entropy. From (2.1) - (2.5) it follows 

·that 

(2.7) 

WONDY differences this .e.quation rather than (2.5). From (2.6) and (2.1) 

·. follows 

by the principle of increasing entropy Eqn. (2.8) yields 

sign (q) = -sign(:) • 

··.~qn. (2.9) suggests that qis of·the form 

A (N • 
q = -n ~ ' 

(2.8) 

(2 .9) 

(2.10) 

.. where A is nonnegative and A is called the coefficient of viscosity. From 

.. (2a) and (2.10) it follows that 

·au 
q = -A O!J • (2.11) 

. The acoustic impedanc~ (a), the Griineisen parameter r, and the absolute 

temperature T, are defined by: 

(2 .12) 

r = v~j 
.v 

(2.13) 

and·· 

. oe/ 
T = OS • 

v 
(2.14) 
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It follows that 

(2.15) 

From 

.2E - ~I CN ~I OS Ot-CN
8

0t+OSVot 

and Eqns. (2.12) - (2.15) t'ollows . 

.£2 2 CN OS 
Ot = -a Ot + fpT ot • (2.16a) 

From Eqns. (2.8) and (2.16a) follows 

~ 2 · CN 
at = -(a + fpq) ot • (2.16b) 

It is conceptually convenient to define the augmented acoustic impedance 

+ 
A. by 

+ 2 . 
[(a ) is also called the instantaneous acoustic impedance.] Then (2.16b) 

m~.y be written 

(2 .16c) 

From Eqns. (~.3) and (2.16c) it follows that the total stress rate rela-

tion is 

00' + 2 ov ~, 
- + (a ) -- ..::::.l. = 0 ot at at (2.17) 

(It is interesting to note the relationship of (2.17) to the generalized 

Maxwell form for relaxing materials.) 

8 
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Discrete Notation: Let=~ ·be t};le numerical approximation to 

• f(tn,~j). The WONDY difference equation for Eqn. (2.2) is given by: 

where 

and 

. n . n .· (t:n)t1 = 0 j+l/2 ·' aj-l/2 

~ j ~j+l/2 - ~j-1/2 

The WONDY difference equation for Eqn. (2.1) is given by: 

where 

-and 

(
tN\n+l/2 ( 00)n+l/2 

. t::.t )j+l/2 = 4-L j+l/2 

I n+l n . 

(
6V)n+l 2 = vj+l/2 - vj+l/2.; 

6t j+l/2 . tn+l - tn 

· l/2 n+l/2 · n+l/2 

(
t::.u)n+ - uj+l - uj . 
6~ j+l/2 - ~j+l - ~j 

(2.18) . 

. (2 .19) 

The WONDY difference scheme for stress rate relations of the form (2.i7) · 

is given by: 

(
!JJ:J)n+ 1/2 . · + 2 n+ · ( 6u)n+ 1/2 .· ( 6 )n . - = -[(a ) ] - . + ..Qg 
6t j+l/2 j+l/2 4-L j+l/2 6t j+i/2 

(2 .20) 

where 
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and 

[( +)2]n+ ·(.'n :. · )2 
· ( . )n+l/2. 

a j+l/2 "'""· tij+l/2 ."+: .fr;>q j.f.l/2· • 

The WONDY dlfference scheme for (2.7) is given by: 

where 

and 

l/2 en+l en 

(
te)n+ = j+l/2 - j+1/2 ·• 
M · ~1 n ' 

j+l/2 t - t 

n+l/2 
0 j+l/2 = 

I ;• 

(2 .21) . 



3~ TE.MMAS 

· In section Fcmr. certain 2 by 2 amplification matric;:es arise and . 

their eigenvalues are roots of. certain quadratic equations; i.e., 

A.2 - 2BA. + C = 0 • 

The Lemmas in this section are used to arrive at the t~estep restrictions 

of Section Four. 

Lemma ·lA. 

Let B and C 'i:>e real numbers; lJ = 'd2 
- C ; ": ::. B l D

1
/

2 
J ond 

' ± 

I A. I = maxCI A. I , I A. I ) · max . + . -
2 

Case (a): If D.~ 0 and B > 1, then 

IA.I > 1 · max 
Case (b): 2 · If D ~ 0 and B s: 1, then 

CIA.! s: 1 iff 21BI s: c + 1] • max 

Case (c): If D < o, then 

CIA.Imax s: 1 iff c s: 1J 

·Moreover, the resUlt also holds when s: is replaced by < or by = ihside 

the square braGkets. 

Proof: 

. 1/2 
Case (a):· If D ~ o, then IA.Imax = IBI + D: • If IBI > 1, then 

lA. I . > 1. 
max 

Case (b): IBI + D1/
2 ~ 1 iff B

2 - C ~ (1- IBI)2 
iff 2IBI· ·~ C + l. 
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Case (c): If D < 0, then A+ and A. are complex conJugates and 

A+A- = IAI!ax =c. 
End of proof~ 

Lemma lB 

If B = 1 - b, C = 1 - c, and 2b ~ c ~ O, then 

I A I s: 1 iff 2b + ·c =' l~ • max 

.~= 

Case (b): First consider the subcase wheri B > 0. By Lemma lA, 

IAI s: 1 iff c s: 2b. Next consider the subcase when .B s: 0. By Lemma 
max 

lA ' I A I . s; 1 iff 2b + c . s; 4. 
max . 

Case (c) (D < 0): Since C = 1 - c and c ~ 0, therefore, C s; 1. By 

Lemma lA, C s: 1 iff IAI ·s: 1. This establishes that under the hypotheses 
max 

of Lemma lB, 2b + c s: 4 implies IAimax s: 1 when n <. 0. Now leL's establish 

the reverse implication. D < 0 iff 2b + c < (4 - b)b and (4 - b)b s; 4 for 

all real b. This establil'lhP.s that under Lhe hypotheses of Lemma lB, 

lXI s: 1 implies 2b + c s: 4 when D < 0. End of proof. 
max 

Lemma 2 

Assume A real, B and a positive; let D = B
2 +A;· and let 

a 1 = a(B + n112 ). Consider the following inequalities 

2 [Aa. + 2IO. s; 1] . 

and 

[(1 I is; 1 J • 

Case (a): If D ~ o, then (1) iff (2). 

Case (b): If D < 0, then (1) holds for all real a. 

(1) 

(2) 



Moreover the result also holds if the s is replaced by < or by = inside 

the square brackets. 

Proof: 

2 
Let P(a: ) = Aa. . + 2B:l - L 

Case (a): First, consider the subcase A = 0. In this subcase it is 

easil¥ se~n tha,t (1) iff (2). Second~ consider the subcase A > 0. The 

J.,arger of.tbe two rootsof P(<;X.) is 

a,+ = 1 = -.~1:-/'1':'2 . 
B + D . 

. Therefore, P(a:) s 0 iff a: s a: and this shows that (1) iff (2). Thir~, 
+ 

consider the subcase A < 0. The smaller of the two roots of P(a:) is 

Therefore, P(a:) s 0 iff a: s_a: and this shows that (1) iff (2). 

Case (b): · If D < 0, then. P(a:) has no real roots and thus P(a:) < 0 

for all real a:. · 

End of proof'. 

Lemma 3A (von Neumann's necessary condition) 

Let the amplification matrix for the Fourier component of' index k 

be denoted G( 6t ,k) where 6t · is the time increment. Suppose G ( t.t ,k) is an 
~ -

n by n matrix with its eigenvalues so labeled that 

A necessary condition for stability is the condition 

13 
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for all k. 

Proof: 

.The proof of ·this lemma may be found on page 70 of [2]. However, to 

make this report more self-contained that proof is reproduced here. 

Let R(~t,k) be the spectral radius of G(~t,k). Recall that 
. . ,.., 

R( t:.t ,k) · :s: IIG( t:.t ,k)ll. It follows that a necessary condition for stability· 
. 1-.; 

is: There exist constants c1 and T such thut 

for all t:.t in ·(O,T), for all n such that 0 :s: nt:.t :s: t (where t is the final 

time), and for all k. Without loss of generality assume that c1 ~ 1. The 

above inequality.can be rewritten as 

R(t:.t,k). :s: c~t/t 

Therefore, a necessary condition for stability iR 

R( t:.t,k) ~ 1 + 0( t:.t) 

End of proof. 

Lemma 3B (Sufficient Condition) 

Let t:. be the determinant of the normalized· eigenvectors of G(At,k). ,.., . 

If there exist. constant a. A A.T!d T :ii\.u;h tho.t I A I ~ 8 > 0 for all t.t in 

(O,T) and for all k, then the von Neumann condition is sufficient for 

stability. 

Proof: 

The proof may be found on page 84 of [2]. However, to make this 

report more self-contained that proof is reproduced here. 



Under the. above hypotheses there exists a complete set of eigenvalues 

for G. Let E. be .the matrix whose columns are the normalized right eigen-

vectors of G. Then E-
1

GE = A where 
#'f!W .#i'V ~,.., 

with A1,A2, ..• Am being the eigenvalues of£· Since the norm of any m by m 

matrix does not exceed m tinles the magnitude of it~ largest element, it 

follows that 11!11 ~ m. • Now 

. · -1 T 
E · = cof(E) /6 ,.... . ,.., 

where 6 = det (E) and cof(E) T is the transpose of the cofactor matrix of E ~ 
. . t'V . ~ ,.,.., 

Recall that cof(!)ij is the determinant of the cofactor of (!)ij" Since 

the absolute value of any determinant is bounded by the product of the 

·.lengths of its column (or row) vectors, it follows that 

·Now 

so 

·therefore 

15 



Hence, the norm of Gn is bounded provided 6 is bounded away from zero and . ..., 

R ~ 1 + 0( 6t) • End of proof. 

Remark: Note that Lemmas 3A and 3B have only been proved for linear 

difference equations with constant coefficients. 

16 



4. RESULTS 

Remark: Stability is define-d to b~ boundedness of the solutions to the 

. equations of first variation. The equations of first variation are linear 

· but they may have variable coefficients. If those coefficients are held 

constant, then the resultant equations are called the localized equations 

. of· first variation. S~able in the sense of von Ne.uma.nn or von Ne'\llDBJln 

stability is defi~ed to be b_oundedness of the. solutions of the loc.alized 

equations of first variation. It has been conjectured but not proved in 

general that von Neumann stability implies stability. 

The first step in the von Neumann stability ·analysis is to calculate 

·. the equations of first variation of the difference equations. The WONI)Y 

difference equation for conservation of momentum is given by:. 

To calculate the equation of first variation of Eqn. (4.1): replace u 

by u + 6u (following von Neumann-Richtmyer [1] notation) and a by 

a + 6~ in (4·.1) and Call it ( 4.1) I; SUbtraCt ( 4.1) from ( 4.1) I; neglect 

any terms of order two or higher in 6u and 5a to get 

t::.( 6u)/ t::.t = ..;t::,( 6a)/ 4J (4.2) 

'The uniform superscripts (n) and the uniform subscripts (j + 1/2) have 

. been suppressed. The WONDY difference. relation for a rate dependent 

· material relation. of the form 

(4.3) 

.is 

17 
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(
m)n+l/2 = 
6t j+l/2 

· + 2 n+ ( ~u)n+l/2 (t:. )n · · 
-((a ) ] . - + ~ 

j+l/2 4J. j+l/2 t:.t j+l/2 

Recall that 

2 a + fpq • 

The equation of first variation of Eqn. (4.4) is, in general, rather 

messy. Same assumptions are made to reduce the mess and simplify the 

analysis. Assume that the increments !:J.tn+l/2 and !:J.j.Lj+l/2 are uniform 

inn and j;.therefore, the super- and subscripts thereon may be 

suppressed. Next let's make some assumptions to simplify the form of 

+ q and a • 

(4.4) 

(4.5) 

Assumptions on the Stress Rate-Strain Rate Relations: In the first 

analysis let's assume that q is given by: · 

. (!:J.u) q = -K !:J.j.L -1 !:J.IJ 

whereK· is a positive constant. 
1 

+ Also let's simplify a to 

0 0 . 
where a and b are positive constants with 

0 )0 b = ( fp • 

These simplifying assumptions reduce the problem to considering only 

·Eqns. (4.1) and (4.4). From Eqns. (4.1) and (4 .. 6) it follows that 

and therefore (4.4) becomes 

(4.6) 

(4.7) 

(4.8) 

(4.8) 



·where ·. 

(
. t:P)n+ 1/2 

. 6t j+l/2 )
n+l/2 . 

= -(ao)2 (~u + 4J,[·} 
. 4.L j+l/2 

The equation of first variation of (4.10) is given by: 

with 

( 4.9.) 

(4.10) 

(4~11) 

The uniform subscripts (j+l/2) in the above are suppressed; the differing 

superscripts (n and n+l/2) are retained. Let 

· + 2 ( o)2 (a1 ) = a· + 2qrp 

with q defined by ( 4.6); where rp is· held constant at b 0 ; .then ( 4 .11) 

can be written 

The next step in the von. Neumann stability analysis is to find the · 

am~lification matrix of the local equations of first variation. The 

local equations of first variation for the jth zone and nth cycle are 

(4.12) 

(4.13) 

just the equations· of first vari~tion with their coefficients fixed at 

thetr eva.lua.t.ionR in the jth zone and nth cycle. Thus . the nP.:x:t. step ts 

i9 



. + 
to do a Fourier series analysis on (4.2) and (4.13) with a

1 
held 

constant. Substitute 

( ~ )n _ + n ll'j+ 1/2 
uo j+l/2 - -a1 w ~ (4.14) 

and 

(4.15) 

with 

~ = exp(ikA!wL) (4. 1{-;) 

into (4.2) and (4.13). Let 

(4.17) 

and 

a = 2l sin k ~/2 ·(4.18) 

then (4.2) becomes 

· n+1· n . n 
v - v + l.~ (4 . .1)1) 

and (4.13) becomes 

n+1 _ ·ic n+1 _ n( 1 C ) w - f.Jv - w - 1 
( 4.20) 

where. 

Let 

' (4.2i) 

··.then (4.19) and (4.20) may be written in the form 

H 1f1+1 = H tft 
-1 "'0 

20. 



where 

and 

. ' [1 
H = ""'() . 

. 0 

-1 . 
Let G = H1 H and. (4.22) becomes - ""'() 

~+1 - ~..n u . - G u 
. -

with the amplification matrix given by 

1 -

i~ . ·.] 

~2 - cl 

Consider the eigenvalues of Q· Note that 

where 

and 

4Kl At· I' 2 
c 1 = """"4l (sin k 4l ~) .. 

Result #1: 

Assume that·a rate: dependent relation of the. form· 

eo+ ( +)2 ov ~ ~·o· at al at - at - · · 

( 4.22) 

(4.23) 

(4.24) 

(4.25) 

( 4.26) 

(4.27) 

(4.28) 

21 
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is differenced in WONDY (as in (4.4)) with (a~)2 a real (but not 

necessarily positive) constant and 

where K1 > 0 is a constant. Then a necessary condition for stability is 

(4.29) 

~here r = D.t/tJJ,J. 

Proof: Note that (4.29) is equivalent to . for all k 

(4.30) 

By Lemma lB, l"-±1 s: 1 iff (4.30) for all k. Thus by Lemma 3A (4.29) is 

necessary. End of proof. 

Hesu.lt #'2: 

If (a~)2 > 0 and 0 < K1r < cx.(l -a.) where a = a~r, then 

o:2 
+ 2k

1
r s: 1 

is necessary and sufficient for stability. 

'Pro9£: 

N~c:mtHJ:tty wo.o ~1.1to.blioh~d in R~oult #h. .Now l~t' 1:1 ~sto.blitdi 

lllUffio1oncu. t.-et D. i§l 1 ~ b
1
a c • i ... c

1
1 :o E!! B2 • c; ).± !!! :a :!_ J,)l/2;. 

(4.31} 

2 . 2 I 12 :t . I :t ( )/ . . { + - J p± fill ~ + .l - >.:t ; v1 
111 -iS ~± and v2 Iii l - >.± p±' Note that. x, ,;t 

is a complete set of normalized right eigenvectors of G. Obserye that -

The idea is to show that there exsits a 8 > 0 such that 



(4.33) 

then apply :Lemma 3B. The next step is to show ·that 0 < K
1

r < a.(l -a.) 

implies D s 0. Note that 

2 2 D = -~ (1- g(~·)} 

where 

and observe that 

is equivalent to 

(4.34) . 

. This establishes D ~ 0. When D s o, then 

and (4.33) reduces to. 

2 
1 - g(~ ) ~ 5 

· · Hence, (4.32) requires g(f3
2

) < 1; this has already been shown.· End of 

proof. 

23 
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Result #3: 

If (4.348.). is· enforced, then (4.29) is necessary and sufficient for · 

stability. 

Proof: . The proof of Result #3 follows the same pattern as the· proof of· 

Result #2. End of proof. 

In the next stability analysis let • s complicate matters a bit by 

consid~ring a viscosity coefficient of thP. von Neumann-Richtmycr-Landshorr 

form; i.e., let 

with 
/ 

where A1 and. A2 are positive constants. Note that 

2 
~ = K~AI-L ti cr 
tit -"2 Llj.J.2 

where 

Therefore ( 4. 4) .is altered to 

· : rl+l/2 n+ 1/2 · · · ·. 

( tp) . o) 2 ( Au) ( J - . = -(a . - + flu • 
.. tit j+l/2 . .til-L j+l/2 . 2 

where 

( 4~3.5) 

(4.36) 

. (4.37) . 

(4.38) 

(4.39) 

(4.40) 



'· 

The equation of first variation of (4 .. 39) is given by: 

(4.41) 

·with 

where 

Let 

. (4.42) 

Now (4.41) can be wri~ten 

(4.43) 

The next step in the von Neumann stability analysis is .to hold (a;)2 

and ~ constant and find the amplification matrix associated with (4.43) 

and (4.2). Of course, this is already done because (4.43) ha~ the same 

# + 2 form as (4.13). Thus Results 1, 2, and 3 hold with (a1) replaced by 
. + ~ . . . + 

. ·(a2 )~ and K1 replaced by K2· 
Let's define von Neumann stability or stable .in the sense of 
. . . 

. . von Nelliila.IID and then the re.sults can be. stated. ·in a more convenient form. 

25 
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Definition (von Neumann Stability) 
..... 

Let C = (c1 , ••• ,em) be the coefficients of the equations of first 

variation of the difference equations. In general, the coefficients will· 

depend on ~j and tn through the solutions to the difference eq~ations. 

Suppose.that the local equations of first variation at (~j,tn) are stable 

· under the timestep restriction 

~ n . 
f(r,c(~j,t )) ~ 1 • (4.44) 

....l. 

Here f is same function of the coefficients C and r = 6t/6~. If (4~44) 

holds for all j and n, then the difference scheme is said to be stable · 

in the sense of von Neumann or von Neumann stable. 

With the foregoing definition Results #1 and 3 may be summarized in 

the following. · 

Result #4: 

Assume a rate depen~ent material relat.ion of the .·.form 

·]E 'I' 2 ~ 
CJt + (a ) Ot = 0 .. 

where 

·with o.0 
arid (rp) 0 uelu~ pusitive constants. Suppose tha~ 

.where 



with /\
1 

and /\2 be.ing;. positive,. constants. J;.et ~he fore~oing material 

. relation be differenced in WONDY (as in ( 4.4)) with the restriction 

. . +' 
0 <.2K2r < 1 

\ . . 

enforced where K; is .defined by ·( 4.38') ~ A necessary and sufficient 

condition for von Neumann stability is 

+2 
where (a2 ) is given by (4.42). 

(4.45) 

(4.46) 

Proof: The proof is the same as the proofs of Results #1 and #2 with .. 

. + 2 ( +)2 + ( a1 ) . replaced by a2 · and ~ replaced by IS .. End of proof. 

Remark: Result #4 may sqund stronger than is warranted if one does not 

carefully n'ote that only "von Neumann stability'' is claimed. 

' '· 
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5. SUMMARY, CONCLUSIONS,· AND· RECOMMENDATIONS 

Before giving the summary, it should help the reader if a quick 

review of the notation and nomenclature is presented. 

The von Neumann-Richtmyer-Landshoff artificial .viscosity q in WONDY 

has the form 

0 . 0 0 . 0 
where J\

1 
and A2 are positive constants ·with J\

1 
~ 0.1 and J\

2 
~ 1.0. It is 

convenient to let 

Recall that: a is the a¢oustic impedance; p is the mass density; 61-1 is 

the material increment (61-1 = p 0
6X); and u is the specific moment1.un. 

. . 

In WONDY the timestep restriction currently U,s~d is . 

(5.1) 

where· 

r = 6t/61-1. 

and 6t is the timestep •. 

As$um.e that a non-i ~P.ntropic el.fWiLl.lon of iltntc is given. Thal :i..s, . 
. . 

assume that the pressure p is.given as a ftinctio~ of the specific volume· 

V arid.the specific internal energy e or as a function of V and the specific 

entropy S. In other words·, some function Pve or Pvs is given such that 

p = Pve(v,e) or p = Pvs(V',S) is the prescription for the pressure. Then 

since 

.. • 

.·.•. 



and 

rp = ~e/?e 

(where f is the GrUneisen parameter) it fo~lows that (see Section Two for 

the details of the derivation) 

where 

-)' 

::m + 2 av 
~ = -(a ) -~­Ot . . Ot 

is, the augmented.. (or instantaneous) acoustic ·impedance. And thts leads 

to a rate dep~ndent relation of the form 

(5.2) 

Summary: The von Neumann stability analysis done in Section Four 

·(and summarized in Result #4) suggests: when·woNDY is using a non-

isentropic material relation. of the form p = Pve. (V ~e..~ or p ~ Pvs (V ,s) 

(which leads to a rate dependent relation of the form (5.2)) then (5.1) 

should be modified to 

(5.3) 

where 

and 

29 



·with 

··where 

and 

Conclusion: The timestep restriction now in WONDY (5.1) may not be 

I 
1 su:f:ficient :for stability in certain regions o:f certain cai~ulations. 

30 

Recommendations: The timestep restriction in WONDY should be altere.d 

:from inequaiity (5.1) to inequality (5•3). 
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