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FOR THERMODYNAMIC EQHATIONS OF STATE

S D. L. Hicks
Computational Physics & Mechanics Division I - 5162
Sandie Leboratories, Albuquerque, New Mexico 87115

~ ABSTRACT

Previous analyses of the von Neumann stebility of the WONDY wavecode

(based on the von Neumann-Richtmyer artificial viscosity method) assumed -

8 meehanicel_stress-strain relation; i.e., they assumed the stress p to

. depend only-on the mass density p. In a thermodynamic equation of state

.. p is allowed to depend also on the specific entropy S (br on the specifie_

internal energy 8) If p does not depend on € (or S), then the Grineisen

‘parameter I is zero. Herein a von Neumann étebility unalysis of WONDY
is done for the more general case when T’ f 0. The result of this analy81s

‘is the requirement ‘that the timestep be less than the product of the

material increment ‘and a certain function f of the acoustic ’'mpedance (a),

:'artificial viscosity coefficient A, and I'. 1In a region of compression if
~ AT'> 0, then f£(a,A,T') is smaller than f(a,\,0). Therefore, the more

’ general stability analysis yields the result that the timestep restric-
_ftion now in WONDY may be-insufficient‘for stability in certain regions
‘of certain calculations. |

NOTICE
This report was prepared as an awcount of work
sponsored by the United States Govemment. Neither the ]
United States nu: the United States Nepartment of
Energy, nor any of their employees, nor any of their
o their employces, makes
sny warranty, express or implied, or assumes nny legal

or of any infi product or
process disclosed, or represents that its use would not
infringe privately owned rights.
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1. INTRCDUCTION -

Wavecodes based on the artificial viscosity method of von Neumsnn-
Richtmyer [1] (e.g., CHARTD, PUFF, WONDY, etc.) require timestep rest'iic-
tions in order to be stable in the sénse of von Neumann (see [2]).
MPrefioﬁs Stability-analyses éf the von Neumenn-Richtmyer method were
done by J. von Neumann and R. Richtmyer in 1950 (see [ll), G. N. White
in i95h (seeA[3], p. 13), and R. J. Thompson in 1966 (see the appendix
- of [hj). Tﬁpse.stability‘analysesvwere done for:what essentially amounts
: fo mechanical stress-étrain relations. That is, in the course of those
.analyses;lsimplifying éssumpfions were made which essehtiélly.gmount to
g assuminé th;t the pfeésure was depeﬁdent only on the massldensity. If
fhe preéssure does not”dependth the specifig internal enefsy, then the
| Grﬁﬁéisen parameter ié zero. Herein the stability analysis is done for
the more general case when the parameter may be nonzero.
Section two gives the notation, nomenclatufe, and a description of
the WONDY difference scheme,
Secfion three gives some lemmas about quadratic inequalities and
~ stability;. these are the main mathematical tools used in séctio@ four,
Sectionlfouf'gives'the,main results about the timestepﬂregtricfioﬁs,
required fo‘r,-vthe von Neumann stability of WONDY. ‘
'Sec£ion_fivé éives:§ summary, conclusions, and reéqmmendations gbout

" modifying the timestep restrictions in WONDY and CHART D.



2. NOTATION AND NOMENCIATURE
The equation

(2.1)

¥l
|
el

expr63ses_the congervation of volume; t is time; W is material coordinate;
\' is'specifiéIVOIUme; V is the reciprocal of the magg densily pj and u .

' is specific momentum, The equation
i T . : (2.2)'

expresses the conservation of momentum; ¢ is the total stress (taken
positive in compression); it is composed of a viscous stress q and an

inviscid stress p; i.e.,
c=p+gq . (2.3)

The conservation of energy law leads to

E duo | ' o
Ft-=-—a.l—’ o : .A(2.)~l-)

. E is the specific total -energy;. it is composed of the specific internal

energy € and the specific kinetic energy % u2; i.e.,

2. . o (

S
.

\n
p

E=8+%
The equation

a& .



" follows from the chain rule and definitions of p and T; T is the sbsolute
temperature; and S is the specific entropy. Fram (2.1) - (2.5) it follows

'thaf .
%'= -U% . ’ ’ (2'7)

 WONDY differences this equation rather than.(2.5). From (2.6) and (2.7)
- follows ' |

s v - TR

- by the principle'6f'increasing'entropy Eqgn. (2.8) yields

N vy :
sien (3) = -sien(3) . 29
. Eqn. (2.9)'suggests that q is of the form
q = -A g% 5 . (2.10)

 where A is.nonnegétive and A is called the coefficient of viscosity. From
. (2:1) and (2.10) it follows that
q;.',\%. I (2.11)
The acoustic impedence (a), the Griineisen parameter T, and the absolute

temperature T, are defined by:

2 : ’ an
SRR (2.12)
S
T = v(%%' ; (2.13)
and
ae, S
T=={ . ‘ (2.14).
S|y S o



It follows that

3| _ - -
33-' = [pT . (2.15)
V .
From
2_2 ﬁ+§q s
ot v s at S v a3t
and Eqns. (2.12) - (2.15) follows .
®_ 2 = o . -
St 8" x * I'pT % (2.16a)'
" From Eqns. (2.8) and (2.16a) follows
, | _
2o . | (2.16v)

It is conceptually convenient to define the augménted acoustic impedance

n.+ by

+ 2 2
(a7)% = 8" + I'pq .
[(a+)2 is also called the instantaneous acoustic impedance. ] Then (2.16v) .
may be written

_g% = -(ah)? .g% c . (2.16c)

From Eqns. (2.3) and (2.l6c) it follows that the total stress rate rela-
tion is

3o . (2 N 3 _ ‘

St @) g -F=0. (2.17)

(It is interesting to note the relationship of (2.17) to the generalized

Maxwell form for relaxing meterials.)



.r,“

Discrete Notation: Letfon be the numerical approximation to

J
5f(tn,uj). The WONDY difference equation for Eqn. (2.2) is given by:
n n o : .
auy _ _(£2) . .18)
\ A ? A
.(A 3 H/5 _ |
where
n+l/2 - n-1/2
At 5 §A+1/2 - tn'l[2 ~

and

: - :cn . .n
‘ (éE)ﬂ _Zgv1/e T %3-1)2
My Hya/e “Hyea/e

The WONDY difference equatién for Eqn. (2.1) is given by:

v n+1/2 m n+1/2 - @
A = \m 3 -(2.19)
: J+1/2 j+1/2 S
. where o
: _ i : n+l n ,
| (ﬂ)"ﬂ/ 2 Vyaze ~Viape
B - b
ot j+1/2 SRt R
-and | |

- nel/2  nel/2
(ég)nfl/2 =.uj+l - uJ .
MM/jsaae Myl "My

" The WONDY difference scheme for stress rate relations of the form (2.17)»",'
© 1is given by: |

[ n+1/2A' 4 2nt m n+1/2 (ag
L = -[(a¥) ];1+1/2 v RAV-T (2.20)
j+1/2 j+1/2 j+1/2

where
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o :- n+l |
(&)’”l/ ¢ oyt a+1L

Sy

0 . n+l/2 n-1/2
Ag S%941/2 T Y41/2
t j41/2 tn+l/}_"_ n-1/2 ;

The WONDY difference schéme for (2.7) is given by:

<é§>n+l/2*= °n+1/2 ( >n+l/2 .

b j+1/2 J+1/2 3+1/2 ’
where
n+l
(éé)n+l/2 _Syaye - j+l/2
L Py R A
and

n+l/2 n+l
S5+1/2 = (o 3+1/2 + °3+1/2)/2

n+ BV é | +
[ka+)é]j+l/2 ;‘(;§+i/2> ,+ (qu)j+14§:-

(2.21) s



3. IEMMAS

-In SéctionAFéur certain 2 by 2 emplification matrices arise and .
theirAeigehvalueS'are rbots'ofAcertain quadratic equations; i.e.,
A2 - 2BL+C=0.
The Lemmas in thiS'section are used to arrive at the timestep restrictions
_of Section Four.

. Lemma;lA'

2 1/2

Let B and C be real numbers; D = 8~ - C; A_ =B LD and

+
we

gy = mex(ir, 10D

Case (a) If D > 0 and BS > 1, then

Case (b): IfD 2 0 and B° < 1, then
[lxlmax <1 iff 2IB| sc+1].
Case (c): If D < O, then
< .
[|}|max 1 iff Cc<1].

‘Moreover, the result. also holds when < is replaced by < or by = inside

~the‘sqﬁafé‘bra¢keﬁs.

Proof : ' . _ '
Case (4): IfD 20, then A| = [B] + pY/2, 1¢ |B] > 1, then
I o >1. |
ma.x . _
12 g1 uee B -c s (1 - |B|)2 iff 2|B} s C + 1.

case (b): |B| +D



[N

Case (c¢): If D < O, then A+ and \_ are complex conjugates and
2 - .
MAL = A =cC.

End of proof.

Lemms 1B

'1-c;8and2b 2c 20, then

IfB=1-b,C

A <1 iff 2h + ¢ s 4 .
ma.x

Case (bff First consider the subcase wher B > O. By Lemma 1A,
|)\|max <. 1 iff ¢ < 2b. Next consider the subcase when B < 0. By Lemma
W, [A] s 1iff 2b + ¢'s b | | | |

Case (c) (D < b): Since C = 1 - ¢ and ¢ = O, therefore, C < 1. By
Lemmg 1A, C < 1 iff lxlmax.S 1. This establishes that under the hypothéses»
of Lemma 1B, 2b + ¢ < 4 impliés.])\lmax <1 when D <« Q. ﬁow lel's establish
the reverse implication. D < O iff 2b + ¢ < (4 - b)b and (4 - b)b < L for
all real b. This establishes that under Lhe hypotheses of LémmaAlB,

|X| < 1 implies 2b + ¢ < 4 when D < 0. End of proof.
max .

Lemma 2 -
Assume A real, B and O positive; let D = B + Ay and let
a’ =a(B + Dl/z). .Coﬂsider the following inequalities
2 .
[Aa® + 2Ba < 1] : (1)
and

[’ <1] . . (2)

Case (a): IfD = 0, then (1) iff (2).

Case (b): If D <O, then (1) holds for all real a.



Moreover the result also holds if the =< is replaced by < or by = inside

the square brackets. -

_ Proof': ,

Let P(’d) = Aa,z. + 2By - 1.

Case (a): F'i;_"sAt', ‘consider the subcase A = 0. In this subc;se it is

, easily':sééh‘fha,t (1) iff (2). Second, consider the subcase A > O. The

iarger ijtheAéwplroots;pf P(q)Ais | -
| L - _p + p¥/2

’ 1
a = = -
+ A. B +D

12 -
_Therefore, P(a) < O iff a <a, and this shows that (1) iff (2). Third,

" consider the subcase A < 0. The smaller of the two roots of P(a) is,

o B2
- A B+ 0Y?

' Therefore, P(a) < O iff ¢ Sa_ and this shows that (1) iff (2).
" Case (b): "If'D < O, then P(a) has no real roots and thus P(a) <0
for all=real‘d.' ) . ‘

End 6f’prdof,

Iemma 3A (von Neumann's necessary condition)

- Iet the amplificati@n matrix for the Fourier component of index k

. be denoted g'(At,k') where At is the time increment. Sﬁppose G(at,k) is an

n by n matrix with its eigenvalues so labeled that

NP WP
" A necessary condition for stability is the condition

) s1eo(et)

13
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for all k.

Proof':

‘The proof of this lemma may be found on page 70 of [2]. However, to

- make this report more self-contained that proof is reproduced here,

Let R(4t,k) be the spectral radius of G(At,k). Recall that
R(at,k) < ”g(At,k)”. It follows that a necessary condition for stability-

is: Theré exist constants C, and T such that

R(bt,k)" < cq

for all At in (0,7), for all n such that O < nAt < t (where t is the final
time), and for all k. Without loss of generality assume that Cl =21, The

above inequdlity‘can be rewritfen as

R(At,k) < ci‘t/t .

At/t T/t
1 < 1 + C,At -where C, 2 (cl - 1)/,

Therefore, a necessary condition for stability is

Note that for O < At < 1, C

R(at,k) =1+ 0(4t) |

End of proof. -

Lemus 3B (sufficient Co}lditioh)

Let A be the determinant of the normélize&'eigenvectors oflg(At,k).'
If thefe exist consfantuAﬁ and T such that |A| 2 4§>0 for alllAt ih
(0,7) and fof all k, then the von Neumann condition is sufficient for

étability.

Proof:
The proof may be found on page 84 of [2]. However, to make this

report-ﬁore sélf-containedvthat proof is reproduced here.



Under the. above hypothéses there exists a complete set of eigenvalues
- for G. ILet E be the matrix whose columns are the normalized right eigen-

~ vectors of" G. Then E'lg’% = |\ where

with )\l,)\z,. ..)\m~ being the eigenvalues of G. Since the norm of any m by m

matrix does n_ot exceed m times the megnitude of its largest element ,' it
follows that ||§J| s m. Now

CET = cor(®)/

where A = det(E) a.nd-co_f(E)T is the transpose of the cofactor matrix of E:

Recall that cof(E) 13 is the determinant of the cofactor of (E)i j° Since
the absolute value of any determinant is bounded by the product of the

" lengths of its column (or row) vectors, it followé that
TS |
e s /(s

" Now

g=ENE"
80 N

¢-pngt
" therefore |

' ‘ -1 2
I™l < IENA™ e~ < n"&"/|a] .

15
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Hence, the norm of g? is bounded provided A is bounded away from zero and

R <1+ O0(at). End of proof.

Remsrk: Note that Lemmas 3A and 3B have only been proved for linear

difference equations with constant coefficients.



- 4. -RESULTS

‘ngéggz Stability is defined to be boundedness of the solutions to the
:'.eouations of first variation The equations of first variation are linear
“ but they may have varisble coefficients. If those coefficients are held

constant,‘then the resultant equations are called the localized equations
- of first Variation,, Stable in the sense of von Neumann or von Neunann

stability’is defined-to be boundedness of the solutions of the localized
“‘pequations of firSt'variation. It has been conjectured but not.proved in

t general that von Neumann stability implies stability. |
The first step in the von Neumann stability ana1y81s is to calculate .
:.the equations of first variation of the difference equations. The WONDY

~ difference equation for conservation of momentum is given by:.

(P A SR -
2 =-(=) . 4.1)
(At)j - (A“)J (h-1)

To calculate the equation of first variation of Eqn. (4.1): replace u
by u +. 6u (following von Neumann-Richtmyer (1] notation) and o by
o+ 60 in (4.1) and call it (4.1)'; subtract (h.l)‘from (4.1)'; neglect

any terms of order two or higher in su and &0 to get
A(su)/at = <6(60)/ta - (h2)

ﬁThe uniform superscripts (n) and the uniform subscripts (j + 1/2) have
. been suppressed The WONDY difference.relatlon for a rate dependent

- material relation of the form

%4 (J)? g-8-o0 a '.‘ (4.3)

© s

17



(%%ijz [(a )2]J+1/2<Au>:i;z+ (%%)n ‘. . | (4.14)

Recall that

(a ) - a2+ I'pq . , : (4.5)

The equetion of first variation of Egqn. (4.4) is, in general, rather
messy. Some assumptions are made to reduce the mess eand simplify the

analysis. Assume that the increments Atn+l/d

and AU, +1/2 are un1form
in n and j; therefore, the super- and subscripts thereon mey be
suppressed. Next let's make some assumptions to s1mp11fy the form of

q and a+.

. Assumptions on the Stress'Rafe-Strain Rate Relations: 1In the first -

enalysis let's assume that.q is given by:-
- (2_1;) , | h.6)
”wpere‘gi 1; a posiﬁive congtant. Also let's éimplify e’ to
(") = (2 + 2% W
.where a° and b° are positive constants with

=) (4.8)

These s1mp11fy1ng assumptions reduce the problem to cons1der1ng only

| 'Eqns_. (4.1) and (4.4). From Eqns. (4.1) and (4. 6) it follows that
Aq Azo - | )
i Z;§ o - (N.S)’

"and therefore (4.4) becomes



(%wﬁbwf%rm4M4“, K@)

b/y41/2 j+1/2
:whéreil o | L i
| ‘ n+1/21° 2 \n ‘
] = {b°K [:AB | ] + K Cf_E)A } . (4.10)
1 (AJ)J+1/2 Ty j+1/2 -

The equation of first variation of (4.10) is'givén by:

[a(50)/ Y2 < (o) I™ M2 s asl ) 5 (b
 with
§(-1 = {2Klb° (fﬁ)n+ / [A(au)/Au]9+l/2 + Kl[Az(éc)/u42]n} .

The uniform subscripts (j+1/2) in the above areAéuppressed; the différing

supefscriptS'(n'and n+1/2) are retained. Let

(a5 = (a2 + 210 a2y

with q defined by (4.6); where Ip is held constant at b°; then (4.11)

" can be written
a(60)/a6 T2 < <(a?)PLa(ou) i Y2
+ KiAu[A?(sc)/AuZJn,é | | (4.13)

-,~‘The next step‘in'the v¢n,Neumann sfébility analysis is to find the’

| aﬁplification matrix of the‘local equations of first variation. The
ibéai eQuationg of first variation for fhe jth zone and nth cycle are
- Just the equations: of first'varigtion‘with their,coefficients.fixed at

their evaluations in the jth zone and nth cycle, Thus .the next step is

19



20.

| ILet

to do a Fqurier series analysis on (4.2) and (4.13) Qith a{ held

constant. Substitute

n _ .+ .n J+1/2
. (Gc)j+l/2 =-a, W g /
and
_(GU)2+1/2 - vn+1 EJAA
o with
g = exp(1kip)
into (4.2) and (4.13). Iet’
o = a] 4t/8u

and

B =2u sin k Au/2

then (4.2) becomes ,

R T
and (4.13) becomes
Wn+l - tin+l - wn(l - Cl)
where
LV o 2
Cl = '—A-'u— (2 SI.n. k ALJ./Z) .

ol

" then (4.19) end (4.20) may be written in the form

B ™oy
~e ~o

(4.14)
(4.15)

» (u.m')’

(4.17)

(4.28)

o (k) " '

(4.20)

C(Lk.21)



where

and
1 i
H =
0 . 1-¢
Let G = H-' H and (4.22) becomes
~] ~o
= -\
Unfl =g T

.with the amplification matrix given by

S _[1 .
*-5__|_is 1-87-c, |

Consider the eigenvalues of G. Note that

det(G - \I) = A2 . 2(1 - bl)x +1-c
where
) .
2b, =B + ¢y

and

| LK. A o

_ 2
iy v (sin K M/2)

Result #1: -
Assume that a rate dependent relation of the form’

2, (gt)2 X gq“.o.".l

R U Tl

(b.22)

(4.23)

(k.24)

(h.zsl‘)

(Lk.26)

(4.27)

(4.28) .

21
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.2 2
P, =B+ |1 - ki| PV

is differenced in WONDY (as in (L.4)) with (a‘i)2 a real (but not
necessarily positive) constant and
= Au
Q= -k (Au)
where K

1_5 0 is a constant. Then a necessary condition for stability is

(ai)ara +2Kr <1, ) ' (h.29)

where r = At/&J.

Proof: Note that (4.29) is equivalent to : for -all k

2b

1'+ cp Sk, " , (u.30> :.

By Lemme 1B, |A,| =<1 iff (4.30) for all k. Thus by Lemma 3A (4.29) is

necessary. End of préof.,

Kesult #2:
' +\2 . X - +
If (al) >0 and 0 <K;r < a(l - a) where g = a,r, then
. 2 " ] ' . ' .
a +2kr<l 4 (k.31)

1

is nécéssary and sufficient for stability.

Proof :

Necessity was established in Result #1. Now let's esteblish
NEEE R TRVET PR LA

: : . IR T
= -1a/gi end v, = (1 = A,)/p,. Note that (v ,x"]

suffieiency. Iet B =1 - byj € = 1=c¢

2 t
1

is & cdmplete>set of normelized right eigenvectors of G. Obsérye that
4 a2 2 2 : -
|aet(vy 5¥ ) |% = 48" |D|/ (o0 )" . (4.32)

The ides 1s to show that there exsits a & > O such that



ug®p| = s(p,p_)° - (.33)

then apply lemms 3B. The next éﬁep is to show-that 0 < K.r <a(l - a)

-1

1
implies D < O, Note that
2 2
D = -B{1 - g(8")]}
where
2
- 2 K
2, 7 1
g(p”) = %—(l + —>
and obsefye.that
_ s
- g(p7) <1
. is equivalent to
Kr<a(l-a) - (4.34)

_This esteblishes'D < 0. WhenD < O, then

2

p, = 2B

i+ MO

~ and (4.33) reduces to.
Lo . \
1-g(B) =6,
- Hence, (4.32) fedpires g(ae) < 1; this has already been shown. End of

prodf.

23 .
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Result #3:

If (4.34a) is enforced, then (4.29) is necessary and sufficient for

stebility. =

- Result #2. End of proof.

In the next stability analysis let's complicate matters a bit by

'Préof: . The proof of Result #3 foilows the saﬁe pattern as the proof of « -

considering e viscosity coefficient of the ven Neumann-Richtmycr-Landshoff

- form; i.e., let

a = - ()

- with

k- Au
Ky = N + I\ZAH'A“

- where A, and A, are positive constants. Note that

Aa

A _ gty B9
e
) e
~ where
et A
Ky =4 + 2000 'ﬁ :

Therefore (h.h)Ais_alfered to

4 (Ag)#fi/2 =.-(ao)z‘(Au>n+l/2

- 'where

(4.35)

(4.36)

(4.37) -

(4.38)
(4.39)

(4.4o)



The equation of first variation of (4.39) is given by:

. Let

EA(so)/AtJ’”l/2 (a ) [A(s /Y2 4 s 1, L RUREY
" with
5{¥}2 ='{K3[A(6n)/Au]n+l/2 + K;[h?‘éq)/Au?]é}
where
by (8l )
.
+ 2A2Au-9{%] )
. Au
(ag)? = (%) - uKy . (4.k2)

Now (h.hl) can'be'yritfén
[a(60)/8 12 < - (a3)20a(50) T2

+ K;Au[A?(ao)/Aueln . (4.13)

 The next step in the von Neumann stability analysis is to hold (a+)2
and K2 constant and find the amplification matrix a53001ated with (h 43)
and (4.2). Of ‘course, this is already done because (4.43) has the same
| form as (h 13). Thus Results #l 2, and 3 hold with (a ) replaced by
:(a )‘ and X, replaced by Ké

Let's deflne von Neumann stability or stable in the sense of

“von Neumann and then the results can be stated.'in a more convenient form.
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Definition (von Neumann Stability)
Let C = (Cis+--5C ) be the coefficients of the equations of first
variation of the difference equations. In general, the coefficients will" '

depend on “j and t" through the solutions to the difference eqpatiohs.

Suppose that the local equations of first variation at (uj,tn) are stable

A “under the‘timéstep restriction

Bt 1. ()

Here f is some function of the coefficients C and r = At/Au. If (L.Lhb4)

holds for all j and n, fhen.the difference scheme is said to be stable

. in the sense of von Neumann or von Neumann stable.

With the foregoing definition Results #1 and 3 may be summarized in

" the following.

Result #k:
‘Assume a rate dépendent material relation of the-form
PR
. Bt‘f (a ) % = O~
where = '

(a¥)% = (%)% + (10)°q

x-With 0® and (Ip)° Leluy pusitive constants. Suppose tha.

where



. with Al«and A2 being positive4constants. Let the foregoing material

. relation be differenced in WONDY (as in (L4.l)) with the restriction
+" . ) .

0 < 2K,r <1 - (b.b5)
enforced where K;'is.defined by (4.38). A necessary and sufficient

condition for von Neumenn stebility is

2

'(a;)2r2 soktrs1 | (L.46)

wherev(a;‘)2 is given by (L4.42).

Proof: The proof is the same as the proofs of Results #1 and #2 with .

(aZ)? replaced by (a;)z and K, replaced by K;. End of proof.

Remark: Result #4 may sound stronger than is warranted if one does not

carefully note that only "von Neumann éfabilitj"tis claimed.
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5. SUMMARY, CONCLUSIONS,  AND RECOMMENDAT IONS

. Before giving the summary, it should help the reader if a.quickA
review of the notation and nomenclature is presented.
The von Neumann-Richtmyer Landshoff artificial viscosity gq in WONDY

has the form K

) B (o} ©,0 | Au | ml-
R ‘—_-Au(/\la + AZPAE lm )E

‘where A: endAAg are positive constants'with'Ai ~ 0.1 and AZ ~ 1,0, It is

convenient to let

o .0 M

Recall that: a is the eeoustie impedance; p is the mass density; Au_isu
the material increment (Au p°Ax); and u is the specific monentum;'

In WONDY the timestep restriction currently used is

r[l\ :+'Ja2 + A2] <1l | o - - (5.1)

‘where

= At/A
and At is the timestep..

Assume that a non-isentrnpic eyuallon of stete is given. Thul 1is, .

~ assume that the pressure p is given as 8 function of the specific ‘volume

v and ‘the specific internal energy € or as a function of V and the spec1fic

pentropy4S In other words, some function pve or pVS is given such that

13 _vae(v ) or p = pVS(V S) is the prescription for the pressure Then

since :



)
t

-apvs/av

and . P .

it

I'p

oye/ %

(where T is the Gruneisen parameter) it follews that (see Section Two for

.. the details of the derivation)

- where

(a ) = a + I'pqg

is.the augmented (or instantaneous) acoustic impedance. And this leads
to a rate dependent relation of the form
X +2 &  dq _ ' :
=t (a) S 5% =0. (5.2)
Summary: The von Neumann stability analysis done in Section Four
‘(and summarized in Result #4) suggests: .when WONDY is using a non-

isentropic material relatlon of the form P = pve(V 6) or p = pVS(V S)

(which leads to a rate dependent relatlon of the form (5 2)) then (5 1)

2 2 . |
r[/\3 + Va3 + /\3] <1 (5-3?

should be modified to

- whére

A

_ .0 o M
3= Ala + 2A29Au ’Au‘

a, = max(O,a2

W
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‘with -

= "’“Si@(ﬁ>[“u m 5 fi]
‘ﬁhe;e | |
Kh = Fp[%Ala + 3A QL,]
and -

Ky = 203084

- Conclusion: The timestep restriction now in WONDY (5 1) may not be
sufflcient for stability’ in certain regions ‘of certain calculatlons.

Recommendatlons- The timestep restrictlon in WONDY should be altered

from inequallty (5 1) to inequality (5 3)
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