ORO 5126-18

THEORY OF THE LOW-ENERGY PION-NUCLEON INTERACTION

M. . K. Banerjee
Department of Physics and Astronomy
University of Maryland, College Park, Maryland 20742 U.S.A.

and

J. B. Cammarata
Department of Physics
Virginia Polvtechnic Institute and State University
Blacksbrug, Virginia 24061 U.S.A.

U. of Md. TR #78-000
U. of Md. PP #78-002

August 1977

UNIVERSITY OF MARYLAND
DEPARTMENT OF PHYSICS AND ASTRONOMY

COLLEGE PARK, MARYLAND -
HAST iR

PISTRIBUTION &F THIS BRCUMENT 1S UNLMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



U. of Md.
U. of Md.

ORO 5126-18
TR #78-000
PP #78-002

THEORY OF THE LOW-ENERGY PION-NUCLEON INTERACTION®

M. K. Banerjee
" Department of Physics and Astronomy

University of Maryland, College Park, Maryland 20742 U.S.A.

and

J. B. Cammarata
Department of Physics

* Virginia Polytechnic Institute and State Unlver51ty

Blacksburg, V1rg1n1a 24061 U.S.A.

August 1977

ABSTRACT
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A once-subtracted form of the Low equation for the pion-nucleon scattering

amplitude is derived, with PCAC used to define the amplitude.when one pion is

off the mass shell. The static approximation is not madé and both the seagull

terms and the antinucleon contribution (z-graphs) are retained. The theory is

applied to calculate the S-wave amplitudes in the elastic scattering region.

Good agreement is found with the phase shift fits to the data when we use

|gﬂ(4M2)| = 11.69 and 25.5 MeV for the 7N o-commutator. The implications of

this work for the analysis of low-energy elastic scattering of pions from

nuclei are discussed. In particular, we point out how this work establishes

the presence of a Laplacian term in the pion-ﬁucleus optical potential with

a magnitude that is fixed from the value of the o-commutator.
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NUCLEAR REACTION Pion nucleon scattering, off-shell amplitude, o-commutator,

Laplacian in pion nucleus optical potential.
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I. INTRODUCTION

In a recent 'paperl we presented a brief description of a theory of the
low-energ§ pion-nucleon interaction and its main results. The present article
gives a detailed exposition of the rationale behind the theory, the method
of calculation and a fuller description of our results for the S-wave 7N
amplitudes.

The work was motivated by our study2 of the problem of low and inter-
mediate energy pion-nuclear scattering which requires a knowledge of the pion-
nucleon scattering amplitudes where all particles are off their mass shell.
Currently several methods of constructing such amplitudes are popular. One
of these, for example, is the Kisslinger3 model where one represents the
isoséalar,spin—independent part of the 7N amplitudé in the form b(w) + c(q)ﬁ-ﬁ'.
In the siﬁplest model w, ﬁ'and k' are the pion energy, final ?nd initial momenta,
respectively, in the CM frame. The quantities b(w) and c(w) give the strengths
of the é— and the P-wave amplitudes. Thefe has been.considerablevdiscussion4
as to whether one should use fhe Kisslinger form or the so-called Laplacian
form, b'(w) - c'(m)(ﬁ-—ﬁ')z. "Inevitably the question arises, why not a com-
bination of both, b"(w) - c"(w)('l:-.-i:;)2 + d(w)i- k', Clearly, questions of
this nature cannot be settled without a dynamical theory of the pion-nucleén

'interaction. For the P-wave there is the well-known work of Chew and Low5
based on tﬁe static approximation and neglect of seégull terms, Similar
approximate treatments have also been tried for tﬁe‘S—wave amplitudes.6

The theory described in the present work is an extension and improvement of
these earlier efforts in which 5oth nucleon recoil and the seagull terms

are included.

v
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Another popular approach to describing the pion-nucleon intéfaction makes
use éf separable ;otentials. This method, originally proposed by Landau and
Tébakin,7 gives for the isoscalar,spin—independent amplitude the form
b(w)vs(zz)vs(z'z) f c(w)z~ g'vP(ﬁz)vP(K'z). The method has the advantage
that the quantities b(w) and c(w) and the form factors Vg and v, can be de-
termined froﬁ experimental data by an inversion procedure. Attempts have
been made to improve this approach.8 But the results are only as valid as
the rationale for describing the dynamics with a potential in the first plage,
and then for a separable potential in every channei. The Chew-Low theory and
the resonance dominance justifies a separable form for the P-wave amplitude.
But it is hérd to justify a separable S-wave amplitude and we do not kno& of
any attempt at providing the needed justification.

There are three basic mechanisms in pion-nucleon elastic scattering which
any model of the N amplitude must include. First, there are exchanges_ofh
scalar;isoscalar bosons and vector-isovector bosons between the pion and
nucleon; Second, a nucleon can!absorb a pion and then emit it, or emit and
then abéorb a pion. Third, a pion can virtually dissociate inté a nucleon-
antinucleon -pair, the nucleon going into the final state and the antinucleon
being absorbed by the initial nucleon to form the final state pion (z-graph).
In addition theré are many other processes involving more bosons and baryons,
but these are less important for the low-energy interaction. The most prac-

tical method of describing these importaﬁ% mechanisms is to use field theory,

where the -scalar quantity9

- ' . ipgey -ip, -z
‘U(Pf) (F‘f‘M) (kz-m:) fdax eik deéy e £ f d4z e

% <O|T(W(y),85(x),9(2),3 (0))[0> (B, - ulp,)
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is the general pion-nucleon scattering amplitude associated with the process
depicted in Fig. 1. When any one of the four momenta P;s Pgs k or k' = pf-i-k--pi
is such that its square is equal to the square éf{the mass of the associated
particle, the corresponding particle (or leg) is said to be on the mass sheli.

Apart from the familiar symmetries imposed by Lorentz invariance and
isospin independenée the pion-nucleon scattering amplitude must satisfy the
symmetry condition resulting from the self-charge-conjugate character of the
pion. This is known as the crossing symmetry whiéh says that the scattering
amplitude is invariant under the change k <> - k' and a <> B. The importance
of crossing symmetry in pion-nucleon scattering is well known. Its important
role in pion-nuclear scattering has been discussed by us10 earlier. Field
theory provides a convenient framework in which to construct a crossing sym-
metric amplitude, though a potential formalism can also incorporate this sym-
metry.lo There are, however, a number of difficulties in a potential theory
approach to the N amplitude.

Since potential theory is generally used in the analysis of pi-nuclear
scattering, it is perhaps worthwhile to discuss the relationship between the
potential and field-theoretic descriptions of thg elementary pi-nucleon
interaction. For the present discussion we ignore spin, so the ©N amplitude
becomes a function of six scalar variables. It is convenient to choose these
to be the following six M frame quantities: the total energy W = pfO-FkO’

*>2 >2 _ >,2

the squares of initial and final momenta, ;ﬁ = k= and Py = k'", the angle of

scattering 6 and the pion energies kO and ké. We note that usually a poten-
tial theory is used to describe an interaction which is instantaneous in the

CM frame, so the resulting scattering amplitude cannot depend on ko or ké.

It can be a function of the first four variables only. Nevertheless a sub-
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set of the relativistic scattering amplitudes can be described by an effective

potential. The subset has ko = k6 =-§ﬁ(w2<-M24-m§), which is the value when
| L . 2 2 2 2 2 2
all particles are on mass shell. With this condition k ~Pg = k Py = mﬂ-—M

but not necessarily k2 = mi, pg = M2,‘etc. These amplitudes are usually

categorized as being on or off the energy shell. When W = /M 4—pf + Vm? -pr

and ;% = Ei (CM frame) the amplitude is on the energy shell. When W = /M24-p% +

/mzi- P or W= /M24-32 +'/m24-;2 and ;g # 32 it is half off the energy shell,

while ifw#m2+p2+/m +p and W # M2+ p2+/m +p andp #p it is
f f f

fully off the energy shell.

There_are two steps in dériving the effective potential. First one writes
down the Bethe—Salpeter11 equation for the scattering amplitude. Next one uses
the Blankenbecler—Sugar12 prescription for converting the Bethe—Salpeter equation
into the Lippmann-Schwinger form. In the brocess one replaces the product of
the Feynmén propagators for.a nucleon and a pion'appearing in the Bgthe;Salpeter
equation by the Lippmann-Schwinger propagator with a delta function which keeps

1,2 2 2 .
2w(W -M +m"). Now, if the

the energy of the intermediate pion fixed at
external pion momenta are also fixed at this value all references to ko and

k6 are removed.
In practice it is very difficult to carry out the program described above.

It has proved to be quite difficult for nucleon-nucleon scattering. For pion-

nucleon Spatteriﬁg-the pfobleb is further complicated by the existence of the

- absorption-emission mechanism and crossing symmetry.

Even if the equivalent potential could be found there would be still
another difficulty in using the resulting amplitudes in the problem of pion-
) :
nuclear scattering. This can be seen from the following considerations.

To construct the first order optical potential one needs the amplitude where,

in the target guclegs rest frame, ko = ké aud pey = Pyg M-c with ¢ the



binding energy of an occupied single particle state. One also needs the
amplitude for a wide range of values of E, Ef and ;i' So the required con-

2 2 2

ditions for a potential description, namely 2k « (k+p_.) = (k+p_ )" -M +m_, \
f f ™

etc., or equivalently pjz:_--k2 = pz--k'2 = M2

i —mi, cannot be fulfilled. (This

problem is also present, in principle, in nucleon-nuclear scattering.) This
problem is related to the non-instantaneous character of the interaction.
The non-instaneity of the pion-nucleon interacfion'manifests itself through
the dependence of the scattering amplitude on the variahle w = ﬁ[QZ-M2+
IgillgfICos 6-—kok6]. The isoscalar (isovector) part of the scattering
amplitude is an even (odd) function of v which, we exphasize, depends explicitiy
on ko and ké.

Because of these difficulties with a potential theory description of the
TN amplitude, we consider instead a field-theoretic description. We develop a
theory for the amplitudes where only one pion is off the mass shell. Once )
these are known it is straightforward to const:uct émplitudes where both pions
are off the mass shell. Construction of amplitudes where all particles are
off the mass shell requires some approximations which will be discussed in a
future paper. The present work is thus a necessary first step in the construction
of the amplitudes required in the analysis of pion-nuclear scattering.

In the foilowing we present a theor&hof T™ scattering which is a logical
extension of the work of Chew‘and Low.5 We use the Low equation14 obtained
by LSZ reduction,gbut in contrast to Chew-Low we do not use the static
approximation, and we retain the seagull terms and the antinucleon inter-
mediate state contfibution. The definition of the scattering amplitude off

the mass shell of one pion follows, in part, from the indentification of

the interpolating pion field as the divergence of the axial vector current.
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A soft-pion limit is used to eliminate the isoscalar part of the seagull term
® B .

and obtain a once—subttacted form of the Low equation which suppresses con-

tributions of high-mass intermediate states. This equation allows the evalua-

tion of both the physical 7N amplitude as well as the off-—mass—shell15 amplitude

once the remaining dynamical inputs are specified. These inciude the isovector

part of the seagull term, the pion nucleon form factor, and the sigma commu-
tator term which appears in the soft-pion limit. We discuss the validity of'
each dynamical input to the theory. -

- The Low equétion derived in Section II describes all 7N partial waves
and formally is valid for all energies. In Section III we present a covariant
parfial wévé4expansion of this equation and describe the method of numerical
solution for the S—wéve amplitudes using Padé approximants. Several new
and useful techniquesldeveloped for solving the S-wave equation are diséu;sed
in‘sufficient detaillso that they may be applied readily to other problems.
In Secﬁion IV we comment on the various sets of "experimental" phase shifts,
the methqd of searchiqg for the best values of the parameters of the theo;y
aﬁdlour final results for the S-wave amplitudes. We find that our on-shell
amplitudes agree well‘wifﬂ experiment. Section V contains a brief discuséion
of the significance of tﬁe value of some of the parameters determined by our

analysis, and Section VI includes a summary and concluding remarks.

A

<



II, DEVELOPMENT OF THEORY
A. Off-Mass-Shell Amplitude and the Low Equation
An expression for the off-mass-shell pion—nuclebn amplitude is obtained

by applying the LSZ reduction proceduré;to the S-matrix element for 7N scattering,

Sgy = <mg(), N(pp)sout|m (k'), N(p,);in>,

which gives

_ , 4 4 -
Sey = 8gy ¥ i(2n) " & (k+pf k pi) FBa(pi,pf,k)

k0=/;%-+K2, k6=/h%~kz'2

Y =7
i = M 2 = ~ 2
with Peg=M°+PZ, b7 M +]

Fsa(pi,pf,k) = <ma (k) Nlpg); out|j_(0) IN(pi)>

k =/m2 + k2
P ;/M24-Ef

‘fO_ T
(O+ v2 6,00 = 5 (0 PioTM ¥ P]

(1)

and where ¢a(x) is the interpolating pion field. In the Sfmatrix element the
four-momenta of all particles satisfy an appropriate mase chcll constraint. The
amplitude Fﬁu(pl’pL'k) has no exp]%éit dependence on thc four -momentum k' ol

the initial state pion. Defining the four momentum of this pion by the energy-

momentum relation
v - . 2)
k Ps + k Py A (

we do not necessarily have k'2 = mi. Thus with (2) giving the dependence of

F on k', wé take Eq. (1) as a definition of what can be called a "half-off-
wass-shell" amplitude. In this work we are primarily concerned with the numerical
evaluation of this amplitude. This is accomplished by solving the Low equation,
which is a nonlinear inhomogeheous integral equation for this off-mass-shell

amplitude.
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We develop the Low equation by reducing out the final state pion in

(i) giving _
. 4 dkex 2 , 2 : :

Fou (k) = 1f§ x e ([[f-mn)'fpflT(_%(x)]ﬁ(O))Ipi> e R v e
: : " 1Pgg Pg» Pyg i

(3)

The symbol T denotes the usual time ordering of operators, and for brevity we

- henceforth indicate only k as the argument of F, and where no confusion can

arise, we omit the particle symbols N and . In (3) both initial and final
nucleons are on ;heir mass shell,»but since the four-momentum of the final
state pion occurs only in the exponential it can be taken as a freely variable
ﬁaraméter_no longer restricted fo satisfy the mass shell conditions k2 =‘m§,
ko > 0. To guarantee a convergent .integral, however, the four-vector.k must
be real. Thus with k' again given by (2), Eq. (3) defines what may be called
a "fully-off-mass-shell" amplitude.

‘Allowing the Klein-Gordon operator to act on the matrix element in Eq.

(3) gives

o Lo
FBa(k) = <pf|1sqs>‘(k+k') Y (O)I])i> + <pf|6a82(0)lpi>

. 4 ik-x . .
+.1,[d # e <pf|T(JB(X)Ja(O))]pi>, (4)
where we-have made the'defini;ions
el ey : _ ‘ ;5
<pf|ieqs)\(k+k) Y (0)+5a62(0)lpi>-f<pf|a(xo)k0[¢8(x),Ja(O)]

lk!xdéx

+ is(xo)[és(X),ja(O)]lpi>e (5)

with $ = E%— ¢. This equation defines the so-called seagull terms. I is a
scalar-isoscalar operator, while Y is a vector-isovector operator. C(rossing
symmetry requires that in an expansion of the seagull terms in powers of k

and k' the isoscalar operator is associated with even powers while the iso-

'
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vector operator multiplies the odd poweré. In phenomenological Lagrangian
models16 L and Y describe the t-channel exchanges of sézlar—isqscalar and
vector-isovector bosons, respectivély. The (k*—k') factor in the vector
term, for ‘example, is also éresent inhthe expression corresponding to the
Feynman diagram for p-meson exchange between a pion and a nucleon. from a
simple study of phenomenological Lagrangians one can see that the quantum
numbers of pions and nucleons exclude from Eq. (5) operators witﬁ transforma-
tion properties different from those of I and Y.

It is straightforward to obtain from (4) a . nonlinear inhomogeneous
equation for the half-off-mass-shell amplitude. One inserts a complete set
of physical states between the current operators in both terms of the time
ordered product. The le> state contribution gives terms quadratic in the
half-off-mass-shell amplitude. The other interﬁediate state contributions
plus the seagull terms constitute the inhomogeneous terms. Also setting
k0==/h%4;k2 yields a half-off-mass-shell amplitude on the left-hand side of

the equatioh.

B. Dynamical Input
Before presenting the details of the evaluatibn of Eq. (4), we list
and discuss five dynamical features which determine both the off- and
on-shell behavior of phe 7N amplitude.
1. The interpolating pion field is defined to be proportiongl to the
‘divergence of the weak axial-vector cufrent,
'cbs(x) .2 aile‘é(x),' ‘ (6)

£ '

where fTr = 0.939m§ is the charged pion decay constant. There are
two consequences of this definition:
a. It fixes the form of the coupling of pions to nucleons in the

soft-pion amplitude discussed below, and



We assume that ‘the isovector seagull term YA
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b. it sets the strength of the coupling of pions to nucleons

at zero momentum transfer by the Goldberger-Treiman rela- -
tion17 between Fhe 7N form factor g“(O) and the weak -axial
form factor gA(O); naﬁely '
g (0) = VI unl g, (O)/F =12.7, N
where M. is thetnucleon mass, and gA(O) = 1.25.
The dynamics implicit in (6) has been tested before, for example,

in the Adler-Weisberger sum rule,18’19

which agrees with experiment
to within 5%Z. Following conventional usage'we refer to Eq. (6) |
as the hyﬁothesis ofthelpartial conservation of the axial-vector
current (PCAC). It should be noted that in using (6) we will not

need to assume '"'smoothness' in the behavior of matrix elements as

pion variables are changed.

]

0. This is basically
equivalent to the assumption that there is no canonical p-meson field
in the Lagrangian for wN scattering. We stress that this does not
imply that our theory excludes the effects of vector meson exchanges’
Basdévant and Lee,20 for example, using the o-model of Gell-Mann

and'Lévy,21 have shown that p and £, resonances can be dynamically

0

- generated from higher order iterations of a unitary theory even

though the vector mesons are not included in the Lagrangian.

We must define the streﬁgths and invariant momentum transfer depen-
dences of two invariant form factors which enter our model independent
analysis. Oﬁe is the 7N o-commutator form factor Fc(t) (for t é.O)
and the other is the 7N form.factor g“(t) (f;r t <0and t z_&Mz).

We find that the most important features of these form factors are

constrained by the on-shell data.
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A necessary consequence of crossing symmetry and nucleon recoil

_in any theory of the 7N amplitude is that the integral equation for

each partial wave amplitude is cOupled‘to all partial wave ampli-
tudes. Thus to solve for the S-wave amplitudes from the Low equa-
tion it is necessary to specify the.off;shell behavior of the

2 2 1 partial wave amplitudes. We have therefore introduced simple,
separable forms for the P-, D- and F-wave off-shell amplitudes. We
find that the effects of the D- and F-wave amplitudes are negligibly
small over the entire elastic scattering region, and that the P-wave
amplitudes have a small, but non-negligible, effect on the S-wave
amplitudés. |

Finally, we recall thaF to express. Eq. (4) as an inhomogeneous equa-
tion for the off-shell amplitude a coﬁplete sét of physical states
is inserted.between each term of the time ordered product. Naturally,
tﬁis infinite sum must be truncated. The truncation is carried out
in the CM frame. Because of. truncation, tﬁe integral terms are no
longer covariant. We include only those low mass states which are
felt to Le wust lwpurtant. These include the states |N>, |7N> and
the disconnected parts (z-graphs) arising from the |ﬁNN> terms, where
N = antinucleon.. The rationale for retaining only these states
will be presented when we discuss the evaluation of the integral

term of Eq. (4). But let us point out here that because our treat-

‘ment of the isoscalar seagull term leads to an equation with a.

once-subtracted form, the effects of higher mass states will tend to

be suppressed.
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C. Evaluation of the Low Equation
We now consider the evaluation of the two remaining terms in Eq. (4),
the isoscalar seagull and the time ordered product of currents terms, using
only Lorentz covariance and the above-mentioned dynamics.

1. Isoscalar seagull term

The isoscalar seagull term can be eliminated from the Low equation
by using a soft-pion limit of the fully-off-mass-shell amplitude. Re-

writing Eq. (4) without the isovector seagull term

_ " RPN ik-x_ - . .
ng(k) = <pf|6a82(0)lpi> +i/d x e <pf|T(JB(X)Ja(O))|Pi>, (8)
we recall that k is a freely variable, real parameter. Taking the limit in
which all four components of k vanish yields a soft-pion amplitude
| _ _ A b v
Lim [0 Fy ()] = F, (0) = <p |8 2(0)[p,> + 174" xep |T(§, 05 (OD]p,>
kdao k-0 . ..
¢))
Subtracting Eq. (9) from Eq. (8) formally eliminates the isoscalar seagull
term
F, () = F, (0) +17d* x e p_|1(5, (01 (0N ]p,>
Ba Ba f B a i
. 4 . .
-ifd X<pf|T(JB(X)Ja(O))IPi>' o (10)
For Eq. (10) to be an improvement over Eq. (8), which contains the unknown
seagull term, we must of éourée.know FBa(O)'
- An exact expression for the soft-pion amplitude can be obtained by using
PCAC, applying the generaliéedfWardvTakahaShilidentityzg to the original
equation:for- the fully-oeff-mass-shell amplitude, and taking the limit k - O.
Uéing Eq. (6) and integrating by parts with the D'Alembertian in Eq. (3) gives
Foo(k) = 1/d% x @2 1) |cr(f—Tr 2 A (x),3_ () [p,>
Ba B | Pel*\7 %W dq Py’
. With P denoting the energy-momentum four-vector operator, translational
,invariénce'impiies the’ equations

iP.x u -iP-x

B = T 06X, () = X

—iP L]
e ja(O)e X,
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Thus we have

4 —ik'ex, 2 t
Fo, (k) = ifd xe (m —k )- pflT( 5 A”(O) 3,60) e,
where k' = (pfd-k-pi) has been used. From the definition of the pion source
current
. _ 2 I
i, = (O +m)e ) = ([+m ) 5 A (x) |
we get ' ' -
f
o2 202 ik ex b v
Foo () = i(a k") (m -k )(/_) rat <pf|T<auAB(0),8\)Aa(x))|pi>

1 (m - k%) (n

AN
|

)(VF) fd x e kex <pf|T(8uA%(x),3vAZ(0))lPi>

where a second translation was used to get the last line.
Upon integrating by parts the 9 Au(x) term we find

Py, (k) = i@ -1) (n” - k' )(—) [1<pf|0(0)5 lp.>

1
. ik 0
—irdtxet “pglT(kea (0,0 AO))[p2). an)

The wN 0-commutator23’24 is defined by

. 4 0 v
<pf|0(0)5aslpi> ifd xs(x0><pfl[A8<x>,avAa<o)1|pi>

ro(tulpglulp;)s g (12)
The last line follows from Lorentz covariance as the most general form for
this matrix element, with Fc(t) an invariant function of the invariant momentum

2 c e s e s
transfer t = (pf-pi) . That the o-commutator is symmetric in isospin indices

follows from the assumption that

5—3: £ 8(xg - ) [A3 () ,'Aﬁ(ly‘)-'] d*x = o.
Though this relation is implied by the SU(2) x SU(2) algebra of currents,25
the converse ié not true. Thus the isoscalar nature of the o-commutator
follows from a weaker condition than the current algebra.:

We parametrize the form factor‘FO(t) as

' (TN)
T (t) = g (13)
o] t.2 t
(1_ 2) (1__2-)
ul uz

The quantity o(nN) is an important parameter of low energy 7N scattering. Its
numerical value is especially significant since it provides a direct measnre

of the strength of the chiral-symmetry breaking part of the strong interaction
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H%g_iltonian.24 As we discuss below, O(7N) is accurately determined’ from

Eq. (10) by requiring that the on-shell amplitudes agree with experiment.
) A
In the final term in Eq. (11) we insert a complete set of physical (in

or out) states in both parts of the time ordered product, translate AB(X)

to AB(O) and carry out the integration giving

ike

4 .
-1/d" x e" R (koA (0,0 AT(0)) >

>

<p lk-A (0)|n><n|8 Av(O),p.>
- (21r)3 2[63(K+gf—n) f B voa i
n .

ko +‘pf0 - n0 +ice

v .
S <pg|d A (0) [n><n|k-a (0)[p,>

>
n

-35,) ] (14)

0
k. + -p. -1
ot p; - ie
where, in an obvious notation, n denotes the total four-momentum of the state

N

7

|n>.
To form the soft-pion amplitude, we must let all four components of k

approach zero. If we first let ﬁ > 0 then k, > 0 on the right-hand side

0
of (14) we have a well-defined limit

M 0 v M v 4 0
L <pg|Ag(0) [pgs><ps|d A (0)[p,> - 5 <p;|3,4,(0) [p s><pys[ag (o) [p;>],

s PfO i0 ¢
. (15)

i.e., only the nucleon intermediate state contributes. The sum over s denotes

: . M . . .
a sum over the nucleon spin states and the factors — arise from our invariant
0

>
normalization of states. The limit whereby k., -+ O first, then k - 0 differs

0
from (15) and aoes not appear to be useful in the preoent work.
" The form of the matrix element of the axial current between nucleon
states follows from Lorentz covariance as
' [AO) [p> = G (g, (7" +8, () (" - p) W Iyg Lup  ae)
with gA(t) and gP(t) the weak ‘axial and induced pseudoscalar form factors,
respectively. An expresSion for the matrix element of the divergence of .the

axial current is obtained using PCAC, the definition of the pion source

current ja(O) and Lorentz covariance:

£ £ <p |3 (0)]p,>
v _ _m _ T f o 1
<pflavAa(o)|Pi>' <pf|/§ ¢a(0)1pi>‘— V2 o mz-t
o™
) fﬂ 18“(t)u(Pf)Y5Tau(Pi)‘ 17
2 n? -t '

™
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Equation (15) then becomes

g,(0)g (£) £ _ o(M-¥;) (M"ﬁi) 0 . o
1 A (e ) Y O—— - ot 4 —— 1 O ¢ jup.).
Q(mi-t) V2 f Peo B a Pig o B i

This represents a nucleon pole term in the soft-pion-'limit.
Taking the limit k - O in the order noted above, and using

k'2 = (pf--pi)2 = t in that limit, we obtain from Eq. (11) the soft pion

amplitude in the form

V2.2 2 2 -
FBa(O) = (§;)H%(t-m")Tc(t)U(Pf)u(Pi)GaB (1)
- gﬂ(t)gﬂ(O)U(Pf)[YO ‘ZMEEB—— a7, * -Zﬁglaf— YOTQTB]u(pi)’

where in getting the last lifie, we have used the Goldberger=Tieiman relation.
The factor (t-—mi) in the o-term is precisely what is required by the Adler
consistency condition.26 In Section VI we will comment on the role this
factor plays in the pion-nucleus optical potential. We note that this expres-
sion for the soft-pion amplitﬁde is exact, as there are no other terms in
the sum over states which survi?e in the k > 0 limit.

The remaining part of the isoscalar seagull term, the integral expres-
sion in Eq. (9), is evaluated in the same manner as the tirst integral term

in (10), which we consider in the next section.

2. Time-ordered product of currents terms

To solve for the half-off-mass-shell amplitude from Eq. (10) we must
evaluate two integral terms containing time-ordered products of pion
source currents. In one term, the four momentum of the final state pion must
satisfy k0==/é%;ff§. (hard pion integral), while in the other k = 0 (soft
pion integral). Since the latter can be obtained from the former by a
trivial change of variables we concentrate on the evaluation of only the
hard pion integral.
Inserting a complete set of physical states in both terms of the time-
ordered produé¢t and carrying out the coordinate integration after translating

the Hesienberg picture operators to the space-time coordinate origin gives

b
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.

-<Pflj8(0)|n><n|ja(0)lpi>

| 4 ikex 3 3
i/d xe <9f|T(JB(X)Ja(0))|Pi ==(27) "2{5 (kfpf+n) Ry Fpgg - N+ 1€
§ - (19)
3> e s <pflja(0)|n><nlj8(0)|pi>
TSk ) T — i
' o Pio" "o

The fifst term or the right will be refer?ed to as the direct (s-
channel) paft, while the second will be called the crossed (u—ghannel) part.
The admissible states |n> consist of oné or more particles with total baryon:
number +1. When'|n> consists of one pion and one nucleon we get a contribu-
tion to the right-hand side of (19) which involves an integral'quadrafic in
the off-shell amplitudes of interest. Othef contributions, along with the
isoscalar seagull term, form the ighomogeneous part of the integral équa—'
tion for the off-shell amplitudé.

».We'include in the inhomogeneous term the contributions from thé'nuclebn
-and antinucleon intermediate states. The nucleon intermediate state con-
‘tribution is straightforwardly evaluated. 'As in Eq. (17), Lorentz co?ariance
imﬁlies that the matrix element of the pion source current bet&een nuclébﬁ‘
states has the form

@' |3 (O] p> = 18 (6" -»D GoNYgrum,  (20) i
a w : . .
thch leads to the following pole terms

2 2
g, ((pe-P) g ((py-P)7) _ »
g tPgg ~™ ulpg) (1= vgdTgraulpy)

2 2 (21)
g ((pe-2)7e ((p; -0)7) _
- 28, (g + ~ y u(Pf)WO—pio-pfo)vo+mlra18u(pi)

+
20" Pi0

as the direct and crossed nucleon state contributions to the ;ight hand- side

of Eq. (19). Equation (21) is expressed in the 7N center-of-mass frame,

' . > >
K%—;f 0, and % and p are four momenta of physical nucleons with zf=—(k-kk')

and‘g = 0. Figure 2a shows a diagrammatic representation of the nucleon
pole terms.

Obtaining fhe antinucleon term is a bit more>comp110ated. It is given .
by the fully discomnected piece ofAthe product of matfix elements of cur-

rents appearing on the right of Eq. (19). The term 'disconnected" can be
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defined rigorously using the reduction technique.7 Roughly what it amounts to

is as follows. In a matrix element - like <N |G|N x>, where x is any par-

p t1cle(s) and N denotes nucleons, one has a term in which N propagates

freely, and the rest which does not. Thus we may write

<Nf|G|Nix> = <Nf|Ni><Q|G|x> + <Nf|G|NiX>c'
The first'terﬁ is referred to as disconnected, and the second as connected (sub-
soripttc)f Note;thatlif G cannot4connec; the vacuum and .the state:|x>, there is no
disconnected term. When a pfoduct of two such matrix elements appears
as in Eq. (19), we will then have a fully connected piece, two semi-con-
nected (or‘sémi—disconnected) pieces, and a fully disconnected piece. In the
Appendix this decomposition is worked out explicitly for the terms of

Eq. (19). We f1nd for the fully disconnected part of Eq. (19) the expression

3 3> > > <0|J (0) |P ,n><pf,nlj (0)|0>
(2m)” J[67(k-p, -n) —
n ky=Pi0 " T

<0|ja(0)|pi,n><pf,n|j8(0)|0>
k0+pf0+no-1e

+ 53(i€+n+pf) 1, (22)

where now the states n must have baryon number -1. Thus the anti-nucleon
is the lowest mass paztiéle in the sum.

From covariance we have

<013, [N, TE)> = 15 (b, +H) T Ev 47,000, e

That the §§ég‘form factor appears in both the ‘coupling of the pion curfeno
to a nuc;eon—antinucleon. pair and the coupling of the ourreno to two
nucléons [Eq. (20)] foliows from the ooductionvformalism. It should be
noted fgét'in Eq. (20), Fho argument of By is <0, while ip Eq. (23) it
is zéMz; |

From Eq. (22) the aﬁtinuclooo contrioution from the hard pion integral

to the inhomogeneous term is
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o ulpg) (B+ et ulp,)

)]
2r>0(k0 +peot po)

le[gfr((pf+p)2)g“((pi+p)

ulpg) (E+8,)7 T5u(p,)

~Relg* (o, + g (b, +D)D)] . @8

2Py * £ = i)

where thé:fourPVector p is the same as &efinea previously and £ is the four
momentum of a physical nucleon with % = i*—i'. Again, -Eq. (24) 1is .expressed
in the.cM frame. Figure 2b shows a diagfammatic representation 6f the
antinucleon pole terﬁs, and - from theshape of the nucleon lines it is

cléaf why ;these are :<reférred to as z-graphs. The factors

. -—2 C e ’ ' .. :
Re[g#((pf4'N)‘)gn((pi'FN))] arise because in summing over intermediate

+) ). Since there is

states in (22) we have used I/Z(Z out states
. ) S .

' in states
considerable pncertainty28inlimaknowledge of g“(t) for»tZ_Mﬁz, in Eq. (24)
we will make the simplifying assumption of replacing the real part of the

product of two complex form factors by the product of two real functions,

called g (t), and defined, for t > 4%, by
2
- . - £ 4ME - A
B () =g [1+5271 €25)
4m0 :

where éﬂ = Igﬂ(AMz) . This quantity will be determined from on-shell data

as will the parameter m_.. Tor gn(t), t £ 0, we use

0
2
t - 4M -
g (t) = g (0)[1 + SLE=4) -1 (26)
o Tl 2.2
4M mo
with the same mass parameter m,. The expressions (25) and (26) were

0

obtained from a crude dispersion relation analysis of the mwN form factor.
Estimates of the magnitudes of terﬁs arising-ﬁrom,other'intermediate
stétes'suggest fhey are smali in comparisdn to those discussed so far for
either of two reasons: thé coupling constant for the process is relatively
small of the phase space factors tend to suppress the contribution. Hence,

combining these results, our approximation to the hard pion integral becomes
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‘ 2. 2
4  dkex ' : ,_gw((pf-p) )g, ((py - P
ifd'x e <pf|T(JB(x)ja(0))|pi>-— 10 '+pf0-M)

a(pf)(l-YO)TBTau(pi5

g (g -0g (o -0% _
* 22, ey ¥4 - pio) ulp )¢, - py 10~ Pz0)" o tMITyTgulpy)

g, (o +2)E (G, +2) D) o (6o dre e ato
- — u(p + T,T ulp.
ZpO(k0-+pfo-+p0) f f7" B a i

g (G +0DE (o, +DD | .
- T . u(p ) (E+$ )7 Tulpy)
220(pi0+2,0 —ko)

.
u <Pelig(0)faygs,q Y><qN b0, ¥[3 0 e > 5

57 (q +qN+pF+k)

* Z Xf k.- ie

v s (2m)32q 0. o Ino v 9,0 ~Pgo " Ko

Ik ) o .
o3 Z day m <pf|3a(0)IqNs’an>qus*anle(o)Ipi>,3(g gt s
0
y s (2m)32q 0 Ino U0t 90 " P10t Ko N

).

i
(27)

The corresponding expression for the soft-pion integral is obtained from

Eq. (27) By dropping the nucleon pole terms, setting (k ) o, and replacing

the four—yectors p by (pfo,-g¥)and L by (piO’—gi)' .

In summary, we have developed from Eq. (10) an inhomogeneous,Anonlinear

" integral equation for the half-off-mass shell ‘pion-nucleon amplitude which

can be written in the schematic form
Pobv+f[FB) + @D -5 (B + @0, (28)

where V-cqnsiéts of the g-commutator and soft-pion N-pole terms of Eé. (18),
the hérd—pion N-pole terms of Eq. (21) and the z-graphs of Eq. (é4). The
subscripts D and'C denote direct and crossed te?ms, while H and S stand for
the hard- and soft-pion integral, respectively, with appropriate enérgy
‘denominators understood. By omitting the S-wave Rnelastié states from the

complete sum in these dintegrals we hé?e limited the range of applicability
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of tﬂ%‘iheory to the elastic region. Because the scattering amplitude is
given by an equation with a once-subtracted form, the neglect of these high
mass states will have a weaker effect on the low energy elastic amplitude

than what occurs in an unsubtracted equation (e.g., the Chew-Low equation).
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III. METHOD OF SOLUTION
In this section we present a method for the numerical solution of Eq. (28)
for the partial wave components of the scattering amplitude. The method is illus-

trated by a detailed discussion of the solution for the S-wave amplitude.

A. Covariant Partial Wave Expansion

Our equation for the scattering amplitude is crossing symmetric and fully
includes nucleon recoil. As discussed below a consequence of this is that the
integral equation for each partial wave amplitude is coupled to all partial wave
amplitudes. To handle the terms which couple the amplitudes, it is particularly
convenient to make the partial wave expansion in terms of projection operators
which can readily be expressed in any Lorentz frame, as will become clear sub-
sequently.

Expressions for angular momentum projection operators for =N scaffering in
~the CM frame‘are well known. Denoting the projector for a state with orbital
momentum quantum number £ and total angular momentum j byz?i, the S- and P-wave

projectors in the center-of-mass frame are given by

1/2 > 3 _1

Po - (PesgaPysy) = 70 Xg X4
1/2. > > 1 ot a0 oA ‘

L& (PgsgsPySy) = Zw Xg O'Pg O°By X4 (29)
3/2 > 3+

> ~ 1/2 > >
Py "(pgsgaPysy) = n Xg PyoPg xi’”’ll (PesgsPysy)s

where ﬁi(ﬁf) denotes a unit vector in the direction of the initial (final) CM
momentum and Xi(xf) represents a Pauli spinor for the initial (final) nucleon's

spin. These projectors satisfy the idempotency relation

it > ot 2 - . . Jery o >
£ Pe
To express these projectors in a manifestly covariant form, we first write

them in terms of Dirac spinors
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1+y :

PL 2B espnBys) = i) 0 ulp.s,)

o ‘PgSgePy 4 £°f 1/2 i°1
_ [ (M+pio) (M+pf0) ]

1/2 N _ ‘YO - 1 . -
P (s f,pis ) =5 ulpes ) ( o172 u(p,s,) (31)

[y M) (g™
: 3 +y )3 °3 g
3/2 0’1 't , /2~ >

(M+pio) (M+Pf0) [(PiO‘M) (pfO—M‘) ]

It is now easy to express these projectors in an arbitrary frame. If, in

2

a given frame, P denotes the total four momentum of the pion and nucleon and s =P,

the angular momentum projectors in that frame are obtained from Eq. (31) by the

replacements
| Y, > B/
0

Pyf .

Pio*Pgo ” 7z (32)
P P (p.-P)(p.P)

BB > -, S AV Sl S s MY

i°f £ s s " Py'Pge

These results can be generalized to h1gher partial waves by flrst deflnlng
_ vi&/2] '
Rg(cos 9) Zn=0 (22 +1 4n)P£—2n(COS 8), (33)
where [x] = largest integer in x and Pz(‘co,s 8)is a Legendre polynomial in cos 6, with 6 the

CM scattering angle. We find, for any %,

-(pQ’ /2 _ Rz_l(cos e)zy’i/z - RQ,-Z(COS 6)1}73/2
2+1/2 -1/2 _ 1/2
Pt g 1% = 2041) Py (cos 0)PL (34)

The pfojectors defined by Eq. (31)-(34), of course, also satisfy the idempotency

relation (30).

Since each of the terms in Eq. (28) can be written in the form
M -
- u(pf) [A(cos 8) + YOB(cos 8) ]u(pi),

~ with A and B appropriate functions of cos 6, we will need the partial wave expan-

sion of this expression. Writing

A(cos 8) = zz(zm- 1)A P (cos 8),
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with a similar expansion for B, and using Eqs. (31) and (34) we find

Zl% G(pf) [A(cos 8) + Yo B(cos 6)] u(pi) = Zz{%(Az +».B!L) [(piO +M) (pfO + M) ]l/2

J2+1/2 1/2

Lea Py - 1) (pfo-M)]l/z}fz +22{%(A2+B2)[(pio+M) (Pgg )]

- 3¢ e+1 " Boa1

SRR RIS T et (35)

Using this result, the expansion of the terms denoted by V in Eq. (28) in par-
tial waves is trivially carried out. For the other terms, we expand the scat-

tering amplitude as

- I i > g
Fo (&) = 4m Zl,j,lfn,zj(qi’qf)n (B,0) 0 (P845P5,) (36)

where q = |;i| (qf = Igfl) is the magnitude of the initial (final) momentum

. I . . . ; .
in the CM frame and II" is a projector for a state of total isotopic spin quan-

tum number I, and is given by

H1/2 1

gf B (151

1/2
Ba“n

where £ is a Pauli spinor for isospin and T, (o0 = 1,2,3) is the usual Pauli

(B,u)
37

II3/2

(B,a) =4 (B,a)’

2x 2 matrix. These projectors obey the idempotency relation
I rtenrt (o) = 6p0 (8,0 (38)
. Y
B. Partial Wave Expansion of Integral Terms
Next we discuss the evaluation of the integralé in (28) with the expansion
(36) substituted for the half-off-mass shell amplitudes. A typical integfal

is of the form

5y SRR | - s Gyl D
<p.|3, (0) lqys,q_v><qys,q v[j_(0)[p,> - (39
Ys @mlag ey, ¢ VT NIV aggtagg e

The values of u, v, f and € in the CM frame for the four integrals DH,

CH, DS and CS are given in Table I. Whenever f # 0 the integrations over the
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angles of a& and aﬁ are difficult. The difficulty is removed by rewriting
the intégral in the following manner:

3»>. 3>
_dv/w? +12 [ | d"q,d qM

J .
w2 v s (21)32q

<p.li (O ]qy s,q v>
= . . Peld (0 ]ay s,q,
70 "NO

‘- . . > -> -_+ _ _7__#7]
x <ay £,4,7]3,(0) [p>8 @y + 3, - T)6(ayy + q 0 - A2 +T - (40)

W is the total energy of the intermediate state in its own CM frame. Its
ninimum value is Mi—mﬂ. The expression within the square brackets is a Lorentz
invariant. Therefore one can evaluate it in a frame where the intermediate state
is at rest. Upon doing so one gets

d/Wz-Fiz M > > -> > 1.
| =111 —5 fdaz<pL]3 (0)]-q s',dv><-q s',qv[j (O)|pi>].  (41)

MZ+12-¢ y s' 22mw 4 " ‘
Here q is the CM frame momentum of the pion dorresponding to the total energy W,

i.e.,

W=v/M2+q2 + /n2+q2 . (42)
- _ .
- As a result of the boost to the intermediate state CM frame (ICM) ;f changes
> \
to p%, etc. Now we can substitute expansion (36) for the half-off-mass shell

amplitudes.

.dVWZ-FLZ {2 Z Z
sz_Fiz__e Y Sl II' jj'
!

. ' : 1 N
< LW L e Gst B Y el s ,p;sp} :

J ;D)

Mg * P g
“w f dQ&fZI,Zj(q,]pfl)fZI',Zj'(q’

Summing over Y and s', integrating over Qa and using the idempotency conditions

(30) and (38) gives
1 fw dw Mg Z f* ( >, >, 1 J2 >
. | . qalp I)f .(q,lp.l)H (u,v) P (pl,sl,pls!).
TrM-MnTT /W2+_1:2_€ 'W2+f2 Ije 21,257 f 21,23 i L At A0 e |

(43)
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At this stage it is useful to illustrate the form of the operators
j+v v—>| ] g s = ‘ =1
-ﬂDQ(pfsf,pisi) by considering the case j = 3/2 i?d i- 1:
3 pl-p!
3/2 > M - £
f]_/ (pésé’;j'_sj'_) = '4__" U(Pf,Sf)[ , : = ; 172 ‘%"' 1)
' - —
M+peq) M+pi ) [(pry -M(p ;-]

1

L
- Gr - 1)}u(p 8.
[l -1 (ol -1H2 T 1

Here we have used the covariant nature of the projection operators and the
results (32). The four vector
L= (MW2+12, 1) , (44)

replaces P in the equations (32). Thus

Py gL
' | = e
P;0°Pso 7 Pio’Pso W
: (45)
+'.+'=(pf L) (p; L)_( o
Pi " Pg 2 Py " Pg/e

W
From Table I we see that for the Direct Hard (DH) integral f = 0. The

projection operators in (43) are those for the final (or initial) state CM
frame (FCM) and (43) has the proper form for the partial wave expansion of (28).
For the other three integrals f # 0 and the projection operators appear-
ing in (43) are not projection operators for the FCM frame. For each of these
integrals the partial wave expansion in the FCM will have to be carried out.
An immediate consequence is that the integral equation for any partial wave
1s coupled to all partial waves; The coupling arises not énly through the
crossed integral but also through the soft integrals. The isospin crossing,
pPresent fér both crossed terms, is exactly the same as in the Chéw—qu theory.
The FCM partial wave profection can bé'carried out with the help of Eq.
(35). Expression (43) depends on the scattering angle 6 between 3[ and 31

through the kinematical factors as well as through |3;| and l;%l appearing as
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; ' >,12 2 2
arguments in the partial wave amplitudes. The expressionsfor |p£| = pio-M ’

etc., can be readily obtained from (45), since the nucleons are always on
their mass shell. The Dirac matrix ? appearing in the projection operators
can be eliminated byladding to Y. an appropriate linear combination of ¢i-
and ﬁf-M, which then puts Eq. (43) in the form of Eq. (35).

In our study of the S-wave scattering amplitudes we include the recoil
effects from P-wave only. Preliminary examination shows that D- and F-waves
have individually small contributions to the S-wave equations and, furthermqre,
they tend to cancel one another.

To include the effectsof the P-wave amplitudes we must make a model for
the half-off-mass shell amplitudes in the four P-wave channels. We use the

factorable form

£,(a,p) -2 o(p) f (q,9),

q ¢(q)
(46)
(P11,P13,P31,P33),
where the on-shell elastic scattering amplitude -
216 :
. 4ﬂw 1= nge. v

with nv the modulus of the S-matrix element andév the real phase shift. The

form factor ¢(p) is parametrized as

The power of 5/2 was chosen so that p¢(p)5:j;p 4, which we felt was the desirable

rate for damping at high moméntum. So far as the low energy phase shifts are

5

concerned the quantity of interest is —QE'¢(p) = - —3, not the power or
dp p=0 2u

the value of u2 individualily.
The form (46) is likely to be quite good for the P33 channel because of

the resonance dominance, but for the other channels it may not be as good.
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These amplitudes always appear in the form f:(q,p)fv(q,p'). In other words,
the channel elastic cross sections depermine their sizes. Inspeétion of
Eq. (19) shows all P-wave inelastic channels can be included by simply‘
extending the factorability ansatz to the inelastic amplitudes. Thus:the

complete P-wave contribution to expression (43) is

w L | ] 'v - .
16n | aw w2 pfpi o (pg) e (py) 1-n,p 55008 28, 50
o AZ+12-c W2 +12 % (q) 1,3 2¢>
(P-wave)
x T, v) P BhaspiByas))- | @y

To evaluate this expression, we will use the P-wave phases and inelasticities

of the CERN theoretical fit.'z9

C. The S-Wave Equation
The nonlinear integral equation for S-wave amplitudes can be schematically
represented in the style‘of (28),

- * * , ¥
f = D+ JI(f f)D+(f f)C]H—f [(f*f)D+(vf £) (50)

v C]S'

The driving term Dv is the sum of all terms in the integral equation which

do not contain the S-wave amplitudes. It includes the S-wave projections of
the sigma commutator, nucleon pole, z-graphs and the P-wave contribution to
the S-wave. The c—commutatof is a purely isoscalar, repulsive (negative) term,

. . ] —>
The z-graphs in the limit |pi| = I;f| = 0 have the form

—5lTt,,1 1 - g
A 2" B’ a ™ 4M?
One finds that rthe leading term of the hard-pion z-graphs, the isoscalar expres-

=2

: Br . .
sion - Tf'aas’ is cancelled by the corresponding term of the soft-pion graphs.

GaB'

The soft-pion subtraction thus effects the familiar "pair suppression.’
After subtraction the isovector part of the z-graphs becomes the leading term.

This is also the largest isovector term in D .
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'fhe remaining parts of the driving term; tne nucleon pole terms:and the
P-wave contribution, vanish'when ISil = |;f| = 0. Nevertheless, these terms
'-havena:significant‘effect on the S-wave phase Shifts. The omission of either
‘of theselterms fron Dv cauees the low energy S31 phaee shifts'to increase
about 20%. . Their effects on the S11 phase shifts are even larger because cf
the partial cancellation between tne q—term and the z-graphs.

Having excluded the S-wave inelastic'channels our amplitudes satisfy

elastic unitarity conditions

2
In £ (q,0) = 7l £ (a,0)] (51a)
| In £ (4,p) = 7ok £5(a,)f, (q,p). . (51b). .
From these equations it is easy to see that
' f (qsp) v
—— = 0. ’ 52).
f (9,9) : )

_ These conditions are maintained exactly by the method of numerical evaluation

of Eq.-(SO) which we now describe.

-D. Method of Padé Approximants

In the schematic equation (50) we attach an order parameter A with,Dv,_

- : % % % *
fv vaDv-+,f [(f f)D-F(f f)H] - J[(f f)D-b(f f)c]S . 83)
and iterate to obtain the power series
IR R - .
£,= 1 A £, : (54)
n=1
£V =D, - C(55)
‘n-1 ’ % :
£ - Z{ma“m)ﬁ>+u“m)f)1 1T 4 (g (e Xem )olse

- m=l
(56)
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The power ‘series (54) satisfies -the uﬁitafity éonditibné'(Sl) én& (52)
in every order. This may be verified with the help of the féilowing obéérva—
tions. Since the driving terms aré'neél éé‘imaginary part can arise only/from
the integrals. If the numerator in the’infeérals are all real than the

ird(W-k ) factor is the only source of an imaginary part, exactly as

0~ Pfo
~ demanded by elastic unitarity. If all fém) for m < n satisfy the unitarity

conditions, i.e.,
m-1

M
;Im f\()m) (QaP) = Z—T_‘.qﬁ Z
2=1

f(z)*(q sm—l)(q,p); m<n (57)

N >y f

(n)

then in the pfocess of evaluating fv : one will find all the numerators to be

(n)

Y

real and that Im f satisfies the unitarity condition of the form (57).

In many areas of physics a power series like that of.(54). has often been:
approximated by a rational function of A.30'~This-is known as the method of
Padé approximants. It has. the advantage that the ratioﬁal function may be-a
good representation of the initial function even when A = 1 is outside the
radius of convergence of the series. - We should point out that fv is not an
analytic function of A. Rather, it can be made an analytic function of two
variables, viz., the real and imaginary parts of A\. Of course, this in no
way precludes the possibility that a rational function in the tﬁo variables can
serve as a good approximation for fv.

We found no tendency of conveféénce in our power series expansion of the
S-wave equation, not even of logarithmic tyﬁe. We have therefore tried the
method of Padé approximants to obtain a solution;: Thnuéh.the method of Padé
approxiﬁants has been studied extensively in the context of ‘linear integral
equations, there have been few applications to nonlinear equations.30 Never-—

theless, we find that it is possible to construct a solution of the nonlinear

S-wave equation using Padé approximants. The validity of the solution is
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established by putéing it into the equation and verifying that it accurétely
reproduces itself._ | . N

In the context of scattering theofy it has been customary to approxiﬁate
the half-off-mass shell amplitude with é rational function30

M

BETTPRNE | (58)
1+Q557 M)

fij = fv(ki’kj) =

where i and j label the on-mass-shell and the off-mass-shell momenté; respectiﬁely.

The polynomials are

N
(N] iy = n_ (0
Pij W nzl : .pij
(59)
[] T ()

It is well known that the unitarity condition imposes the restriction N < M.
We found that [N,M] Padé approximants with N < M are quite unsatisfactory for
the S11 amplitude. We therefore circumvented the unitarity restriction by

making Padé approximants not for fij but for the amplitude

f,. ‘
= 11 :
i3 Mo, €0
| 1+1 ZEN £i1
where W, = VM2 +%2 + /m2 +k2. The on-shell element
i i T i 4w
_ i
The inverse of (60) 1is
T . K..
- ij : : .
fij M, . - (62)
1-1 4 K1

The unitarity conditions (51) are identically satisfied when the Kij's are
real and, conversely, when the fij's satisfy (51) the Kijfs ére.real. As we
have noted before, the iteration procedure satisfies the constraints of (51)

as a series of identities. Thus maintaining the reality of the Kij's is not a



problem. We are therefore free to try Padé

polynomials. Our procedure is as follows.

for the on-mass-shell elements

[N].
c - fi1 _Fi
H 1+1 T £ 1+Q£}iﬂ
4nwi ii

Then for the half—off—mass shell elements

£ | p(N]
K = iJ = 1]
ij Mk, (M]
1+1i 2 1+Qgy
4ﬂWi ii

where the denominator is the one determined for the
procedure is dictated by practical considerations.

Hence both Kii and Kij have poles when § = /2. 1In

and 14—Q£?](A) should both be zero at the same time

which Gi = w/2. Because of numerical 1inaccuracies
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approximants for Kij with real

First we find the Padé approximants

. (63)

we use the form

(64)

on-mass-shell element. This
i 184
1 = 1
1+1i 4"Wi fii e cos Gi.

other words, l+-Q£?](X)
for a value of ki for

it is not possible to

achieve this exactly. So we enforce the condition with the form (64). As

a result, for Kij’ i # j, we have to determine only

E. Details of Numerical Calculation

1. Evaluation of integrals

the numerator polynomial.

The entire range of momentum, from 0 to «, was divided into five

Sectors with 1.25mﬂ, 2.5mﬂ, 9m1T and 24mﬁ as the interval dividing points.

Integration over each of the first four sectors was carried out with

5-point Gaussian quadrature. The sector 24m1T <p <

P-50m

5-point Gaussian quadrature.

~ was mapped into

< 1 and the integration over y was also carried out with
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Evaluation of the CH, CS and DS integrals reﬁuire angle integra-
.tions. A certain amount of éare is necessary in carrying out these
intégrals.beéause of the considerable'éanceiiation between a hard and
the corresponding soft term. The angle dependence always arises‘in the
form PP cos 8. So the number of Gaussian mesh points used to span the
range of cos 8§ was increased as the value of PP increased. The entire
range of PP, from 0 to » was divided into seven sectors with 4m§,
12m:, 36m§, 108m§, 324mi and 972mi as the internal dividing points. The
number of Cos 6 mesh points for each sector was increased from 6 to 24
in steps of 3.
| From (43) one also sees that the integrals CH, DS and CS refer to the
quantities [pil = /7—2_——7, etc., where pio ié defined by (45). The
latter depends on Py> Pes 4 gﬁd cos 6. In general,‘the value of pi and
p% is not equal to any of the momentum,mesh points. The values of
fin)(q,lgil), etc.,were obtained from the calculated values at the mesh
‘points by using three—point‘interpolation of extfapolation. For
|§i|‘> 25mTr the reciprocal of the momentum was used as the basic variable
for the inter—(gxtra—)polation;

The principle value integral in the DH integral was evaluated.by

rearranging it in the form

- - Wy
‘ aw dw
AW gy oy A:(CA ) f _— _‘”—{H(W) H(w o'l
€M+M" w(W'wo) fmm w? (w—w ) Mim W (W~ Y )
W - W

1 .1 0__- dw 0

B 0 SN A 1>]H<w Y+ s RO -2 BG) T

[M+m1T Wy Mo ” M W wo) W 0

The value of the quantity in curly brackets at the point W = WO was obtained
by interpolation from its values at the two nearest points. Whenever

the on-mass-shellmomentum was greater than 25m_ the reciprocal of the
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momentum was chosen the variable for the purpose of interpolation.

Because of the large intervals between the momentum mesh points

(n)

at the upper range, the calculation of fv (q,p), n 2 2, becomes ia-

creasingly unreliable as q and p increase. .So instead of actually cal-
culating for the last two mesh pbints at 104mTT and 512mﬂ, we evaluated
the amplitudes by an extrapolation procedure assuming a quadratic form
a)+a,/a() +a,/a (D)

178 dtp) T asiq AP ).

The accuracy of our calculation is severely restricted by the number
of momentum mesh points. The time for calculating a complete set of
elements fﬁu)(q,p) goes as N" where N is the number of momentum mesh
points and 4 > n > 3. It also increases linearly with n. Fnr exampla,

a Univac 1140 computer takes 7.5 minutes to calculate all second order
terms and 11 minutes for all sixth order terms. Thus it was not practical

for us to increase the number of momentum mesh points. It is obvious

that a more efficient numerical approach is required.

2. Construction of solution

As stated earlier the accuracy of the calculation of fin)(q,p)
worsens as q and p increase. The problem first appears in the calcu-
lation of the second order term. As we calculate higher order terms.the
‘errors in the lower order terms flow down to the lower momentum region,
which makes it very difficult to check the convergence of the Padé approx-
imants, In Table II the S11 and S31 phase shifts from [N,N] Padé approx-
Imanes wicth L < N < 4 are listed. The results from [N+1,N} Padé approx-
imants are listed in Table III. The [4,4] Padé results are quite dif-

ferent from those of all lower order approximants for both isospins. The
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[5,4];Padé results for I = 1/2 exhibit the same feature.

Since a‘couvergent Padé approximant was not_feasible we decided to
use thelamplitudes obtained from the vériggs Padé approximants as trial
solutious. These solutions were put into the right-hand side of the
integral equation (50) and the output wasicompared with the input. We
required that the output and input agree well for.low values of Py and
P After many trials we found that the quality of the agreement could
be improved vastly by taking linear combinations of amplitudes from two

Padé approximants. The combination which worked best was of the form
Ky = » (65)
, _1+xI,Qii(N M )+ (1 -x )Q (NZ,MZ)

where Pij(N,M) and Qii(N’M) are the numerator and denominator polynomials
for [N,M] Padé approximénts, defined by (63) and (64). Our best result
is obtained by combining the amplitudes from the [3,2] and [3,3] Padé

éppfoximants, For>|;il, I;fl $-2m the average percentage difference

output inputl/

v

between the output and the input amplitudes <200|f ~-f

output

(f 1nput
v

+-f )> is 36 for I = 1/2 and 21 for I = 3/2 when we use pure
[(3,2] and [3,3] ampiitudes fdrAI = 1/2 and 3/2, respectively. Both these
numbers reduce to 3 when we combine the two sets of amplitudes with
xI= -0.05 for I = 1/2 and X = 1.195 for I = 3/2; These improvements occur
mainly in the off-mass-sheli'amplitudes. An inspection of Tables II
and III shows that the phase shifts for the two sets of values of xl/2
and X372 differ by less than 17%.

The most plausible explanation of these results is that had it not
‘been for the limited accufucy ofrthe calculatiou the [N+1,N] Padé apﬁrox—
imants would have converged for I = 1/2 and the [N,N].for I = 3/2, It

appears possible to suppress the effects of errors by a linear combina-

tion of the amplitudes from two different approximants.
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IV. NUMERICAL RESULTS

A. Experimental Phase Shifts

Before discussing the numerical results a few comments on the status of
the low-energy S-wave phase shifts are necessary. There are.two general types
of analysis by which phase shifts are obtained from cross section data. One
is the so-called energy-dependent fit, where a certain reasonable, smooth
dependence of the phase shifts on energy is assumed, and the other is the en-
ergy-independent fit, where data is analyzed separately at each energy.
Several recent energy-dependent fits are availaBle.29 For the present dis-
cussion we consider a preliminary set of energy-dependent phase shifts due
to Zidell, Roper, and Arndt31 (ZRA). We also consider the energy-independent
fit of Carter, Bugg, and Carter32 (CBC). The two sets aré shown in Fig. 3.

For I = 1/2 there is a remarkable difference between the two sets. The
CBC phase shifts as a function of Tw’ the pion lab energy, have a gentle
curvature. The ZRA phase shifts, on the other hand, start with a largér
slope and then around TTr n 70 MeV the slope rapidly decreases to a very small
value. The entire change occurs in an interval of 20 MeV. Other energy-
dependent analyses, for example, the CERN theoretical fit,29 give S1l1 phase
shifts with a similar energy dependence. For I = 3/2 both types of analysis
appear to give phase shifts with the same general qualitative behavior. The
qualitative nature of the energy dependence of the experimental phase shifts
is a particularly important consideration in the present wbrk, since we find
that when our theoretically calculated phase shiffs have the experimentally
observedAenergy dependence, getting high quality égreement with experiment
is then a mattef of carefully searching the parameter values.

Our theory contains no scale parameter comparable to 20 MeV, so it is

not surprising that we failed to find a set of parameters which can reproduce
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the energy dependence of tﬁe S11 phase shifts of ZRA. We therefore simply assume
that the.CﬁC phase shifts for I = 1/2 are the cérrect experimental data.

For I = 3/2 we take the ZRA set as the_expérimehtal data. These authors have

a high level of confidence in these phase shifts. The ZRA and the CBC sets

for I = 3/2 differ slightly as TTr increases. But in that energy region our
present calculations arevalsoAnot reliable as we have not included S-wave
inélasticity.

From the standpoint of our theory we prefer the .CBC set for I = 1/2. An
additioﬁal reason for preferring these CBC phase shifts is that when our |
theoretical S11 phase shifts'agree_with the CBC fiﬁ we get for the charge
exchange scattering length, a(_), the value 0.0793m;l in exceilent agreement
with the current algebra prediction23 of 0.0786m;l. An inspection of Fig. 3

(=)

shows that the' energy-dépendent fit gives a larger value:of é

B. Pafémeter Search for Best Results

In its present‘form the theory has six paraﬁeters: o(TN), L and My
(o~commutator), én (z-graphs), u (P-wave), and My (nucleon pole terms and z-
graphs). It should be noted that gw(O) is fixed by gA(O) and fw through the
Goldberge;—Treiman reiation. The numerical results are most sensitive to the
values of 6(%N) and én' As stated previously the phase shifts are less
sensitive to the four form factor mass parameters.

We searched for the best values of the mass parameters by examining
the qualitative behavior of the [1,1] Padé phase.shifts. The values we .
settled on are

Wy = B.26m, u, = 7.5m , my = 8'.6mTr and u = 8m_. D

"Obviously some variations in these parameters are possible. But we think that

ul, u2 and'mO are within lmTr of their .best values. Since the entire role of
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the P-waves is smaller thén that of the o-commutator term or the z-graphs, the
parameter i has a larger uncertainty when we try to fix'it from the low-energy
S-wave data only. The P-wave work is in progress. When it is complete we
will have a better knowledge of the off-mass-shell P-wave amplitude.33 How-
ever, as subsequent discussion will show a better value of y is about lOm".

The preliminary search of the parameters o (mN) and én was carried out
also with the [1,1] Padé results. The final search was made in terms of the
solutions constructed in the manner described at the end of Section IITI. 1In
Fig. 3 we present the phase shifts due to three sets of values of o(nN) and
Ew given in Table IV, with the other parameters gi?en by Eq. (66). The
parameters were chosen to have the S31 phase.shifts in very good agreement
with the ZRA results. It was possib;? to accomplish this for TTT < 100 Mev.
As we have not included S~wave inelasticity we héve no justification for
demanding good agreement for larger values of T". But since we have a once-
subtracted iow equation, and .the effects of S-wave inelasticity are quite small
near the elastic threshold, the theory is required t; do well at low enérgy.

The values.of §(wN) and En for the sets (a) and (c) differ from those
of oct (b) by 2% and 1,3%, respcetively, while the corresponding 511 phasc
shifts differ by 10% in each case. For I = 1/2 there is considerable can-
cellation between the attraction from the isovector terms produced by the
z-graphs and the repulsive isoscalar O-commutator term. The two terms are
both repulsive in the I = 3/2 channel. This explains the sensitivity of
the S11 phase shifts on the two parameters. At pfesent we consider the set
(b) our best result for yu = 8m“. The various order Padé results listed in
Tables II and III, the percentage differences between the input and output
solutions and the values. of X1/2 and X3/9 quoted in Section III are all for

set (b). "The corresponding parameters of the effective range expansion



k Cot §(k) = -%+%rok +Pk

are listed in Table V.
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V. DISCUSSION OF RESULTS

If the true S11 phase shifts have tﬂ% gentle energy dependence of the
CBC fit32 then the theory discussed in this papér can explain the low-energy
S-wave phase shifts. If the t?ue phase shifts, while having the desired energy
dependence, are numerically different from the CBC fit the major parameters
o(mN) and én = |gﬂ(4M2)| will be commensurately different from the values
25.5 MeV and 11.69, respectively,. obtained by us. It is very likely that
such changes would be small.

It is desirable to have independent checks of o(aN) and Eﬂ. Since the
introduction of the notion of the o-commutator as a measure of chiral symmetry
breaking, there has been a large amount of work on the evaluation of o(wN).
The situation in regards to éﬂ is quite the opposite; there are no reliable
theoretical estimates of gn(t) for t = AMZ, so there is nothing to compare
with our result,

Reyaza‘has.reviewed the work prior to 1974 on the determination of o(wN).
Though there is a wide spread in the values obtained by various authors in
the earlier work,mofe recent'evaluationsf34 appear to have converged to
g(nmN) = 65 5 MeV, in violent disagréement with our result. In a recent
paper35 we have analyzed this problem carefully. We concluded that the large
value results from errors of extrapolation. With o(wN) = 25.5 MeV our theory
gives reasonably good quaﬁtitative agreement with the basic amplitudes which
are used for extraction of o(wN) by extrapolation to the unphysical value
t = 2m§.‘4 ‘The agreement is improved if we increase U, the P-wave form
factor mass, from its present value of 8mTr to lOmH. With the larger value
of u we can essentially reproduce the set (b) S-wave phase shifts discussed
earlier if we change o(nN) to 24.9 MeV and Eﬂ to 11.90, all other parameters

remaining the same.35 We find that only the smaller value of o(wN) v 25 MeV
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appears to be consistent with the experimental data and theoretical constraints.
Before énding this section we make a few comments on the conseéuences of
nucleon recoil in the S-wave equatioés. The nucleon pole terms and the.P-
wave tontribﬂtions are entirely dﬁe.gb recoil and so they vanish in the static
limit. To illustrate the role of nucleon recoil we have calculated the S-wave
phase shifts by dropping these terms one at a time but keeping all other
parameters exactly the same as those of curves (b) of Fig. 3. These results
along with curves (b) are shown in Fig. 4. The accuracy of these new solutiqns
are not as good as that of solution (b). But this does not affect the con-

clusion one can draw from inspection of Fig. 4, namely, that the recoil terms

are of considerable importance.
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VI. ‘SUMMARY Z&D CONCLUDING REMARKS

We have discussed a tﬁéory of pion-nucleon scattering based on the
dynamics of boson exchange, the absorption-emission process and the z-graphs.
The dynamics enter through PCAC, the O-commutator term, the coupling constants
8 and gﬂ and the various form factor masses. We have constructe& solutions of
the nonlinear integral equations for the S-wave amplitudes using Padé approx-
imants. We succeed in reproducing the energy dependence of the low-energy
S31 and S11 (CBC) phase shifts. In the process we evaluatedthe major parameters
o (mN) and éw’ . being tixed by theonldberger—Treimann relation. Uur low
value of 25.5 MeV for o(mN) has been justified in a previous paper.

The complete numerical evaluation of the amplitude required for pion-
nucleon scattering must await completiOn of work_on the P-wave amplitudes,
which is in progress. However our present work already establishes a very
important feature of the theoretical description of pion-nuclear scattering.
The presence of the factor (t-—mi) in Eq. (18) tells us that the pion—nucleug
optical 'potential' (for use in the Klein-Gordon equation) will contain a
Laplacian term of well-defined magnitude. from Eq. (18) we determine this
term to be —(%252 mi(}(ﬂN)Vzh = —0.414m;3 Vzp, wﬁere p is the nuclear density.

A preliminary gtudy36 of the role of this term in pion-nuclear scattering

has shown it to be of great importance at low energies.
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APPENDIX

We illustrate the separation into connected and disconnected parts of a
product of matrix elements of the pion current by considering the first term

on the right of Eq. (19). Denoting by P = (H,i’*) the energy-momentum four-vector

operator, we have '
2 s 3 > > >
Pelig@]n><nfj O |p> 5. 87 (k#pg = F)

8 (k+p.-n) = <p_|],(0)— —— 3 _(0)|p,>
-n, + _
k0+pf0 n, ie f f'-B ko-i-pfo H+ie “a i

3> > >
§7(k+p_-P)
<0|af(out)j3(0)ko

3, (© a"; (in) 0>,
fO

+p.,—-H+ie

(A.1)

where we have arbitrarily chosen the second quantized creation (annihilation)
operator for the initial (final) state nucleon to be an in (out) operator.
Equation (A.1) can be expressed as

.”3_(§+3f -3

<0'|'{[af(o'ut),jB(O)']'+jB(o)a'f<out')}i - ([ (0),a] (in) ] + &} (in)j_(0) } 0>

0 “f0
~ 2k +3, ) .
= 3 1 . .
<0| [a;(out) 3,4 (0) eyt et MORLMCD 1{0>

3 +p,-¥)
+ <0 [ag (out), 5, (0) I

1.
——— a, (in)j_(0)|0>
0+pf0 H‘+1€ i o

53(12+3f-1’5)
: - —[3
0+pf0 H+ie ~a
| (K +p, - )
+ <0|j,(0)a.(out) -
B f k. +p.,~-H+ie

0 f0

+ <0/ 4 (0)ag (out)s (0),a] (in) 1] 0>

a-].f:(in)ja(O) lo>. (A.2)

Using the operator identities, valid for either in or out operators;

o T t '
P a = a (P +p. .
Pif  Pif i,f
api . = (P + pi,f)api,f’ (A.3)

and inserting complete sets of physical states between all terms in (A.2) we obtain
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-

<p.|3,€0) |n> <n|3_(0)|p_ > <p|3,€0) |p, sn>.<n|j_(0)|0>
£'Y8 c o 1663(§+;f_;1>)+ £f'9R i’ ¢ o

o k0+pf0—-n0+ie k0+p-f0—pi0—n0+1e
. <0|3,(0) [n><n,p_[j (0)|p.>. .
x S+ -Py-m) # L0 TS Sq_ g
n 0 0

0[35(® [p ,m><pe,nlj (@ ]0> 5,
- o — § (k—pi—n).
n 0~ Pi0" ™

(A.4)
The subscript € denotes a connected matrix element. The first term is thus
the fully connected part, the second and third are the semi-connected (semi-dis-
connected) parts, and the final term is the fully disconnected part. The minus

sign in front of this term comes from commuting af(out) and az(in) in (A.2).
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TABLE CAPTIONS

TaBle I: CM frame expressions.for the variables u, v, f and‘é iﬁ Eq. (39)
for each of the four integrals of Eq. (28).
Table II: S11 and S31 phaée shifts in degrees corresponding to the set (b) parameters
listed in Section IV for Various order [N,N] Padé épproximants. .
Table III: Same as Table II, except for [N+1,N] Padé approximants.
Table IV: Values of the main paraméters of solutions (a), (b) and (c).
All other parameters for each of these solutions are fixeq‘at the
values listed in Eq. (66);
Table V: Parameters of the effective range expansion correspoﬁding to

solution (b).



TABLE I
i e
DIRECT-HARD +k =0 L
DH pptk = Pggtkotin
CROSSED-HARD > 3 L2
CH Py = Py TPe Pio ~ ko
DIRECT-SOFT >
DS Pg Peo
CROSSED-SOFT N
P

cS
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TABLE II1

s11 531
ENERGY | [2,1] [2,2]  [3,3] [4,4] [1,1] (2,21  [3,3] [4,4]
1078.4 .38 .38 44 .86 -.30 -.29 -.32 - .45
1084.6 1.85 1.85 2.14 4.60 -1.48  -1.43  -1.61  -2.36
1107.2 3.83 3.82 4.50  17.34 -3.47 3.3 -3.78  -6.34
1141.7 5.45 5.43 6.54  -37.63 -5.92  -5.66  -6.42  ~17.57
1170.2 6.29 6.24 7.71  -2.19 -7.87  -7.53  -8.49  -14.88
1186.0 6.64 .55  8.29 .39 -8.94  -8.53  -9.64 .18
1218.9 7.16 5.96 9.26 4.66 -11.18  -10.87  -12.02  -3.49
1271.0 7.64 7.1 10.50 6.60 -14.73  -14.62  -15.71  -10.33
1326.8 7.95 7.18  12.37 7.17 -18.50  -18.50  -19.60  -1.25
1366.7 8.28 7.84  15.12 6.60 -21.18  -21.08  -21.97  -17.69
1432.6 11.46 10.04  15.89 7.53 -25.45  -24.99  -26.28  -24.15
1667.6 -1.37 6.60  14.61 7.49 -36.78  -35.81  -38.29  -23.47
2049.7 -24.11  -6.56  -6.5¢  -1.69 -43.16  -42.53  -53.71  -48.09
2462.3 ~30.20  -17.47  -17.44  -18.76 -46.73  -46.19  -70.32  -56.38
2756.2 ~41.52  -32.83  -7.77  ~-31.69 -48.92  -48.92  -67.87  -57.02

0§



_ TABLE III

_ s11 s31
ENERGY (2,11 [3,2]1  [4,3] [5,4] [2,1] [3,2]  [4,3] [5,4]
1078.4 .38 47 .51 A4S -.31 -.34 -.38 ' -.38
1084.6 . 1.88 2.34 2.51 2.41 -1.55 —1172 -1.90 -1.88
1107.2 3.90 §.94 5.31 5.01 23.63  -4.03  -4.40  -4.31
1141.7 5.60 7.28 7.96 7.31 _-6.19 -6.80 -7.23 -6.98.
1170.2 - 6.55 8.60 9.24 7.95 -8.21 -9.00 -9.64 -9.43
1186.0 6.97 9.23 9.78 8.12 -9.32 -10.13 -10.51 -9.96
1218.9 ' 7.68 10.32 10.78 7.45 -11.58 -12.48 —12.72 -12.02
1271.0 8.43 11.29 llf4l 5.81 —15.05‘ -16.11 ~-16.24 -15.23
1326.8 8.90 11.11 11.23 2.79 -18.41 -19.64 -19.64 \—18.87
1366.7 9.08 10.33 11.28 2.37 -20.44 -21,92 -21.92 -16.67
1432.6 9.02 8.20 10.45 -3.65 -26.48 ~25.45 -25.60 -18.85
1667.6 5.83 5.72 7.61 7,62 -34.66 -28.31 -35.42 . -40,.69
2049.7 4.88  -6.96  -5.23  -4.39 46.69  -16.16  -41.45  -44.96
2462.3 -18.08 -17.83 V—18.03' -18.29 =50. 44 -27.80 -42.17 -57.11
2756.2 -17.76 -23.99 -22.90 -32.79 -48.83 -32.81 -43.86 -56.51

18



TABLE IV
- o (mN)
Set gvr in MeV
a 11.85 25
b 11.69 25.5
c 11.54 26
TABLE V
Quantity S11 531
a (in m1—T1) ~0.143 0.095
r,. (in m-l) 0.981 5. 349
0 T
P (in m;3) 0.036 ~0.768




Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:
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FIGURE. CAPTIONS
Diagrammatic representation of the TN scattering amplitude for

na(k') + N(pi) -> WB(k) + N(pf), where o,B denote isospin com-

' ponents (1,2,3).

(a) Nucleon pole diagrams cor;esponding to Eq. (21). \The inter-
mediate state nucleon is in a positive energy state only, and thus
these are not Feynman diagraﬁs. (b) z-graphs corresponding to

Eq. (24). The intermediate stéte particle is an antinucleon,
described by a negative energy propagator.

The dashed lines are oﬁr-results with (a), (b) and (c) representing
different choices for o(ﬂN)'and én, as discussed in the text. The
solidllines give Ref. 31 phase shifts, while flagged circles are
frém Ref. 32.

Illustfation of the sensitivity of phase shifts to nucleon recoil
terms in the S-wave equation. Curves labelled (1) result when the
P-wave contributions are dropped, while those labelled (2) result
when the N-pole terms are omitted. In each calculation all other

terms in the S-wave equation are exactly the same as in solution (b)

~of Fig. 3, which is redrawn here for comparison.
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