V2 S

'3\’
SANDIA REPORT

SAND89— 1619 « UC—705
Unlimited Release
Printed November 1989

Connector Selection Program
Implementation Notes

Version 1.0

DO i bl 'L
Nicole E. Sevier L{WER

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 84550
for the United States Department of Energy

under Contract DE-AC04-76DP00789

SF2900Q1(8-81)

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A06
Microfiche copy: A01

DO NOT 1

Distribution
Category UC-7056

§§E§5§®; §A§D89-1619
s8f5s5¢ Unlimited Release
8823553 Printed November 1989
E285g3%
5N D0 @0 ~”2 0
8 gé}ﬁ'gﬁiz
17
SEAEFzE
2icfidy SAND--89-1619
R EEREE
3 5% =d
§87gffd DE90 004983
=88s8c8
$§55a28 s
-assv gy
ggEgg -8
ol SO - IS
gxrefsgz: o
2248520 &
SRR
-*—'QoE.sng Q
N EeESsw IS
cBEEQEE > >
ggzﬁg_ém =~
282,88 2
-~ = @
£ 585 g 8 53]
§e59853 =
S§LE58 o
__203’0%% .
ER - Connector Selection Program
5§88 E=%85 .
Tes 5:.350:: Implementation Notes
Fg&P g8 Version 1.0
ag_“w.“’_é?'é’
g."’g:g::é’o
SEESE™ZD
§5REZ.F
§~°§.y:~2‘2c
= =4 o o . .
-"‘555:35 Nicole E. Sevier
d . AR
§irsf2, Interconnections Division
BRro. 288 Sandia National Laboratories
i~
° Albuquerque, NM 87185

Abstract

The connector selection program is a database application that allows
engineers to locate information about connectors that meet their
requirements. This document describes the design and implementation of
the database, the data input application, and the user interface.

Nijssen’s Information Analysis Methodology (NIAM) was used to
characterize the connector data requirements which yielded the database
This design was transformed into database record structures

design.
that were implemented in the relational database management software
After the database was in place, data input screens were

ORACLE.

created to capture the connector data, analyze it, and place it in the
proper database record structures. Finally, a user interface was
designed and developed that displays or prints the information contained
in the database, associated drawings, and documentation related to the

MASIER p

program and its data.

ACKNOWLEDGMENTS

I would like to thank the many people that helped in creating the
connector selection program. Special thanks to:

Everyone in the Interconnections Division, Ed Machin (retired), Ed
Ehrman (retired), and Frank Daut (retired) for their help designing the
connector database and testing the user interface.

John Sharp, 2825 for informing me about Nijssen’s Information Analysis
Methodology (NIAM), for providing an opportunity to for me to learn
NIAM, and for his continual support and encouragement.

Mike Schaefer, Michele Miley, Daural Hobbs, and Maurice Smith at Allied
Signal Aerospace Corporation Kansas City Division for their help in
creating the connector NIAM Information Structure Diagram (ISD), the
database record structures, and the precedence diagram.

Melissa Myerly, 2857 for initially drawing the NIAM ISD and continually
redrawing it in different formats for talks and reports.

John Mareda, 2644, Greg Neugebauer, 2854, and Dal Jensen, 2534 for their
assistance regarding the connector graphics.

Kathy Branagan, 2551, for helping me test the user interface, for
editing the Connector Selection Program User’s Guide, and for her
enthusiasm and support.

David Armour, 2551 and John Orman, 2825 for reviewing this document, and
Mabel Hurley, 3151 for editing this document.

Table of Contents

1. Introductlonccvtiiiirninnereeennenennonnnnnes

2. Objectiveoiiiiiiiiii i i i i e

3. Development Processcciiiiiiieininnrennnns

4. Conceptual Modelciiiiienriiinnnnnnnnns

5. Database Management System

[~

Database Tables and Indexes

Data Input Screens i,
SQL+FORMS Language and Format
Connector Input Screensccivuieninnennn.

B D (< 3 O PPN

.2 ASSUmMPLIONS i et

.3 Special Attributes i it
Accessory Input Screens0 i iiiiiiiiaaan

B T o PR

.2 Assumptionsi.iiiiii ittt e

.3 Special Attributes i it

N NN NN NN
LW WS NN N B

Qutput Screensttt eeeenas

Connector Search Screens ivuuenn
B L 3
22 ASSUIMPLIONS ...ttt i e e e
.3 Special Attributes il

Connector Qutput Screensiiiiiiinnunn
B L -3 A SO
2 Assumptions il e i e
.3 Special Attributes i i it

Accessory Qutput Screens i,
A R ow e e
.2 ASSUMPLIONS ... ittt i it ittt
.3 Special Attributes i

SUMMA LY ettt

0o 00 00 OC G0 00 OO 00 OO 00 00 00 QO QO
00 WW NN N R -t

HBelp Facility ..ottt i ittt e i aiiaennnns
Evaluationsciiiiiiinnininniernnennennns
.1 Database & SQL*FORMS Approach
B U T Y
3 YMS Help oiiiiii i e e e e
Decision i e
Implementation Details

DR OO O
. . .
GO DD

10. Graphies Facility it iiinannns
10.1 Evaluations ottt
10.1.1 Graphics Programming Language
10.1.2 Disspla ..ivniiiiiiii e e et
10.1.3 Files ...t i e e e e,

B W N

CONIIH O™ %))

Table of Contents

10.2 Decisionvviiiiieieriinnseseannessansaaeannas 39
10.3 Implementation Detailso vt 40
11. Report Facilibycoiiiiiiiiiiiiniinnnnnns 42
12, Summaryo i e 44
Appendix A: Data Survey Formot 46
Appendix B: Conceptual Model 50
Appendix C: Database Evaluation 63
Appendix D: Tables and Indexes 71
Pables . i e e et 71
Indexes ...t e e e 75
Appendix E: Input/Update Form 80
Appendix F: PC to VAX Transfer Description 85
Appendix G: CRT Files & Key Definition Description 87
Creating New CRT Files i, 87
Implementing Variable Key Definitions 93
Appendix H: User Interface Command Procedure 95
BunConselo it i i e e, 95
Create VI100 ittt iaieeiiennnn 97
Create VI220ttt e e iiieaaann 97
Drop Terminalol 97
Appendix I: Help Command Procedure 98
Belp.Como ittt 98
Sample Help Textot 98
Appendix J: Graphics Command Procedure 100
Graphics.Com 100
Add Dimensionst e e 104
Sample Graphics Qutputl 106
Appendix K: Report Command Procedure 107
Report.Com e 107
Report Code i i 110
Sample Report 110
References ..ot e e e 116

ii

Connector Selection Program
Implementation Notes
Version 1.0

1. Introduction

At Sandia an engineer can choose from over 1200 qualified electrical
connectors for a given application. Formally, engineers selected a
connector from a small group of familiar connectors. Since this
technique did not always result in the selection of the connector that
was best suited to the application a user friendly, menu driven
connector database was designed and developed to assist engineers in
selecting the most suitable connector from the entire stock.

This paper presents the design and development of the connector database
and user interface. It describes the objective that created the project
and the methodology used throughout the design and development, how the
database structure was designed and developed, the data input process
and implementation, and finally, the user interface design and
development. The appendix, which constitutes most of this document,
contains valuable supporting information and examples.

2. Objective

There are two times when an engineer needs information about connectors:
(1) when the engineer does not know what connector to use, but has some
requirements that the connector must meet and (2) when the engineer
knows what connector to use. In the first case, the engineer would want
to input the requirements and be provided a list of connectors that meet
those requirements. The engineer would then like to select a connector
from the list and view more detailed information for that connector. In
the second case, the engineer would want to input the connector number
and be provided with detailed information about that connector. In this
case, the list of connectors would contain only one number, so no
selection would be necessary. This concept is illustrated in Figure 1.

Search
Menu
™~
L. N
By By

Requirement Number

Connector

List
\‘\.
Detait Drowing & | Accessories
Information Dimensions
Figure 1 The Concept

The connector selection program was designed and developed specifically
to meet these two cases.

3. Development Process

The general approach to designing and developing the connector database
was Nijssen’s Information Analysis Methodology (NIAM). NIAM is a
conceptual information modeling technique that was used to characterize
the connector data requirements. It provides the designer techniques
for gathering, modeling, and analyzing information. The major benefit
of NIAM was the ability to gain acceptance and approval of the
conceptual model from management and engineers before an actual database
was created. After the conceptual model was approved, it was
implemented in the selected database management system. NIAM conceptual
models may be implemented in any database management system. Since
SAND88-0272 describes NIAM and the connector selection model in detail,
this document only briefly addresses the area.

While the connector information gathering and modeling was progressing
so was database management system (DBMS) research. Several DBMSs were
evaluated to determine which would be the best for the connector
selection database. The ORACLE relational database management system
was selected. The reasons for this choice will be described later.

When the requirements were defined and the DBMS was selected, the next
step was to create the ORACLE database record structures. These
structures were created using a process called grouping. Grouping
allows a designer to systematically transform a NIAM model into database
record structures. These record structures are then evaluated and code
is created for a particular DBMS.

After the database was defined, data could be input into the database
and a user interface could be designed and developed. Once the basic
user interface was in place the help, graphics, and report facilities
were implemented. The user interface testing and correction phase
completed the development life cycle.

The system was then delivered by giving several tutorials to interested
individuals and groups. Feedback from these groups was evaluated and
the user interface was modified to make it as user friendly as possible.
The system is now available to any interested personnel at Sandia.

The formal documentation for the connector selection program consists

of :

1. SAN88-0272 Developing a Connector Selection DBMS Using NIAM
2. SAN89-1286 Connector Selection Program User’s Guide
3. SAND89-1619 Connector Selection Program Implementation Notes

The remainder of this document describes the design, development, and
implementation issues addressed at each step of the life cycle.

Applicable information not incorporated in this report or other reports
associated with the connector selection program include the PC-IAST
output, which describes the database record structure; the ORACLE
SQL*Forms code for the two input forms and the three output forms; and
the graphic drawings. This data was not included because of its volume,
but can be obtained from Nicole E. Sevier, 2551.

4. Conceptual Model

Nijssen’s Information Analysis Methodology begins by gathering
information about the subject at hand. In this case, that task
consisted of gathering information about connectors, by attending
connectors seminars were attended, interviewing engineers and reading
connector books, and evaluating the hardcopy data for connectors. This
research provided a vast amount of information. To trim the data down
to a reasonable size, a survey was sent to the people within Sandia who
needed connectors. The survey asked the engineers to select the
parameters that they knew when they were looking for a connector and to
select the data that would assist them with their final selection. A
copy of the survey can be found in Appendix A.

About two-thirds of the surveys came back and the information was
summarized as the initial connector selection requirements. An initial
NIAM model was created for these requirements with the help of NIAM
modeling experts R. M. Schaefer, M. Miley, and D. L. Hobbs from Allied-
Signal Corporation, Kansas City Division (KCD).

A NIAM model is called an Information Structure Diagram (ISD). This
model allows an individual to represent data and its relationship with
other data in a format that is easily understood and evaluated. One of
the benefits of the ISD is that it is a drawing and engineers are
accustomed to reviewing drawings. So, with a2 minimum amount of
training, they are comfortable with reviewing the ISD.

The connector ISD was reviewed by the connector engineers in the
Interconnections Division and two retired connector experts to make sure
that the information was complete and correctly represented. One of
the most important lessons learned from the interviews with the experts
was that the connector family grouping would not be valid for most of
the connector data. Initially, it appeared that connectors were grouped
by family names (e.g., JT, LJT, PT, ...) that characterized the basic
shape and style of the connector. 1t was believed that certain data
would be the same for all the connectors within a given family. The
connector experts agreed that this was the original intention and it may
have worked for a period of time; however, the engineers did not believe
that it currently held true nor that it would hold true in the future.
Based on the engineers advice and a review of some of the actual data,
the model was redone to eliminate the assumptions described by the
family relationship.

A relationship between the connector families and series was considered
as a possible subtype association, too. It turned out that connectors
within a given family-series combination have the same basic shape and
dimensions for the multicontact circular connectors. This relationship
was implemented in the design.

The WhiteStar working group, the KCD modeling experts, and two outside
modeling consultants evaluated the ISD to confirm that the relationships
were represented properly in the ISD. These reviews were very useful
because the reviewers had no previous ideas about connectors and
therefore were more likely to question every piece of data, every
relationship, and every assumption made.

The connector ISD was translated into English sentences to further
review the information contained in the ISD. Additional comments and
errors were corrected by reviewing these sentences with the connector
engineers.

After several iterations of ISD reviews and the English sentence reviews
the ISD was frozen for the implementation of the connector selection
database and user interface. The model in the SAND88-0272 contains the
ISD as it was frozen for the implementation.

A few changes were necessary during the development process. Test
parameters that were specified as mandatory were changed to non-
mandatory to allow connectors to be added to the database without
complete descriptions because it was believed that some data was more
useful then none. Also, additional information was necessary for the
accessories to properly link some of them to connectors in the database.
These changes can be seen by comparing the model in Appendix B of this
document with the model illustrated in the SAND88-0272.

6. Database Management System

A significant amount of research was devoted to selecting a database
management system for the connector selection program. This research
was primarily in the areas of network, hierarchical, and relational
DBMSs.

The relational database structure appeared to be the most promising for
the connector selection program. This was primarily because a
relational database structures can be modified and added to much more
easily than a hierarchical or network databases and very little, if any,
information is duplicated. Both of these features were desirable
because it was presumed that, over time, the connector database
structure would have to be modified and added to. Duplicate data in a
database is difficult to maintain because changing an item in the
database requires that every occurrence of the data be found and
changed. Therefore, if the data occurs in only one place, it is easier
to find and needs to be changed only once. NIAM was structured after
relational databases and was already being used for the design and
development.

Many relational database management systems were available on the
market. ORACLE, INGRES, BCSRim, RBase, IDMS/R, and Goldengate were
evaluated as potential database management systems. These evaluations
are summarized in Appendix C.

ORACLE was chosen as the database management software. ORACLE provides
easy-to-use facilities for creating a database, manipulating the
database, inputting information into the database via a batch job or
interactively, and getting information out of the database. INGRES
provided basically the same facilities; however, at the time it was not
fully compatible with the standard query language SQL and did not have a
personal computer version compatible with its micro or mainframe
version.

8. Database Tables and Indexes

After the ISD had been stabilized and the database management system had
been selected, the database record structures could be generated. The
record structures could be obtained by applying a technique called
grouping to the ISD. The grouping process is described in SAND88-0272.

The process has been automated by the Control Data Corporation into a
software product, Information Analysis Support Tools (IAST). The
product runs on a PC or on a Cyber mainframe. The connector ISD was
input into the IAST software on both the PC and a Cyber. The record
structures generated by the Cyber are the records that were used for the
connector database implementation. They were selected because they were
generated using a less-restricted grouping process and produced fewer
tables. The PC used a more-restrictive grouping process that generated
four times as many tables, most of which were felt to be unnecessary.

The record structures created by the IAST software can be found in
Appendix D. A few additional check lists and temporary tables were
needed during the implementation. The check lists are used by the input
screens to make sure that the information being input is valid. The
temporary responsible engineer table is being used until a list of
Sandia Employees and their employee numbers can be obtained from the
personnel department.

Indexes were created at this time as part of the database structure. An
index for a database is similar to an index for a book. It provides a
means for the database to quickly find information in a given table.

To create an index for a book, the author picks the words in the boock
that s/he wants to find easily and locates all the references to those
words. An index for a database table is created in the same way. The
implementer picks columns in a table that are commonly referenced and
creates an index for those columns. The database management software
will create references for the columns chosen.

Unique indexes are used to specify the columns in a table that must be
unique. For example, two parts should never have the same part number.
This can be enforced by creating a unique index on the part number
column. An error message will be generated if someone attempts to
duplicate a part number. The indexes and unique indexes created for the
connector tables are included in Appendix D.

7. Data Input Screens

ORACLE provides a facility for creating input screens, SQL+*FORMS. This
facility was used to implement input screens for capturing the connector
data and placing it in the proper tables. The input screens provide a
standard method for inputting the initial connector data, as well as
adding new connectors in the future. They also check the data to make
sure that the parameter data is within valid ranges, that the materials
specified are valid materials, and that data relationships are
maintained. They do not require any data to be input repetitiously and
do not require the person entering the information to know anything
about the database structure.

The input screens were implemented before the user interface was so that
data could be input into the database while the user interface was being
developed. Data could have been input into flat files, but it was felt
the time and effort put into the design and the development of the input
screens would be worthwhile.

The input screens were developed in two stages. The first set was
developed for collecting data for connectors and the second set was for
incorporating the accessory data. These screens are described in the
next two sections. However, before the implementation of these screens
can be discussed, some of the basic SQL*FORMS language and format must
be reviewed.

7.1 SQL*FORMS Language and Format

SQL+FORMS is used to create forms. To an engineer a form is a set of
screens where information can be displayed, entered, or edited. To a
developer, a form is a sequence of blocks. A block corresponds to a
table in the database or a set of variable fields. Within a block
corresponding to a table, a record is one row of data from the table.
One or more records can be displayed on a screen at one time.

Within each block there are fields. Fields are like blank spaces on a
form, where information appears. The fields are where the data is
displayed, entered, or edited. Each field has a fixed size, position,
and type of data that can be entered there. A block that corresponds to
a table will have fields associated with the columns in the table. A
block that is not linked to a table will have fields that are used as
variables.

A screen is the engineer’s view of the fields. The fields from many
different blocks may occur on one screen. Text and graphics may also be
displayed on a screen.

SQL+FORMS is controlled by triggers. Triggers are sets of commands that
are executed when a certain event occurs while a form is being run.
Trigger commands can be SQL*FORMS commands or SQL commands. Many
triggers are built into SQL*FORMS. For example, there are triggers for
saving data in the database, for searching for data in the database, and
for movement within the blocks and fields. Triggers are typically
invoked when the engineer presses a key on the keyboard.

Triggers are defined at three levels: the field level, the block level,
or the form level. The form-level triggers can be used throughout the
form. Block-level triggers operate with the block they are defined and
they apply to every field in the block. In contrast, a field-level
trigger applies only when executed in the defined field.

More information about SQL*FORMS can be found in the ORACLE SQL*FORMS
documentation set.

The descriptions of the input forms and the user interface forms created
for the connector selection program using SQL+FORMS will describe the
basic flow of the screens as they would be seen by the engineer and the
internal block structure. Any assumptions made about the engineers and
the designers will be described, as well as any special attributes about
the triggers that are unique to the connector selection program. Items
that are common to any SQL+FORM will not be discussed.

7.2 Connector Input Screens

The connector selection input forms (connin) allow an individual to
input, change, and delete the information associated with a connector.

7.2.1 Flow

The input blocks are arranged in the manner illustrated in Figure 2.
The arrows show where there is a screen change. The names of the
screens are shown to the right of the diagram. The solid lines depict
where the blocks and tables change within a screen. The dashed line
between the connector to contact block and the contact block is an
optional block or table change. The or’s imply that a decision is made
based on information that was input on a previous screen.

Connector SA
Number General

Dimen-—] ,

. Dimensions

sions

Connector Shell Insert Connector Spring
Plating Material Finger

ting

Connec!or

B

Environment
Connector Connector Contact Environment &
to 77777
Contact T Contact
Contact Contact
Plating Plating
Engr. Responsible Engineer
Resp.
or or
LAC Data RF Data

Mates

for
Plugs

Manufac —

LAC & RF

turer

Comm.
Equiv.

Figur

Mating Connectors

Manufacturer

e 2 Connector Input Screens

Materiais

The arrangement of the connector input screens corresponds to external
data and the sequence it was found in for the first connectors input
into the database. The general screen corresponds to the data commonly
found in the MC/SA Special Design Connector Catalog. The dimensions
screen data came from the catalog or from the AY Drawing of the
connector. The material screen information was commonly found in the
connectors’ Automated Materials List (AML). The environment screens are
for inputting environmental data which was found in the comnectors’
Product Specification (PS). The contact information on the environment
and contact screen was in the AML and the PS. The responsible
engineer’s name and special LAC and RF data were in the PS. The mating
connector information, manufacturer, and commercial equivalent are
typically known only by the design engineer. Thus, the design allowed
the person gathering or inputting the information to go through the
documents in the following order: the catalog, the AY, the AML, the PS,
and any additional information.

7.2.2 Assumptions

The input screens are arranged so the input, change, and delete
procedures may be done without detailed knowledge of the database
structure. The input screens assume that the individual performing
these tasks knows and understands the SQL*FORMS operator functions. The
implementation of these screens assumes that the individual understands

the tables and indexes associated with connectors, as well as the
SQL*FORMS design functions.

7.2.3 Special Attributes

The main difference between these screens and typical SQL*FORMS screens
is that the actions are performed when the engineer is on a field in the
connector block. The clear record, create record, delete record,
duplicate record, next record, and previous record keys act on all the
tables associate with the given connector. For example, if the engineer
is located at the connector screens and s/he presses the delete record
key, all the records associated with that connector in all the connector
tables will be deleted. This includes the connector data as well as the
SA number, all the dimensions, shell plating materials, insert
materials, spring finger materials, LAC or RF data, responsible
engineer, mating connectors, manufacturers, and commercial equivalents.
This is true for all the "record® functionms.

The "record® functions work as prescribed by SQL*FORMS for the other
blocks. This must be the case, since these tables may have multiple
records for one connector and the engineer may need to clear, create,
delete, duplicate, a.n‘ traverse through the records in these tables
without affecting the rest of the connectors data.

The connector "record® functions are established with form triggers.
The "record" functions for the other blocks are set up using block
triggers. Thus, each block has "record" triggers associated with it.

The connector block and the contact block allow the engineer to use the
enter and execute query keys. These keys are useless for the other

blocks, since the engineer does not have access to the part number
fields on these blocks. However, the engineer can search for connectors
and contacts by part numbers, or by characteristics. SQL*PLUS may be
used to query other database entries.

SQL+FORMS provides a trigger for entering and executing queries for each
block that has a table associated with it. The cursor identifies the
block that is affected when the engineer presses the enter query key.
The enter query trigger asks the engineer to input values in the block
fields, to describe the search criteria, and to press the execute query
key when they are finished. This activates the execute query trigger,
that searches for all the records in the block’s table that meet the
criteria described by the engineer. These triggers have been modified
for the connector input screens.

The enter query form trigger will automatically place the engineer in
the connector block and perform the query for this block. The engineer
is told to press the execute query key a second time to invoke the
execute query form trigger. This trigger executes the query for the
remaining tables, unless engineer is already in the contact block. The
contact block has a block trigger that executes the query on the contact
block and the contact plating block.

Block triggers and field triggers are combined to make the transition
between the blocks and screens transparent to the engineer.

The first connectors to be input into the connector selection program
were the connectors depicted in the MC/SA Special Design Connector
Catalog. The information required by the first few screens was input
directly from the catalog. The rest of the information was copied onto
hardcopies of the connector selection input screens from the connector
AYs, PSs, and AMLs. The information was then input from the hardcopies.

This process worked very well for gathering and inputting data for the
connectors in the catalog. To gather and input data for connectors that
were not in the catalog and for newly developed connectors, a
input/change form was created. A copy of this form can be found in
Appendix E. This form is given to the connector engineers when they
find an error for an existing connector or have information about a new
connector. Thus, the connector input screens were used for the first
listing in the database and are being used for the maintenance of the
data.

7.3 Accessory Input Screens

The accessory input forms allow an individual to input, change, and
delete the information associated with connector accessories, including
the EMR hardware, connector covers, pin protectors, potting mold
adapters, and potting molds. The blocks are arranged as depicted by
Figure 3. Each screen is made from several blocks. The screen names
are shown below their respective blocks. The arrows indicate where the
screens change, and the solid lines show where the blocks/tables change.

10

11

sSusaJIog qnduy AI0sss00y ¢ aandry

Select

EMR Hardware

Accessory Select Accessory
/ Tvvpe

Select Connector Fin \Pcﬁm Molds

EMR Cover Protector Adapter

Type Link Link Link
EMR Pin Potting Mold Potting Mold
Hardware Cover Protector Adopter Link
Type
TR Connector Pin Potting Mold Potting Molds
Hardware Cover Protector Adapter
Link

Angled
EM Potting Molds
Hardware
Angle
Potting Mold
EM
Hardware
Dim
Select EMR
&

7.3.1 Flow

The engineer begins by selecting the type of accessory s/he wants to
input information about. If the engineer selected EMR hardware, then
the engineer must specify the type of EMR hardware s/he wants to input
information about. The engineer then inputs the data associated with
the chosen accessory.

7.3.2 Assumptions

The screens assume that the person inputting the information is familiar
with SQL+FORMS operator functions; however, the user does not need to
know or understand the internal database structure to input accessory
information. The person working on these forms should know about the
database structure and SQL*FORMS development functions.

7.3.3 Special Attributes

The EMR hardware, potting mold adapters, and potting molds are linked to
the connectors based on connector families and series or families and
shell sizes. Additional information is necessary for some of the
connector covers. Pin protectors require the family and the insert
arrangement to be associated with a connector. The tables and blocks
that link the accessories with connectors have names that end with the
word "link." The remaining tables include additional information about
the accessories.

The form triggers commit the information to the database and clear the
blocks for the next item. No queries are allowed at the form level, but
are available for the appropriate accessory blocks containing the part
number.

The part number for an accessory is entered only in the accessory blocks
and is copied to the link, dim, and angle blocks for the engineer.

To delete all the information associated with a given accessory the
engineer must delete all the records in all the blocks for that
accessory. No automatic global delete is provided.

The transition between screens and blocks is implemented in block and
field triggers.

8. Output Screens

The connector selection program output screens are displayed in Figure 4
as they would be seen by a engineer. Engineers begin at the search
selection menu where they decide what type of search they would like to
perform. If they know the connector part number or SA number, then the
next screen would ask them to enter that number. If they know general
or specific requirements that the connector they are looking for must
have, then they would be asked to input this information. Once they
have input the number or requirements, the system would search the
database for the connectors with the corresponding number or
requirements. In either case, a list of one or more connectors would be

12

displayed. The engineer could then select a connector from this list
and view more detailed information about that connector. The detailed
information screens include: General information, contact information,
environment or product specification information, material information,
mating connectors, a drawing with dimensions, and accessory information.

13

VI

SU9JIDG 9DBJISUT JAS() Y] F oInd1y

Generat

information

Contact

information

Drawing

Number

Selection
Menu

General

Informaotion

Detoiled

Information

Connector

Selection
Menu

View
Selection
Menuy

y4

Environment

Information

Materiat
Information

Mating
Connectors

Connector

Drawing

e

EMR Hardware

Connector
Covers

Pin Protectors

Potting Mold
Adapters

Connector
Accessories

'

Potting Molds

The connector selection output screens were originally developed using a
PC version of ORACLE. Because of space constraints and speed conditions
on the PC, the output screens were developed in three parts. The first
part contains the connector search screens. These are the first set of
screens from the search selection menu to the connector selection menu.
The second part encompasses the output screens, which include all the
output screens, except for the accessory output screens. The accessory
output screens make up the third part.

The separation of these three sets of screens will be noticeable to the
engineer only by the presence of a blank screen displayed while the
transfer of control is taking place.

The connector selection program was later moved to the WhiteStar
MicroVAX. Appendix F describes how to transfer an ORACLE database from
a PC to a VAX. The WhiteStar MicroVAX provides a central location where
many engineers in different areas can easily access the program.

All the screens in the connector selection program have the same basic
appearance. Figure 5 illustrates the screen format used. The first
line, at the top of the screen displays the name of the current program.
The title line displays the name of the current screen. The area in the
middle of the screen is where the menu options, requirement input
fields, lists of components, and information about the current component
are displayed and where most of the activity occurs. The key definition
area is where the buttons on the engineer’s keyboard are mapped to the
program functions. The message line displays status information, and
the ORACLE line tells the engineer whether s/he is in insert/replace
mode when inputting information, the current screen page number, and the
number of records displayed or found.

15

Program Line Connector

Title Line ; Title

Menu or Information Area

Key Definition Area
Key1 Key2 Key3 Key4

Message Line
ORACLE Line

Figure 5 The Screen Layout

The keyboard buttons displayed in the key definition are dependent upon
the engineers terminal type or terminal emulator. The keys displayed
will differ depending on whether the engineer has a VT100 or a VT200
series terminal or emulator.

If the engineer has a PC with VTERM or an actual VT100 terminal, then
the keyboard buttons displayed in the key definition will correspond to
the keys on a VI100 or PC keyboard. If the engineer has a VT200 series
or a VI300 series terminal, then the keyboard buttons displayed will
correspond to the keys on a V1220 keyboard.

The intention of the different keys is not to confuse the engineer, but
to take advantage of the keys provided on a VI220. VT220 keyboards have
separate keys for page up, page down, and home. It was felt that
someone used to working on a VT220 keyboard would be more comfortable
using these keys for paging up, paging down, and going home instead of
the numeric keypad. The process for implementing the variable key
definitions is described in Appendix G.

In order for the variable keys definitions to work properly, it was
necessary to determine the engineer’s terminal type and pass this
information to the output screens. This was done with the command
procedure, Runconsel (for RUN CONnector SELection program). Logical
names were necessary for the different output screens so that the system
and SQL*FORMS could locate them. These logical names were defined in

16

the command procedure. Finally, the system had to be invoked, also by
the command procedure (see Appendix H).

The next three sections describe the output screens, beginning with a
general description, the sequence in which the screens are invoked
internally is illustrated, any assumptions that were made regarding the
engineer and the developer are mentioned, and any special
characteristics are described.

8.1 Connector Search Screens

The first part of the connector selection output screens is referred to
as Consell (for CONnector SELection screen part 1). Consell includes
the screens where the engineer indicates the type of search s/he wants
to perform, inputs the search data, and is given a list of connectors
which meet the search criteria.

8.1.1 Flow

The flow of these screens as seen by an engineer is shown in Figure 6.
The internal flow of these screens is illustrated by the Figure 7. 1In
the internal flow figure, the arrows indicate where the screens change
and the straight lines where the blocks change.

Selection
Menu

Drowing General ; Detailed

Intormation Information

Number

Connector

Selection
Menu

Figure 6 Search Screens (External)

17

SA

Keys

I

Qutput
Keys

I

Search

e ¥

\

Drawing

Iy

Selection

Temp

Figure 7 Search Screens (Internal)

General Custom
Contact Short
Selection
Environment
vV
Material Long
Selection
Geometric

Initially, the system determines which set of keys to display at the

bottom of each screen, depending upon the type of terminal the engineer
has. This information was placed in a table by the Runconsel procedure
and the action is by the key-startup trigger and the keys block.
the keys have been determined, they are displayed on the bottom of each
screen by the Output Keys block.

18

Once

The program then begins at the search Selection screen. This is where

the engineer indicates the type of search s/he wants. Once the type of
search has been selected, the system goes to the appropriate screen to

get the specified search data.

If the engineer searches by SA number or by drawing number, then the
search is performed by and output on the Selection block. If the
engineer searches by general information, then the search is performed
by and output on the Short Selection block. If the engineer searches by
specific information, then the search is performed by and output on the
Long Selection block. Different selection blocks are necessary as a
result of different queries performed.

The engineer may select any connector on any of the selection blocks and
view the information known about that connector. This information is
displayed by the second connector selection output screen, Consel2.

8.1.2 Assumptions

The use of these forms assumes that the engineer understands the menu
options and key definitions. The implementation of these screens
assumes that the individual has a detailed knowledge of the tables,
views, and indexes associated with connectors, and also understands
SQL*FORMS development functions.

8.1.3 Special Attributes

The program must be invoked by the Runconsel command procedure, which
creates a table and a record that tell the connector selection program
the type of terminal the engineer has. The terminal type is mapped to
the appropriate keys by Consell.

Logical names are necessary to make the transition between screen sets
and VMS command procedures. These logical names are created by the
Runconsel command procedure.

The Help command procedure is called when the engineer presses the Help
key. Thus, this procedure must be in place as well as the Help text in
order for Consell to function properly.

The key-others form trigger is active, so all keys must be explicitly
defined. Form triggers are available for the Help key (key-entqry), the
exit key (key-exit), the previous menu or home key (key-clrfrm), and the
list of values key (key-listval). The remaining keys are defined by
block triggers or field triggers, depending on what is most appropriate.

There are form triggers for checking, wild carding, and clearing the
information on the general and specific search screens. Before a search
is performed, each field is checked to see if it is blank or not. The
wild card character is copied to the fields that are blank to complete
the search query. The wild card character must be cleared if the
engineer must go back to these screens after any search.

19

There are form triggers for converting megohms to ohms and degrees F to
degrees C. In this way, the engineers may enter insulation resistances
and temperatures in the units they are most familiar with.

The copy selection form trigger copies the part number and SA number
into global variables so this information can be passed to Consel2.

Home and exit flags are set by this trigger to indicate that if these
keys were pressed while running Consel2, appropriate action can be taken
when control is returned to Consell.

8.2 Connector Output Screens

The connector selection part 2 output screens are referred to as Consel2
(for CONnector SELection screens part 2). These screens are passed a
connector part number and a SA number from the connector selection part
1 output screens, Consell. The information known about the connector
described by the part number is illustrated by the Consel2 screens.

8.2.1 Flow

The Consel2 screens seen by the engineer are shown in Figure 8. The
internal screen flow is depicted in Figure 9. The arrows in internal
flow figure indicate where there is a screen change and the lines show
block changes.

20

¥4

(TRuzagxqg) suseidg gndyng g aanBry

General
Information

Contact

Information

View
Selaction
Meny

y 4

Environmen

Information

!

Materiol

Information

Mating
Connectors

Connector

Drawing

Connector
Accessories
Menuy

(44

(Teuxaquy) susaldg qndyng ¢ aandty

Temp

Keys

Output
Keys

T

SA Num

l

Dwg Num

l

View

Connector Manufac— Contact Connector LAC Connector Drawing
turer Out 1 Qut

Resp. Comm, Contact RF Shell Recept.
Engr. Equiv. Plate 1 Piote Qut Mates

Contact insert

Out 2 Mat Qut

Contoct Spring

Plate 2 Plate Out

The program begins by executing the key-startup form trigger. Key-
startup copies the part number and the SA number passed from Consell
into temporary fields in the Temp block. The type of keys to be
displayed on the bottom of each screen is determined by the Key block.
Control is passed to the Output Key block to display the keys on the
bottom of each screen. The SA Num block displays the SA number at the
top of every screen and the Dwg Num block displays the Sandia Drawing
number at the top of every screen. Control is then given to the
engineer at the View Selection block.

At the View Selection block, the engineer may pick the type of
information s/he wants to see about the specified connector. The
engineer is then transferred to the proper screen. If the engineer
selects connector accessories, then the connector part number and SA
number are passed to the Accessory Output screens, Acc output, the third
and final part of the connector selection output screens.

8.2.2 Assumptions

It is assumed that a user of these screens understands the menu options
and key definitions. The implementation of these screens assumes that
the individual understands the tables, views, and indexes associated
with connectors and understands SQL*FORMS development functionms.

8.2.3 Special Attributes

Consell must be invoked by the Runconsel command procedure so that the
terminal type can be determined and the logical names can be
established. The logical names are necessary so that Consel2 can be
located by the system.

The Help command procedure and Help text must be in place for the Help
key to function properly. The Graphics command procedure, programs, and
files must be in place for the graphics to function properly. The
Report command procedure and programs must be in place for the print
report option to function properly.

The program begins by executing the Key-Startup trigger (see flow
section above). Flags are set by this trigger to indicate whether a
query has been performed or not.

The key-others trigger is active, so all keys must be explicitly
defined. Form triggers are available for the help key (key-entqry), the
exit key (key-exit), and the previous menu or home key (key-clrfrm).

The remaining keys are defined by block triggers or field triggers,
depending on what is most appropriate.

Only one field on each of the output screens is accessible by the
engineer. The program was established in this way, because there was no
reason for the engineer to move the cursor from field to field. The
only reason a engineer would have to move to another field on a screen
would be to input information in the field. In the output screens, the
engineer is allowed only to look at the information.

23

There are form triggers to traverse through the information screens.

The triggers are named as go X, X to, and X from. The go X triggers
cause the program to go to the block X and make sure that the query for
block X is executed only once for this connector. The X to triggers are
executed when the next block key is pressed while at the X block. That
is, they tell the program where X should go to. The X from triggers are
executed when the previous block key is pressed while at the X block.

X from triggers indicate where the program was before it came to the X

block.

The View Choice trigger causes the program to go to the appropriate
screen from the View Selection block. The View Msg trigger is the error
message for an invalid view selection.

The Print File trigger passes the connector part number and series to
the print command procedure. This procedure displays all the
information on the screen in a format that is suitable for a hardcopy
report.

The Drawing Out block displays a drawing of the connector by passing the
connectors part number and series to the graphics command procedure.

The command procedure displays a picture of the connector along with its
dimensions if the engineer has a terminal capable of displaying
graphics.

8.3 Accessory Output Screens

The connector selection part 3 output screens are referred to as

Acc output. To these screens are passed a connector part number and an
SA number from the connector selection part 2 output screens, Consel2.
The information known about the accessories that can be used with the
connector described by the part number is illustrated by the Acc output
screens.

8.3.1 Flow

The Acc_output screens seen by the engineer are shown in Flgure 10. The
internal screen flow is depicted in Figure 11. The arrows in internal
flow figure indicate where there is a screen change, and the lines show
block changes.

24

EMR Hordware

Connector
Covers

Connector

Accessories
Menu

Pin Protectors

Potting Mold
Adapiers

Potting Molds

Figure 10 Accessory Output Screens (External)

25

92

(Teudequy) susaadg gndyng Lxosseody [T aandty

EMR

__/ Hordware

Adapter
Ring

Elbow Cove

Temp

Link

I

Cover
Link

l

Keys

I

Port
Number

|

SA
Number

]

Output
Keys

l

Select

Elbow
Sleeve

Ferrule

Shell

Connector
Cover

Pin
Protector

Potting Mold$

Connector
Cover too

]

]

-

|

Adapter
Ring Dim

Elbow Cove
Dim

Elbow
Sieeve Dim

Ferrule
Dim.

Shelt
Dim.

Y

Potting Mol
Drawing

1

Potting Mol

Drowing Op¥

The program begins by executing the key-startup form trigger. Key-
startup copies the part number and the SA number passed from Consel2
into temporary fields in the Temp block.

The Link block performs a query to gather information about the
specified connector. This information is used by the accessory blocks
to determine what accessories can be used with this connector.

The Cover Link block gathers information about the specified connector
that may be necessary to determine what connector covers will function
with this connector.

The type of keys to be displayed on the bottom of each screen are
determined by the Key block. The Part Number block displays the
connector part number or Sandia Drawing number at the top of every
screen. The SA Number block displays the connector SA number at the top
of every screen. The Output Keys block displays the keys found by the
Keys block on the bottom of every screen. Control is then given to the
engineer at the Select block.

At the Select block the engineer may pick the accessory s/he wants
information about for the specified connector. If the engineer selects
EMR Hardware, then a list of all the EMR hardware that is available for
the specified connector is displayed by the EMR hardware block. The
engineer may select any of the items listed and view a drawing of the
item and its dimensions. The EMR hardware drawing and part numbers are
displayed by the corresponding EMR hardware type blocks: adapter ring,
elbow cover, elbow sleeve, ferrule, and shell. The dimensions are
displayed on the same screen by the EMR hardware-type blocks with the
block name extension, Dim.

If the engineer selects Potting Molds, then all the potting molds
availablée for the specified connector are listed by the Potting molds
block. The engineer may select any of the potting molds listed and view
a drawing of the specified potting mold and its dimensions. The drawing
and part number are displayed by the Potting Mold Drawing, and the
dimensions are displayed by the Potting Mold Drawing and the Potting
Mold Drawing Opt blocks.

The information known about connector covers spans two screens. The
data for these screens is captured by the connector cover and the
connector cover too blocks.

The pin protector and potting mold adapter information is displayed on
one screen by the corresponding block.

8.3.2 Assumptions
It is assumed that a2 user of these screens understands the menu options
and key definitions. The implementation of these screens assumes that

the individual understands the tables, views, and indexes associated
with connectors and their accessories.

27

8.3.3 Special Attributes

Consell must be invoked by the Runconsel command procedure so that the
terminal type can be determined and the logical names can be
established. The logical names are necessary for Acc output to be
located by the system. The Help command procedure and Help text must be
in place for the Help key to function properly.

The program begins by executing the key-startup trigger (see the flow
section above). Flags are set by this trigger to indicate whether a
query has been performed or not.

The key-others trigger is active, so all keys must be explicitly
defined. Form triggers are available for the Help key (key-entqry), the
exit key (key-exit), and the previous menu or home key (key-clrfrm).

The remaining keys are defined by block triggers or field triggers,
depending on what is most appropriate.

There are form triggers to get to each of the output screens. The
triggers are named as go X. The go X triggers cause the program to go
to the block X and make sure that the queries associated with block X
are executed only once for this connector.

8.4 Summary

The connector selection output screens are divided into three sets: the
search screens, the output screens, and the accessory screens. All the
screens have the same screen format and are invoked by the Runconsel
command procedure. The Help command procedure is necessary for the
engineer to access the Help text. The graphics command procedure is
necessary for the engineer to see the connector drawings and their
dimensions. And finally, the print command procedure is necessary for
the engineer to obtain a report of the information provided. Together
these screens and command procedures provide a complete user interface
for the connector selection database.

The next sections describe the research, design, and development of the
help facility, the graphics facility, and the print facility.

9. Help Facility

The Help facility available from the ORACLE SQL+FORMS allows for only 80
characters of information. This is inadequate to describe the fields
and features provided by the connector selection program. Several
approaches were looked at to expand the Help text to an infinite amount
of text. The pros and cons of these approaches are described briefly, a
method is selected, and the selected method is characterized in detail.

9.1 Evaluations
From the ORACLE SQL+FORMS an operating system command can be executed by
using the SQL*FORMS HOST command. The basic steps for using the HOST

command are to create a character string of the command you want to
execute, place it in a block variable (global and system variables don’t

28

work), and then send the host computer the block variable. An example
is given below of a trigger that would execute a command to type a file.
The filename to be typed is contained in the database table, filenames.

SELECT "type " || filename

INTO :display.filename

FROM filenames

WHERE attributes = :display.attributes

- #HOST :display.filename

If the filename selected was "sample.txt" then the command "type
sample.txt" would be executed. After the file was typed, control
would return to the invoking trigger.

This was the method for accessing procedures and programs
external to SQL*FORMS used by some of the approaches
investigated.

9.1.1 Database & SQL+FORMS Approach

The first idea was to create a database table that contained the
block name, field name, and description for each field in the
connector selection program. The process would then be to create
a Help block where this information could be displayed. The
block name and field name would be passed to the help block to
determine the description to display.

This mode of action has some problems that begin with the
database table and its description field. This field needs to be
variable-length. Frank Ezell, 2812, who investigated this
approach found it difficult to display a variable-length field
neatly with SQL+FORMS and recommended use of multiple 80-column
fields instead.

The descriptions in the database would have to be input and
maintained. However, this would have to be done for any method
selected. The most logical way would be to create some SQL+Form
for inputting, changing, and deleting this information.

A method for outputting this information would be useful for
maintaining a User’s guide for the program. Most of the
information that would go into a User’s guide should be contained
in these field descriptions. The SQL*Report software could be
used to output this information in a User’s guide format.

The connector selection program would have to be modified to
implement this method because, the engineer does not now traverse
through the fields of the output screens, but only one field on
each screen.

This method contains information about each field, but no

information is supplied for the operating procedures. So,
additional work would have to done to describe this information.

29

Thus, to implement this method:

a table would have to be defined,

- an input form would have to be designed and
developed,

- the information would have to be input,

- an output form would have to designed and developed,

- the connector selection database would have to be
modified,

- a method for displaying a description of the
operating procedures would have to be developed,

- and an SQL*Report code would have to be written.

This is a significant amount of work to do initially as well as
to maintain.

The key advantage of this method would be that all the
information about the database would be self-contained.

9.1.2 Files

The second plan was discovered after the Connector Selection
Program User’s Guide was written. The User’s Guide has a
reference chapter that contains detailed information about each
screen in the connector selection program. The information
provided for each screen consists of a general description, a
detailed description of every field, and a description of the
action(s) that will be performed by all the keyboard buttons
defined. This arrangement was designed so that not only could
the answer to a specific question be found quickly and easily,
but it would be extensive and complete.

This information could be separated out of the User’s Guide into
files, and the files could be used as the connector selection
Help text. The information could be displayed in a manner
similar to the Host command example at the beginning of this
document. This could be done at the SQL*FORMS form trigger
level, so only one trigger would be added to the connector
selection program.

The invoking trigger would have to know what screen the engineer
was on and determine from this what file to display. The current
form, block, and field are SQL*FORMS system variables, so this
information is readily available. A table containing the form,
block, field, and filename could determine the file to be
plotted.

This information would have to be input in the database, but
because the amount of data would be very small, no input forms
would be needed.

No method would be needed for outputting the information to

include it as part of the User’s Guide. The opposite would be
true: a procedure for breaking the information out of the User’s

30

guide would be needed. The User’s Guide was written using Massll
and Massll is capable of merging files before printing. The
User’s Guide could have pointers to merge the separate screen
reference pages. An ASCII file would have to be created for each
file and these files would have to be copied to the Connector
Selection directory, implying that there would be two copies of
the information. There may be a way in the future to eliminate
one copy. Until then, the Massll files could be considered the
official copy.

Maintenance would follow the same procedure as defined above. A
change could be made to the Massll file, then a new ASCII file
could be created and copied to the connector selection directory.

The operating procedure information is included as part of the
definition of each screen, so no additional work is necessary to
include this information.

Thus, to implement this method:

- a table would have to be defined,

- the form, block, field, and file information would
have to be input,

- the trigger would have to be designed and implemented
in the connector selection program,

- the User’s Guide reference pages would have to
separated,

- the ASCII files would have to be created and

- the ASCII files would have to be copied to the
connector selection directory.

In comparison to the first method, this method would require less
work to implement and less to maintain since it does not have any
input forms or output forms. This method separates the
information about the database from the database itself and moves
it to the User’s Guide. They both have to be maintained, so this
would not make a big difference.

The descriptions capture both the fields and the operating
procedures, so no additional work is needed to implement this
type of Help. The information is broken up into fewer pieces
because it is divided by screen instead of by field and the
interface to the connector selection program is simple. These
items reduce the complexity of the process. But because this
method provides input forms via a word processor, the person
maintaining the system would have to know Massll or some other
word processor with similar capabilities.

9.1.3 VMS Help

As an extension of the file method came the VMS Help scheme. The
files used by the file procedure could easily be modified to
include the commands necessary to create a VMS Help library with
the connector selection information. The Help command could be

31

used to start the typical Help scenario, rather than the type
command .

If this approach were used, it would only work while the system
was running under VMS. However, it would allow the engineer to
go more directly to the information of interest. The file
technique requires the engineer to traverse through all the
information to find the data pertaining to any question.

9.2 Decision

The files method is the approach selected for the implementation
of the connector selection Help facility. The primary reasons
for selecting this approach were that it was less complex than
the SQL+FORMS plan, it could easily yield the VMS Help method if
the engineers were unable to quickly find the answers to their
questions, and the data was contained in the Connector Selection
Program User’s Guide already. Why not maintain it there, too?

9.3 Implementation Details

Most of the implementation details are described above and are
illustrated in Figure 12. A command procedure is called to issue
the "type" command rather than issuing the command directly from
the connector selection form trigger. This is not necessary now,
but allows for future flexibility.

32

Connector
Selection
SQL*Forms

Help File Name

Help Command

Procedure

Help File

Figure 12 Help Procedure

Ta

The command procedure can be found in Appendix I. The form trigger,
KEY-ENTQRY, can be found in any of the connector selection program
output SQL+FORMS documents. The files displayed can be viewed by

running the connector selection program or by reading Chapter 3 of the
SAND89-1286. Information about MASS11 can be found in the MASS11 Word

Processing User’s guide.

10. Graphics Facility

Some components can be described by simple dimensions such as
length, width, and height. Connectors are much more complex than
this (see the connector shown in Figure 13). 1It’s not easy to
associate an understandable English description with each of the
dimensions shown. The notion that a picture tells a thousand
words makes it relevant to include a drawing.

33

[JTO7H Style

<+— 1500 —»

-] 312 —%»

=7

-+ 1.195 —»
- 0.915» .
062 min
|_'1'O66 125 max
A A
0.975 1.018
v Y

Figure 13 Connector with Dimensions

34

The dimensions of a connector are part of the connector selection
database. The connectors in a given family-series combination have the
same set of dimensions associated with them, because they have the same
general shape. The individual dimensions are given cryptic names (a, b,
c, ...) because it’s difficult to create English descriptions.

The tasks being addressed here are (1) how can the drawings for these
connectors be created, (2) how can they be displayed on a variety of
terminals, and (3) how can the drawings be merged with their dimensions
in the database. The rest of this document describes the methods
researched for implementing these tasks, the approach selected, and the
important details pertaining to the selected method.

10.1 Evaluations

Three techniques were evaluated for creating and displaying the
connector drawings and dimensions. The first approach was to create and
display the connector drawings using a graphics programming language.
The second method was to create the drawings using an interactive
graphics package and display the drawing and dimensions using Disspla or
Telegraph. The last process evaluated was to create the drawings using
an interactive graphics package and use the VMS operating system to
display the drawing and dimensions. The pros and cons of each of these
approaches follows. The last process was selected for implementation.
The reasons for this choice and the important development details follow
the evaluations.

10.1.1 Graphics Programming Language

The graphics programming language approach was to develop the code
necessary to draw a connector. This code could be scaled, based on the
dimensions from the database, to accurately represent each connector in
the family-series combination. The dimensions from the database could
be displayed where they belonged on the drawing. An example of what the
connector might look like implemented by this method is shown in Figure
13.

About 103 family-series combinations are necessary to depict the 951
connectors initially input into the connector selection program. This
implies that code would have to be created and maintained for 103
connectors, just to get started. The drawing code would have to be
written using a graphics programming language. The standard appeared to
be GKS at the time of this evaluation. GKS and PASCAL were available on
2551°’s VAXstation II/GPX, so development could be done there. However,
for production the WhiteStar MicroVAX would have to purchase GKS and for
maintenance an individual would need to be familiar with GKS and PASCAL.

The drawing number of the connector being reviewed could be passed from
the Connector Selection Program to a VMS command procedure. This
command procedure could query the database for the dimensions of the
connector represented by the drawing number and place the information in
a file. The drawing code could access this file to obtain the
connectors dimensions.

35

The family and series of the connector being reviewed could be passed
from the Connector Selection Program to the VMS command procedure to
determine the drawing code to be executed for this particular drawing.

GKS is device-independent, so the connector drawings could be displayed
on any graphics terminal. The terminal type could be determined and
passed to the drawing code to produce the drawing for the engineers
specific terminal type. This is extremely important at Sandia where
there are many different types of graphics terminals. Those
organizations without graphics terminals would not be able to view the
connector drawings.

This approach provides well defined methods for performing the tasks
required to create and display drawings and dimensions for the connector
selection program. The drawings can be created using GKS and Pascal.
The drawing dimensions can be passed to the drawing code via a file and
the drawing can be displayed on virtually any terminal type.

10.1.2 Disspla

There are many interactive graphics packages on the market. The
connector drawings could be created using one of these packages and then
displayed by the connector selection program with the proper dimensions.
To find out how these drawings could be displayed on a variety of
terminals with dimensions from an external source, John Mareda (2644)
was contacted.

John said that the drawings could be created with SuperImage.

SuperImage could output the drawing as a Computer Graphics iMage (CGM)
file. The CGM file could then be displayed by Telegraph or Disspla on a
variety of terminals.

SuperImage is a PC graphics package which is relatively inexpensive and
very simple to learn and use. Telegraph and Disspla are graphics
programming packages. Either package would cost approximately $2,500
for a licence on a MicroVAX.

The drawing number of the connector being reviewed could be passed from
the Connector Selection Program to a VMS command procedure. This
command procedure could query the database for the dimensions of the
connector represented by the drawing number and place the information in
a file. Disspla code could be written to access the dimensions in this
file and display the information along with the drawing. The dimensions
could be displayed as they are in Figure 14, or, with additional coding,
as they are in Figure 13.

36

LJTO/H Style

IMEN INCHES
.975
.085
.312
.195
.066
.500
.018

D
A
B
H
L
0
q
T

bt ok ek ot ek ek

7 RECORDS SELECTED.

————— PRTSCN TO PRINT
————— PRESS RETURN TO CONTINUE -----

Figure 14 Drawing & Dimensions

37

The family and series of the connector being reviewed could be passed
from the Connector Selection Program to the VMS command procedure. This
information could be used to determine the Disspla code to be executed
for this particular connector.

Telegraph and Disspla are device-independent, so the connector drawings
could be displayed on basically any graphics terminal. The terminal
type could be determined and passed to Disspla to produce the drawing
for the engineers specific terminal type.

This approach provides well-defined methods for performing the tasks
required to create and display drawings and dimensions for the connector
selection program. The drawings can be created using Superlmage. The
drawing dimensions can be passed to Disspla or Telegraph code via a
file, and the drawing can be displayed on virtually any terminal type.

10.1.3 Files

In order to supply drawings, approximately 103 connector drawings would
have to be created. New drawings would have to be created in the future
as new connectors were developed. This sounded like a draftsman’s job,
and there was no reason to duplicate the work. So, the idea of
displaying the drawings created by drafting was investigated.

Greg Neugebauer (2854) was contacted initially to see if Anvil was
capable of outputting a CGM file. Greg indicated that this could not be
done currently, but they would be willing to make it possible in the
future, if it was necessary. Anvil would currently output HP plot codes
and Iges code. In the near future, they would have a method for
creating HP Graphics Language (HPGL) code from the HP plot codes.

With this information, Telegraph and Disspla were evaluated to see if
they would accept HP plot codes, Iges code, or HPGL. It turned out that
Telegraph and Disspla would not accept any of these. Dal Jensen (2534)
was consulted to see if any other software products would display HP
plot codes, Iges code, or HPGL.

Dal pointed out that the Massll graphics processor and Baseview software
were both capable of accepting HPGL code. Massll has utilities for
outputting graphic files that can be displayed on a number of the major
terminal types used at Sandia. Baseview can output graphic files that
can be displayed on Regis, Sixel, and Tektronix terminals. Either
package would cover most of the terminal types found at Sandia.

The files output by Massll or Baseview could be displayed on the proper
device by simply typing the drawing file. The family and series of the
connector being reviewed could be passed from the Connector Selection
Program to the VMS command procedure. This information along with the
terminal type could be used to determine the drawing file to be
displayed for this particular drawing.

The drawing number of the connector being reviewed could be passed from

the Connector Selection Program to a VMS command procedure. This
command procedure could search the database for the dimensions of the

38

connector represented by the drawing number and place the information in
a file. This file could then be displayed on top of the drawing or
somehow be incorporated with the drawing file.

This approach meets the requirements for creating and displaying
drawings and dimensions for the Connector Selection program. The
drawings can be created by any software tool that will output HPGL code.
The HPGL code can be translated by the Massll graphics processor or
Baseview software to a file that can be displayed by Regis, Sixel, or
Tektronix terminals. The drawing dimensions can be appended or
incorporated with the converted file to display the drawing and
dimensions together.

10.2 Decision

The graphics programming language approach was not implemented for
several reasons. First and foremost, this process would duplicate the
work being done by drafting. Forgetting the first reason, GKS would
have to be purchased as well as a maintenance agreement. The creator
and maintainer of the drawings would have know 2 programming languages,
GKS and Pascal. Writing the code to create drawings is an abstract
task, which implies it would take time to develop 103 initial drawings
as well as additional drawings.

In summary, this method would duplicate efforts being done elsewhere,
would cost money up front, would be a continuing cost, would require
graphics and programming training and knowledge to create and maintain,
and would take considerable time to develop and support.

The Disspla method was not implemented, either. This approach was not
chosen because drafting would have to write code to translate HP plot
codes to CGM code, Disspla or Telegraph would have to be purchased for
the WhiteStar MicroVAX as well as a maintenance contract, and Superlmage
was the only graphics software found that would output CGM code. The
creator and maintainer of the drawings would have to know Disspla or
Telegraph and SuperImage. Knowledge of SuperImage is necessary for
creating the old connector drawings that drafting does not have
available on Anvil.

In summary, this method would cost money up front, would be a continuing
cost, would require Telegraph or Disspla and SuperImage training and
knowledge to create and maintain, and would take time to develop the HP
to CGM translation code.

The Files approach was implemented. This approach was selected because
drawings can be created on a wide variety of software packages. (Anvil,
SuperImage, Massll Draw, and Lotus Freelance are just a few examples.)
No new software is necessary to develop or maintain this method.
Drafting has Anvil and 2551 has SuperImage, Massll Draw, and Lotus
Freelance for creating the drawings. The 891 VAX has the Massll
graphics processor and Baseview software for translating the drawing
from HPGL to files that can be displayed on most graphic terminal types.
The command procedure for capturing the dimensions, determining the
engineer’s terminal type, and displaying the drawing are SGL and VMS

39

commands. Both VMS and SQL must be known to maintain the database
itself.

In summary, this technique would not duplicate efforts being done by
drafting, would not cost any money up front, would not be a continuing
cost, and would not take considerable time to develop and support. This
approach would require Baseview or Massll graphics processor training
and knowledge to create and maintain. Drafting could be asked to create
the drawings not available on Anvil, or they could be created using a PC
interactive graphics package. (The latter would require some training.)

10.3 Implementation Details

To implement the files method a command procedure, Graphics.com, was
written to accept a part number and a series. A copy of this command
procedure can be found in Appendix J. The family name is not needed to
determine the file to be displayed, since the series is a unique
element. The part number is used to create a SQL batch file that
queries the database for the parts dimensions and places them in a file.

The series is used as the drawing file name and the filename extension
is based on the engineers terminal type which is determined by the "set
term/inq" command. Thus, the series and the terminal type pick the file
to be displayed.

To incorporate the dimensions with the Regis files, a Pascal program was
written. This program adds dimensions from a file to the bottom of a
specified Regis file with the proper quotations and escape sequences,
creating a new file. The new file is displayed by the command procedure
and then deleted.

A Tektronix manual or terminal was not available to determine how to add
the dimensions to the Tektronix files. To avoid this problem, the
Tektronix file is displayed and the dimensions are displayed on top.
This is possible because the Tektronix does not scroll when it is in its
graphics mode. To facilitate this process, the last point drawn on the
drawing must be at the top.

The Connector Selection program drawing out block contains a trigger

which passes the part number and the series to the graphics command
procedure. Figure 15 summarizes the command procedures activities.

40

|84

sinpadoxq sotydery gy aanfdry

Connector
Selection
SQL*Forms

Part Number
- Port Suffix —
Series

Graphics
Command
Procedure

Part Number
Part Suffix

— Drowing File

SQL*Plus

— Dimensions

\ Display

- g\

The procedures followed to create the initial drawings are summarized
here. (For a more detailed description, see the procedures document in
this section.) A drawing is created using Freelance. A vertical view
is used so that the drawing will fit on the screen with the dimensions
displayed alongside. The output is to a file for an HP plotter and
copied to the 891 VAX via an image copy. The file is input into
Baseview. Once in Baseview, the file is rotated 90 degrees, shifted to
the right as far as possible (the dimensions are displayed on the left),
and a dot is placed on the drawing in the top center. (The dot is
necessary to position the cursor for displaying the dimensions with the
Tektronix files.) A Regis and a Tektronix output file are created.

The Regis file is modified to eliminate the command that clears the
screen and returns to the text mode. The Regis file must have the
commands to position the cursor and to display text added. The
Tektronix file is altered to eliminate the command that appears to
switch the Tektronix out of the graphics mode.

The two files are copied to the WhiteStar MicroVAX to the connector
selection program subdirectory Graphics. Files received from Anvil
would follow the same basic procedures. However, the typical Anvil
drawing would have to be modified to discard the details and incorporate
the dimension labels.

11. Report Facility

The Connector Selection program contains a vast amount of information
about connectors. However, the only method for accessing this
information is through the computer. There are times when this is not
convenient, so a report facility was developed for the Connector
Selection program. The report facility provides a hardcopy report of
the information provided by the Connector Selection program for a given
connector. The report command procedure and an example of a report
generated by the report facility can be found in Appendix K. This
section describes how the report facility was implemented.

Through a menu of options, the Connector Selection program asks the
engineers what information they want to see about a selected connector.
A new option was added, a "Display All the Information for Local
Printing" for the report facility.

When this option is selected, the form trigger, PRINT FILE, is executed.
This trigger creates a command string that calls the command procedure,
REPORT.COM, and passes it the connector part number and series.

The command procedures actions are illustrated by Figure 16 and the
actual command procedure can be found in Appendix K. The command
procedure creates a table, PART, and inserts the part number. The
SQL*Report generation software, RPT, is invoked with the connector
report program, REPORT.DAT.

42

14 4

aanpaocoxg jg0day g1 aJandry

Connector
Selection

SQL*Forms
\

Part Number
Part Suffix
Series

Report
Command
Procedure

Part Numbe"b/ SQL*Plus Hgme- Part Table

Port Suffix
—' Part Number
P ffi
RPT ort Suffix
Connectow R
RPF Report ond SH=
(/AR L
Port Number)) -
Grophics Part Suffix BB SQL*Plus |~ D'me"S'OHS—H %’f’";"g
Commond 'splay
Procedure [Drawing File — -
D

and |B

The connector report program is a combination of SQL*Report RPT and RPF
code. The RPT code accesses information in the database, and the RPF
code formats the data for output. The RPT software is run to gather the
information about the connector described by the part number in the
table part and create a temporary file. The SQL*Report formatting
software, RPF, is then executed with the temporary file to format and
output a report to an output file. Together the two create a report
containing data. The information is arranged in the same sequence it
would be seen if an engineer looked at the output screens in order,
except for the drawing which is displayed last.

The command procedure explains to an engineer how to get a printer ready
to capture information displayed on the screen. When the engineer is
ready, the report is displayed on the screen and printed on the
engineer’s printer. When the report is finished, the engineer is told
how to tell the printer to stop capturing information displayed on the
screen. The graphics command procedure is then called to display the
connector drawing and dimensions. These can be captured on the
engineer’s printer, if it is a graphics printer. Control is then
returned to the Connector Selection program.

12. Summary

The connector selection program was designed and developed to help
engineers at Sandia select connectors that quickly and easily meet their
requirements. The project development began with this basic concept in
mind. Research found what information engineers commonly knew when they
were looking for a connector and what additional information they needed
to know to choose a connector. A conceptual model was created with the
information gathered, reviewed by past and present engineers in the
Interconnections Division to make sure that the information was
represented correctly, then was transformed into ORACLE database record
structures and indexes.

To input the connector data into the ORACLE database record structures
two input screens were created. Connector input screens were created
for the connector data, and accessory input screens were created for the
connector accessory data. Connector data was gathered on hardcopies of
the connector screens and input from these and the MC/SA Special Design
Connector Catalog. Input/Change Forms have been created for new
connector data and changes to the old connector data.

An extensive user interface was created for the engineers to access the
information contained in the ORACLE database. The user interface is
divided into three sets of screens: search, output, and accessory.
These screens allow an engineer to input either a connector part number,
SA number, or requirement that the connector must meet. The program
will then list the connectors which match the part number, SA number, or
requirements specified. The engineer may select any connector in that
list and view additional information about the connector. Additional
information includes general connector information, contact information,
environment (PS) information, material information, a list of mating
connectors, a drawing of the connector with dimensions, and accessories
which fit the connector.

44

Several auxiliary programs are needed for the user interface screens to
function. There is a Help command procedure and there are Help files
that provide the engineer with detailed help. A graphics command
procedure and drawings files allow the engineer to see a picture of the
connector with its dimensions. And finally, a report command procedure
and SQL*REPORT code create a report that can be printed on the
engineer’s local printer.

Together the database, the input screens, the output screens, the help

facility, the graphics facility, and the report facility make up the
connector selection program.

45

date:
to:

from:

subject:

46

Appendix A: Data Survey Form

October 9, 1987
distribution

N. E. Sevier, 2544
E. D. Machin, 2544

Connector Selection Data

Division 2544 is developing a connector selection database
management system. This system will select connectors and
mating connectors from a database of WR qualified connectors.
Before we begin the design of this database we need some input
from you, the ENGINEERS! If you have done some connector
selection on your own, we would like to know what information
you used to make your selection either for an original
connector or for a mating connector. We would also like to
know what information you want to know about a connector which
has been selected.

The attached sheets list some facts about connectors which can
be found in the MC/SA Special Design Connector Catalog (orange
catalog), AY drawings, or product specifications. Please
check off those items which you have used or would like to use
to select a connector or a mating connector. There is also a
column where you can tell us what you would like to see output
once a connector has been selected. Remember YOU are the
people who will be using this program, so please take the time
to fill this out carefully. If you have any questions, please
feel free to call Nicole Sevier at 6-2993.

REPROGUCED FROM BEST
AVAILABLE COPY

Mating New
Connector Connector
Information Example Selection Belection Output
===:=g=-=====:g======ng:-:::::::======t:n:::::::::::;:::z:::.:::::::::::
General Administrative Infprmation
::t::z:::t:::t:===:===:z=:l======:====:::xz:::::-::::gtzszr-t:=====ﬁ===r
Family o LT] !]
Drawing Number ! JSEBT17 s H '
Nomenclature { SA147B-12 H H
Manufacturer H B .C H H H
Manudacturer Fart Cooe! 858217 H H H
Fart Cost (BL.D) H H ! H
Stoct Cuantity (EBLD) ' L H '
Cualified Organization! 2154 : ! :
Fesponsible Engineer ! Work, R. H H '
Recommended Use Code ! QER ' H H
Status i Dtsesolete H H H
Use List H H H H
Conmercial Equivalent | H ' !
e T E T TS TES S ESSEESSES====E : EESEZSEsSs====s :========== :========== ::::‘7:: =E====
Electrical /Mechanical Information
I 2 3 ¥+ 3 I 4 3 S S 4 4 S E 35 3 3 3 & 3 § 3 :==== TS ET===== :===t=====: :=r==z===== : =E=Sr==sSo==T=
Connector Type ! Receptacle ! : H
Heracetic/Norhermetic ! Nonhe-metic H H
Mounting Type ' Fancl ! H !
Materials for H H H H
Shell (fused vitredoiue materaial) ! ! H
Insert (epory mold wiQlasse fibers)! ! :
Contacts (nicre)l w/ igold plating)! H :
Shell Size H 1S : H :
Insert Arrangement : 15-1% ! ! :
Insert Yype/Fattern ! Stendard : H '
Type of contacts H Socl et ! H !

REPRODUCED FROM BEsT
AVAILABLE Copy

Matjng New
Connector Connector
Information Example Eelection Selection
EEEFE SR X CFFERErEREFECECSEERE |EE=SRCECCEESE |ESXSEC-=ZECE |EZSEEEE=CE

Total Num. of Contacts

s

- " -~ —— - - G = | e G -

Contact Resistance

- em r e e e - - el .- - —— -

Contact Eize ! 20 16
L
Current Carrying {
Capacity 17.5 20
Maximum Voltage Drop! 285 30
N.unber of Contacts to
carry ma:)mum current 1
Hole Layout Code <.045C

————— ——————— ———————— ——————

-——— e - = ——— = . -

s==

fce

Sprimg Finger Resistan
2 R 3 ¥ 3 XTI Tt 2 2 2 & &+ 2 3
€z0Oriles

S 2 223t 2 T 2 -2 1 T 1T 2 X

Baclshell Number

EMR

——— - —-—— - —— e - - = -

Fotting Mcldo

Adapter
Argle
Number
EC S S EErCEEESSrEESETESR
Har dware
ECErSECESFPrP-SEEESECTSESCSS
Angle

Acapter Ring Number

- -

- - - - - .. - .o -

e 20 oo we ¢ ow

e oo se we ow

=r=====s=s====
.............
.............

.............
- - - - -

B77236-00%5

90 degrees

877112-004
ESEESSEESETSS
e Y Y

90 degrees

- - - - - - - -

- .- o - -

e B% 6 P® co ve T0 Am S8 e Gc @8 *v co co o2n ==

e @0 % o % ®e ©C ma & se o=

-—— ——— -

-—— e ——————-

s=========
=sz==zs==s
..........

..........
- e- - -
- - - -——
- e e -

- -

- - -

- — - - ——

- e eem -
- - - ——-——
— — o ——— -
Y T I Y I T T T X
- ——
- eme e -
- e e -
- e e -

-— - - -

- e - -

e ae me ==

Output

- - - ——— -

REPRODUGED FR
AVAILABLE CGPY

Lo W

Oul BEST

Mating New
Connector Connector
Information Example Belection GBelection Dutput
EEE R S EE ST S EEEE S E R I ArES (CECrSEEENEEER |ECAXSSEERE |RZTTESSEERE \Sx=szc===z
Elbow Sleeve ! B77026-008 H H

EEFECEE TR RS S ST TR S |ECCE AR REEESERE (S EC TS TR | FOCCECRESNER |REZEEFES=S
Environmental Characteristics
EEFEE P EEE =SS EEEREE R S E N R eSS (B EE RS FERERE | R T E S TCEREE |ECCEEERERRS (sxs=c=cxe

Dielectric Withstand !
Voltage

Maximum continuous
operating temp.

Air Leal age Rate

—— - — = - o -
T — - — — ———— ——— —— -

Vibration

- ——— ——— - — - —— ———— - > =

Durability

—————————————————————————
—————————————————————————
—————————————————————————
—————————————————————————
—————————————————————————

Operating Force

L T 2 2 2 22 X 2 3 X & 2 2 2 3 S 2 3 3 2 % 3 1

Other (please specity)

[3 X 22 22 3 2 2+ 2 5 3 3 2 R X 3 5 2 F 5 ¥ 3

e PE e Ss e ®e 48 Sw e GF CE WS G0 6 G A6 4° SO ce e Se 20 B 56 O

P e e Y e

- e . e - S -

- e -, T G G - -

2120 Vdc
Sea Level

- ——— - —————
- - —— - ——
- — v —— o - ——

—— -

Mil Std 202

—— - ——— ——— -

250 times

EsSsr=s=ScsEm=s

.............

.............

———————————— -

———————————— -
L4

- - - - - - -

- e = -

on ve B0 Se me Sm Ce O~ e ce 8 o= os GO se o8

- ve e w=e oo se oo

-—— e - - o —— -

- — - —— o ————

P

—— - — - — -

- —— - - - -

. ee Se we SE G0 Ge ¢O S TS G B ve Ba

- —— -

s==ssSs==E=

- - - ——— - -

- - -

- —-——— -

49

e mm e *E e @B mm WE e ew m6 S SE o G6 S0 Pe B co «6 ve v Sa ®S s S

e co ov mr ®e ca oo

- i - ————

- —— - ——

P e L T

- - - —————

_— - - —— -

- - —— o ———

- e ==

s====ss===s

- - ———

-———— - - - -

- - -

50

Appendix B:

Conceptual Model

ADMINISTRATIVE

\JO'EB‘

SPECIAL
wéiig%CDNNECTORS
—1+O
— T O

== 7
T HOMTH)

== -
)
~{jj<:»EEH:)
T

2
TIH . ENVIRONVENT

e o=
Q@@{ﬁj & S om-mitO
B Re e las

OO HTHO

= ™
(oA [== N D
} 8@0@ OO HTrO-HTHO
- Ot OO0 Y O

(ATWOHTH = =

ACCESSORIES (A W O MATERIALS

CYCNCNCY

CNCNCNYCN

|
:

Zs

7 N

(neen Lo

N S
7N

(o 1o

oF

~ S
7~ N

(;r"F’I;-F

oF

~N S

VRN
STEM-

N
7~ N

AN~ COMM-
—(EQUIV)

N S

PN

(W=t

_(FAMILY-)
&

N~ S

N S

PIECE PARTS

7~ N
PERSON

NAVE

~N S
VRN

FIRST
e |

~N S
VRN

MIODLE
~NAME)
-STR

~ S
7~ N

~ S
VRN

=3

NUVEER
~

€9

VRN

(e

N S

SERIES

7~ N

v DIMENSIO
-SET

(o)

~ S

GENERAL INFORMATION

¥s

7N

[e M

-IN

~

WITH
STANDING
-FORCE

.

{1z)

~

Z~7 7N

EFESSED,
_IN lm

— o)

FOR

~
VRN

TN [NERSRES

D.C. -
VOLTS

ATION

INSUL
ATION|
~-OF

CALLED) |MEASIRED| 4/ WINIMUM | VM-
R | (FERATDNG

—

QR WAX TMUM | MAXTVE-

TEST REQUIREMENTS

DOOHE

NS

99

7~ N

[o H

N S

PN

(5 H

N S

MATERIAL

- —D
i]
o
— ———
PRING- | FRING- SPRING-
—O—I!urne'rm
FINGSRS | FINGER ATING F et
G -—
ML gp, SPRING|SPRING-
T
SEL- on) | FRDE | FOR-
PLATING " -BEAE [SPRING-
o [PATING v

)

/
\

9§

N
[&

N S

f— For

INSERTS

CONNEC
— VRN
T e —{ T
~
— VRN
tr—vr&mm———(PSI)
{ ~
— TN
Gb—mm‘mm—(E&fﬁ)
~ S
-\ ineerr | IR

(rmH

N o s
CALE- |CABLE- MAE | usep
(%xm)—— ATIAGH- E"U—T—_‘ < |-For
N S
«—s h —
ETeODe For | s —o— VT Pumes
VN -—>
(caqer | leresprge
~
—
NMEER s1zes (12D
VRN
VOLTAGE
-mop)
ey
N S
— — —s 7~ N
*-
s | PAeT | o cxerve ‘ 'mmmmL—(wes)
N S

LS

CONTACTS

8%

(G bqrom|me

7
!
|l
|

LAC & RF CONNECTORS

AE

[A}

.

6§

|
:

ADAPTER
-RING

EMR HARDWARE

09

VRN

CHAIN-
(TERMIN
ATION

~N S

FoR -TYPE
oF | Has r7 mms—(e
.
e —
FINISHD lmm MOUNTING
FMISES| gy I K. HETS ~TYPE
——
DR | -D
) A PLATED | ALATES
I | -NE
—p
CABLE|cam F
-0D
-FR | ®@
———————p
—
LINKED COVER
COECTR| COMTTR v LING -LINK
@R | ®
-—
FOR | HaS
-~—
e
- |CHAIN
CHAIN

CONNECTOR COVERS

SERIES

19

PIN- LINGD|
LINK LINKS BY
INFR)
S|y
—p

INSERT- SELECHED|
ARRANGE HECTS
MENT

PIN PROTECTORS

62

mlﬂgm

: $
| 23)
IFIRC R EIREIREIREE
wrl (M) (8B F) B¢ B

B . 4

ES !
B | U3 8] N8| Uk 1
. w_g el m
O ® ¥

POTTING MOLDS AND ADAPTER

Appendix C: Database Evaluation

The following characteristics were evaluated for each of the database
management systems ORACLE, INGRES, BCSRim, RBase, IDMS/R, and
Goldengate.

Costs - The cost is the published or list price of the database systems
with the report generator, forms/applications generator, a link to an
external language, and the graphics generator.

Version - The version number of the tool evaluated.

Design Compatibility - Compatibility with NIAM. The design methodology.
Name Lengths - The length of table names and the names of elements
within the tables. The longer the names the more understandable they

are and the easier they are to remember.

Data Types - What types are predefined for data? Those which are
defined constrain and document the data.

Functions - The functions which assist in acquiring and manipulating
data.

Constraints - The methods used to make sure the data in the database
exists, is in the format required, and/or is within a specified range.

Security - The item which is checked to determine who can and can not
access data.

Indexes - An index is a key for referencing a table.
Views - A view is a name for a defined query.

Compression - Does the database have an algorithm for keeping the
storage space required as small as possible?

Query Language - The set of commands used to access data in a database.

Simplified Query Language - A subset of the query language which has
been modified so it is easier for a casual user to understand and
remember.

Example of Query Language - An example of the command required to find
all the employees who make more than $40,000 per year. Employee is the
table name. Ename is the name of the column in the table containing
employees names. Esalary is the name of the column in the table
containing employees salaries.

Menu Driven - Is the database driven mainly by menus, as opposed to the
user having to type the commands out?

Report Generator - Is there a tool to assist in the arrangement and
format of output reports?

63

Forms/Applications Generator - Is there a tool to assist in the
development of forms or windows to acquire information from users, where
the answer obtained from the user may lead to queries or they may lead
to another form?

Interfaces to the Outside World - Precompilers for programming languages
or links between programming languages and the database. These
languages could be used to graphically display data from the database
tool or to acquire information from the user.

PC Version - Is there a version of the database system which runs on a
personal computer?

PC Compatibility - If a complete database application is created on the
VAX version, will the same complete system execute on the PC version?

PC Runtime Version - Is there a version which will just execute
completed applications on the PC, so the user need not purchase all the
development tools?

Training - Is training included with the database?

Data Dictionary - A data dictionary is a tool which keeps track of what
is in the database, the table names and their structure, the data types,
the constraints, etc...).

Tutorials - On a scale of excellent-good-fair-ok-poor, how well did the
online or manual tutorials assist the developer in learning the database

and its tools?

Appearance - An opinion of the overall appearance of the database to a
user.

First Impression - An impression of the database and its tools after a
quick review of the manuals.

64

Attributes

Version
FC Version

MicroVAX Version

VAX 8&00 Version

Simplified
Cuery Language

Example of
Guery Language

Forms/Applications
Generator

Interfaces to the
Outside World

' Oracle

é__ w___m_:z4=======:=
s 1,300
. s 17,800
. s140,000

Char, Integer,
Float, Money,
Date

Mathematical,
Boolean,
Conversion

i BELECT ename,esalary
‘FROM employee
TWHERE esalary & 40000

Fascal, C, FLI1,
Fortran, Cobol

£ 1,150

% 34,000

136, 000

Char, Integer,
Float, Money,
Date

Mathematical,
Boclean, String,.
Conversion

RANGE OF e IS emplove

RETRIEVE (e.ename,
g.esalary) WHERE
e.esalary > 40000

Fascal, €, Fortran,
Cobol, BRasic

Attributes

FC Runtime Versilon

Data Dictionary

Tutorials

Appearance

First Impression

66

Oracle

Good

Very Nice

English like and
straight forward

Good
Good
English like with
& pProgramming
complexity

Attributes

N
FC Version i 1 %700 (Run Time $50)
MicroVvAX Version i s 1z,000 &
VAX 8600 version 1 % 2s,000 &

Design Compatibility Yes YRS
Name Lengths & Char 8 Char

Char, Integer,
Float, Money,
Date, Time

Data Types Char, Integer
Float, Money,
Date, Time

Mathematical,
Boolean, Conver,
Financial

Roalean,
Conversion

Frogrammed rules

o et S et o S e S 4148 SR S S e S T S O S s e e | A it i e e oo o s i S0 e i ot Gty 4 e S s Bt Bt ettt | e et Seaet G s oo skt daim A S s PSR AP e e S et St b

Simplified
Guery Language

Functions : Mathematical,
Example of i
Guery Language FROM employee {FROM employee
|WHERE esalary gt tWHERE esalary gt
40000

40000

Yes (FC only)

Yes (FC only)

Report Generator

Forms/Applications :
Generator 1

Interfaces to the Fortran Fascal, C, Fortran
Outside World

Yes (RBase)

For Data Onily

FC Version

Yes (Only)

FC Compatibility

Attributes

FOC O Runtime Version

<
m
i
p
o ;
@
o
-~
14
n

Training

Data Dictionary
Tutorials

<
| P

Erglish like, but
appears to be complex

English like, but |
appears to be comple:!

e

G}
0
o
o
[ny]
u}
a
a

68

Attributes

Version

FC Version

MicroVAX Version

VAX B&0O Version

Simplified

Guery Language

Example of
Gfuery Language

Forms/Applications
Generator

Interfaces to the
Outside World

I
1
]
]

IDMES/R
10,2

Char, Integer,
Float

Mathematical,
Boglean,
Conversion

OLG 8L

SELECT ename,esalary
FROM employee

WHERE esalary » 40000
Yes
Yes (IBM only)
No
Cobol, FL1, Assembler
Fortran, RFG I1
Yes (Goldengate)

Goldengate

F4HOO

Char
Char, Integer,
Float, Money,
Date
Mathematical,
Boolean,
Financial

e e
wowted

SELECT ename = ¥
#and#
esalary > 40000
Yes
Yes (FC only)
No
Yes (Only)
Yes

Attributes

g S S]

FC Runtime Version

Training

o i Y e it S o St S S e S S s e 000 e bt Mt e

70

IDMS/R

System

Goldengate

Like dBASE III. It
is really a spread-
sheet not a database.

Appendix D: Tables and Indexes
Tables

create table CONNECTOR (cc_per sec helium leakage of number,

create

create

create

create

dc_volts for number not null,

degrees c_maximum for number not null,
degrees c minimum for number,

family name describing char(15) not null,
g mech withstandable number,

hole layout code_describes char(7),
inches _spring_engage of number,

inch_ 1bs the coupling of number,

insert type defines char(15) not null,
integer arranges a number(3) not null
integer arranges number(3) not null,
integer_contacts_for number (3) not null
series_describing char(10) not null,
1nteger_max_mat1ngs_for number(4),
internal service rating code char(6) not null,
integer max i contacts for number(4),
1bs_for . coupllng_pln number,

material name spring finger ba char(15),
material name the shell base char(15),
milli_second mech withstandabl number,
mounting_type describes mounti char(25) not null,
ohms for hum1d1ty of number,

ohms for insulation of number not null,
ohms_spring fingers for number,

part_ suffix number for number(3) not null,
psi_retention for number,

seal code for char(11) not null,

stem number defining number(6) not null,
type_name for char(25));

table CONNECTOR MATING (

part_suffix numb a plug part o number(3) not null,
part_suffix nu a receptacle pa number(3) not null,
stem number a plug part of number(6) not null,

stem number a receptacle part number(6) not null);

table CONN_CONTACTS (contact ref part of number(6) not null,

part_suffix number has number(3) not null,
stem _number has number (6) not null);

table CONN_DIMENSIONS

(dimension name str specifies char(5) not null,
inches_specifies number not null,

part_suffix numbe specified by number(3) not null,
stem_number specified by number(6) not null);

table CONN_INSERT MAT

(material name the insert base char(15) not null,
part_ suffix number insert number(3) not null,
stem number insert number(6) not null);

71

create table CONN SHELL PLATE (
material name shell plating fo char(15) not null,
part_suffix numb shell plating number(3) not null,
stem number shell plating number(6) not null);

create table CONN_SPRING PLATE (
material name spring finger pl char(15) not null,
part_suffix nu spring plating number(3) not null,
stem number spring plating of number(6) not null);

create table CONTACT (amps carrying cap number not null,
amps_for number not null,
contact _ref defines number(6) not null,
contact_type defines char(10) not null,
integer sizes number(2) not null,
lbs for number not null,
material name used for char(15) not null,
termination_st cable attach me char(15) not null,
voltage drop mv_for number not null);

create table CONTACT PLATE MAT
(contact_ref plated with number(6) not null,
material name plates char(15) not null);

create table DIM SET DIM NAME
(dimension_name used to identi char(5) not null,
family name identified using char(15) not null,
series_identified using char(10) not null);

create table LAC CONNECTOR (dc volts of a number not null,
dc_volts of number not null,
lac_type of char(15) not null
part_suffix number for number(3) not null,
stem number defining number(6) not null);

create table SERIES (series represents char(10) not null);
create table SHELL SIZE (integer represents number not null);

create table CONN PERSON (first name str of char(25) not null,
niddle name str of char(25),
person_sur_name “of char(25) not null,
ssn_of number(9) not null);

create table PIECE PART A (family class code for char(25) not null,
part _suffix number for number(3) not null,
ssn_sponsoring number(11) not null,
stem number defining number(6) not null);

create table PIECE PART B (part suffix number_ for number(3) not null,
sa number stem of char(6) not null,
sa_number suffix of number(3),
stem number defining number(6) not null);

72

create

create

create

create

create

create

create

create
~create
create
create
create
create
create
create
create

create

table

table

table

table

table

table

table

table
table
table
table
table
table
table
table
table

table

PP_COMM_EQUIV (comm equiv_an alias for char(20) not null,
“part_suffix numbe alt known by number(3) not null,
stem number alt known by number(6) not null);

PP_MAN (manufacturer name producing char(25) not null,
“part_suffix _number_produced by number(3) not null,
stem number produced by number(6) not null);

RF_CONNECTOR (cable mate for char(20),

“db_insertion loss for number,

db rf _leakage for number,

ohms char_imped for number,

part_suffix number for number(3) not null,
reflection coef of number,

stem number defining number(6) not null);

CONN_SANDIA_EMPLOYEE (e number of number(5) not null,
ssn_of number(8) not null);

SERVICE RATING (dc_volts measured for number not null,
feet called out number not null,
internal service rating_code char(6) not null,
rating letters references char(3) not null);

SEQNOS (tablename char(30) not null,
maxseqno number(6) not null);

DESIGN_ENGINEER (first name str of char(25) not null,
middle name _str_of char(25),
person_sur_name of char(25) not null,
division number(4) not null,
stem_number defining number(6) not null,
part_suffix number for number(3) not null),
MOUNTS (mounting types char(25) not null);
SEAL CODES(codes char(11) not null);
INSERTS (insert types char(15) not null);
BASE MATERIALS (material types char(15) not null);
PLATING MATERIALS(plating types char(15) not null);
SHAPE (name char(15) not null);
TYPE (name char(15) not null);
CONTACT TYPE(name char(15) not null);
DEGREES (name char(1) not null);

OHMS (name char(15) not null);

73

create

create

create

create

create

create

create

create

create

create

create

74

table EMR_HARDWARE TYPES (emr_part_name_references char (20) not null);

table EMR HARDWARE ANGLE (stem number made for number (6) not null,
part_suffix number made for number (3) not null,
angle number defines number not null);

table EMR HARDWARE (stem number defining number (6) not null,
part_suffix_number for number (3) not null,
emr_part name describing char (20) not null),

table EMR HARD DIM (stem number specified_by number (6) not null,
part . suffix numbe specified by number (3) not null,
emr name string specifies char (10) not null,
1nches_spec1f1es number not null);

table EMR HARD LINK (stem number made for number (6) not null,
part_suffix number made for number (3) not null,
shell size defines number (3) not null,
family defines char (15) not null);

table EMR SET NAMES (emr part name_identified using char (20) not null,
emr name string used to id char (10) not null);

table PIN PROTECTOR (stem number defining number (6) not null,
part_suffix_number for number (3) not null,
shell size selects number (3) not null,
dash_number_selects number (3) not null),

table POTTING MOLD ADAPT (stem number defining number (6) not null,
part_suffix number for number (3) not null,
thread code for char (20) not null,
cable id number not null,
connector_od number not null,
cable od number not null,

becd number char (15));

table POTTING MOLD ADAPT LINK (stem number_defining number (6) not null,
part_suffix “number for number (3) not null,
shell size selects number (3) not null,
family selects char (15) not null);

table POTTING MOLD (stem number defining number (6) not null,
part_suffix number for number (3) not null,
stem number helps fit number (6),
part_suffix number helps fit number (3),
angle number _groups number not null,
inches cable diameter for number not null,
inches_connector dia for number not null);

table POTTING MOLD LINK (stem number defining number (6) not null,
part_suffix_number_for number (3) not null,
shell size selects number (3) not null,
family selects char (15) not null);

create table ANGLED _POTTING MOLDS (stem number defining number (6) not null,
part_suffix number for number (3) not null,
second cable _diamter number not null,
cable center " number,
conn center number,
outside radius number,
inside radius number);

create table CONNECTOR COVER (stem number defining number (6) not null,
part_suffix number for number (3) not null,
connector_type char (25),
shell size selects number (3) not null,
contact_type char (10),
mounting type char (25),
chain_termination_of char (15),
material finishes char (15),
material plates char (15),
connector id number,
connector od number,
cable od number,
length number,
chain length number,
becd number_identifying char (15));

create table ADAPTER RINGS (stem number defining number (6) not null,
part _suffix number for number (3) not null,
stem number required for number (6) not null
part_suffix required for number (3) not null),

create table COVER LINK (stem number defining number (6) not null,
part_suffix number for number (3) not null,
family selects char (15) not null,
ser1es_se1ects char (10) not null),

create table PIN PROTECTOR LINK (stem number defining number (6) not null,
part suffix number for number (3) not null,
family selects char (15) not null,
series selects char (10) not null),

Indexes

create unique index CONN_INDEX on CONNECTOR
(stem number defining, part suffix number for) NOCOMPRESS;

create index CONN SELECT on CONNECTOR
(stem number defining, part suffix number _for,
family name describing, series describing, integer contacts for)

NOCOMPRESS;;

create unique index PLUG MATING INDEX on CONNECTOR MATING
(stem_number a plug part of, part suffix numb a _plug_part o,
stem number a receptacle part, part suffix nu a receptacle pa)

NOCOMPRESS ;

75

create index RECEPTACLE MATING INDEX on CONNECTOR MATING
(stem number a receptacle part, part suffix nu a receptacle pa,

stem number a;plug part_of, part suffix numb_a _plug part o)
NOCOMPRESS;

create unique index CONTACT REF INDEX on
CONN_CONTACTS (contact _ref part of, stem number has,
part_suffix number has) NOCOMPRESS;

create index CONTACT PART NUMBERS INDEX on CONN_CONTACTS
(stem number has, part suffix number has, contact ref part of)

NOCOMPRESS;

create unique index CONN DIMENSION INDEX on CONN_DIMENSIONS
(stem_number specified by, part_. suffix numbe spec1f1ed _by,
dimension name str specifies, inches specifies) NOCOMPRESS;

create unique index CONN_INSERT INDEX on CONN_INSERT MAT
(stem_number insert, part suffix number insert,
material name the insert base) NOCOMPRESS;

create unique index CONN_SHELL INDEX on CONN SHELL PLATE
(stem number shell plating, part suffix numb shell plating,
material name shell plating fo) NOCOMPRESS;

create unique index CONN SPRING INDEX on CONN SPRING PLATE
(stem number spr1ng_p1at1ng of, part suffix nu spring plating,
material name spring finger pl) NOCOMPRESS;

create unique index CONTACT INDEX on CONTACT
(contact_ref defines) NOCOMPRESS;

create unique index CONTACT PLATING INDEX on CONTACT PLATE MAT
(contact_ref plated with, material name plates) NOCOMPRESS;

create unique index DIM_SET INDEX on DIM SET DIM NAME
(family name_ identified _using, series identified _using,

dimension name used to identi) NOCOMPRESS;

create index FAMILY INDEX on DIM SET DIM NAME
(family name identified using) NOCOMPRESS;

create unique index LAC INDEX on LAC CONNECTOR
(stem number defining, part suffix number for) NOCOMPRESS;

create unique index SERIES INDEX on SERIES (series represents)
NOCOMPRESS;

create unique index SHELL SIZE INDEX on SHELL SIZE
(integer_represents) NOCOMPRESS ;

create unique index CONN PERSON INDEX on CONN PERSON (ssn_of)
NOCOMPRESS;;

76

create unique index PIECE PART A INDEX on PIECE PART A
(stem_number_defining, part suffix number for) NOCOMPRESS;

create unique index PIECE PART B INDEX on PIECE PART B
(stem_number defining, part _suffix number for) NOCOMPRESS;

create index SA_SELECT_INDEX on PIECE PART B
(sa_number_stem of, sa number suffix of) NOCOMPRESS;

create unique index COMM_EQUIV_INDEX on PP_COMM EQUIV
(stem_number alt known by, part suffix numbe _alt_known by,
comm_equiv_an alias _for) NOCOMPRESS;

create unique index MAN INDEX on PP MAN

(stem_number produced by, part suffix _number produced by,
manufacturer_name_producing) NOCOMPRESS;

create unique index RF_INDEX on RF CONNECTOR
(stem_number_defining, part suffix number for) NOCOMPRESS;

create unique index CONN_SANDIA_SSN INDEX on CONN_SANDIA EMPLOYEE
(ssn_of) NOCOMPRESS;

create unique index SERVICE_RATING INDEX on SERVICE RATING
(internal service rating_ code) NOCOMPRESS;

create unique index SHAPE INDEX on SHAPE (name) NOCOMPRESS;
create unique index TYPE INDEX on TYPE(name) NOCOMPRESS;

create unique index CONTACT TYPE INDEX on CONTACT TYPE(name)
NOCOMPRESS ;

create unique index DEGREES INDEX on DEGREES(name) NOCOMPRESS;
create unique index OHMS INDEX on OHMS(name) NOCOMPRESS;

create unique index MOUNT INDEX on MOUNTS (mounting types)
NOCOMPRESS ;

create unique index SEAL INDEX on SEAL CODES (codes) NOCOMPRESS;

create unique index INSERT INDEX on INSERTS(insert types)
NOCOMPRESS;;

create unique index BASE MATERIAL INDEX on
BASE MATERIALS (material types) NOCOMPRESS;

create unique index PLATING MATERIAL INDEX on
PLATING MATERITALS (plating_types) NOCOMPRESS;

create unique index DESIGN INDEX on
DESIGN ENGINEER (stem number _defining, part_suffix number for)
NOCOMPRESS;;

77

create unique index SEQ_INDEX on SEQNOS (tablename, maxsegno)
NOCOMPRESS;

create unique index EMR_TYPE INDEX on EMR HARDWARE TYPES
(emr_part name references);

create unique index EMR_ANGLE INDEX on EMR_HARDWARE ANGLE
(stem_number made for, part suffix number made for,
angle number def1nes),

create unique index EMR HARDWARE INDEX on EMR HARDWARE
(stem number defining, part suffix number for);

create unique index EMR DIM INDEX on EMR HARD DIM
(stem_number specified by, part_suffix_ numbe specified by,
enr name string specifies, inches specifies);

create unique index EMR LINK INDEX on EMR HARD LINK
(stem number made for, part suffix number made for,
shell size deflnes, family deflnes),

create unique index EMR SET INDEX on EMR SET NAMES
(emr_part name identified using, emr name _string_ used to_id);

create unique index PIN PROTECTOR INDEX on PIN PROTECTOR
(stem number defining, part suffix number for,
shell size selects, dash_ number selects);

create unique index PIN PROTECTOR LINK INDEX on
PIN PROTECTOR LINK (stem number defining, part suffix_number for,
famlly selects, series selects),

create unique index MOLD ADAPT INDEX on POTTING_MOLD ADAPT

(stem number defining, part_suffix_ number for);

create unique index MOLD ADAPT LINK INDEX on
POTTING MOLD ADAPT LINK (stem number defining,

part_ suffix number _for, shell size_ selects, family selects);

create unique index MOLD INDEX on POTTING MOLD
(stem number defining, part suffix number for);

create unique index MOLD LINK INDEX on POTTING MOLD LINK
(stem number defining, part suffix number for,
shell size selects, family _selects);

create unique index ANGLED MOLD INDEX on ANGLED POTTING MOLDS
(stem number defining, part . suffix_number for);

create unique index COVER INDEX on CONNECTOR_ COVER

(stem number defining, part_suffix number for);

78

create unique index COVER_LINK INDEX on COVER_LINK
(stem number_defining, part_suffix_number_for, family selects,
series_selects);

79

Appendix E: Input/Update Form

Connector Selection Input or Change Form

General Information

* Type: (plug/receptacle)

* Family: (LJT, JT, PT, R&P,...)

* Series: (00,02,06,07,07H, ...)

* Mounting Type: (see list below)

* Seal Code: (hermetic/nonhermetic)

*+ Insert Arrangement: - __ (shell size - no. contacts/dash no.)

* Insert Type: (subminiature, miniature, standard, double
density)

* Number of Contacts:

* Number of Contacts carrying max current:

* Service Rating: (I, I1, M, ...)

* Sandia Number: -
Hole Layout Code:
SA/MC Number: -

Material Information

* Shell Base Material: (see list below)
Shell Platings: (see list below)

x Insert Materials:

Spring/Grounding Finger Base Material:

Spring/Grounding Finger Plating Materials:

80

Environment Information

* Dielectric Withstanding Voltage: Y DC
* Insulation Resistance: Megohms
Spring Engagement: Inches
Spring Finger Resistance: Ohms
Air/Helium Leakage: cc/sec
Insert Retention: psig
Durability: times coupled and
uncoupled
Physical/Mechanical Shock: g
milliseconds
Coupling Pin Strength: inch
1bs
Moisture/Humidity Resistance: Megohms
*+ Maximum Operating Temperature: Degrees C/F
Minimum Operating Temperature: Degrees C/F

Contact Information (per contact size)

* Type: , (pin/socket)

* Size:

* Current Rating: amps

* Termination Style: (solder cups, weldable,...)
* Base Material:

* Test Current: amps

* Test Voltage: mV

*x Retention: 1bs

Plating Materials:

Responsible Engineer

Name:

81

Division:

Misc.

*

82

LAC Type:
LAC FRB:
RF Insertion Loss: db
RF Leakage: db
RF Reflection Coefficient:

RF Characteristic Impedence: ohms
RF Compatible Cable:

Manufacturer:

Commercial Equivalent:

Mating Connectors: (Drawing Numbers)
Dimensions: Letter Inches(see note below)

Families

Dwarf
JT
LJT
R&P
PT

Mounting Types

Base

Jam Nut

Square Flange 4 Hole
4 Hole RE&P

Threaded Panel
Encapsulation

Cable Mount

PC Board

Materials

Stainless Steel
Aluminum

Alloy 52

Copper Alloy
Diallyl Phthalate
Epoxy

Glass

Ceramic

PTFE

Teflon

Nylon Molding

Plating Materials

Gold

LV
HV
RF
PC Board

Micro Miniature

Square Flange 2 Hole
8 Hole Flange

2 Hole R&P

Weld Flange

Solder

Bulkhead

Right Angled PC Board

Steel

Aluminum Alloy
Beryllium Copper
Plastic

Phenolic

Glass Filled Epoxy
Brass

High Impact Epoxy
PCTFE

Bronze

Molded Plastic

Silver

83

Nickel Cadmium
Tin Copper

Aluminite

Dimensions

To specify dimensions, a letter and a value are needed. The letter
indicates what the dimension is for. The value is the length, diameter, or
radius given to your connector for the specified dimension. The letters used
for a given connector can currently be found in the SA/MC Special Design
Connector Catalog or the Connector Selection Graphics notebook. If no letters
are given for the connector you are entering, then call Nicole Sevier at 6-2993.

You should know the values.

84

Appendix F: PC to VAX Transfer Description

To transfer Oracle applications on the PC to the MicroVAX it is
necessary to transfer the following:

1.
2.
3.

The application tables and rows of data.
The application views and indexes.
The application user interface or SQL*FORMS file.

To acquire the application tables and rows use the Oracle export

procedures.

Export only the tables defined by your application.

export system tables.

The file created by the export procedure is a binary file.

Do not

To transfer

a binary file to the MicroVAX, the 891 Building VAX (sav49) and polygon
poly-COM/240 terminal emulation and file transfer software were used.
The 891 Building VAX was used because the MicroVAX did not have any file
transfer software available. The procedures followed to make this
transfer are described in detail below.

1.

M

Use polygons TRM routine to emulate a terminal. This
is done by typing:

trm

and setting up all the screens so the two machines
are talking the same language. Once this is done,
press F3 to start the emulating.

Log in to the 891 Building VAX.

Proceed to the directory where you want the files
transferred to.

Invoke the 891 Building VAX file transfer software,
HST. This is done by typing:

hst
Press Al1t-F10 X to exit the polygon TRM routine.
Transfer the binary file, BINARY.DMP, from the PC to
the 881 Building VAX file, VAX.DMP by typing:

xfr BINARY.DMP/i to VAX.DMP/im
Invoke the polygon TRM software by typing:

trm
f3

To exit the 891 Building VAX file transfer software,
type Ctrl-Z.

To get this binary file, VAX.DMP from the 891 Building VAX to the
MicroVAX you need use only the copy command. This can be done by

typing:

85

copy VAX.DMP sav248::x

To transfer the views and the indexes it is necessary to have the ASCII
files which were used to create them originally. These can be
transferred to the MicroVAX using most terminal emulation software; such
as, polygon, vterm, kermit, etc...

The polygon software and the 891 Building VAX file transfer software
were used to transfer these ASCII files. The only difference between a
binary file transfer and an ASCII file transfer are the options used (/i
and /im). For example, to transfer the ASCII file, PC INDEXES.SQL to
VAX INDEXES.SQL the xfr command would be as follows:

xfr PC_INDEXES.SQL to VAX INDEXES.SQL

The same transfer command can be used for the views, too. The copy
command, as shown above, will get these files from the 891 Building VAX
to the MicroVAX.

To transfer the application user interface you must first generate an
inp file on the PC using SQL+FORMS development software. This file can
be transferred as an ASCII file to the MicroVAX as described above.

Once the inp file is on the MicroVAX you may load it using the SQL+FORMS
development software or generate an executable forms file. The first
choice will allow you to manipulate the SQL+FORMS application on the

MicroVAX. The latter only allows you to run the SQL*FORMS application
on the MicroVAX.

To create an executable forms file from the transferred inp file,
VAX.inp, type:

iag VAX -to

To run this file use runforms, as was used with the PC Oracle software.

86

Appendix G: CRT Files & Key Definition Description
Creating New CRT Files
This document describes the method used to create a new CRT file. A new

CRT file was created to map the keys used on a VI100 to the following
SQL*FORMS operator functions:

Action Key

Next Field Return

Previous Field Left Arrow or Numeric 4
Next Record Down Arrow or Numeric 2
Previous Record Up Arrow or Numeric 8
Next Screen Pghbn or Numeric 3
Previous Screen PgUp or Numeric 9
Previous Menu Home or Numeric 7

Clear Field Numeric 5

Help PF1

Invoke Search PF2

List of Values PF3

Exit PF4

The simplest way to access the ORACLE tables associated with CRT
definitions was to use the CRT forms provided with ORACLE. The
CRT.inp file was found in the sys$oracle directory. An
executable version of this form was created by typing:

iag crt -to
Once this file was created, the CRT form was created by typing:
‘runform crt system/password

The user must have system privileges to access the ORACLE tables
associated with CRT definitions.

After the CRT form was invoked, the execute query key was pressed
to have all the CRT files loaded. This list was scanned through
using the Next Record key to see all the CRT files that were
available. Page 239 of the ORACLE Database Administrators Guide
has a list of all the CRT files defined by ORACLE.

The CRT forms contains two screens in sequence. The first
defines how the screen will appear to the engineer on a given
terminal device. The screen defines how a box will be displayed
on a given terminal device and maps the keys on the keyboard to
ORACLE software functionms.

87

Crt Name: Type: CHAR

Columns: 80 Lines: 24 Mode Line: 24 Message Line: 23 Base: 1

Terminal Setup: Term Reset:

Graphics On: Graphics O0ff:

Protect On: Protect Off:

2X Top: 2X Bottom:
Clearscreen: Clear Line: Clear to EOL:
Create Window: Scroll Up: Scroll Down:
C-L Offset: Goto C-L: C-L Map:
Cursor Left: Right: Up: Down:
Video Bold: Flash: Revrs: Under:
Attribs O0ff: 1: 2: 3:
1+2+3: 1+2: 2+3: 1+3:
Char Mode: Replace Page 1 Count: *0

CRT Screen: Page 1
Graphics (Y/N): Screen Printer
Vertical line:
Horizontal line:
Crt Name Upper left corner:
Upper right corner:
Lower left corner:
Lower right corner:

Left-side T:
Right-side T:
Upright T:
Inverted T:
Cross (+):
Prod Fn
Code Cd Function Description Escape Sequence Comments
Char Mode: Replace Page 2 Count: *0

CRT Screen: Page 2

88

For a formal definition of these screens and the ORACLE CRT system, see
pages 71-88 of the ORACLE Database Administrator’s Guide.

The method used for creating the new CRT file was to copy the existing
VT100 CRT file, except for the key definitions for the SQL*FORMS
operator.

To do this, the VT100 CRT information was found on the first screen. A
new record was created for the new CRT file, by pressing the create
record key. The duplicate record key was pressed, to duplicate the
information in the previous record (VT100). The next step was to change
the name of the CRT being defined to the new CRT name, TVT100 (for test
VT100).

The box drawing information was input for the new CRT. To copy the
VT100 box drawing information access to the field which states what CRT
the box drawing information is for is needed (so it could be changed
from VT100 to TVT100). ORACLE did not create the form with "Modify
Access" to this field. The CRT form should be modified to allow this,
but to get around it the same values that were given for the VT100 CRT
were input for the TVT100 CRT.

The same problem existed for the key definitions. The forms did not
allow access to the field that defines what CRT file the keys being
displayed correspond to. Thus, new keys had to be input; they could not
be copied and then altered. The next few paragraphs describe each of
the fields used to map a key to an ORACLE software function.

Look at the lower section of the second CRT screen. The first field is
the product code. The product code is the code for the ORACLE tool that
the key definitions are being made for: in this case, the SQL+FORMS
operator. The product code for this is IAP.

The next field is the function code. The function codes available for
the SQL*FORMS operator or IAP can be found on page 236 of the ORACLE
Database Administrator’s Guide.

The function description field is filled in automatically, based on what
is in the function code field.

The Escape Sequence tells ORACLE what key this function will be
associated with. The escape sequence associated with a given key
depends on what terminal emulator or device is being used. To find out
what the escape sequences were for a VT100, he August 4, 1987 VTERM
4010 manual was consulted. This information can be found in Chapter 12:
The Keyboard, Mouse, and Terminal Screen, tables 12-2 (page 135) and
12-3 (page 137).

The comments field normally explains what keyboard key the function has
been associated with, because the escape sequence is relative to the
device.

89

The following table illustrates the keys as they were defined for the
new CRT file TVT100:

90

Function Code

Description

CA
CM
DB
DE
DK
EQ
LV
ML
MR
NB
NF
NF
NR
NR
P

PB
PF
PF
PR
PR
Q

R

X

X

CF

Clear Form/Rollback

Insert/Replace
Delete Backward
Display Error

Show Function Keys

Enter Query

List Field Values

Left

Right

Next Block
Next Field
Next Field

Next Record
Next Record
Print

Previous Block
Previous Field
Previous Field
Previous Record
Previous Record
Execute Query
Redisplay Page
Exit/Cancel
Exit/Cancel
Clear Field

Escape Sequence Comments

\eOw Numeric 7

\eOn . or Del
Delete

\e01 ,

*\ek Escape k

\eOP PF1

\eOR PF3

\e0D <~

\eOC ->

\els Numeric 3

\015 Return

\011 Tab

\e0B Down Arrow

\eOr Numeric 2

*\ep Escape p

\Oy Numeric 9

\010 Back Space

\eOt Numeric 4

\eOA Up Arrow

\eOlx Numeric 8

\e0Q PF2

*\er Escape r

\e0S PF4

\032 Ctrl Z

\eOu Numeric 5

A copy of the keyboard layout as it appears using TVT100 is shown

in the VT100 map on the next page.

All the key definitions shown above were input into the key
definition section (on the lower section of the second CRT

screen), the records were committed by pressing the commit key,
and the CRT forms were exit using the exit key.

91

(4]

VT100 Keyboard Layout

Next Field

= Return

Previous Field = Shift Tab

F1 F2
Help Invoke
Search
F3 Fa
List of Exit
Values
FS F6
F7 F8
Previoug Next
Record | Record
F9 F10

7 8 9 *
Previoug Previous| Previous|
Menu Record | Screen

4 5 6 -
Previous|] Clear
Field Field

1 2 3 +

Next Next
Record | Screen
0

with NUM

To actually create a TVT100 CRT file that could be used by
engineers, the new TVT100 CRT must be run through the CRT
program. This was done by typing the following:

CRT TVT100 system/password

The CRT file could now be used when running a SQL*FORMS
application. It could not be used with any of the other ORACLE
tools. Key definitions were only defined for SQL+FORMS

applications. Additional key definitions could be included for
other ORACLE tools.

Implementing Variable Key Definitions

To implement different key definitions for the connector selection
program the following procedures were followed.

To start off, the trigger functions that were used by the connector
selection program were reviewed and the following list was created:

Function Trigger Name
Next Field Key-Nxtf1d
Previous Field Key-Prvfld
Next Record Key-Nxtrec
Previous Record Key-Prvrec
Next Block Key-Nxtblk

Previous Block Key-Prvblk
List of Values Key-Listval

Help Key-Entqry
Exit Key-Exit
Previous Menu Key-Clrfrm

Execute Query Key-Exeqry

The functions help, list of values, and exit were defined as form
triggers since the same action is performed regardless of the
current block or field. The remaining functions were defined as
block triggers or field triggers, depending on where they
occurred and the actions they were to perform.

A table named Keys was defined as follows:

Create table KEYS (TERMINAL TYPE char(10) not null,
NXTFLD char(5),
PRVFLD char(5),
NXTREC char(5),
PRVREC char(5),
NXTBLK char(5),
PRVBLK char(5),
LISTVAL char(5),
HELP char(5),
EXIT char(5),
MENU char (5),
EXEQRY char(5));

The following information was placed in this table:

Terminal Nxtfld Prvfld Nxtrec Prvrec Nxtblk Prvblk Listv Help Exit Menu Exeqr

PC Enter “-Tab v B Pgbn Pglp F3 F1 F4 Home F2
VT100 Enter “-Tab v - Pghbn3 PgUp9 F3 F1 F4 Home7 F2
VT220 Enter F12 v B Next Prev F13 Selct PF4 F17 Find

To implement this idea, two blocks were created. One block, KEYS, was
created to perform the query to the KEYS table. This query looks in the
engineer’s table - TERMINAL TYPE (field TERMINAL) to find out what
terminal type the engineer has. Based on this information, the block
searches the table KEYS for the corresponding key definitions.

The second block, OUTPUT KEYS, contains the fields on all the screens
where the key definitions are to be displayed. The names of these
fields were created by concatenating the key name with the fields page
number. For example, nxtblk 10 displays the nxtblk key (PgDn, PgDn3, or
Next) on page 10 of the application. The values to be placed in these
fields are "copied from"™ the corresponding field in the KEYS block.

Thus, to get the keys displayed initially the following actions were
performed:

Goblk keys; -~ Go to the block KEYS

Exeqgry; -- Find the appropriate key
definitions

Goblk output keys; -~ Copy the key definitions to all

the screens.

Note that whenever a clear form function is performed, the above actions
must be invoked, again.

The type of CRT file used must match the type of keys displayed by the
keys blocks. This was done in the following manner:

1. Determine the engineer’s terminal type via set term/inq (or
by asking the engineer if set term/inq doesn’t work);

2. Have the engineer create the table TERMINAL_TYPE with the
field TERMINAL;

3. 1Insert the engineer’s terminal type into the table
TERMINAL TYPE;

4. Invoke the application with the appropriate CRT file;

5. And when the engineer is finished with the application,
drop the table TERMINAL TYPE

See the User interface Command Procedure for more information.

94

Appendix H: User Interface Command Procedure

RunConsel

$set noon
$set nover

$!
$!
$!
$!
$!
$!
§!
$!
$!
$!
$!
$!
$!
$!
$!
$!
$!
8!
$!
$!
$!
8!
$!
$!
$!
$!
$!
8!
8!
8!
8!
$!
$!
$!
$!
$!
$!
$!

——————————————————————— Run Consel. com ---------mmmommm

Created: '
Date: November 7, 1988
Author: N. E. Sevier
Modified:
Date: April 14, 1989
Author: N. E. Sevier
Changes: Set logicals to reference the disk sd: since users are on usr:
Need a logical name for the first form called, consellg

This routine will make sure that the user’s terminal type is set

based on the terminal s/he is currently using.

Once the terminal type is known, the forms application must be told

what type of terminal the user has. The only medium which both SQL+FORMS
and VMS have in common is the database. Thus, we will use SQL*Plus to
create a table, terminal type, in Oracle. This table will contain the users
terminal type. Currently, only VI100 and VI220 are supported by this
command file.

The forms application will be invoked with the appropriate crt file.

When the application is complete, SQL*Plus will be used to delete the table
terminal type.

A logical name must be created so that oracle can find the second part of
the connector selection form, consel2v. Consel2v is in the subdirectory
consel and the only way to tell oracle this is to create a logical name
so that consel2v = [conuser]consel2v. Thus, a process logical name

is created by this command procedure.

A logical name must also be created so that oracle can find the third part
of the connector selection form, acc output. Acc output is in the sub
directory consel and the only way to tell oracle this is to create a logical
name so that acc output = [conuser]acc output. Thus, a process

logical name is created by this command procedure.

Create logical name so consel2v and acc _output can be found.

$assign/nolog/table=1nn8process table sd: [conuser]consellg consellg

$assign/nolog/table=1nm8process table sd:[conuser]consel2g consel2g

$assign/nolog/table=1nm$process table sd: [conuser]acc output acc output
!

$!
$!

Find out the user’s terminal type

$set term/inq

$if .not. $status then goto askuser
$pid = """

$loop:

95

$ on error then goto error message
$ term = f8getjpi(f$pid(pid),"TERMINAL")
$ if term .egs. "" then goto loop

$end loop:
$nun = f$getdvi(term, "DEVTYPE")
$!

$! Branch so that the SQL*FORMS can be called with the proper crt file
8!

$if num .eqs. 96 then goto vt100

$if num .eqs. 98 then goto vt100

8$if num .egs. 110 then goto vt200

$!

$! The system cannot determine what type of terminal the engineer has, so this
$! procedure must ask the user.

$!

$askuser:

$type sys$input

Terminal Types Available

VT100 - Includes all VT100 Series Terminals or Emulators
VT200 - Includes all VT200 and VT300 Series Terminals or Emulators

$inquire choice "Enter your terminal type (VT100 or VT200)"
$choice = f$edit (choice, "UPCASE")

$!

$! Branch to so that SQL*FORMS can be invoked with the proper crt file.
$!

$on warning then goto error message

8goto ’choice’

$!

$! Invoke SQL*FORMS with the Test VI100 crt file (defines keys commonly
$! found on a PC keyboard)

$!

$vt100:

$write sys$output "You are running as a VT100"
$sqlplus -silent ""/ @sd: [conuser]create vt100
$define/user sys$input sys$command

$runform consellg -qc TVT100 ""/

$sqlplus -silent ""/ @sd:[conuser}drop terminal
$0sd: [conuser]log

$exit

$!

8! Invoke SQL*FORMS with the VT220 crt file.

$!

$vt200:

8$write sys$output "You are running as a VT220"
$sqlplus -silent ""/ @sd:[conuser]create vt220
$define/user sys$input sys$command

$runform consellg -qc VI220 ""/

$sqlplus -silent ""/ @sd:[conuser]drop terminal
$0sd: [conuser]log

Sexit

$!

96

$! Prints out an error message if the user enters an invalid terminal type.
$!
$error message:
$on warning then goto error message
$write sys$output " "
$write sys$output "Unknown Terminal Type"
$write sys$output " "
$goto askuser
$exit
Create VT100

create table terminal type (terminal char (5) not null);
insert into terminal type values (’VT100’);
exit;

Create VT220
create table terminal type (terminal char(5) not null);
insert into terminal type values (’VT220’);
exit;

Drop Terminal

drop table terminal type;
exit;

97

Appendix I: Help Command Procedure
Help.Com

$larsmrrrnmkknknrrkkkrkkx Display Help . com sssksmomsmskorsonskokor ks kkokok k&

$!

$! Created:

$! Author: Nicole E. Sevier, 2551
$! Date: April 13, 1989

$!

$! Revised:

$! Author:

$! Date:

$! Notes:

$!

$! This procedure is called by SQL+*FORMS when a user presses the help button.
$! The help trigger must determine from the table connector help what

$! file to display based on the current form, block, and field. The table

$! connector help has the following fields: help file, form, block, and field.
$! The current form, block, and field are stored in the system variables

$! system.current form, system.current_block, and system.current field.

$!

8! This command procedure simply displays the help file for the form, block,
$! and field the user is located on.

$!

$!**
8type/page sd: [conuser.help]’P1’

$exit

Sample Help Text

This is the search selection menu. This is where you select the type of
search you would like to perform. There are five search methods
provided for you. Each of these is described below:

Fields:

Search Number - To select one of these search numbers, you must type in
the number to the left of the description that best describes the search
you want to perform. Once you have typed in the number, the Invoke
Action key described in the key definition area should be pressed. This
tells the system that you have made a selection. After you have pressed
the Invoke Action key, a screen will appear where you may enter your
search conditions. The types of searches available are:

1. Search by SA number - If you know all or part of the Sandia
Apparatus (SA) number or the MC number for a connector
that you want information about, then select this
option. The SA number is a number that is described as:
’SA’ followed by 4 digits followed by a dash, ’-’, and a
dash number. For example, SA1457-5 is an SA number for
a connector. The stem, SA1457, usually references a
group of connectors that have the same general
characteristics, whereas the dash number identifies the

98

individual connectors in the group. The same is true
for Major Component (MC) numbers, except the first two
characters are "MC," instead of "SA."

2. Search by Drawing number - If you know all or part of a Sandia

drawing number for a connector that you want information
about, then select this option. The Sandia drawing
number is a 6 digit number that references the top
drawing (usually the Automated Materials List or AML)
for a specific connector. The top drawing will make
reference to or lead you to all other drawings
associated with that connector.

3. Search by General Information - If you know any or all of the

following information then you want to select this
option.

a. connector family (Dwarf, LJT, JT, HV, RF, ...)

b. connector type (plug, receptacle, or adapter)

c. whether the connector needs to be hermetic or
nonhermetic

d. the mounting type for the connector

e. the shell size for the connector

f. the contact style (pins or sockets)

g. the number of contacts

h. the current rating for the described contacts

If you know more about the connector than what is listed
here, you may want to search by specific information.

4. Search by Specific Information - If you know any or all of the

Key Definitions:

Invoke Action -

general information and any of the following, then you
want to search for connectors using this option.

maximum operating temperature

insulation resistance

dielectric withstanding voltage (in V DC)
insert arrangement dash number

shell base and plating materials

insert material

spring finger base and plating materials

R o QO TP

will tell the program that you have made a selection

and that you are ready to continue.

Help - will display help text.

Exit - will terminate the program.

99

8!
$!
$!
8!
$!
$!
$!
$!
$!
§!
$!
$!
$!
$!
$!
$!
$!
§!
$!
$!
$!
§!
$!
$!
§!

§!
$!
§!
§!
$!
$!
§!
$!
§!
$!
§!
$!
$!
$!
$!
8!
$!
8!
$!
$!
$!
$!
$!

100

Appendix J: Graphics Command Procedure

Graphics.Com

e Graphics . Com ---—-----———mmm

Creation:
Author: N. E. Sevier
Date: February 24, 1989

Modified:
Author: N. E. Sevier
Date: April 13, 1989
Notes: To take advantage of a graphics subdirectory.

This command file will accept information from SQL+FORMS and utilize that
information to make a database query using SQL+PLUS. The output from the
query to SQL+PLUS goes to a file, sqlfile. The drawing file, drawing file,
is selected. The sqlfile and the drawing file are displayed according to
the terminal type the user has.

SQL+FORMS calls this command procedure passing it the following parameters:

P1 = Part Stem Number
P2 = Part Suffix Number
P3 = Connector Series

General Flow:

An SQL command file, getdim.sql, is created to query the database for
the connector dimensions. Which connector is identified by pl & p2.

! Connector dimensions are stored as a set of dimension names and values.

Once the SQL command file has been created and closed, SQLxPlus is
invoked with this file as input. When SQL+Plus is finished, the SQL

command file is deleted.
The terminal type the user has is determined and verified by the user.

The drawing file to be used is defined by the connector series. This
has been passed to this command procedure by SQL+FORMS. The type of
drawing file is determined by the terminal type.

If the user is using VTERM, then the tek4014 type drawing file will be
displayed. The drawing files will tell VTERM to switch to emulating a
tektronix terminal and display the drawing. The drawings have been
positioned so that the sqlfile can be displayed on the same screen to
the right of the connector drawing. When the user is finished looking
at the drawing, s/he is asked to acknowledge this by pressing return.
The terminal is then reset to the VI100 mode. The sqlfile is deleted
and the command procedure will exit.

If the user has a VT Regis terminal type, then the Regis-type drawing files
will be used. A program will be executed to append the dimensions in the
sqlfile to the drawing file. This revised drawing file will be displayed on

$! the screen. The revised drawing file and the sqlfile will be deleted and
$! the command procedure will exit.
$!
3! SQL+FORMS provides the facility that states "Press a function key to ..."
$! return control to SQL*FORMS.
$!
-
$! Create the S@L command file
$!
gopen/write sql file getdim.sql;

!

$! Set up Column Headings

$1

$ write sql file "column dimension name str specifies heading ’Dimension’"
$ write sql file "column inches specifies format 999.999 heading ’Inches’"

$! Turn off output to the terminal

¢!

$ write sql file "set termout off;"

$!

§! Send output to the file oracle file.dat
g1

$ write sql file "spool oracle file.dat;"
Create the query using the part number parameters

$!
g1
$!
$ write sql file "select dimension_name str_specifies, inches specifies"
$ write sql file "from ops$nesevie.conn dimensions"

$ pl = "where stem number specified by = " + pl

$ p2 = "and part suffix numbe _specified by = " + p2 + ";"

$ write sql file pl

$ write sql file p2

g1

$: Close the output file

g;write sql file "spool out;"

gé Exit SQL#*Plus

g'wrlte sql file "exit;"

g% Close the SQL command file

§$lose sql file

g: Invoke SQL#Plus with the command file
géqlplus -silent ""/ Ogetdim.sql;

g% Delete the SQL command file

:éelete getdim.sql;

:i Draw the appropriate connector drawing & display the dimensions.

101

-

$!

$! This section will make sure that the user’s terminal type is set

$! based on the terminal s/he is currently using.

$! Once the terminal type is known, the corresponding drawing type will be
8! created and displayed, if possible.

$!

$set term/ing

$set term/form/nowrap

$pid = "" v

$1loop:

$ on error then goto error message
$ term = f8getjpi(f$pid(pid),"TERMINAL")
$ if term .eqs. "" then goto loop
$end_loop:

$num = f$getdvi(term, "DEVIYPE")

$if num .eqs. 96 then goto vt100

$if num .eqs. 98 then goto vt100

$if num .eqs. 110 then goto vt200
$askuser:

$type sys$input

Terminal Types Available

VT100 - Includes all VT100 Series Terminals or Emulators
VT200 - Includes all VT200 and VT300 Series Terminals or Emulators

$inquire choice "Enter your terminal type (VT100 or VT200)"
8choice = f$edit (choice,"UPCASE")
$on warning then goto error_ message
$goto ’choice’
$!
$! If the terminal type is a PC running VTERM, then print the TEK4014
$! version of the connector drawing and the dimensions.
$!
$vt100:
$!
$! Ask if the user is using VIERM in VT/TEK mode. If so, then graphics
$! are possible. Otherwise, they are not.
$!
$on warning then goto vt100
$inquire/nopunctuation vttek -
"Are you running VTERM in VT/TEK mode? (Enter 'Y’ or ’'N’): "
$vttek = fSextract(0,1,fSedit(vttek,"UPCASE"))
$if vttek .nes. "Y" then goto end
$!
$p3 = "sd: [conuser.graphics]" + p3 + ".tek4014;"
$on warning then goto nofileexists
$test = f8file attributes(p3,"fid")

$!

$! Display the drawing
$!

$type ’'p3’

102

$! Display the dimensions

$!

$type oracle file.dat
$!

$! Skip 5 lines
$!

$write sysSoutput
$write sys$Soutput
$write sys$Soutput
$write sys$output
$write sysSoutput

$!

$! Pause until user is finished looking at the drawing.

$!

$write sysSoutput "----- PrtScn to Print @ ---—- "
$inquire/nopunctuation next "----- Press Return to Continue ----- "

$!

$! Reset VTERM to VT100 mode.

$!

$write sysSoutput "

$!

$! Clean up and exit.

$!

$goto cleanup

$!

8! If the terminal type is a VT240 or better, then append the dimensions
$! to the REGIS-version of the drawing and display it. Be sure to delete
$! the latest version.

$!

$vt200:

$!

$! Ask the user if they are using a VT240 series terminal or a Regis type
$! terminal. If so, graphics can be displayed. Otherwise, it is not

$! possible.

$!

$on warning then goto vt200
$inquire/nopunctuation vttype -
"Do you have a VT REGIS graphics terminal (240, 241, 330, 340)7? (Y/N) :"
$vttype = f8extract(0,1,f8edit(vttype, "UPCASE"))
$if vttype .nes. "Y" then goto end

$!

$! Create the drawing file name

$!

$p3 = "sd:[conuser.graphics]" + p3 + ".regis"
$!

$on warning then goto nofileexists
$test = f8file attributes(p3,"fid")
$copy 'p3’ drawing file.dat;

$!

$! Append the dimensions to the drawing file
!

$run sd: [conuser.graphics]add dimensions

$!

$! Display the drawing and dimensions

103

$!
$type drawing file.dat
$!

$! Wait until the user is finished viewing the drawing before continuing.
$! The first P is not displayed. It positions the text at the left margin.
$!

$!inquire/nopunctuation next "P---——- Press Return to Continue ----- "

$!

$! Delete the appended drawing file

$! :

$delete drawing file.dat;

$goto cleanup

$!

$error_message:

$! Prints error message if user enters an invalid terminal type
$write sys$output " "

8write sys$output "Unknown Terminal Type"

$write sys$output " "

$goto askuser

$!

$nofileexists:
$write sys$output
$write sys$output
$write sys$output
$write sys$output
$write sys$output
$write sys$output
$write sys$output
$!

$cleanup:

$!

8! Delete the SQL output file

$! ‘

$delete oracle file.dat;*

3!

$! Return control back to SQL+FORMS.
$!

$end:

$exit

Sorry, no drawing currently exists for this connector."
A drawing file is being created and will be available"

in the future."
n

Add Dimensions

program convert and append(drawing file, oracle file);
(***)

(% *)
(» Original: *)
(* Date Written: February 15, 1989 *)
(* Author: N. E. Sevier, 2551 *)
(* *)
(» Modified: %)
(* Date Modified: *)
(* Author: *)
(+ *)

(+ This program will read the oracle file and append its contents to the)

104

(*
(*
(*
(*
(*
(*
(*

drawing file in the following form.

‘oracle line <(CRY<LF>
oracle line <CR><LF>

oracle line <CR><LF>

*)

(***)

var

data: varying[50]) of char;
drawing file: text;
oracle file: text;

begin

en

open(oracle file,history:=readonly);
reset (oracle file);
extend (drawing file);

write(drawing file,’’’’);
while not eof (oracle file)
do begin

readln(oracle file,data);
writeln(drawing file,data,’’(10),’’(13))
end;
writeln(drawing file,’’’’);
writeln(drawing file,’’(27),’/’);
close(drawing file);

close(oracle file)
d.

105

Sample Graphies Output

LJTO7H Style

IMEN INCHES
.975
.085
.312
.195
.066
.500
.018

D
A
B
H
L
0
q
T

=

7 RECORDS SELECTED.

————— PRTSCN TO PRINT ———-
————— PRESS RETURN TO CONTINUE -----

106

Appendix K: Beport Command Procedure

Report.Com

P Report . Com ~--------—-

! Creation:

Author: N. E. Sevier
Date: April 27, 1989

! Modified:

Author:
Date:
Notes:

! This command file will accept a part number from SQL*FORMS and use this

! information to create a report containing all the information known about

! the connector with that part number. This information will be displayed

! on the screen for the user to capture with his/her printer or PC, since no

! printer is available on the WhiteStar MicroVAX. The connector drawing is

! then found and displayed on the user terminal for printing via print screen.

! Input:

! SQL*FORMS calls this command procedure passing it the following parameters:

P1 = Part Stem Number
P2 = Part Suffix Number
P3 = Series

! General Flow:

! An SQL command file, create part.sql, is written to create a table
! containing the part number. The part number inserted into the table
' is identified by pl & p2.

! Once the SQL command file has been created and closed. SQL*Plus is
! invoked with this file as input.

! The ORACLE report generator, RPT, is then called to find all the information
! about this part using the file report.dat. RPT generates an output file,

! report.tmp. This file is then formatted by the ORACLE report text formatter,
! RPF. RPF creates the formatted output report in the file report.out.

! The user is notified to turn on his/her printer and the file report.out is
! displayed on the user’s terminal. The user is notified to turn his/her

! printer off. Unfortunately, this notification will become part of the

! user’s report, but until WhiteStar attaches a printer to their machine this
! will have to do.

! To clean up, the following files are deleted: create part.sql, report.tmp,
! and report.out. The table part number table is deleted, using drop part.sql.

! If the user is told that the drawing is going to be fetched and to print it,
! s/he should use PrtScn. The command procedure graphics.com finds

107

$! and displays the drawing.

$!

$! The user is returned to SQL+FORMS when this command procedure
$! completes

$!
T e e L e e
$! Create the SQL command file

8!

$ write sys$output ""

$ write sys$output "x*x Placing the Part Number in a mail box. #x"
$ write sys$output ""

$!

$ open/write sql file create part.sql;
$!

$! Create Part Table

3!

$ write sql file "create table part (stem number(6) not null,"
$ write sql file "suffix number(3) not null);"

8! Insert Part Number into the Part Table
$ write sql file "insert into part values ("

$ temp = pl + ", " + p2 + ");"
$ write sql file temp

:E Exit SQL*Plus

g;write sql file "exit;"

g: Close the SQL command file

g;close sql_file

gg Invoke SQL*Plus with the command file
g;sqlplus -silent ""/ @create part.sql;

%g Run RPT with sd: [conuser.report]report.dat

$ write sys$output ""

$ write sys$output "x* Creating the Report x*"

$ write sys$output ""

$!

$ define/user sys$input sys$command

$ rpt sd:[conuser.report]report.dat report.tmp ""/
'

$! Run RPF with report.tmp to create report.out
$!

$ write sysSoutput ""

$ write sysSoutput "*x Formatting the Report xx"

$ write sys$output ""

$!

$ rpf report.tmp report.out

$!

108

$! Notify user to turn on his/her printer or method for capturing

$! the output.

$!

$ type sys$input
+* The report has now been created. ok
** - Turn ON your Printer! **
*x - Tell your printer to print whatever appears on the xx
* % screen from now on. Usually, Ctrl-PrtScn *k
* ok Press return when you are ready. ok

$ inquire/nopunctuation next ""

$!

$! Type the file

$!

$ type report.out

$!

§! Notify user to turn off his/her printer or method for capturing

8! the output.

$!

$ write sys$output ""

$ inquire/nopunctuation next -

"+x Tell the printer to stop printing (usually Ctrl-PrtScn) THEN press return"
$!

$! Clean House

$!

$ write sys$output ""

$ write sys$output "+«* Cleaning House **"

$ write sys$output ""

$!

$ delete create part.sql;+

$ delete report.tmp;*

$ delete report.out;=*

$ sqlplus -silent ""/ @sd: [conuser.report]drop part.sql
g1

$! Get the drawing for this connector.

$!

$ type sys$input

** The drawing and dimensions for this connector will be displayed. * ok
*+ If you have a graphics printer then you may send this to your *
** printer by pressing PrtScn after the connector is drawn on your * %
** screen. * ¥
+* The EMR Hardware and Potting Mold drawings will not be displayed. * ¥

*+ To obtain a hardcopy of these, go to these screens and press PrtScn ##

+* Getting the Drawing *=

$!

$0sd: [conuser]graphics.com ’pl’ ’p2’ ’p3’
$!

$! Return to SQL+FORMS

109

$!

$exit
Report Code

The report code can be found on the WhiteStar MicroVAX in the connector user
report directory, or contact Nicole E. Sevier, 2551, for a copy.

Sample Report

Connector Selection Program Output

For: 358215 -

General Information
SA Number: SA1457 - 5
Family: LJT
Series: LJTO7H
Type: RECEPTACLE
Insert Arrangement: 15 - 18
Number of Contacts: 18
Number of Contacts carrying maximum current: 18
Mounting Type: JAM NUT
Hole Layout Code: 12.016C
Responsible Engineer: JOHNNY R. BACA
Division: 2551
Manufacturers: BCO
Service Rating: JTI

Letter Altitude V dc
' I 0 2120.00
Contact Information
Size: 20
Type: SOCKET

Termination: SOLDER CUP
Retention: lbs
Current Rating: 5.00 amps
Contact Resistance:

Test Current: 5.00 amps

Test Voltage: 45.00 mV drop
Base Material: STEEL
Plating Materials: GOLD

NICKEL

Product Specification Information
Dielectric Withstanding Voltage (DWV): 2,120 V dc
Insulation Resistance (IR): 1000 M ohms min
Temperature Range: to degrees c
Spring Engagement: .11600000 inch max
Air/Helium Leakage: 1.00E-08 cc/sec
Insert Retention: psi g

110

Durability: 250 times coupled and uncoupled
Physical /Mechanical Shock: 2400 g min

.800 ms max
Coupling Pin Strength: lbs min

inch dia
Moisture Resistance: 100 M ohms min after testing
Materials

Shell Base: STAINLESS STEEL
Spring Finger Base:

Mating Connectors

Drawing Number SA Number
358032- SA1445-13
Accessories

EMR Hardware:

Part Type: ADAPTER RING
Part Number: 298466 -

Angle: 90

Dimensions:
Letter Inches
A .8640
B .8840
C .9140
D .9890

Part Type: SHELL
Part Number: 877023 - 8

Angle: O

Dimensions:
Letter Inches
A .5080
B .8540
C .9380

Part Type: FERRULE
Part Number: 877024 - 18

Angle: O

Dimensions:
Letter Inches
A .5060
B .2170

Part Type: FERRULE
Part Number: 877024 - 18

Angle: 90

Dimensions:
Letter Inches
A .5060
B .2170

111

112

Part Type: FERRULE
Part Number: 877024 - 22

Angle: O

Dimensions:
Letter Inches
A .5060
B .3120

Part Type: FERRULE
Part Number: 877024 - 22

Angle: 90

Dimensions:
Letter Inches
A . 5060
B .3120

Part Type: FERRULE
Part Number: 877024 - 28

Angle: O

Dimensions:
Letter Inches
A .5060
B .3870

Part Type: FERRULE
Part Number: 877024 - 28

Angle: 90

Dimensions:
Letter Inches
A .5060
B .3870

Part Type: ELBOW COVER
Part Number: 877025 - 8

Angle: 90

Dimensions:
Letter Inches
A .2540
B .8750
C .2640
D .9580

Part Type: ELBOW SLEEVE
Part Number: 877026 - 8
Angle: 90
Dimensions:

Letter Inches
.2540
.8540
.4370
.8750
.5290
.0940
.4990

momET O >

Potting Mold Adapters:
Part Number: 877236 - 5
BECD Number: 10-150912-14
Thread Code: 13/16-20 UNEF-2B
Cable End Inside Diameter: .8520
Cable End Outside Diameter: .8920
Connector End Outside Diameter: .9540

Potting Molds:

Part Number: 877113 - 4

Angle: 90 degrees

Cable End Diameter: .3030 inches

Connector End Diameter: .8920 inches

Second Cable End Diameter (possible ellipse): .8500 inches

Length from cable end to the center of the bend: .6620
inches

Length from connector end to the center of the bend: .7810
inches

Outside Radius: .1510 degrees

Inside Radius: degrees

Part Number: 877237 - 5

Angle: O degrees

Cable End Diameter: .6830 inches
Connector End Diameter: .8920 inches

Part Number: 877238 - 4

Angle: O degrees

Cable End Diameter: .6500 inches
Connector End Diameter: .8920 inches

Part Number: 877239 - 5

Angle: 75 degrees

Cable End Diameter: .6250 inches

Connector End Diameter: .8920 inches

Second Cable End Diameter (possible ellipse): .7810 inches

Length from cable end to the center of the bend: .6560
inches

Length from connector end to the center of the bend: .7340
inches

Outside Radius: .4310 degrees

Inside Radius: .2500 degrees

Part Number: 877240 - 6

Angle: 90 degrees

Cable End Diameter: .8920 inches

Connector End Diameter: .8920 inches

Second Cable End Diameter (possible ellipse): .8920 inches
Length from cable end to the center of the bend: inches
Length from connector end to the center of the bend: inches
Outside Radius: degrees

Inside Radius: .0150 degrees

113

Part Number: 877240 - 7

Angle: 90 degrees

Cable End Diameter: .4580 inches

Connector End Diameter: .8920 inches

Second Cable End Diameter (possible ellipse): .9660 inches
Length from cable end to the center of the bend: inches
Length from connector end to the center of the bend: inches
Outside Radius: degrees

Inside Radius: .0150 degrees

114

IMEN INCHES
.975
.085
.312
.195
.066
.500
.018

D
A
B
H
L
0
q
T

Ptk b bk

7 RECORDS SELECTED.

_____ PRTSCN TO PRINT

LJTO/H Style

- C} —

————— PRESS RETURN TO CONTINUE -----

115

References

Models: Connector Selection, Drawing S82877, Issue B.
Information Structure Diagram, Fastener Selection Requirements,
Drawing FC-R20586, Issue A.
PREMIS, Drawing R12818, Issue B.

Sevier, Nicole E. Developing a Connector Selection DBMS Using NIAM.
SAND88-0272, presented at the ASME Computers & Engineering
Conference, 7/88.

Sevier, Nicole E. Connector Selection Program User’s Guide, Version
1.0. SAND89-1286.

Sevier, Nicole E. and Drozdick, William. Fastener Selection
Requirements. Drawing R20586, 10/89.

Sharp, John K., Orman, John L. and Stevens, Norman H. Information
Engineering: How Sandia is Developing the CIM Database (the NIAM
Approach). SAND89-0532C, presented at the Fifth Annual CAD/CIM
Database Conference, 3/89.

Stevens, Norman H. "NIAM in Relational Modeling." Database Programming
and Design. June, 1989. pp. 11-15.

116

DISTRIBUTION:

Allied Signal Aerospace Corp.
Kansas City Division
Attn: R. M. Schaefer
M. L. Smith
D. L. Hobbs
P.0. Box 1159
Kansas City, MO 64141

2534 D. H. Jensen
2534 S. Carroll

2500 R. L. Schwoebel

2550 C. F. Gibbon

2551 D. E. Carnicom

2551 N. E. Sevier (5)

2810 D. W. Doak

2812 A. C. Bernadino

2812 T. F. Ezell

2812 S. L. K. Rountree

2820 G. Carli

2825 J. K. Sharp

2825 J. L. Orman

2825 N. H. Stevens

2826 A. J. Abr

2850 D. L. McCoy

2854 R. E. Thompson

2854 G. L. Neugebauer

2858 - W. Drozdick

3141-1 C. L Ward (8)
For DOE/OSTI

3141 S. A. Landenberger (5)

3151 W. I. Klein (3)

8524 J. A. Wackerly

(3)

DO NOT MICROFILM
THIS PAGE

