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The Classical-Limit S-Matrix for Heavy Ion Scattering

by

Raul Jose Donangelo

ABSTRACT

An integral representation for the classical limit of the
quantum mechanical S-matrix is developed and applied to heavy-ion
Coulomb excitation and Coulomb-nuclear interference.

The method combines the quantum principle of superposition
with exact classical dynamics to describe the projectile-target
system. A detailed consideration of the classical trajectories and
of the dimensionless parameters that characterize the system is
carried out.

The results are compared, where possible, to exact quantum
mechanical calculations and to conventional semiclassical calculations.
We find that in the case of backscattering the classical 1imit S-matrix
method is able to aTmost exactly reproduce the quantum-mechanical
S-matrix elements, and therefore the transition probabilities, even
for projectiles as light as protons. The results also suggest that
this approach should be a better approximation for heavy-ion multiple
Coulomb excitation than earlier semiclassical methods, due to a more
accurate description of the classical orbits in the electromagnetic

field of the target nucleus.
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Calculations using this method indicate that the rotational
excitation probabilities in the Coulomb-nuclear interference region
should be-very sensitive to the details of the potential at the
surface of the nucleus, suggesting that heavy-ion rotational
excitation could constitute a sensitive probe of the nuclear
potential in this region.

The application to other problems as well as the present

1imits of applicability of the formalism are also discussed.






I. INTRODUCTION

The collective low-lying states of the nucleus are amenable to a
classical description in terms of oscillations in the shape of the
nuclear surface or of rotations of the nuclear body.

In the study of these states the fact that they can be excited by
the electromagnetic field of charged projectiles was first pointed out Ey

1,2

Mottelson in the early 1950's, and very shortly after experimentally

verified, >4

This process, generally carried out at energies below the
Coulomb barrier and known as Coulomb excitation, became an important
tool in the study of nuclear structure. One of the strongest reasons
for this is the good understanding of the nature of electromagnetic
interactions, whereas the strong interactions manifested in the short-
range nuclear force are less well known.

Initially only light ions were available as projectiles to the
experimenters, so that only the lowest energy collective states were
excited by the electromagnetic field, and the theory developed by Alder
gggglfS could explain the experimental results in full detail. More
recently the construction of heavy ion accelerators made feasible the
study of multiple Coulomb excitation processes, in which through the
strong electric field of the heavy projectile the target nucleus absorbs
several quanta, and many nuclear states can be populated. This pushed
the old theoretical methods to their limits. Thus, stimulated by the

world-wide interest in heavy ion induced reactions, theorists attacked

this more complex problem by different methods.
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It was soon seen that the purely quantum mechanical methods,
such as the coupled-channel Born approximation, which could describe
fairly accurately the collision process in the case of light
projectiles could not handle the case of heavy ions due to the much
larger number of partial waves and channels involved in the calculation.
The most sophisticated coupled-channel computer code available now6
can handle only cases for which the Sommerfeld parameter n is less
than 30 (the number of partial waves that need to be included in the
calculation is proportional to n ), while with the heavy ion beams
available today Coulomb excitation experiments for which n 1is about
400 are already performed, and in the near future it will be possible

238U beams to perform these experiments, which will raise the

to use
value of n to about 550. For these cases a coupled-channel quantum
mechanical calculation is completely impossible at the present time.

However, this increase in the value of n , which makes the
problem intractable by quantum mechanical methods, brings it closer to
the realm of ciassfca1 mechanics, since the Sommerfeld parameter is
inversely proportional to the de Broglie wavelength.

This fact is the basis for the different semiclassical theories
that were used to find approximate solutions to the problem. In the
method of Alder and wiﬂther7 the relative motion of projectile and
target is described classically, and the trajectory of the projectile
is assumed to be a hyperbola. The target is described in quantum

mechanical terms by means of coupled-channel equations relating the

different excited states. This method is the foundation for the
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8 the most widely used at

Winther-de Boer code for Coulomb excitation,
present to analyze experimental data.

A new approach appeared a few years ago, which can be derived
from Feynman's path integral formulation of Quantum Mechanics; it is
known under the name Uniform Semiclassical Approximation (USCA), and

10-18 to study atomic and molecular

19-22 and

was developed mostly by W. H. Miller
collisions. More recently it was applied to the nuclear case

more specifically, also to the problem of Coulomb excitation23“25 and

26

Coulomb-nuclear interference. In this method one evaluates Feynman's

path integral for the S-matrix by means of stationary phase integration.

10 that the trajectories for which the integrand in

It is easily seen
Feynman's expression for the S-matrix is stationary are, for a given
transition, those classical trajectories that satisfy the quantized
boundary conditions for the transition studied. For example, for the
Coulomb excitation of a deformed even-even nucleus in its grouhd state,
to find the S-matrix between the ground state and, say, the 4" state,
one has to find the classical trajectories which have initial value

of the nuclear spin equal to zero, and final value of the nuclear spin
equal to that of the 4" state. This implies that to obtain these
trajectories one has to search for the initial values of the internal
degrees of freedom of the target (its orientation relative to the beam
axis in our example). which evolve into the desired final boundary
conditions (the final spin in our example). After this is done, the

evaluation of Feynman's path integral by stationary phase methods is

rather straightforward.
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This method is obviously restricted to cases for which a classical
model can be formulated to describe the system. From what we pointed
out at the beginning, this restriction does not exclude the collective,
Tow Tying states that are excited in the Coulomb excitation process.
Almost simultaneously with the introduction of the USCA, R. A.

27-36 and W. H. Mi??erzomlg among others, found another way of

Marcus
evaluating by classical methods the S-matrix. In this formulation
classical mechanical trajectories are used to construct the wavefunction
of the system in the asymptotic region. The elements of the S-matrix
are then obtained by projecting the system wavefunction onto the final
channels. This leads to another integral expression for the S-matrix
but where now the integral is not over all possible paths as in Feynman's
expression, but over the initial values of the internal degrees of
freedom of the target, so that in this form it is possible to evaluate
directly the integral instead of approximating it by stationary phase
methods. This has the practical advantage that eliminates the need for
a root search, which may become extremely difficult when the target has
several internal degrees of freedom and/or when the transitions being
considered are not classically allowed (this means that for no real
initial value of the internal degrees of freedom the final boundary
conditions are satisfied), and in which cases the root search has to
be extended to complex initial values.

In order to avoid confusion when referring to these methods we
will keep the name USCA for the root search method derived from
Feynman's expression for the S-matrix, and we will follow Miller in

using the designation Classical-Limit S-Matrix (CLSM) for the integral



expression based upon the wavefunction constructed using classical
trajectories. The practical application of these methods is rather
different, but the theoretical bases are related. Figure I-1 shows
schematically how they are connected, and describes also the essentials
of the semiclassical Alder-Winther (A-W) method, which will also be
extensively referred to in this work.

The main objective of this thesis is the application of the CLSM
formalism to several scattering problems in nuclear physics.

In Chapter II we will develop the CLSM formalism for the case of
Coulomb excitation of rotational states of deformed nuclei by back-
scattering of heavy ions. This will imply the study of the classical
trajectories followed by this system and the dimensionless quantities
that govern them. The connection with the USCA and the discussion of
a limiting case where analytical solutions exist for the CLSM, Alder-
Winther and quantum mechanical methods is also included in this chapter.
An extensive comparison of the CLSM formalism (Chapter II) to the Alder-
Winther semiclassical theory and to quantum mechanics is carried out in
Chapter III. The effect of the approximate dynamics employed by the
A-W method and the region of applicability of the CLSM formalism are
discussed for this case.

In Chapter IV we extend the CLSM formalism for this problem to
include a complex nuclear interaction between the projectile and the
deformed target. This will imply the use of complex classical
trajectories, but it is shown that the CLSM formalism may be used
without changes. The study of the Coulomb-nuclear interference pattern

of the excitation probabilities for a particular system suggests that
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Fig. I-1 Diagram showing the calculational steps used XBL 775-8584

in the different approaches and the connection
between the USCA and CLSM methods.



experiments of this sort could provide detailed information on the
potential in the nuclear surface region.

Chapter V d%scusses the application of the CLSM method to several
scattering problems and their present status. Included here are the
generalization to non-backward angles of the formalism presented in
Chapter II, the study of the Coulomb excitation of the K = 0 octupole

vibration-rotation band in 238

U, and finally the problem of one-nucleon
and cluster transfer in the collision of two nuclei, one of which is
deformed, at energies about the Coulomb barrier.

In Chapter VI we present our conclusions.

Appendices A and B briefly summarize the USCA and Alder-Winther

theories to which frequent references are made.



8-
II. THE CLASSICAL-LIMIT S-MATRIX FOR COULOMB
EXCITATION OF ROTATIONAL STATES

1. Introduction

The collective model is able to account for the large values of the
electric quadrupole moment found in many nuclei by assuming that these
nuclei have a permanent non-spherical shape. In this chapter we will
focus our attention on the excitation of the rotational states of these
deformed nuclei through the electromagnetic interaction with a nuclear
projectile,

We shall especially consider even-even nuclei with an axially
symmetric shape. If we denote by U}7 the moment of inertia of such a
nucleus with respect to an axis perpendicular to the symmetry axis, and
by T the angular momentum operator, the Hamiltonian is simply given by

2 T2
et l (1)

2y

The eigenfunctions and eigenvalues of this Hamiltonian are given by

@IM = YEM (6.0)
(2)

_nlr(r+)
I 2 ¥
where YIM is the spherical harmonic function, I and M the total and

magnetic angular momentum quantum numbers, and © and ¢ the polar

angles of the symmetry axis in a laboratory-fixed frame.



Since our nucleus is invariant under a rotation by = about any
axis perpendicular to the symmetry axis, its wavefunction should be

invariant under the transformation
6+m-0, ¢>1tg

therefore, only states with even I are allowed.

For simplicity we will restrict ourselves in this chapter to the
head-on-case, namely the case for which the relative motion angular
momentum is initially equal to zero. The target nucleus is initially
in its ground state, so that its angular momentum is zero. In these
conditions the relative motion takes place in a plane; the angular
momenta of the relative motion and of the target nucleus have a sum
always equal to zero and are both of them perpendicular to this plane.
By taking the Z-axis in this plane the projection M of the target
angular momentum on this axis will be always zero, so we will not need
to consider it in our calculations. To simplify the notation we will
omit the subindex M = 0 in what follows.

We are interested in knowing the final state of the target, after
the interaction has taken place. At the present time we cannot think of
solving the Schriddinger equation for this system since it is a partial
differential equation in four or more variables. This equation is
reducible to a system of coupled channel radial equations, which can be
numerically solved for systems such that the number of channels and
states involved is not too high. In practice this reduces the present
range of applicability of the coupled channel method in the study of

Coulomb excitation to "light" systems, meaning by light systems those
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for which the Sommerfeld parameter (to be defined in the next section)
is less or equal to 30, and the excitation of states with spin larger
than 10 can be neglected. Therefore it cannot be applied to study those
cases of most practical interest, in which a heavy projectile excites
high angular momentum states of an also heavy target nucleus.

Qur approach to this problem will be to construct an approximate
wavefunction, based on the study of the classical trajectories for this
multidimensional system, and by means of it to evaluate the elements of
the scattering matrix (S-matrix in what follows). The range of

applicability of this approach will be seen to be quite wide.

2. Expression for the Classical-limit Smmaivixéi

We will take as coordinates to describe our system the following:
X s the angle defined by the symmetry axis of the target and the line
joining the centers of projectile and target, and r , the distance
between these centers. We denote by px the angular momentum of the
target and by v the relative velocity. Figure II-1 illustrates.
Since the motion takes place in a plane, as we pointed out in the
previous section, we do not need an additional azimuthal angle to
determine the system.

Let ¢+be the scattered part of the eigenstate of the system
corresponding to the initial conditions already mentioned (zero angular
momentum for both the relative motion and the target).

The usual definition of the S-matrix (Ref. 37. 121 ff or many

other quantum mechanics textbooks) gives

S = <IE'|yt> (3)

0-1 (E-F")



glﬁ.ﬂ

XBL 7748297

Fig. 1I-1 Coordinates describing the geometry of the physical
system.
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where E is the energy of the state ¢+ and |IE'> 1s an eigenstate
corresponding to a spin I of the target and an energy E' of the
Hamiltonian of the system consisting only of the kinetic energy and
monopole-monopole Coulomb fnteraction terms.

Taking y and r as coordinates to represent the wavefuntions
(it will be shown later that the Hamiltonian is depending only upon

¥, and their conjugate momenta)

£ « .
<IE' [y> 2&5;5@1 () wF(or) 2mr sink dX dr (4)

The eigenfunction @I(Xgr) can be separated as the product of a
spherical harmonic YIO (cosy ) and a Coulomb wave function. In
particular in the asymptotic region (for large values of v ) it will

be given by

-1 [p%r/ﬁ - “zm(z%lﬁﬁ) toplng)]

(Ez(Xsr) y EO (@OSX) ;;"e

/2r
(5)
where Vo is the initial asymptotic velocity, Vi is the final

asymptotic velocity corresponding to a spin quantum number I, Py the
L

relative radial momentum in this case, and Ny the Sommerfeld parameter

2

. P
My Vi (6)

Here Zp and ZT are the atomic numbers of projectile and target,
respectively, and e the electronic charge. GI(nI) = Arg{l+1+ inE]

is the usual Coulomb phaseshift.
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We write the wavefunction w%(xsr) in the following way:

vH(x,r) = A(Xr) exp {ig(x.r)/m} (7)

By making the short wavelength assumption in the usual way, (see Refs.
27,38) we obtain that the amplitude A(X,r) satisfies an equation for
conservation of amplitude flux, while the phase ¢(X,r) verifies the

classical Hamilton-Jacobi equation,

HoG 3, 50 = € (8)

To obtain the quantities A(X,r) and ¢(X,r) the following procedure
is followed: we run classical trajectories for a given total energy
E with the initial conditions rErg large, X=X (various arbitrary

values), Pp=Pp == me(EmZ
0

2 -
pZTe /ro) . pX05=G, From the values of the

dynamical variables in the final asymptotic region, Pgs Xgos prfg pr R

we can determine A and ¢ as follows:
Since A satisfies conservation of probability flux, if we consider
the trajectories which initial value of yx are in the interval
EXO; x0°%dx0} , they will lead finally to an interval
Exfs xf4=dxf] . The amplitude A must then satisfy:

AZ(ngrf) Ve rfz sinXe dXg = Az(xgsro) Vo rgz sinXy dXg (9)

Since all initial orientations Xg are equally probable, A(xogro)
is independent of Xg and it is easily shown by using the normalization

of y* that A(xy, rg) v = 1/2.
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Therefore,

1 EQaSinXO EEQ 1 (10)
2 v siny dyx r f

A(x,r)

where we have dropped the subindex f .
Since it is well known from classical mechanics that the classical
action is a solution of the Hamilton-Jacobi equation (see Refs. 39

pp. 273-276, and 10) the expression for ¢ that satisfies Eq. (8) is

o(r.x) =

[r(t) dp.(t) + Xx(t) dpy(t)I+ v p_ + Xxp, +hoy (ng)  (11)

where the integral is performed along the trajectory and Go(no) is the
Coulomb phase shift for spin 0 and for the initial velocity Vo

The wavefunction ¢*(x,r) as defined by Egs. (7), (10) and (11)
cannot be used to evaluate the S-matrix; it is immediately clear that
we would obtain an expression for the S-matrix which is dependent on
the distance r at which the final values of all magnitudes are
evaluated.

To surmount this difficulty it is necessary to perform a canonical
transformation of the set of variables (X,r) to a new one where this
situation does not occur. We choose the transformation to the new set
(;91)3 in a way which is analogous to that employed by R. A. Marcus
in Ref. 32, that is using a so-called "Uniformization with elastic

collision trajectories”.

The generating function we consider is

(12)

Fz(XsrﬁstE) = DXX+ o
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where 5? is the radial momentum along an elastic trajectory governed by
the monopole part of the Coulomb potential sz?ezlr s such that the
energy E along this elastic trajectory equals the sum of the kinetic
plus Coulomb energies at the point r at which FZ is evaluated. Since
the energy left to the particle depends on the energy that was
transferred to the target, ﬁr will depend on Py the spin of the
target at a distance r , as it is shown explicitly in Eq. (12).
Finally, ¥ is the position along the elastic trajectory at which’ §r
is evaluated, and ?T is the turning point of the radial motion in
the elastic collision, that is P .(Fr.p.E) = 0.

From Eg. (12) and the equations shown in Ref. 22, p. 241, we

obtain the new coordinates X and <

il
i

(13)

The derivates that appear here are easily evaluated from the
expression of the Hamiltonian (Eg. 29, in the next section), and the

definition of Ee From them we get
RN Lotye |
E = ?%m(w%w)p% (14)

where m 1is the reduced mass of the system and %J?’the moment of

inertia of the target.
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From Eq. (14)

(15)

(13')

'&?T Pp

T can be physically interpreted as the time it takes for the particle
to go from the turning point of the elastic trajectory to the final
distance r . X can be seen by differentiation of Eq. (13') to be
constant in the final asymptotic region; in that region it can be
written as X = X-wt, where o = pxéff’is the angular velocity of the
target.

It is interesting to point out to the fact that this transformation
of variables we made here is closely related to the transformation into
the interaction representation in Quantum Mechanics (see for example

Ref. 40, pp. 722 ff).
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Transforming wavefunctions ¢I andw*= by means of the canonical
transformations given by Eq. (7), and replacing in the expression for

the S-matrix (Eq. (3)) we obtain:

. sinXp dX
120 0 exp {ig'/m) (16)
siny dx
where
o = = [ 1) 00+ x(w) apy )] + B n R,
(17)
Pr
+ 35; ¥ dﬁr + hdo(no)
and
Y 1 iy N
@I(xgt) = 255 YIO (cosx ) exp {ip"/n} (18)
where ¢" = E' - hcl(nl) (19)
Finally, from Eq. (3)
[ sinX, dX. ;
%= _0 EO - Y10 {cosX)
siny dx vor
(20)

° exp {ﬁ(E-»E') t/8} exp (1A/h) 2w sin X dX dr
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}d 5?“%?1@0'@(7}@) +Gl(ﬂ1)]

(21)
The integral with respect to <t in (20) can be peffewmedsz and
shown that the result is a &-function in (E-E').  This reduces the

expression for the S-matrix to a one-dimensional integral

sinXD Eig

—— —= Yy (cosX) exp(ia/h) 2r sink dX (22)
sinXx dX

Taking Xy as our variable of integration and replacing YIO(CQS;)
by /{21+1)/4n Pl(casi)g where PI is an ordinary Legendre polynomial,

we obtain

e . = odX - a
sinXg sinx Eié Pz(casx) exp(in/h) de (23)

This expression will be applied to several physical systems,
and then results discussed in the next Chapters, but before going into
its applications let us consider the classical equations of motion
which must be solved in order to evaluate the quantities appearing

in Eq. (23).

3. Equations of Motion

We refer again to Fig. II-1 for a geometrical description of our

system.
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The kinetic energy is given by

K = %=m%2 + %amrz 62 +“% Q}Zéz (24)

where m s the reduced mass of the system and _# the moment of
inertia of the target.

The potential energy is given by

2 (r) 2
L 1.e Z Q e
veRle 2, B0 b (cosx) (25)
reven 2 r
A2

where X 1is defined by X = 8-86, PA is the Legendre polynomial of
order X Zpes ZTe are the charges of projectile and target,
respectively, and Qék)e the multipole moment of order X , defined

by
Qéx)e = 2 J;}X Ph(cose) ol{r,0) dsr (26)

where p(r,0) is the density of electric charge.

We have already taken into account when writing Eq. 25 that the
target nucleus we are considering has both reflection and axial
symmetry.

Primarily for the sake of simplicity and since it is by far the
most important contribution, we will consider only the first term in
the sum appearing in Eq. (25). When later in this work we will need
to include terms higher than the quadrupole term, it will be quite

straightforward to do so.
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From Eqs. (24) and (25) we can construct the Lagrangian for the

interaction. Conservation of the total angular momentum implies

that
. 2 5
Fp+mrt b=0 (27)

for the head on case.

Then the Lagrangian takes the form:

P
oy ? mr ug?
L, r,r) = 2 e + 7 +;§7 (28)
T Qéz)ez
p? - L 3 Pz(cosx)
2r

where X is the angle B-0 , as previously defined.

From the definition of the canonical momenta, Pq = é%%fjwe have:
99

P, = mr and Py = m?%}fyi/(mr2=§}z)e We are now in condition of

writing the Hamiltonian H.

2
P 1/ 1 1\ 2
= + = o i
H(X 9?)(9?3‘3?) ?ﬂ? 2{} * erEpX
(29)
sz o2 Z Q(Z) 2
= . PZ(CQSX)

2r

From the expression for Py we observe that Py guﬁfé s the

rotational angular momentum of the target.
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Before proceeding to write Hamilton's equations of motion it will
be convenient to write this Hamiltonian in dimensionless coordinates.

To this effect we define the dimensionless variables

~ P
I §-§¥
2
mv,¢ v p
2 0 A r
r = : = (30)
7 7 o2 roMWy
pT
~ mv03 t
t = ;
= 5 :
ZpZTe
and the following quantities:
2
L 71-e
ng = —gmgaam (Sommerfeld parameter)
0
3h2n0
£ = 5 (adiabaticity parameter)
mvgbfy
(31)
Z17 ez
a = ~9m§§~ (half distance of closest approach)
mv
0
7 ql2)e?
dp = p°0 5 (quadrupole strength parameter)
4n Vga

here Yo is the initial relative velocity at large distance where the
interaction is negligible. We note that r is the measure of r in

units of a , §r measures p,, taking as unit its initial value
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(in magnitude), t s the time in the unit a/vQ , and the meaning

A
of I is obvious.

Then:
52 i
TER T I W SR N O S B 2 |
(32)
. Zqz Pz(cosX)
~3
ﬂD?‘
Hamilton's equationsof motion are then:
dr _ ~
- =P
N
dp ~2 6q, P, (cos x)
= éAa*“ilz‘*’ < ?24 (33)
dt ng v r Ny ¥

and the phase g is evaluated using the relation

A

A Adp ~
9y f x4 (33')
dt dt dt
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In Fig. I1-2 we plot the solutions of this system of equations for a
realistic case, for several values of the initial orientation angle
The results show some characteristics that are present in a larger
or smaller extent in the trajectories followed by all systems which
study we are pursuing, and which are therefore worth mentioning now.
One first observation is that the angular momentum is communicated
to the target mostly in a small time interval around the point of
closest approach. In this interval the radial distance does not
change much: most of the angular momentum exchange takes place for
distances r < 3 , while the minimum distance is © ~ 2. During this
time interval the orientation angle X does not change much either:
this means that during the most important part of the collision the
system retains memory of its initial orientation. This is the basis
for the sudden approximation, to be discussed in a later section.

Another characteristic we would like to point out appears in the
last case shown in Fig. II-2 in which the angular momentum imparted
to the target is so high that before the projectile has had time to
recede very much, Q has increased beyond 90° and the torque on the
target has reversed in divection. This is seen as a slight decrease
in the angular momentum function 1 followed later when X has gone
through 180° by an even slighter increase. Such adiabatic effects
are more evident for more massive projectiles.

Figure II-3 shows the final value of the angular momentum 1
plotted as a function of the initial orientation XO , Tor the same

system considered in Fig. I1I-2. I(XO) reaches a maximum for an initial
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Fig. 1I-2 Values of the functioms §(€)9 x(g) and I(E)

(see text for definitions) for three different imitial

angles Xo . The case shown is 86Kr at 400 MeV lab

energy on 238U9 which quadrupole moment was taken to be
Qéz) = 11.12b, with an energy of the 2t state

EZ+ = (,0449 MeV.
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orientation angle of = 33°. On the other hand since Eq. (33) shows
that df/d% is proportional to sin 2X , we know that the gquadrupole
torque is maximum at X = 459, The fact that the maximum is shifted
down from 45° is a dynamical effect: for a trajectory with initial
XO ~ 33° the quadrupole torgue sets the target in motion in such a
way that at the point of closest approach, when the torque is strongest,
the orientation angle approaches 45°.  For X0>33O the orientation
angle at the point of closest approach is larger than 4599 and the
quadrupole torque is then smaller. This shift of the maximum towards
smaller angles is also an effect that is more marked for heavier
projectiles. In the sudden approximation we will see that f takes
its maximum value at Xy = 45%, and besides that in this case

I{xg) = 29, sin 2xg.

Using Fig. I1-3 we can illustrate the procedure to be followed in
order to evaluate the S-matrix according to the Uniform Semiclassical
Approximation, described in general in Appendix A and in Refs. 24 and
25 for the case of Coulomb excitation. In this method one finds the
trajectories leading to the final spin I of the state we want to
consider. This means, one has to perform a search for those values of
the initial parameters of the physical system (the angle XO in our
case) that lead to the spin 1 we are interested in. Actually in
Refs. 23-25 the final angular momentum of the target is chosen to be
0.5, 2.5, 4.5,.... , instead of 0.0, 2.0, 4.0, ... or 0.0, v2x 3,
YEx5, ... Ref. 25 documents several reasons for doing so and in a
later section of this chapter we will show how this choice appears

naturally from the formalism we are developing here.
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From the form of the function E(XO) shown in Fig. 11-3 we see that
for values of I Tless than the maximum there are two initial angles
Xy that lead to this final spin.

If the transition we are interested in is for I Tlarger than the
maximum of f(xo) it can be seen that there are two complex values of
XO that satisfy the equation f(xo) = J. In this case the equations
of motion will involve complex dynamical variables, but this is no
major obstacle as we will see in the following chapters.

After the roots of f(xo) = I have been determined, the S-matrix
is given by an analytical formula (see Egs. A-13 and A-15). We will

show how these formulas relate to the expression derived here (Eq. 23).

4, Relationship Between the Classical-limit S-Matrix
and the USCA Formulas
If we replace the Legendre polynomial appearing in the expression
for the classical-limit S-matrix (CLSM) Eq. (23) by its asymptotic

expression:

)~ 2.C0S [(ZH/?)?@TTMI cell 1ot ] (34)
J@I+T)n sinX y(21 + )7 sinx

Pz(cosx

we can rewrite Eq. (23) in the form:
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w
{1

(35)

If we change the variable of integration in the first integral of
Eq. (35) from XO to w«~X09 all other quantities appearing in that
equation remain unchanged except X which changes into m-X .

Then Eq. (35) becomes

i/ + (14 1/2) (n-%) - T

. (36)
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The evaluation of this integral by stationary phase methods
results in the USCA expression used in Refs. 24 and 25. It is not hard

to show that the points of stationary phase satisfy the equation:

'i(xﬁ} = 1+1/2 (37)

that was

It is worth observing that the weighting factor iﬁéi?g
introduced by geometrical considerations there, appears more naturally
in this formalism even if the physical reason is obviously the same.
Also the use of the I+1/2 spin quantization condition which Refs. 23-25
use in an almost empirical way is here seen to appear as a direct
consequence of the approximation done in obtaining Egq. (36), i.e., of
having replaced the Legendre polynomial by its asymptotic expression (34).
The close relationship between the CLSM and the USCA expressions
we have shown here, does not imply, though, that the procedure to
obtain numerical results is similar and this fact makes a difference
from a practical viewpoint. We will show in Ch. IV how the introduction
of other terms in the Hamiltonian for our system, even simple terms
1ike the hexadecapolar electric potential, increases the number of
points of stationary phase in Eq. (36). This fact alone makes USCA
expressions much more difficult to use on two counts: (1) There are
more roots to be found, and unless the system can be very well analyzed
from the beginning, one does not know the exact number beforehand.
Therefore the search for the points of stationary phase may become
very long and frustrating. (2) The expressions themselves are much

more complicated, unless one neglects the reciprocate interaction
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between stationary trajectories and uses less accurate expressions
of the type of Eq. (A-12).

The numerical calculations using the CLSM are very similar if
one adds more terms to the Hamiltonian: only Hamilton's equations of
motion have to be rewritten to include these new terms.

Finally, we would 1ike to point out that in the USCA there
is a difference between "allowed" and "forbidden" transitions, meaning
by allowed transitions those for which their final spin can be reached
through classical trajectories, in the usual sense. For example, in
the case shown in Fig. II-3 allowed transitions are those for which.
the final spin is less than the maximum, that is I S 18. The
transitions for which I > 20 are forbidden in the classical sense.
The stationary points of the integral appearing in Eq. (36), which
are solution of Eq. (37) are complex numbers in the forbidden case.
This means that the initial conditions for the equations of motion,
Eq. (33), will be complex, and so will become the dynamical variables
during the subsequent integration.

In contrast the CLSM makes no distinction between allowed and
forbidden transitions, and the dynamical variables are real unless
the Hamiltonian itself is complex, as it will be in the case in Ch. IV.

It could appear surprising at first sight that especially for
high spin states where the roots of Eq. (37) are well into the complex
XO plane, the CLSM and the USCA expressions were equivalent, apart
from the approximations mentioned before, since those stationary phase
points employed in the USCA are far from the real axis on which the

integration leading to the CLSM is performed. However, since the
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integrand in Eq. (23) is an analytic function it is possible to deform
the path of integration in the way shown in Fig. II-4 so that it passes
through the points of stationary phase for the transition considered.
The relationship between both expressions is then clear also in this
case.

For this same case of high spin final states the rapid decrease
in excitation probability with increasing spin (illustrated by several
examples in the next chapter) takes different forms in these two
methods: 1in the USCA it is due to an increasing value of the imaginary
part of the phase, while in the CLSM the Legendre polynomial Pz(cosf)
oscillates more and more rapidly with increase I , thus bringing down
the value of the integral in Eg. (23). WNevertheless from the preceding
considerations we must take these as two different mathematical forms

of the same representation of the physical process.

5. The £ = 0 and ng = @ Timit

Let us consider the special case in which the dimensionless
parameters & and g » defined in Eq. (31), approach the Timiting case
£ =0 and ng = This case is particularly interesting to discuss

42 that the quantum mechanical

because Biedenharn and Class have shown
treatment can be completely solved in analytical terms.

We will first discuss the physical implications of taking & =0
and Ny = @ . From the equations of motion, Eq. (33), it is clear
that for g = @ the trajectory of the projectile is a hyperbola

(a straight line in the particular case of a head-on collision we
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Fig. II-4 Diagram showing how the integration path, which is XBL 774-8298
initially along the real axis can be deformed into a
path passing through the stationary phase points of
the integrand (represented by the dots)
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are considering here) and it is not influenced by the motion of the
target nucleus.

The definition of &£ implies that in order for it to become
zero the moment of inertia _# has to become infinite, therefore the
target does not rotate and in addition the rotational energy levels
of the target nucleus become degenerate. The physical situation which
is approached by this 1imit is when the ratio of the collision time
to the rotation time becomes very close to zero. This is the so-called
"sudden impact" approximation, and besides having theoretical interest
for the reasons expressed above, it is close to the actual physical
situation since as it was discussed in section 3 and illustrated in
Fig. 11-2 the transfer of angular momentum for a realistic case takes
place in a time interval much smaller than the rotational period.

The equations of motion are now:

A dp - .,

dr _ ~ r 1 dx dl sin 2¥

=< =P, ; e B s =0 3 == 3q, >xg— (38)
P T dt dt 2 33 '

From the first two of these equations we obtain the radial momentum

as a function of r

(39)

where the - {+) sign applies to the incoming (outgoing) part of the

trajectory.
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x 1s seen to be constant, so it equals its initial value XO 3

therefore the equation for 1 can be written as

(40)

which can be integrated yielding:

I (xg.F) = ap sin 2 {1 % (1 + 1/F) Y (41)

From (41), the angular momentum of the target after the collision is

given by
il (Xq) = 2a, sin 2, (42)

as it was already mentioned in a previous section,

Since n = « , in order to avoid problems with the Coulomb phase
shifts we will evaluate the R-matrix, given by

Ry, 1 = €Xp {miigg(n0)4=01(nz) 1} Sg. 1 therefore the Coulomb

phase shifts appearing in the expression for A in Eq. (21) are

cancelled. Since X 1is constant we can integrate directly
[ x(t) dny(t) = xg v, (xp) (43)

£=0 and n = dmply that X = Xg-
Then,

[x(e) dpy(t) + Kpy =0 )
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(45)
The R-matrix is then given in this case, by
, . 4
m -1 3 a4z Pylcos )
Rysp = sin X, Pz(cos XO) e dXO
which can be rewritten as
-1 %’QZ ?2(X>
RO—%I = Pzix) e dx (46)

0

This integral can be expressed in terms of a confluent hyper-

(7) |

geometric function, ?F? as

r () -i 39 7 m2 2

- 3 2 . + 143 .

Ros1 ™ e (-2195)" 1Fy (5= == 4 219p)
24/21+1 T(1+3/2)

(47)

This particular confluent hypergeometric function can also be expressed
by means of Fresnel integrals, and in the same manner as in Ref. (7)
it is possible to obtain a simple recursion relation between

R

0+1-2 * Rgop and R

0+ 142
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" R o 1(2r-1(21+1) (21+3)
0142 Qiqz

(1+2)(21-1) 4.

+(1-1)(21+3) 0+1-2
By giving two consecutive elements of the R-matrix all of them are
determined.

In particular we have

.2
— iZq, 0
’?E%E" e EC(ZQZ) -j S(Zqzig (49)

(50)

We see that we have succeeded in expressing the R-matrix in
terms of analytical functions. This is not very important from a
numerical point of view, since the integral appearing in Eq. (46) does
not pose any computational difficulties, but it is very significative
that the analytical expression found coincides with the quantum

mechanical solution for this same casee7séz
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ITI. THE CLSM AND ORBITAL DYNAMICS IN
SEMICLASSICAL COULOMB EXCITATION THEORY

1. Introduction

The recent availability of very heavy ions has made it possible to
populate high spin states (I ~ 20 h ) with multiple Coulomb excitation
processes. Exact partial-wave, coupled channel calculations are possible

6 but such calculations

for Coulomb excitation with Tight projectiles,
are impractical for heavy-ion systems. The most common approach to this

problem has used the semiclassical methods developed by Alder and

7 8

Winther’ (A-W) and embodied in the widely used Winther-de Boer code” to
calculate multiple Coulomb excitation probabilities.

In this approach the internal degrees of freedom are treated
quantum-mechanically but the projectile dynamics is taken as that of
a classical particlie on an energy-symmetrized hyperbola.

43-4% 1145 accounts quite nicely for the

As Alder et al. have shown
amplitude of the first-order transition matrix elements, but may be in
significant error for their phases. Therefore higher order processes
such as multiple E2 or E4 excitation which are sensitive to these
phases may be affected by corrections to semiclassical calculations.
Historically, these corrections have been termed "quantal" or "quantum-
mechanical” corrections, since they represent differences between exact
(i.e., quantal) calculations and the approximate semiclassical ones.
Alder has pointed @utégﬁ however, that a significant part of this
"quantal” correction is independent of h and therefore is not a true

quantum-mechanical effect at all, but rather is due to the neglect of

the electric quadrupole potential in calculating the energy symmetrized
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semiclassical trajectories. The weight of the evidence presented in this
chapter supports this point of view and we shall refer to these effects
as orbital dynamics effects. Any effects that are of a specifically
quantum dynamical origin (in a sense to be specified later) are probably
beyond the range of this method.

Initial attempts to account for the "quantal" corrections arising
from the use of approximate orbital dynamics have involved extrapolations

43-45 4nd sophisticated energy and

C s . . . . ., 46
angular momentum symmetrizations in the semiclassical 11m1t@ .

from exact light-ion calculations

Here we will employ the method discussed in Ch. II and compare
it with A-W and quantum-mechanical calculations. From this comparison
we expect to understand better the orbital effects in the semiclassical
theory and even provide an estimate of the corrections to be made to
calculations based on this theory for the case of heavy ions where the
quantum mechanical codes available are now impractical.

A short review of the semiclassical theory is presented in
Appendix B. We refer to (47) for a more thorough discussion of this
theory and also of the quantum mechanical treatment of the Coulomb

excitation process.

2. Comparison of CLSM, A-W and quantum mechanical results

In order to evaluate the expression for the classical limit S-matrix
given in Eq. (11-23) we wrote a computer code in which first

trajectories were run corresponding to the initial conditions:
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%O large (> 50)
gr = -7 w22?0
0 (1)
XO = yniformly spaced values in the interval {0 , %ﬂ
IO = 0

Due to symmetry reasons, the trajectories for Xy in the interval

{%»sw] correspond to those in the interval, [0 ggﬂ by the transformation

X = m=X
P
(2)
v p
5?“* Py

valid at all times during the trajectory. This fact allows us to run
only half of the trajectories needed to evaluate Eq. (11-23), and
therefore reduces by a factor of two or so the computer time required
by the program.

The integration of the equations of motion, Eq. (II-33) is done
by means of a standard Zonneveld-Adams Moulton integration routine.

The quantity

[r(t) dp,(t) + x(t) dp, (1)1

that appears in Eq. (11-23) is evaluated by adding the differential
Eg. (II-33"') to the equations of motion. The integration is concluded

when the distance v is sufficiently large (we chose the value 50 again).
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We should remark here that the values for the S-matrix elements were
numerically shown to be independent of the initial and final distances
taken for the integration as long as these values lay well out of the
region where the interaction takes place. This region can be
operationally defined by considering whether the value of the angular
momentum is changing or not.

From the values of the dynamical variables at the end of each
trajectory the quantities ; and A are evaluated and stored.

In order to calculate ; , defined in Eq. (II-13') we must

perform the integral

mp
fr Tx(*}i‘j)d?
oo BT

which in dimensionless variables is written

jr “Li 1A2+§Ed

(2)

5>

In Eq. (2) §T satisfies gr(%T) = 0 . This expression can be evaluated

analytically, since

Fal

B, = R ! (3)
'y un

In both Egs. (2) and (3) I and 1 represent the final value of these

variables for the trajectory considered.
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The evaluation of A (Eq. II-21) requires as well the evaluation

of one integral

p
f "% dp

0
which is expressed in dimensionless variables, previous an integration

by parts, as

| B, df (4)
E?%T
where §r is given by Eg. (3) and r and ér are final values for the

trajectory.

After all the trajectories are run, the integration appearing
in Eg. (II-23) is done by using a 5 points Newton-Cotes integration
subroutine.

This integration is repeated for all the final spins I we are
interested in. Note, however, that the equations of motion do not have
to be integrated every time, so that the time required for the computation
is practically independent of the number of excited final states
considered. This is a very convenient feature and the situation is
quite different for the other methods to be discussed here.

The calculations for the A-W and quantum mechanical theories

8 and AROSAg computer codes.

were done by using the standard Winther-deBoer
Since these codes give the results in terms of the R-matrix instead of
the S-matrix, we have omitted in our code the Coulomb phases appearing
in the expression of A (Eq. 1I-21), so as to obtain the R-matrix and

thus facilitate the comparison.
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From a numerical study we have found that 50 trajectories in the
interval EOsgﬂ are enough to give the CLSM results with good accuracy.
The computing time required for our code is less or equal to that required
for the Winther-deBoer code and much less than the one consumed by AROSA.

One expects that the CLSM method will be the more valid the more
"classical" the system is, i.e., for heavy projectiles and the excitation
of large numbers of rotational states. Since this is exactly the
situation for which quantum-mechanical calculations are not yet practical
this represents one of the attractive features of the method. On the
other hand this means that comparisons to quantum-mechanical calculations
can only be done exactly for light systems, for which the CLSM method
might not be expected to work very well. In fact, we have found that
the CLSM gives a highly accurate description of the Coulomb excitation
process even for the lightest dons.

The results of these calculations are shown in Figs. IIi-1-4 for

]H5~2H9 4He and 108@ on 168

the projectiles Er, and are tabulated for
a closer inspection in Table 1. In the upper part of each figure we
have plotted the amplitude and phase of the R-matrix elements for the
% = 0 incident partial wave as a function of angular momentum both for
a quantum mechanical calculation and for the CLSM calculation (note
that the radial scale is logarithmic). In the lower part of each figure
we show the relative deviation of the amplitude and the deviation of
the phase of the R-matrix from the quantum mechanical calculation, both
for the CLSM method and for the A-W method.

The agreement between the CLSM method and the quantum-mechanical

calculation for the amplitude and the phase of the £ = 0 R-matrix, even for

protons, is remarkable.



Table III-1. Values of the S-matrix elements Séiﬁ calculated by the methods described in the
text. The arguments are given in radians. These results are illustrated in Figs. 1-4

8
CLSM M (Arosa) (6 AW(WINTHER - desoER) o)
SYSTEM ENERGY (LAB)  SPIN  MODULUS ARGUMENT  MODULUS  ARGUMENT MODULUS
e 168 7 ey 0 0.991 0.006 0.994 0.005 0.996 0.001
0.134 4.670 0.113 4.680 0.135 4.670
0.002 3.305 0.003 3.151 0.008 3.142
Zus 168 7 pey 0 0.982 0.010 0.986 0.009 0.982 0.003
g
2 0.187 4.654 0.167 4.664 0.186 5.653 &
0.081 3.216 0.082 3,145 0.143 3.140
bue + 185 14 Moy 0 0.934 0.028 0.940 0.027 0.934 0.014
2 0.353 4.606 0.339 4.615 0.353 4.599
0.047 3.004 0.044 3.080 0.054 3.067
1050 + 168 45 Moy 0 0.342 1.027 0.347 0.988 0.330 0.951
2 0.691 4.517 0.701 4.513 0.661 4.378
4 0.583 2.736 0.570 2.752 0.595 2.604
6 0.249 1.153 0.242 1.169 0.298 1.024
3 0.059 5.960 0

.064 5.943 0.101 5.809
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Fig. III-1 (a) The £ = 0 R-matrix elements for Coulomb excitation
of the ground band of légEr by 7 MeV lH projectiles, The
radial scale is logarithmic. The quadrupole moment of
168Er is taken to be Qéz)%

are taken from the rotational model with Ept = 0.0798 MeV,

The Classical Limit S-Matrix (CLSM) calculations are in

7.673 b and the energy levels

good apreement with the quantum mechanical calculations
done using the computer code ARCSA (QM).

(b) The difference in phase between the L = 0 quantum
mechanical R-matrix elements and the CLSM and Alder-Winther
(A-W) semiclassical calculations.

(c¢) The relative difference in amplitudes between the

L = 0 quantum mechanical R-matrix elements and the CLSM

and A-W ones,
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3. The Nature of the A-W and CLSM Approximations

It is fmportant at this point to notice carefully the nature QF
the approximations implicit in the Alder-Winther semiclassical method
and in the classical-limit S-matrix method. In the A?deraﬁfntheré7
approach one solves the time-dependent Schridinger equation for the

deformed target.

in 2 [(t)> = [Hy + H(6)][0(t)> (8-3)

where HO is the Hamiltonian of the free nucleus and HE(t) the electro-
magnetic interaction with the projectile. In order to obtain HE(t) the
approximation is made that the projectile behaves as a classical particle
moving under the influence of the monopole-monopole part of the electro-
magnetic potential. Therefore the projectile's trajectory is a hyper-
bola. In order to take into account the fact that the projectile loses
energy during the collision, and since it is not possible to determine

at which point of the trajectory is this energy transferred to the
target, the hyperbola is taken to correspond not to the initial or

final energies of the projectile but to the geometric mean of these

&
energies EE .

°E§ (5)

where EO and Ez are the projectile’s initial kinetic energy, and the
final kinetic energy after leaving the target excited to the rotational
spin I , respectively. In terms of the magnitudes defined in Ch. II

they are
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2
=1 2 1 o2 mTI(I+1)
EO =3 m Ve and EI 5 m vc - %}7

*
I is often referred to as

The resulting trajectory corresponding to E
an energy-symmetrized hyperbola.

In short, we see that the Afw method treats the target internal
excitation degrees of freedom quantum-mechanically but treats the
projectile degrees of freedom using approximate classical dynamics.

The validity of this approximation rests on whether the wave-
packet representing the projectile behaves as a localized particle
subject to classical equations of motion and, if so, whether the
deviations from a Rutherford trajectory arising from the non-central
part of the potential that was completely neglected are sufficient to
invalidate the approximate classical dynamics employed. |

The first question relates to whether there are explicit quantum
dynamical effects operating which cast doubt on the applicability of the
concept of a classical trajectory. It is a question about phenomena
which vanish in the 1imit h -~ 0 and which can only be fully answered
in the context of a rigorous quantum mechanical analysis. The second
question concerns effects which are due to approximations in the
classical dynamics employed and which are independent of © . This
question might reasonably be answered within a classical or classical-
Timit framework.

In the CLSM method one forsakes the semiclassical prescription
of a quantum-mechanical treatment for the internal degrees of freedom
of the target and approximate classical treatment of the projectile

motion. Instead, both the internal and projectile degrees of freedom
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are described by exact classical dynamics. One retains certain quantum-
mechanical Teatures since superposition is implicit in the CLSM
formalism, and it is very important to realize that essentially all
so-called quantum-mechanical effects result directly from the super-

48 Therefore it is reasonable to expect that the

position principle.
quantum effects are contained at lTeast qualitatively in the CLSM
formalism.

32 the expression we are using for the S-matrix

As noted by Marcus
elements does not satisfy the requirement of time reversibility. It
is not hard, though, to extend the CLSM formalism to include, at least

approximately, this r@quirementegg The numerical results of Mﬁ?iewgi

30 indicate that we should expect our expression to

and Wong and Marcus
be quite accurate, except maybe when the excitation probabilities are
extremely small.

The results we jusi showed in Figs. I1I-1-4 and Table III-1 are
in agreement with this conclusion. The use of an expression for the
S-matrix satisfying time reversibility is being considered at the present

moment.

4, The Parameter g
7,8,43-45 .47

As 1t has been pointed out many times the Sommerfeld
parameter g defined in (I1-31) plays a most important role in assessing
the validity of the semiclassical description. This is to be expected
 since Ny equals the ratio of half the distance of closest approach to

the projectile de Broglie wavelength

. 8 (6)
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Here AO = h/mvO and a is defined as in (I1-31). Therefore ng meas-
ures the spatial confinement of the wave-packet describing the

projectile relative to the characteristic interaction distance, and
indicates therefore the degree to which the wave-packet will remain
intact during the interaction. A classical description of the projectile
will be appropriate if ng >> 1 while a full quantum mechanical treat-
ment will be necessary if ng << 1. For reference we give in Table III-2
the values of the Sommerfeld parameter ) and also of the other
parameters a5 and £ appearing in the classical equations of motion
written in dimensionless coordinates (Eg. (I1-33)), for different

systems we are considering in this work. We must keep in mind that

these parameters are both system dependent and energy dependent. Their
values fdr other energies can be easily found from their respective
energy dependencies:

ny g-1/2

q, = E/2 (7)
E o« Eu3/2

In these equations E 1is the total energy of the system taken in either
the laboratory or the center of mass reference frames.

From Table I11-2 we see that except maybe for the very lightest
projectiles the condition Ny >> 1 is well satisfied.

Therefore we expect that the errors coming from the assumption
that the projectile can be described as a point particle following a

classical trajectory instead of a wave-packet obeying the laws of quantum
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Table III-2. Values of the dimensionless parameters Ng» Gos £ and the

auxiliary parameters qgin@ and 9y & for several physical systems

SYSTEM  LAB ENERGY(MeV) g a, 3 a/ng 9, £

Ty 4 168, 7 4.05  0.231 0.0232  0.057  0.005
2y 4 168, 7 5.72  0.322 0.0330  0.056  0.011
Yo + 168y, 14 11.5  0.630 0.0334  0.055  0.021
10g, 4 168, 45 20,2 2.68  0.0190  0.133  0.051
10gE 4 194y, 30 22.6  1.54 0.0328  0.068  0.051
Ope o 178y 145 107. 4.08  0.0822  0.038  0.172
Bpe+ 178y, 240 142. 6.18  0.0363  0.043  0.224
W0pp + 238y 170 127. 5.70  0.0196  0.045  0.112
86y + 238y 400 286.  11.1  0.0185  0.039  0.206
1365¢ 4 238 600 374 12.9  0.0220 0.034  0.283
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mechanics are very small. Then the differences between the quantum
mechanical and semiclassical calculations should be due mainly to the
approximate orbital dynamics employed in the semiclassical description.
The differences between the quantum mechanical and CLSM calcu]atiénsg
on the other hand, should come mostly from the way the target is
described, that is, by classical mechanics plus superposition. The
results shown before (Figs. 111-1-4 and Table III-1) seem to indicate
that even for systems for which very Tittle rotational excitation takes
place, - those for which the classical description of the rotor is less
appropriate-,the CLSM method furnished accurate results. It is to be
expected then that for the cases of heavy projectiles where high
rotational spins are excited this method should work even better.

This conclusion cannot be tested directly, since the now existing
computer codes cannot be applied with confidence in this region, but
we think the evidence presented here to support it is strong.

Besides the one mentioned before, the parameter g plays
another important role. From consideration of the equations of motion
(I11-33) we see that if we allow Ny 9o to infinity in these equations
the trajectory of the projectile becomes a hyperbola. Therefore 3/n09
or rather qZ/nO measures the deviation of the projectile orbit from

25 proposed

that of a pure Rutherford hyperbola. For this reason Massmann
to designate this ratio as a new parameter, which from (7) we see it
varies quadriatically with the energy. He also observed that the product
a, £ could be taken as another parameter, with the further advantage

of being energy independent, and depending only on the projectile-target
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system considered. We have shown the values of quﬁ@ and 9, £ for
several systems in Table IIl-2.

Since qz/nﬂ measures the deviation of the projectile trajectory
from a pure hyperbola, we should find that as qz/nO increases the A-W
results become increasingly different from the quantum mechanical ones,
while the CLSM results should not suffer in this process.

We have tested this idea for the case shown in Fig. I1I-5 and
in Table I1I-3, by the simp]e'expedient of raising the energy of the
system considered due to the quadratic dependence of qz/no with the
energy. The results verify this prediction. We notice that the
percentage error of the Alder-Winther R-matrix increases monotonically .
with energy as expected from the fact that the quadrupole interaction,
which is not considered to affect the orbits in this approach, becomes
rapidly more strong as the projectile gets closer to the target due to
the Targer energy.

Another effect that is apparent from Fig. III-5 is that the
relative error increases rapidly with angular momentum. This fits
nicely into the idea of an orbital effect, since in the approximate
dynamics used in the A-W formalism the angular momentum is not conserved.

By looking now separately at the amplitudes and phases, (see
Figs. 111-6 and 7) we see that the relative error in the amplitude
increases mostly with increasing spin, not showing a clear trend with
energy, why the opposite is true with the error in the phase, where the
error increases with energy but not with spin.

From Table III-3 we see that the CLSM results do not show much

structure with spin or energy, and that the errors are considerably less
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Fig., 1II-5 Relative differences between the quantum mechanical
{(QM) end semiclassical (A-W) calculations of the
complex % = 0 Rematrix elements for Coulomb excitation

1548me

of rotational states in The quadrupole

moment of 1548m is taken to be Qéz) = 6.82 b and
the energy levels are taken from the rotational
moment with EZ+ = 0,082 MeV. The projectiles are
103@ fons at 30, 40 and 50 MeV laboratory energy.
The relative differences are seen to increase both
with the projectile energy and with the spin of the

excited state.
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Fig. I11I-6 Same as Fig. (II1I-5) except that here the XBL 774-8296
relative differences between the smplitudes

of the R-matrix elements are plotted.
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Fig. IIT1-7 Same as Fig. (III-5) except that here the XBL 774-8295
differences between the phases of the R-matrix

elements are plotted.
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Table III-3. Relative errors of the R-matrix elements for 2=0 obtained
by the Alder-Winther and CLSM methods. The system considered is
108&‘%1545m, The 154
Q2:65826b and the energy levels were taken from the rotational model
with E2+ = 0.082 MeV.

Sm was assumed to have a quadrupole moment

0 0
R%Z(A@w) < R@.;,I(Qﬁ) t

0
RO, (QM) |

ENERGY SPIN ALDER-WINTHER CLSM

(MeV)

30 0 0.040 0.036
2 0.045 0.023
4 0.099 0.076
6 0.272 0.047
8 0.642 -

40 0 0.078 0.088
2 0.113 0.013
4 0.139 0.057
6 0.295 0.076
8 0.683 0.035

50 0 0.116 0.109
2 0.223 0.085
4 0.235 0.027
6 0.341 0.087
8 0.721 0.008




2
than the ones of the semiclassical method.

5. The Limit ng >

It will be instructive to consider a case where the trajectory
of the projectile is the same in both the semiclassical and CLSM
approaches, since such a case would be a good test of the idea that
the approximate orbits used in the semiclassical method are responsible
for most of the so-called quantum affects, and it would also be a
direct test of how well the CLSM model handles the target rotation.

In order to obtain the same trajectories we must force the
CLSM trajectories to be hyperbolas. This is possible by taking the
value of the parameter g to be infinity in the equations of motion
(11-33). 1In order that these hyperbolas be the same as in the Winther-
deBoer computer code, the simplest procedure is to modify this code
so that the energies are not symmetrized. This means that we take all
Rutherford orbits corresponding to the different excited rotational
states as having the same energy, which is the case in the CLSM code
when ng > - This modified Winther-deBoer computer code will be
designated in what follows as the "unsymmetrized" code, while the
original one will be referred to as the "standard" or “symmetrized" code.

The orbits in the unsymmetrized Winther-deBoer code and in the
CLSM code for ng * @ are exactly the same. We will now proceed to
make the comparison of these two methods in this Timit.

Since it is very convenient to have quantum mechanical calcula-
tions as a reference, our first case to be considered involves the light

105, , 168

system B Er at 45 MeV laboratory energy.
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The results are shown in Table III-4, and plotted in Fig. III-8.
Since the quantum mechanical computer code AROSA is restricted to values
of n of up to around 30, the limit for Ng * ® was obtained from a
parabolic interpolation from the calculations done at lower ng=s-

The analysis of the results shows several interesting features.
First of all we see that as T/no -+ 0 both the QM and the CLSM values
approach the unsymmetrized Winther-deBoer result. The way this con-
vergence takes place is very similar for the QM and CLSM methods.
Finally, it is important to remark that the symmetrization in the
Winther-deBoer code aiways modifies the unsymmetrized results in the
direction that approaches them to the QM and CLSM results for the
actual value of ng-

A1l this is consistent with the point of view expressed before
that the main reason for the differences between the semiclassical
and the quantum mechanical methods 1ies in the approximate orbital
dynamics considered in the former. A procedure such as the energy
symmetrization of the Rutherford orbits which makes the trajectories
more realistic should improve the results, and this is actually observed.

The question now is what other steps may be taken in order to
approach even more the trajectories employed in the semiclassical

46 attempts have been

method to the ones found classically. Recently
made to make an additional symmetrization with respect to angular
momentum transfer. A marked improvement in the amplitude of the R-matrix
was achieved, which is consistent with the previous discussion and the

results shown in Fig. I11-6.
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Fig. I1I-8 The f = 0 R-matrix element amplitudes squared
for the same system shown in Fig., (III-4), showing
the variation of both the quantum mechanical and
CLSM results with l/noe The dashed line at right
indicates the actual value of Ny for the system
and energy considered. The dots at left represent
the results of the calculations done using the
standard Winther-~de Boer computer code (full dots)
and the one modified as described in the text
(open circles). The CLSM and QM calculations are
seen to be in good agreement to each other, and to
converge to the modified Winther-de Boer results

as 1/‘?’]O + 0.
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Table III-4. The Timit 1 for the system B
for zﬁ&Ew were taken the same as in Fig. III-4. The quantities represented are the squares
of the amplitudes of the R-matrix elements for 2=0.

Er at 4'SMeV laboratory energy. QZ and E2+

Efm@ QQGSG% 0.040 0.030 0.0 (Extrapolated) Unsymmetrized Standard
SPIN AROSA  CLSM AROSA CLSM AROSA  CLSM AROSA CLSM W-deB W-deB

0 0.121  0.117 0.117 0.116 0.114 0.114 0.107 0.108 0.7109 0.109

2 0.491 0.478 0.480 0.468 0.469 0.459 0.442 0.432 0.434 0.437

4 0.325 0.340 0.332 0.342 0.368 0.346 0.350 0.357 0.355 0.354

6 0.059 0.062 0.065 0.069 0.072 0.075 0.090 0.092 0.091 0.089

8 0.0040 0.0035% 0.0051 0.0050 0.0064 0.0065 0.0110 0.0116 0.0111 0.0103

%Actuaﬁ value of the parameter for this system.

Egga
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A similar study was done for the heavier system " Ar + U at

170 MeV, which lies beyond the range of applicability of the computer
code AROSA. The results appear in Table III-5 and the cases for which
the deviations aré most apparent are illustrated in Fig. 111-9. The
good agreement found in the previous example plus the consideration that
as the system becomes heavier it becomes more amenable to a classical
description constitute strong indications that the differences between
the CLSM results at the actual value of g and the Winther-deBoer
calculations are a measure of the orbit dynamical effects in this last
formalism, and since the pure quantum-mechanical effects were seen before
to be much smaller than these orbit dynamical effects, they are as well
a good estimate of the differences to be expected between a Winther-
deBoer calculation and a quantum-mechanical one.

We see that the rise of these effects is considerable specially
for the case of high spins.

In Figs. III-10 - 13 we compare our results with those of the
Winther-deBoer code for various heavy systems. From the preceding
remarks we conclude that the differences between the results of the
two methods are fair estimates of the quantum mechanical corrections
to the semiclassical theory.

In Figs. III-8 » 13 we have plotted the modulus squared of the
R-matrix elements for J = 0 without attaching to them any special
physical significance. It should be clear that they represent the
probabilities for exciting the different rotational states if we just

consider a J = 0 partial wave incident on the target.



Fig. 111-9 Same as Fig. I1I-8 except that the XBL 774-8291

system is now égér on ZSBU at 170 MeV

laboratory energy. 7The quadrupole moment of ZBSU is
taken to be 11.12 b and its energy levels are taken from
the rotational model with EZ* = (.0449 MeV. No quantum

mechanical calculation is presented in this case.
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Table I1I-5. The limit ng > for the system ~“Ar+ U at 170 MeV laboratory energy.
238U is taken to be 11.12 b and the excitation energies taken
= 0.0449 MeV. The quantities represented are the

The quadrupole moment of
from the rotational model for E

Vs

squares of the R-matrix elements for 2=0.

M\kifnﬂ CLSM Winther-deBoer

PN\ 0.0100  0.0079'%) 0.0060  0.0035 0.0025 0.0015  0.0®) | unsym.  Standard
0 0.077 0.076 0.075 0.075 0.074 0.074 0.074 0.074 0.074
2 0.171 0.170 0.170 0.169 0.169 0.169 0.169 0.171 0.171
4 0.059 0.059 0.060 0.060 0.061 0.061 0.059 0.058 0.058
6 0.204 0.197 0.191 0.182 0.179 0.175 0.170 0.179 0.181
8 0.300 0.300 0.298 0.297 0.296 0.294 0.291 0.293 0.294
10 0.149 0.154 0.158 0.164 0.167 0.169 0.170 0.167 0.166
12 0.035 0.038 0.041 0.045 0.046 0.048 0.051 0.049 0.048
14 0.0048 0.0055 0.0062 0.0073 0.0077 0.0082 0.0089 0.0087 0.0082
16 0.00051 0.00061 0.000717 0.00086 0.00093 0.00098 0.00103 0.00101 0.00091

(a) actual value of the parameter for this system

(b) parabolically extrapolated

.s.Sga
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Flg. I111-10 The £ = 0 R-matrix element amplitudes squared
for Coulomb excitation of the ground band in

l765f by 145 MeV laboratory energy 4OAr

projectiles. The quadrupole moment of l78§f

is taken to be 6.81 b and the energy levels are
those of the rotational model for E,y = 0.0932 MeV.
The comparison between the semiclassical (A-W) and
CLSM results shows good agreement, with the same
deviation for high spins as observed before

(Figs. 111 1-4).
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as (I1I-10) except that the projectile is
at 240 MeV laboratory emergy.
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Fig., I11-13 Same as III-12 except that here the projectile

is gé&(ﬁ at 400 MeV laboratory emergy.
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In Fig. III-14 and Table I11-6 we compare these amplitudes squared
of the R-matrix elements to the excitation probabilities found by
considering the partial wave sum over all J for a deflection angle of
180°. They are actually close in value, and we may regard the quantities
]Réillz as an approximate measure of Py, i{m).

This could result surprising at first sight, since there are
many partial waves contributing to the cross section for any deflection
angle. The reason for this may be understood in a model similar to that
employed for the Alder-Winther theory. In it we see that the
trajectories that contribute most to backward scattering are rather
similar, and therefore the time dependent perturbation felt by the
target is more or less the same for all these trajectories. The fact
that there is a close relation between the excitation probabilities
for the J = 0 partial wave and those for a deflection angle of 180°
when all partial waves are summed appears then because those partial
waves that do most of the contribution have similar excitation

probabilities patterns.

6. Present limitations of the CLSM theory

The formalism presented in Ch. II requires for its validity that
the wavefunction given by Eq. (1I-16) be a good approximation to the
true wavefunction. This approximation breaks down when the Jacobian

%%- goes through zero, because at those points the wave function MK 1)
0

becomes infinite.

In Fig. 111-15 we show the function i(XO) for several systems.

We see that for one case shown there, there are points for which dﬁ/dxo
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Fig. I1I-14 Comparison of the backward scattering excitation
probabilities found by means of the quantum mechanical
code AROSA (in which the partial wave sum is evaluated)
to the £ = 0 R-matrix amplitudes squared obtained
through the same code, through the CLSM method and

by the semi~classical formalism (A-W).
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Table III-6. Comparison of the excitation probabilities for a

deflection angle of 180° found by doing the partial wave sum using

the computer code AROSA, to the 2=0 R-matrix element modulus

squared obtained by means of the three other procedures discussed

in the text. The system is the same as in Fig. IlI-4.

SPIN M QM CLSM A-W
(AROSA, ALL L) (AROSA,L=0) (WINTHER-deBOER)
0 0.089 0.121 0.117 0.109
2 0.475 0.491 0.478 0.434
4 0.352 0.325 0.340 0.354
6 0.078 0.059 0.062 0.089
8 . 020076 0.0040 0.0035 0.0103
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Fig. III-15 The function ;(XQ) for three different projectiles
and energles on 238U° The parameters for 238U
are taken to be the same as in Fig. 1I1-9. The
behavior of ;(XG) for éoﬁz is indicated only for
low values of XO in order not to overcrowd the
figure. For higher values it is close to and slightly
below that of 86Kr5 We see that i(xo> for 136Xe
presents a Eoint {(marked with an arrow in the figure)

at which ax 0. Only the interval of XO from 0 to

d)(o =
%’was plotted since the curves are symmetrical around
T w
the point (E’, EOE
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becomes zero. This does not mean that the results for cases 1ike this
are wrong, but we must accept the fact that some accuracy has been lost,
and it is not simple to estimate the error for those cases.

Figure I11-16 represents a plot of the region where the CLSM
method is fully valid. We see that it is mostly a function of the
system considered, in particular of the parameter

oz,
:};ﬁﬁﬁ“ﬂ =30y & (8)
where all quantities have been defined in Ch. II Sec. 3.

We point to the fact that this will be also the region of
validity of the USCA approximation, since the points where c&/dxo =0

49 If the true

will appear as spurious points of stationary phase.
stationary phase points for a transition are not close to these spurious
ones, then we expect the USCA to be still applicable, but to be sure one
needs to find these spurious points besides the usual roots of
f(xo) =1 + 1/2 and this could become a serious problem.
Fortunately the region where the method is valid is quite wide,
and one has to be careful only when working with very heavy projectiles.
The alternative of finding an approximate wavefunction of the

type of (I1-16) that does not have this drawback is presently under

study.
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IV. THEORY OF COULOMB-NUCLEAR INTERFERENCE FOR EXCITATION
OF ROTATIONAL STATES

1. Introduction

In the previous chapters we have considered that the incident heavy-
jon and the target nucleus interact only through the electromagnetic
forces between them. This is valid as long as these two particles do
not come into the range of their mutual nuclear interaction. Since the
classical 1imit S-matrix (CLSM) method was seen to work nicely for the
pure Coulomb case, the idea of generalizing it to include the nuclear
potential follows very naturally. This generalization, however, is not
as simple as it might be thought. The nuclear interaction between two
heavy ions is usually represented by means of a complex potential; the
classical Hamiltonian then becomes complex and therefore we find our-
selves dealing with complex equations of motion and complex dyﬂamicé]
variabiese The meaning of these complex quantities has to be clarified
if we want to extend the CLSM method to the region where the nuclear
potential begins to act.

The use of complex trajectories is by no means new in physics,
and they were successfully employed in recent years in the study of

12-18,33,36

molecular excitation and reactive collisions in atomic

physics while in nuclear physics they were applied to the problem of
elastic and inelastic scattering from spherical ﬂucieiglggzz

We will consider the case of deformed nucliei. Our concern here
will be again to describe the excitation of the rotational states and

not to study any other phenomena that appear when two such nuclei touch,
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such as excitation of other collective modes, transfer of one or more
nucleons, nor of the much more complex processes that appear at higher
energies.

We will then assume throughout this chapter that the incoming
projectile and the target nucleus are the same before and after the
collision takes place, and that the only states excited in the target
are those of the ground rotational band, while the projectile is not
excited at all. The fact that rotational excitation is not the only
process taking place is manifested in the reduction of the outgoing
flux due to the imaginary part of the potential. The real part of this
nuclear potential will give rise to a torque which is of opposite sense
to that due to the electromagnetic forces (Fig. IV-1 illustrates).

We see then that the results should be strongly dependent on
the particular nuclear potential that is considered. In fact, we will
contend that this method could be a useful tool in finding a good
potential for quasi-elastic scattering from deformed nuclei.

Since in the usual Coulomb excitation experiments one carefully
limits the beam energy so as to avoid getting into the region where
the nuclear interaction becomes effective, there is little experimental
data in this region to attempt a determination of the nuclear potential

parameters. Experimental work in this area is currently in progress.

2. Hamiltonian and Equations of Motion

The Hamiltonian will be the one given by Eqg. (11-29) to which
we will add the nuclear potential. We will also include an electric
hexadecapole potential because at the higher energies considered in

this chapter projectile and target get closer together than in the pure
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Fig. IV-1 The classical model for competition XBLT7BI1-12A
between the electromagnetic and nuclear

forces.
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Coulomb region and therefore this term becomes more important than

before., The Hamiltonian will then be

2
P 1 1 2
H(Y‘gp sXap ) = L+{M+ m>p
PP am 27 omp2 )X
2 (2) 2
+ Lpfr® + "% e P,(cos X ) (1)
r P 3 2
r
7 Qéé)ez
p . - o
M PylcosX) = Vplryx) - 1V;(r.x)

Here Qé4) is the hexadecapole electric moment, P4 the usual Legendre
polinomial of order four, VR and yz the real and imaginary part of the
nuclear potential which precise functional form we will give below, and
all other quantities have been defined in Chapter II using the same
nomenclature as here. MWe will take vR and VI to have a Saxon-Wood
dependence on the radial distance r , since this is the way in which
it is most frequently expressed in the current literature. It will be
very simple to adopt other parametrizations in this formalism, when
enough data is available to make feasible a search for the most appropriate
nuclear potential it will be interesting to consider other functional
forms, such as the recently presented expressions in terms of proximity

fcrcessomsze
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We take then
v, = v
R F=RR§K7
1+e ——r
R
W (2)
V= r=Ry(x)
1+ ——n0u
ar

V and W are the strength parameters of the real and imaginary parts of
the potential, respectively, while an and ay are their respective

diffuseness parameters. RR(X) is given by

82+82>
o R 173, 173 2t By
RROO = Ry | Ap™™ + Ay <1 + By YooUx) * By Yao() - g

(3)
and represents the sum of the radii for a relative orientation ¥ .

R
Here RO

is the real radial parameter, Ap énd AT are the projectile
and target mass numbers, respectively, the B, are the nuclear
deformation parameters, the YZO the spherical harmonic functions

and the last term is included to take into consideration volume
conservation. We will assume that the real and imaginary parts of
the nuclear potential have the same angular dependence, so that RI(X)
is obtained by replacing Rg in Eq. (3) with Ré . This is obviously
a non-essential assumption, and it can be lifted very easily. It
serves the purpose of limiting the number of parameters that we have

to deal with.
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We note that we are still taking the form ZPZT eZ/r for the
monopole-monopole electric interaction. This is not strictly so in
the nuclear force region where the charge densities of projectile and
target do overlap; a folded potential would be more appropriate. We
will nevertheless retain this simplier expression, since we will work
at energies where very 1ittle interpenetration occurs and where
therefore it is not worthwhile evaluating a folded potential.

From the Hamiltonian (1) the classical equations of motion are

p?"‘
P S e
" (2) (4a)
2 2 2
P L 1-.e ZQ 2
= X_ . PT° ., 37p0 e
p + + P,(cos x)
r mr3 i“z ? r 2
(a) 2
Z.Qy e oV, {r.x) v, (r,x)
5 7p0 R . .
) 5 Pylcos ) + ———+ 1 —5—— (4b)
. 1 1
X = —+—7|p (4c)
éﬁ mr? X
2),2 (4) 2
Z Q( e 2.0)"e
o 0 ) _ 0 Kl
Py = = wﬁg;§m~u= §7=P2(cos><) “£L2;§§”“” 5% P4(cgs X) +
(4d)
EVR(PQX) , 8Vz(rgx)
ER A T

oX oX



& il £ iad 0P TRy o . ) ]
S T A A ST QR FZ B g B ‘5
- - &g L ; PLiE e

B P

-89-

And as before we add the equation for the phase:
s 1. .
o= -5 (rp.+Xxpy) (5)

We immediately see that due to the iméginary part of the nuclear
potential the dynamicai variables r, Ppre X Py and the phase ¢ as
well become complex numbers in the general case.

We will start our study by looking at some examples simpler than
the general case in order to gain familiarity with the effect of each

of the new terms we have incorporated into the Hamiltonian.

3. Purely Real Nuclear Potential

For the case of a purely real nuclear potential the dynamical
variables will be real, and therefore there is no problem associated
with their physical interpretation. This will allow an unclouded view
of the effect that additi?nai terms included in the Hamiltonian have.

The inclusion of the electric hexadecapole moment does not change
very much the function E(XD) shown in Fig. IV-2, nor the excitation
probabilities, shown in Fig. IV-3. The values chosen for the electric
multipole moments of 2%y are® q{?) = 11.120; Q{*) = 1.06b%. At the
energy chosen for the case shown the addition of a realistic nuclear
potential would not appreciably change the results.

If we increase the initial kinetic energy of the projectile the
two nuclei begin to interact more and more strongly through their
nuclear potential. Figure IV-4 indicates the important changes that
take place on the function f(xo) as we increase the energy of the

projectile. The effect of the nuclear potential is most noticeable
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Fig. IV-2 Final spin I versus initial orientation angle

éoAr%’zggU at 160 MeV laboratory

energy. The guadrupole moment of 238U is assumed to

XO for the system

be 11.12b, and the effect of the hexadecupole moment
appears as the difference between the functions for
o= 1.96 b7
Qo(é)ﬁ 0. For illustration the situation QO

(experimentally measured ValueSS) and

@. .

Qéé) = 1,96 bz has also been plotted, and it is clear
that the difference between the two previously mentioned

curves is qualitatively given by this later function.
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different laboratory energies. The multipole moments
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of U were taken to be QD = 11.12 b, QO = 1,96 b7,
the energy levels were taken from the rotational model
with EZ+ = 00,0449 MeV and a real nuclear potential was
assumed between the collision partners defined by the
parameters V = 50 MeV, RRO = 1.167F, ap = 0.95 F,
BZ = 0,237, 84 = 0,067,
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when the tip of the target is initially oriented close to the beam axis
(i.e. Xo close to 0% or 1800) because in that event the surfaces of the
two nuclei get the closest together due to the target deformation. The
nuclear interaction produces a torgue in the direction opposite to that
of the electric quadrupole interaction (see Fig. IV-1). At high enough
energies (above =~ 190 MeV lab energy for the system we have been con-
sidering here) the nuclear torque dominates in the forward region and
we see in Fig. IV-4 how at 200 MeV the behavior of the function i(xo)
is very different from that at 180 MeV or lower energies. Figure IV-5
shows the results for two of the energies considered in Fig. IV-4.

The procedure for evaluating the CLSM and thus the excitation
probabilities is the same at 180 and at 200 MeV, but the different
shape of the function E(XO) makes a very important difference were
we to use the USCA to evaluate the S-matrix. It is evident from Fig. IV-4
and the fact that f(xe) is symmetric around 90°, that there are four
real roots of the equation f(xg) = 1.4+ 1/2 for 0<1<10 and
Erab
complex., One should consider also the possibility that even for I < 10

= 200 MeV; at higher spins some or all of those roots become

there are complex roots to this equation, in addition to the four real
ones. This higher number of roots makes the root search longer and
more involved but this is indeed a small difficulty as compared to the
task of evaluating by the stationary phase approximation the integral
expression for the S-matrix in cases like this where the integrand has
four or more stationary phase points. The use of simpler expressions

such as Eq. A-12 in which the different stationary trajectories are
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considered isolated of each other is not a good approximation for many
cases¢2@*25

We should remark here that the fact that there are more than two
trajectories contributing to the excitation of a given final spin in
the USCA approach is not a characteristic intrinsic to the nuclear
potential. We chose a case where it was present because there it was
easy to see why the new roots appear, i.e. because of the strong torque
produced by the nucliear potential and since they are real it is easier
to understand the process. But it has not been shown that even in the
case of a pure quadrupole interaction the number of roots is limited
to the two used in the USCA calculations. By the way of an example
let us consider the case where only the electric guadrupole and hexa-
dacapole moment terms appear in the Hamiltonian for the case £ = 0

and n = o discussed in Ch. Il in which case we obtain, in the same

manner as there, that the expression for the function i(xg) is

a 59

- 9, ; » 4 . ,
I(xg) = 2q, sin 2xy + gz~ (7 sin 4%, + 2 sin 2X,) (6)
where
(4) 2
Qg = 7~ )
4n Vg

Equation (6) may be written as a fourth order equation in @Xp(?%XO)

thereby showing that f(XQ} = | + 1/2 has four (real or complex) roots.
An iﬁ@reasﬁﬂg number of roots does not imply that the USCA gives

numerically wrong results when only two of them are considered, since

the contribution from all the roots is not the same. This is
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illustrated by the fact that the results given in Refs. 23 and 24 are
in good agreement with other theoretical calculations.

On the other hand one should be aware of this situation before
attempting to extend the USCA method to new cases. The fact that we
are performing the integration directly avoids us worries about this
type of complications when we introduce the imaginary part of the

optical potential, as we will do next.

4. Complex Nuclear Potential

The equations of motion derived from the Hamiltonian given by
Eq. (1) are in general complex, and so are the solutions to these
equations. The fact that the dynamical variables become complex marks
a break from the usual classical mechanics but causes no major dif-
ficulties from a quantum mechanical point of view since there the only
necessarily real gquantities are the physical observables.

As we have seen in the USCA one has to use complex trajectories
to study classically forbidden transitions, in the case of a purely
real interaction, and for all transitions if the Hamiltonian is complex.

25,26 is to choose an appropriate complex

The procedure followed there
initial value of Xg so that at the end of the trajectory the observable
Py (or T , in dimensionless units) be real. By looking at the
Hamiltonian (Eq. (1)) in the asymptotic region we see that if py s
real then Py will also be real.

We will choose instead to make the variable r real at the end

of the trajectory. In order to do this we take an appropriate complex

time path in the asymptotic region of the integration. This complex
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time path usually consists of keeping the real part of the time constant
while varying its imaginary part. References 13-15, 33 describe how

by the introduction of this complex time one is able to solve by means
of classical mechanics methods problems that appear to be completely

out of its domain of applicability. such as the tunneling through a
potential barrier.

Since in our approach we do not need to search for those initial
orientations that lead to the final value of Py equal to that of the
transition being considered, we may as well omit the requirement that
Py has a real value at the end of each trajectory used in the
integration, since it would be very cumbersome to fulfill., This causes
no trouble if there are no poles present in the region between the curve
over which we do perform the integration (the real axis) and the curve
over which the final value of Py is real. (The final points of both
curves coincide since for XQ = 0, the final spin is 0). We have not
found problems, but even in the event that they appear it would not be
difficult to take the initial values XQ along an appropriate curve on
the complex plane so as not to leave any poles in the region between the
two curves.

The initial conditions for the integration are then the same used
for the purely real case, and the equations of motion are solved in the
same way as before, with the provision that now all the dynamical
variables have complex magnitudes. The only difference is that at the
end of each trajectory we allow the time to become complex by keeping
its real part constant while changing the imaginary part until »r takes

a real value. After this the classical 1imit S-matrix is evaluated in
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the way described before in Ch. II with the same observation that
dx_

dxo >
We have performed some calculations using the system

quantities such as X, A are now complex numbers.

QOAP on

238U; two different sets of parameters were used for the calculations.
They are given in Table IV-1, and their dependence on r 1is shown in

55
Fig. IV-6. They were obtained by Birkelund et al., from quasi-elastic

40 238

scattering of "“Ar on U at ELa = 268 MeV.

b
The calculated excitation probabilities as a function of incident
beam energy are shown in Figs. IV 7-14, together with the values obtained
when no nuclear potential is included.
We emphasize our reservation about the propriety of these
~potentials for the application intended here since our calculations
are for lower bombarding energies than those at which the nuclear
potential parameters were determined; nevertheless they serve as a
useful starting po%nt for the investigation of rotational scattering
in the barrier region and we can use them to test our method until
enough experimental data becomes available so that we can think of
doing a search for the best set of nuclear potential parameters to
describe the data.
Considering Figs. IV-7-14 we see in all caées that at Tow
energies the results coincide with those of the pure Coulomb excitation,
as it might be expected due to the short range of nuclear forces. On
the opposite end of the energy scale, at high energies, all excitation

probabilities decrease very fast with energy. This is so because the

imaginary part of the nuclear potential absorbs an increasingly larger
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Re (U) (MeV)

Imaginary
Potential ~

Fig, IV-6 The real and imaginary parts of the potential yp; 774.8459
sets given in Table 1IV-1l as a function of the
real part of the radial coordinate r along the

nuclear symmetry axis.



=101~

Table IV-1

Parameter sets used in the ca?cuiationa)

g 4) i
0, (b) b) 1.12 11.12
Q@,(bz)b) 1.96 1.96
vV (MeV) 73.0 17.7
ag (Fm) 0.62 0.531
ROR(F'm) 1.131 1.267
W (MeV) 80.3 15.4
ay (Fm) 0.624 0.531
ROI(Fm) 1.131 1.267
BZC) 0.237 0.237
B;') 0.067 0.067

a) Same notations as in Eq. 1-3
b) From Ref. 55
¢) From Ref., 56

d) Nuclear parameters from Ref. 57
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The parameter sets used are listed in Table III-1.
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Fig. IV-14 Excitation probability for the llﬁ state in the

é0+ 238

reaction U at backscattering angles. The

parameter sets used ave listed in Table I1I-1.
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fraction of the incoming flux. This represents mathematically the fact
that at these higher energies other channels such as nucleon transfer,
fission, and compound nucleus formation are open and complete more and
more with the rotational excitation.

In the region between these two extreme cases we notice first a
progressive departure from the pure Coulomb values, finding examples of
both destructive and constructive interference. These interference
effects between the electromagnetic and nuclear potentials are better
explained by means of interfering classical trajectories, as it is done
in Ref. 26, where only the contribution of two trajectories is considered.

In general the two potential sets predict excitation probabilities
that do not differ by more than 25% from each other in the energy range
considered here. This is not surprising since as Fig. IV-6 indicates,
they are very similar in the critical region Re(r) & 13.5 F , where
most rotational excitation takes place at these projectile energies.
But, since many different states are excited, even these small differ-
ences might allow for distinction between potentials I and II in
a careful experiment.

Because the excitation probabilities are sensitive to Coulomb-
nuclear interference effects, we believe that heavy-ion rotational
excitation near Coulomb-barrier energies could provide a detailed probe
of the potential in the nuclear surface region. (The potential in the
nuclear interior is probably inaccessible because of the strong
absorption). One may speculate that the potential for a deformed
nucleus may exhibit irregular variations with the polar angle B (see

Fig. I1-1. For example, the imaginary potehtia? may be largely due at
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barrier energies to loss of flux into neutron-transfer channels, and
hence be strongest in the zones of lightly bound neutron orbitals. If
the concept of a classical trajectory has any physfcai significance in
these heavy-ion systems, excitation of different states should probe
different angular regions of the nuclear surface. This is clearer in
the USCA picture where only a few trajectories are seen to contribute
to the Coulomb excitation of a given spin.

Excitation of lower spins should be sensitive, then, to regions
closer to the nuclear tips. At sufficiently higher energies the low-
angle roots should be damped by the imaginary part of the optical
potential, and the larger-angle orientations, which now feel the nuclear
force should make the dominant contribution. Therefore one would expect
the probabilities in this case to be sensitive to the nuclear potential
nearer the equator of the classical nucleus.

As another example, significant attention has recently been
directed to the possibility of different charge and matter distributions
in the nucleus., Since the calculations discussed here are sensitive to
the competition between the nuclear forces (arising from the matter
distribution) and electromagnetic forces (arising from the charge
distribution), rotational excitation in the surface region could also
provide an indication of different charge and mass deformations, if such
effects actually occur,

It would be premature to attempt a detailed exploration of
potentials with more parameters representing irregular angular dependence,
or different charge and matter distributions. There are few data

available yet, and only experimental data can ascertain whether the
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effects discussed here are measurable. However these considerations
indicate that detailed information about the deformed nuclear potential
in the surface region may be available in the Coulomb-nuclear inter-
ference experiments suggested by these calculations.

We see how a relatively minor modification of the theory presented
in Ch. II allows us to treat the problem of Coulomb-nuclear interference
for rotational scattering which is very difficult to deal with by other
approaches. Quantum mechanical coupled-channel numerical calculations
including the nuclear potential are feasible for light ions on1y569
since the most applicable computer code available now requires three to
four times the computer time needed by the pure Coulomb excitation code
AROSA mentioned in Ch. III.

Other semiclassical methods of the Alder-Winther type have been
used to describe inelastic scattering from spherical targets in the

57 It is hard to imagine how they could be applied

same energy region.
to scattering from deformed nuclei, since in this type of methods the
trajectory followed by the particle does not depend on the values of

the internal coordinates of the target. This is not very bad in the
case of pure Coulomb excitation where the trajectory chosen does not
deviate so much from the actual trajectories where the classical
equations of motion are solved for both projectile and target, as it

was discussed in Ch. III. In the case we are treating now, on the other
hand, the short range and strength of the nuclear forces make the
trajectories to be very strongly dependent on the orientation of the

target, so that we do not think that a method based on an assumption

that is in direct conflict with this fact can be formulated.
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There is another comment to be made on the way the imaginary
part of the nuclear potential is considered in our approach and in that
of Re%, 57. In this one the real part of the nuclear potential is
the only part of it affecting the trajectory, so that all dynamical
variables are real, while the imaginary part of it has mainly the effect
of giving rise to absorption along this classical trajectory; reflection
phenomena associated with the imaginary part of the nuclear potential
are not included in this theory, since they correspond, in a classical
picture to a modification of the trajectory, and in this formalism it is
not possible to modify the projectile motion according to the orientation
of the target since the later is described in quantum mechanical terms.
As mentioned in this reference this omission may give rise to serious
discrepancies with a guantum mechanical description.

Our approaches include the full description of the classical
motion, and in particular the imaginary part of the optical potential
affects the actual trajectory of the projectile. In this sense we think
the CLSM method could improve these results even for the case of
spherical targets.

To illustrate the effect of the imaginary part of the nuclear
potential on the classical trajectories we show in Fig. IV-15 the
behavior of the real part of the function f(XO) for the nuclear
potential given by the set of parameters I in Table IV-1. By
comparing it with the corresponding functions obtained for the same
set of parameters but with the strength W of the imaginary part of

the nuclear potential set equal to zero and for the case of no nuclear
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potential, we see that the effect of the imaginary potential is not
negligible at all, since it increases the angular momentum, cancelling

in part the effect of the real part of the optical potential.
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V. FURTHER EXTENSIONS AND OTHER APPLICATIONS OF
THE CLASSICAL-LIMIT S-MATRIX THEORY

1. Introduction

In the previous chapters we have considered the application of
the CLSM to the case of excitation of the rotational states of a |
deformed even-even nucleus. The theory is certainly not limited to
this problem, as it is already suggested by the fact that the USCA haé

11,30
been successfully applied to study vibrational excitation of molecules,

reactive molecular c011ision5149]5928“33 and in nuclear physics, to the

two dimensional tunneling of a fission barrier mode'l.58
Here we will describe the present status of our study of other
problems in nuclear physics in which we are using the CLSM. Since other
research groups in the world are involved in similar studies, we find it
appropriate to discuss their work in this chapter in order to give a

more adeduate view of how much has been done and the difficulties to

be solved in the problems that we are considering now.

2. Multiple Coulomb excitation for all scattering angles

We would 1ike to generalize our treatment of the backward-
scattering Coulomb excitation process described in previous chapters to
all scattering angles. This extension is far from being trivial, as we
will see. The main reason making the backward scattering case especially
simple is that the total angular momentum of the system (J) is zero, and
this fact forces the orbital angular momentum of the projectile and the
rotational angular momentum of the target to be equal in magnitude and

opposite in direction at all times, thus effectively reducing the number
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of variables one has to deal with. In the classical trajectories the
fact that J = 0 implies that the motion takes place in a plane. This
is not going to be true in the general case (J # 0).

Let us start our study of this case by considering the scattering

amplitude f for the Coulomb exc%tation4957 process

fj M3 m (6.¢) = - “ﬁ; V220+i
oo™ " MRgke 358

LA=L
. , .70
X < 0 JOmO[J Mg> <& meflJ my> i (1)

x Y (es¢) Sy 4 03
m Lodgd ¢

Here jomo(jfmf) are the entrance (exit) total nuclear spin and its
cor%espcnding magnetic guantum number, respectively. © and ¢ are the
polar coordinates of the direction of the exit wave vector kf in a
coordinate system in which the incoming wave vector kO is along the
z-axis and ng is a spherical harmonics. The variables that appear
inside the summation signs can be interpreted as follows. J is the
total angular momentum and Qo(z) the initial (final) orbital angular
momentum quantum number, while m 1is the final orbital magnetic quantum

number, being the initial one equal to zero due to the choice of

i

. . J
coordinate axis. 52030+£jf
element for the transition ono+zjf given a total anguiar momentum J.

<(ij) Jlsi(zojo) J> is the S-matrix
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Since we are especiai]y interested in the study of tﬁe Coulomb
excitation of an even-even nucleus in its ground state, we repiécelz

ig “and my in Eq. (1) by zero, thereby obtaining the simpler

expression
f . . D o e
00+ (0+9)
(2)
x <m i me|dos 19 v, (8,0) S ’
Jg Me e 290004
In order to calculate the scattering amplitude f we must

J 00> ¢me
evaluate the S-matrix elements S . . We will see how the formalism
J0+13f

that we have considered before can be applied to calculate them.

10

The Hamiltonian for the system can be written, = in analogy to

the one given by Eq. (11-32)

~ 2
H(a;.3,0,.8.7,p,.) = %L + E‘%’B‘ i
(3)
, QZ L1, 2q2 Pz(cos v)
ZnO2 2w “0;3

where the angle Y between the rotor axis and the line defined by the

centers of target and projectile is given byig
2,2 52
= - -+ 87 = J7 gin g, sin (4)
€os Y oS qj cos q + i 45 Ay
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In Egs. (3) and (4) the quantities J, 2, and J are the dimensionless
variables that represent the measures of the angular momenta of the
tafg@%g orbital of the projectile and total of the system in units of
fi. The quantities qj and q, are the action angle variables
canonically conjugate to § and g respectively. The remaining symbols
have the same meaning as in Ch. II.

The expression for the S-matrix element in this representation

is found in the same way as before (Ch. II). The result is

(@.4,)

m7m§~m«=m7»exp(iA) (5)
a qJO %ng

where

(6)

+ ay(ng) + og(ny)

S

The quantities aj and 52 are evaluated in the same way as X

was in Eq. (II-13), that is

(7)
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where ﬁr satisfies

~ 2

P E 22 '

7 g ) (8
Therefore Sj, (9)
and similarly g, = (10)

g. and q are the initial values of the variables q. and q, ,
3o %9 , J Lot

and 5?5?;?%;;3 is the Jacobian of the variables defined by Eqsf (9)’aﬂd

(10) with respect to the initial values A » 9y
0

4 A

9q. 9q.
8q. aq
.. J )
a(qjsqz) ot 4 0 X an
= e E N :
a(a; »a, ) |
0 "0 o Y
M -

The other quantities appearing in Egs. (5) and (6) retain the

meaning given to them in Ch. II.
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In principle one should proceed as before, taking the equations
of motion derived from the Hamiltonian (3), from them obtain all
quantities appearing in Eqs. (5) and (6) and then perform the double
integral appearing in Eq. (5). Unfortunately in this case the problem
is not as straightforward as in Ch. II for a variety of reasons.

First of all the equations of motion resulting from Egq. (3)
cannot always be integrated directiy; whenever J approaches zero the
variable qj » which represents the amount of rotation in the plane
perpendicular to J becomes 11 defined, since the plane itself is not
well defined. This appears mathematically as a singularity in the
expression for é;g:e Mi?ierlo wrote these equations in cartesian
coordinates to avoid the problem. This implies to make a transformation
from action angle variables to cartesian coordinates at the beginning
of each trajectory, to obtain the initial conditions in cartesian
coordinates; then run the trajectories in these coordinates and finally
transform the final values back into action angle variables.

There are alternative ways to describe the problem, which is

10 proposes the helicity

appropriate to mention here. Miller
representation (qqumgrsjam,p$) where Jj 1s again the rotational
angular momentum of the target and m 1is the helicity, i.e., the
projection of the rotational angular momentum of the target onto the
relative velocity vector and Ay js its canonically conjugate variable.

The expression for the Hamiltonian in these new variables is
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5 2
0(g S g Aoy ir, & %2
Hays3o0psmoTsp,) = - bng
* -IzAz (12)
ZnO r

1 Zq2 PZ (cos v)

P P

where similarly as before we have taken 3, mand J to be j/h, m/h
and J/h respectively. In this set of variables the angle 7Y , which

is defined as before, is given by

Cos Y =

(13)

If we consider the case 3 = 0 , from the expression of the
Hamiltonian (12) we see that % has to be identically zero during the
whole motion. Then from (13) we see that Y = qj; in this case, and
since neither m nor U will play any role in the Hamiltonian it

can finally be written as

= a2
b0 Jﬁwli e, ] }32
(qjs\js?‘apr) 2 p 3710 ﬁOZ %:2
(14)
X l,ZqZ Pz(cos qj)
r X

o
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which is identical to the expression we had before for the back-
scattering case (Eq. (II-32)). It is now clear that we can regard
this heTicity representation as a natural extension of the coordinate
set used in Ch. Il to the three dimensional case. We can obtain an

expression for the S-matrix element S J in an analogous way as

00~+3jm
it was done in Ch. II, except that now it will involve a double integral,
and quantities such as those just defined in Egs. (9), (10) and (11).

It is simple to transform the S-matrix from one representation

to the other using the re?atign10
J
v,  f=d J

L
or its reciprocal.

Let us begin the study of the S-matrix for the J non-zerc case

by considering the simplified case aﬂaiogous'to one studied in Ch. II.

3. The limit £ =0, n ==

The evaluation of the S-matrix elements was carried out in the
Timit & =0, n =« , which was previously considered for the back-
scattering case in section 5 of Ch. II. In this Timit the orbit of the
projectile is a hyperbola. Taking the 2z axis along the bisector of
this hyperbola, and the x axis on the plane defined by it, the
position of the projectile is determined by the distance 4 and the
azimuthal angle 6 , while the axis of the target nucleus is defined
by the polar angles, o,R (See Fig. V-1 for illustration).

During the interaction the coordinates o,8 remain constant,

and this leads to a simplified expression for the S-matrix. Just as
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Fig. V=1 Coordinates used to describe the physgical system

in the general Coulomb excitation process.
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we did in section [I-5 we may omit the Coulomb phase shifts and give

the R-matrix instead by the expression

Rog (M) = do sina ¥y (,8) e' (16)

where X is the deflection angle of the projectile in the center-of-
mass system and the phase ¢ is evaluated following the same procedure

of Eq. (II-45), that is

e 29, Pz(cosv)

- P
no v ‘
(17)
Where cosy is expressed in these coordinates as
€COSY= CoS0o COS8 + sinasin®d cosp (18)
6 is simply related to r by
cos(0 @%%
e e ]
A
1 cos(ﬁﬁ (19)
~ 2 A
r tan 5

and ér is given by



—
éfm‘
—
&
nt’
™
"
it

=127~

(20)

2
r

Using Eq. (17) ¢ s computed numerically, and then Eq. (16) can be
easily evaluated.

In Fig. V-2 we show an example of a calculation done according
to this prescription. The numerical results are identical to those
obtained with the Winther-deBoer code setting all rotational energies
to zero (infinite moment of inertia limit). This agreement was expected
from the considerations mentioned in Ch. II.

This & =0, n =« T1imit could be useful to evaluate, at least
in a semi-quantitative way, the excitation probabilities for a given
system, In Fig. V-3 we compare this Timit with the case where the moment
of inertia takes its actual, finite value, for the same system as in
Fig. V-2. The agreement is seen to be quite reasonable, and the
qualitative trend of the excitation probabilities is well reproduced.

In this computer code we have included an electric hexadecapole
potential, plus a complex nuclear potential besides the quadrupole
potential indicated in Eq. (17). Therefore it is possible to use it

to estimate the effects of these other potentials in the excitation

probabilities for partial waves other than & = 0.

4. Present status of this problem

In order to evaluate the S-matrix element S J we ran

00 + jm
trajectories using the equations of motion derived from the
Hamiltonian (14). From the final values of the dynamical variables

we found the quantities ajg and émg analogous to X in the J =0
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Fig. V-2 Probabilities to excite the ground rotational band of
238y 1y 170 Mev 20

The deflection angle is 120° in the center of mass system,

Ar ions in the & = 0, ﬂo = o limit,

Excitation probabilities for the same value of M avre

joined by lines to guide the eye.
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Fig. V=3



~131-

Fiv., V-3 Comparison of the excitation probabilities obtained using
the CLSM method in the £ = 0, Mg =@ limit and the Alder-
Winther semiclassical theory for the actual values of the
physical parameters. The system and deflection angle are

the same as in Fig. V-2,



-132-

case. Then the Jacobian S(Ejgam)/a(qjgsqmg) was evaluated. It was
found that this Jacobian became zero along curves in the (qugqmo)
plane. For these curves (caustics) the semiclassical wavefunction
breaks down, as discussed in Ch, III; besides it was seen that the range
of cases where caustics appear is much wider than for the 2=0 case,
where they appeared only for the heaviest projectiles. Therefore before
employing the integral expression for the S-matrix it is necessary to
deal with this problem with the caustics. Probably the best way is to
go back to the £=0 case and treat it thereg in a case that is much
easier to study and which is more familiar. As was mentioned before,
this is being considered at the present time.

In Ref. (49) it is indicated that if the physical stationary
points for a certain transition are far from the caustics, which appear
as spurious stationary points, then the integral defining the S-matrix
element for the transition can be evaluated asymptotically, ignoring
completely the spurious stationary phase points.

Frobrich et a??%sso have used the stationary phase method in
the study of rotational excitation. They found that the method gives
aécurate results for the classically allowed transitions, but that it
was much harder to apply than the uniform approximation in one

dimens%onaZSMZS

Therefore they consider doubtful whether it can be
extended in practice to the study of classically forbidden transitions
or to the inclusion of a complex nuclear paieﬂtiaieé1 They have
considered the alternative of using the integral representation, but
the first indications were that they found the same type of caustic-

related problems described bef@reagi
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As it stands now, this appears to be rather a technical difficulty
and not a deep conceptual problem, since it takes place for heavy

systems, where the classical model should work best.

5. Octupole vibration-rotation band of a deformed nucleus

Recently Grosse g§=§l§2

238

have excited the lowest octupole
vibrational band of U up to spin 19. They found that the one
predominantly excited was the K=0 band, which corresponds to an
oscillating deformation in the nuclear shape proportional to PS(cose)S

rd order

where 0 1is the azimuthal angle and PS the standard 3
Legendre polynomial.
The interaction term between the projectile and target motions

is now given by:

yA ZTez /A Qo(z)ez Pz(cos X) 7 Qo(g)(@«) ez P3(c05 ¥)
v = P . y P (21)
(r,0,%) r op3 2?4

where Qég) is the octupole moment of the target, which is dependent on
the amplitude o of the octupole vibration. All other quantities
retain the meaning assigned in Ch. II.

The classical Hamiltonian for this system can then be found by
adding V(r,a,X) to the translation, rotation and vibrational energies.
For the backscattering case it is given by

P 2 P 2
1

\ooar

* hog(n+1/2) + V(r,a,x)

(22)
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where wg is the characteristic frequency of the octupole-vibration,
n is the vibrational quantum number and q is the phase of the

oscillator. The amplitude o is related to the phase g and n by

[ 71 wo(nﬂ/Z)

3 cos q (23)
3

where 63 is the restoring force parameter for the octupole vibration.

NE)

0 can then be written as

2 oy /2
37-Ry"a 20 wa(n+1/2)
(3) I 0 2 < 0 >
QO (OL) = Eu%;w = SZTRO W‘” C0s ¢ (24)

From this expression for the Hamiltonian we can write the
equations of motion for the system, and for the final values of the
dynamical variables we can evaluate the exp%ession for the S-matrix

for the transition from the initial state (I=0, n=0) to the final

state I,n.
g o V2l +]
0,0-1,n A

(25)

x Py(cos X) exp(idn) exp(ia/n)
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In this expression 50 and g are defined in exactly the same
way as X was in Eq. (II-13') (See also Ref. 11 for additional

information). A s given now by

[ 1r(£)dp, ) b a(t)an(t) + X(thdpy (g1 + % pf

(26)
;‘f
engn’ ¢ [ FdB 40 (ogng) + oplng))
0
are the final values of Py and n , respectively,

where pﬁf and nf

and the other quantities have the same meaning as in Eq. (I11-21).

The characteristics of the problem lend themselves to a
simplification which reduces the double integral in Eq. (25) to a
single integral, and which besides allow for an interpretation in
simpler terms of the expression for the S-matrix.

This approximation is based on the fact that the octupole
vibration affects very littie both the projectile motion and the
angular momentum transfer between projectile and target. This is so
because the octupole vibration amplitude is small and its frequency
high.

We can therefore assume that the octupole moment acts only in
the phase A , and then as a perturbation. In this way it is
possible to factor the expression for the Sematrix, Eq. (25), in the

following way:
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o iy cir T o5 %
/ sinX, S"mx-ﬁg Pz(gcsx)exp(,gl/h)

9 exp(ign) exp(id,/h)
aqo

We have made use of the fact that X is independent of 60 s S0 that

X - 0 ; therefore d
P

850

(9.x) .83 . aX

(3gxg) 3G Y0

The phase A4 is taken to be the same as in Eq. (II-21); that is,

d
+ X(t) px(t)j dt + X p.f

J | dt X
(28)
Py .
~%}( r 65? +h TGO(nO) + OI(WI)]
0
while AZ = AeAi can then be written as
t) r(t)
A, = -J§°Er<t)§ r - } (29)
2 I o3 " Tat gl



=137~

in Egs. (28) and (29) we indicate by Qéglﬁ()(QéB)= 0) quantities that
are evaluated (not) considering the octupole term in Eq. (21).

We see that the expression for the S-matrix element given by
Eq. (27) is identical to the one found in Ch. II, Eq. (II-22), for the
Coulomb excitation of the ground band, except that the integrand is
multiplied by a factor
99 exp(idn) exp(iny/h) (30)

Let us consider Eq. (29). From Eqs. (21)-(27) we have

(3) 2
diﬂft ) dp2£t2 i 22,0 (a) z Py(cos x) (1)
(3) (3). r(t)
%0 Q"= 0
JA Q(B)(a) tan g ez P,(cosx)
dt r(t)4
The rEQ dependence of the integrand in Eq. (29) indicates that

most of the contribution to the integral is at the point of closest
approach. Due to the low angular velocity of the target as compared
to the collision time it is then possible to approximate Eq. (29) by
giving to x its value at the point of closest approach XCA . This
is true in the case of nf as well, since from Eq. (32)

tf
- quég)(a) tan q o? P(cos X

oo

dt (33)
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Therefore the phase AZ can be written in the form
Ay =1 K Pg (cos XGA(XO)) (34)

where K is approximately independent of Xy -
Therefore in (30) the dependence of a(XO) on Xy s

essentially through the factor exp(i K PS(COSXCA)° Since QéB) is

very small, then ﬂF and K will be small numbers. The fact that

nf is small means that only the n =1 state can be appreciably
excited. We therefore drop the n = 1 subindex of the S-matrix

element. Since K is small one may approximate
a(xg) ~ const. exp(i K P3(CDSXCA)) (35)
~ const. (1 + § K PS(COSXCA))

When replaced in Eq. (27) the first term in Eq. (35) does not

contribute to the integral. Therefore the S-matrix is given by

P, . = dX
swnxo smwxayg

(36)

x Pi(cosi) Po(cosxqy) exp(ia,/h)

1=1,3,5,...
which is similar to Eq. (I1-22) except for the form factor ?S(COS XCA)Q
This form factor can be found also in a less rigorous but more
illuminating way. The K=0 octupcle vibration has a Pg(case)
dependence. We expect the excitation of this vibration by a charged

projectile to be strongly dependent on the particular trajectory
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followed by the projectile, specially at the point of closest approach.
In particular we expect that trajectories such as that labelled (1)

in Fig. V-4 that approach the target along a node of the cctupole
vibration will excite it Tlittle or not at all; while those like (2)
will excite it much more, since their point of closest approach is
near the region where the vibration amplitude is maximum. In general
the excitation will go as ?B(COSXCA)s if we neglect the fact that

the quadrupole moment of the target changes slightly the point of
closest approach and therefore the intensity of the exciting force.
Figure V-5 shows that PB(cos XCA) is a good approximation to the

expression

P3(cos x(t))

dt 37
T (37)

a(xo) = C

where the constant C is chosen so that a(0) = 1. This is an indication
that these other dynamical effects discussed here are small.

In Figs. V-6,7 we show the results obtained from Eq. (33),
normalizing them, and comparing with those obtained through the Winther-
de Boer program. The agreement is good, which indicates that the classical
picture on which Eq. (33) was based is indeed correct and that the
approximations involved are not excessive. This is also confirmed by
the case shown in Fig. V-8 where by taking the £ = 0, n = » limit we
have that the point of closest approach lies at a distance independent
of the target orientation. In this case the agreement is much better.

Table V-1 summarizes all the results for one of the cases depicted

in the previous figures.
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XBL 7758586

Fig., vy-4
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Fig, V-4 The K = 0 octupole vibration is represented as a
standing wave on the nuclear surface. Trajectory
labeled (2), which has its point of closest approach
near a maximum in the vibration amplitude, excites
the octupole vibration much more than trajectory (1),

which has it close to a node in the vibration.
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where the value of the constant C is chosen so that this
last expression equals 1 when” Xo = 0. P3(cos xo) is

also plotted as a reference,
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Fig. V-6 Signature of the K = 0 octupole band excitatdon in 238U
by 170 MeV éoAx ions. The energies are taken from the
rotational model with Elm = 0;7313 MeV for the octupole
band and EZ+ = 00,0449 MeV for the ground band. The
238

quadrupole moment of U is taken to be 11.12b for both

bands.
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Fig. V-7 Same as Fig. V-6 using 400 MeV géxr ions

as projectiles.
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Fig., V-8 Signature of the K = 0 octupole band excitation
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Mg = ® limic,



Table V-1. Coulomb excitation of the K = 0 octupole band in 238u with 170 MeV
4@Ar jons. The guadrupole moment of 238@ was taken to be 11.12b for both bands
for all calculations. The interband coupling was obtained from the experimental
value of BE3 (O* + 37)=0.663 bB@ The rotational energies were taken from the
rotational model with E2%4=00@443 MeV for the ground band and Eiu==GQ6798 MeV and
E3«==@@73E3 MeV for the octupole band. This is shown to differ 1ittle from the
results when the energies are those found experimentally in Ref. 63.

SPIN EXCITATION PROBABILK?IESa)
CLSM A-HU A-U CLSM A-W
Rotational Experimental Sudden Limifb) Sudden Limitb)
Energies Energies
=
1 0.039 0.039 0.039 0.050 0.049 ®
3 0.074 0.074 0.074 0.070 0.066
5 0.435 0.446 0.452 0.410 0.410
7 0.151 0.189 0.190 0.171 0.181
g 0.039 - 0.033 0.032 0.017 0.017
11 0.142 0.107 0.105 0.113 0.113
13 0.091 0.080 0.077 0.102 0.105
15 0.026 0.027 0.026 0.041 0.044

a) results were normalized to have a total excitation probability for the octupole band equal to 1.

b) all energies were set equal to zero
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We should remark that we have considered the excitation of the
K = 0 band of the octupole vibration. Reference 63 indicates that we
| should expect a significant mixing of all K = 0, 1,2,3 octupole bands
for high spins. Therefore the predictions of our model apply specially
to the Tower spins in the band. For the higher spins, where the band
mixing is véry important, the Coriolis coupling aligns the vibrational
angular momentum along the rotation axis, producing therefore a band
with energy spacings identical to those of the ground band but with

63 The vibration deformation is now given by

spins 3 units higher.
Y33( 8,6 ), where the Z-axis is taking along the rotation axis. This
vibration appears not as stationary wave, as was the case for the K = 0
band but as a wave propagating on the nuclear surface, orthogonally

to the rotation axis. The excitation of the vibratiqn in this case

will be independent of the direction of approach of the projectile
(except for the effects due to the change in the point of closest
approach caused by the octupole moment, and which we saw was negligible
in the K = 0 band case), since now we have a travelling and not a standing
wave. Therefore the probability for exciting a high spin I in the
octupole band will be proportional to the probability of exciting the
spin I-3 in the ground band, since the form factor for exciting the
vibration (and with it the 3 units of angular momentum that are added

to the I-3 of the rotation) is a constant independent of the orientation

XQG
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6. Nucleon and cluster transfer on a deformed nucleus

The success found in the case just discussed suggests the
possibility of studying other processes in a similar way. One problem
that appears to be tractable by this method is that of the particle
transfer taking place between the projectile and the deformed target
brought close together in a collision at an energy about that of the
Coulomb barrier.

The problem is slightly different according to the type of
particle being transferred. For the~cése of a nucleon the orientation
dependence of the transfer amplitude will be due.to (1) the spatial
distribution of the Nilsson érbita] involved in the transfer; this
will favor orientations for which the major lobe of the Nilsson wave
function from or to which the transfer takes place ppints in the
direction of the other collision partner at the point of closest
approach, and (2) the fact that the tunneling probability depends
strongly on the distance of closest approach, which is at its turn
dependent on the particular orientation of the target. This will
favor transfer for trajectories that approach the target at the poles.

Since the transfer amplitude will have a strong correlation
with the relative orientation of the deformed target nucleus with
respect to the impinging projectile, and therefore with the excitation
of particular rotational states of the product nucleus, we expect to
find, as it was the case for the octupole vibrations, a characteristic
signature for the final rotational states of the target.

In the case of one-nucleon transfer the problem is complicated

by the fact that this nucleon carries with it angular momentum which



s,
-

}3‘ ‘3 £ (.’; > N
i WFided 3 v Ed S e k
I A B E A n

by, §

iy
LA

=151-

has to be added to the part transferred through the electromagnetic
excitation.

Therefore it will be easier to consider the transfer of a
spinless particle, such as a di-neutron or an awparticTecy For this
éase;the angular dependence through the NiTsson crbital appearing in
the case of nucleon transfer would be replaced by that of the
ipvobabiiity of forming the compound particle on the nuclear surface.

63nfor the case of an o-particle,

This problem was studied by Poggenburg
The formalism is the same as in section 5 except that now
a(xg) will represent the transfer amplitude. Work on this approach

has already started.
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VI. CONCLUSIONS

The classical-Timit S-matrix formalism was shown to be a very
useful tool in the understanding of the physical processes taking
place in the excitation of rotational states by means of heavy jons.
It is fascinating and highly instructive to see how a theory which
is based upon classical dynamics can give so much insight into
problems where quantum effects are very strong. This makes us wonder
whether there is a much deeper connection between classical and
quantum mechanics than that the former is the limit of the latter as
h goes to zero, or in the limit of the high quantum numbers. Neither
of thesé two 1imits were imposed for the problems studied here.
Nevertheless the results of the CLSM theory were seen to be in
quantitative agreement with the quantum»mechanica? réesults.

Besides this theoretical question it is our opinion that the
CLSM constitutes per se an important means to study the problem of
rotational scattering, and it should be useful in the task of
perfecting the most widely used theory of Coulomb excitation,lthe
semiclassical method of Alder and Winther.

Until the time arrives when faster codes and computers will
make possible the quantum mechanical study of heavy-ion scattering
from deformed nuclei at energies at or above the Coulomb barrier,
where the nuclear potential can no longer be neglected, the CLSM
will play a useful role in analyzing the experimental data that is
starting to appear, and which we think contains much information

about the nuclear surface region.
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The formalism developed here has limitations due to the
existence of caustics in the family of classical t%aj@ctories for
some systems. We do not think these are absolute restrictions and
that they will be removed sooner or later by a moré careful choice
of representation. What we find to be a real limitation is that it
can be used only for processes that can be classically describeds
such as, the excitation of collective vibrations and rotations of
nuclei. Even so, this leaves a large and important region of
applicability to the CLSM method. It is interesting to note that
processes in this region are the ones most easy to understand in
familiar terms, since their description involves concepts common

in macroscopic physics and therefore in everyday life.
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APPENDIX A

The Uniform Semiclassical Approximation

The quantum-mechanical propagator

i
- = H(t,-t,)
- h 2 "1

K(qztgt@gt‘}) = <q2l e Iq]> (1)

can be written, according to Feynman, as a path integral over all
possible paths qa(t) satisfying the boundary conditions q@(tl) =qQq s

Qa(tz) = Qs

The propagator K 1is then written as

i
= §¢a(q2 sqi )

Klagtylart;) = | Dla ()] e (2)

where ¢@(q25q1) is the classical action calculated along the path

qa(t) . The definition of classical action is

ot

2
0,(35,0) dt Haq,(t) .4, (t)) (3)

%
where % (q,6) 1is the classical Lagrangian.

The integrand in Eq. (2) is a rapidly changing function of the
path q, in cases where the action ¢@(q2§q§) is large (measured in
units of h ), so that the contribution from one path is cancelled by
the one of nearby paths. Therefore only those paths for which
¢@(q29q§) is stationary result in a net contribution to the integral

in Eq. (2).
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This condition can be written as

dt & (g, (t).q,(t)) = 0 (4)

which, as is well known in Classical Mechanics, results in the Lagrange

equations of motion. We see then that the paths that make a net
contribution are those classical paths which satisfy the boundary
conditions q@(ti) = a4y s q@(tz) =q, . If we denote by qc(t) these
classical paths, by expanding ¢a(q29q1) to second order in the
departures &q(t) from the paths qc(t) one obtains gaussian integrals
which can be evaluated to give

, i¢c(qZ9Q1)

| 2rih o h o L (5)
82¢

A

3q23q1

K(taz | qi t )=

where the sum is implied over all classical trajectories qc(t)
satisfying the boundary conditions mentioned before.

It is interesting to note that in the Timit &% » 0 Eq. (5) is
exact and classical mechanics can thus be considered as the stationary
phase approximation to quantum mechanics.

The quantity & w“%%ﬁlﬂm
|

o 3¢C
probability of finding at time t2 the system at position 4y »

can be interpreted as the classical

;MMﬁmﬂm
aqzaq-1

provided it was in position qy s at time t}e
At this stage it is convenient to change towards Hamiltonian

formulation. The momentum p(t) conjugate to q(t) is defined as
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usual by:

p = 3:2é?99§) (6)

®

99

and the Hamiltonian H by:
H(p.q) = pg - &£ (q.4) (7)

(We should remark that even if we are considering only one independent
coordinate q , the extension of this formalism to more degrees of

freedom is quite straightforward).

In momentum representation the action integral is given by?O
t
05 (0p07) = = (pyfly - Py;) +j; at[p(t) a(t) - HEp(t), ale)] (@)
1

and the propagator is then written:

| i¢c(92991)
= [ 27in h
0 ¢C
Spggpq

where the sum is done over all classical trajectories that satisfy
p(t1) = p‘l 1 p(tz) E pz
The S-matrix is defined as:
iHAt aﬁﬁ(tzmti) eiHGt?

072

s h h h
Spi‘gpz = <p2[S[p1> = 4im <p,| e e e | py> (10)

t?%mm
'tz 400
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where }p1> . [p2> are the eigenstates of the unperturbed Hamiltonian
HO; they appear as the "indices" (or quantum numbers) in the S-matrix
and correspond classically to the constants of motion of HO“

We see that the S-matrix is a propagator-type quantity, and we

can associate to it immediately a phase factor:

t

9o (Ppspy) = E(ty-ty) + J, dtfpa, - H(p,.q,)] - (pzqg - pyay) (1)
‘t1+nco 1
t2«>+oo

By using energy conservation, |

H dt = E(t,-t,) and since
A 2 ;

1
dt pq - (p,a, - pyay) = -

dt gp

[

1 . (1)
0, (pyspy) = - jﬁ at a(t) p(t)

t]n%-moo

‘t2«>+oa
Therefore the stationary phase approximation of the Feynman path
integral corresponding to (10) is:

i9.{pyspq)
: (12)

where ¢c(pZ’p?) is given by Eq. (11').
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Equation (12) requires for it being valid, that if there is
more than one stationary path they are not too close so that the
second order expansion for the phase around each of these stationary
points is a good approximation.

This is not the case when two or more of the stationary paths
lie close to each other, and the problem of doing the stationary phase
integration becomes harder to solve, and was not done in the general
case., For the particular case in which there are only two stationary
trajectories by mapping the phase unto a cubic polynomial in such
a way that the stationary points of the phase and the polynomial
correspond, the following improved expression for the S-matrix is

found

3Py

sz

(13)

Where ) and ¢2 are the phases along the two stationary
trajectories; Ai(x) and Ai'(x) are the usual Airy function and

its derivative, and £ 1is defined by:



L uf ST e ey R F $id 4 L3 L e b o, i
Wl )
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]2/3

¢ = [% (0-071) (14)

A drawback of both expressions (12) and (13) appears for cases
where the action integral ¢ s not a sufficiently rapidly changing
function of the path chosen, because in the derivation of both
expressions the mapping chosen reproduces the region around each
stationary path for Eq. (12), or also in between the two stationary
paths considered in Eq. (13), but the mappings are assumed to be
valid for all the space; in cases where the remaining of the space
?makes a significant contribution the expressions (12) and (13) are
not valid and this happens in the cases where ¢ changes slowly.

For this case Stine and Marcus have developed a variation of the
uniform approximation, where the action ¢ is mapped onto a function
of the form - ¢ cos y-ky+A, with ¢ and A being réai numbers and

k an integer, and where again the stationary points of the phase
integral are mapped onto the stationary points of the function,

The resulting expression is:
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APPENDIX B

Semiclassical Theory of Coulomb Excitation

Since in heavy-ion Coulomb excitation projectile velocities
are small compared to that of light, magnetic excitation, which goes
as (v/c)zg may be ignored. Therefore the Coulomb excitation process
is treated as due to the interaction between the electric field of
the incoming projectile with the nuclear charge density of the target.

The electromagnetic interaction between the projectile of
charge Zpeg with its position in space qefineds at time t, by the
coordinates r(t), 6(t), ¢(t) with respect to a laboratory fixed

reference frame fixed on the target, is given by

4vZ e * Y, (6(t),(t))
| gt A ) "
A=1 p=-) r(t)

where ”4%?(EA u) is the electric multipole moment, defined from the

nuclear charge density p(r) by the relation:

[ v, (0.0) o) (2)

The wavefunction for the target satisfies the following

Schrodinger equation:

oD [y> = (Hy+He(8)1 ]y (3)



-162-

where HO is the Hamiltonian of the free target. We see that the
interaction with the projectile is represented by the time dependent
potential HE(t)°

If §[¢ﬂ> § is the complete set of eigenfunctions of the

Hamiltonian HO:

Hold,> = E ¢, n=0,1,2,... (4)

n 3

a standard way of solving Eq. (3) is to use the fact that g]@ﬂ>§ is

a basis, and expand [¢> 1in this basis:

i
— -=E 1
B om
La (1) Jo> e (5)

lv> = 2,
m

Replacing (5) into (3), and applying <¢n] to both sides of the

resulting expression, we find

da_(t) < e B )t
ih—g— =<, Hg(t) o> € " ™ a () (6)

Since -the target is initially in its ground state, the initial
conditions for this system of first-order coupled differential

equation is:

The wave function after the interaction is determined from the

asymptotic values of the coefficients a, for t++e«, The excitation

probabilities are given by



S
s,
R
iy

R A WIS B R O I
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P = |a (tz+eo)[2 (8)
n n
The matrix element <¢n§HE(t)l¢m> is jevaluated by using
Eq. (1) |
B(T).p(L
g e 1,00 00) .
p::.,.)\ Y‘(t)k

* <ty LE, D 10p

The nuclear states are specified by the spin quantum numbers I

and M; therefore using Wigner-Eckart's theorem

Gl M(Ey o> = <IM LAE DTN,
(10)

Replacing (10) into (9), and the resulting expression into (6)

we find:

v, (6(t) 0(t))
At

r{t)
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Since the target is being described in quantum mechanical terms,
the uncertainty principle forbids a precise description of how the
instantaneous values of the internal coordinates affect the classical
trajectory of the projectile. Therefore the trajectory of the
projectile is supposed to be a hyperbola in which, in order to take
into account the energy transfer between target and projectile, one

takes a velocity
vE N e (12)

geometric mean of the velocities in the initial and final channels.
For a final scattering angle 6 , the eccentricity of the hyperbolic

orbit is given by:

P . (13)

2 8
sin
A convenient parametrization of the hyperbolic orbit in the

coordinate system in which the =z axis is perpendicular to the plane

of the hyperbola and the x axis bisects it is given by:

x(w) = a (cosh w + €)

ylw) = a Jgéjg’sinh W

z(w) = 0 (14)
r(w) = a (e cosh w + 1)

t = %-(s sinh w + w)

Using (14) we find



SR RVIERS S AT RY VA1) IV SPRR K ¢ 3 5o
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qu(e(t)9¢(t)) _ i (cosh w + € + i /e2-1 sinh w)*
XS =Y ("ié’so) A Aty (15)
r(t) H a""' (e cosh w+ 1)

flE-Eg)t = il -n e sinh w + w) = i E(e sinh w+w) (16)
where N and N, represent the Sommerfeld parameter in the channels
m and n vrespectively, and & 1is usually called the adiabaticity
parameters.

Substituting (15) and (16) in (11) and using the definitions:

(n) _ AnZ.e mo (1) 1

= P
X = < T WAEX N > ,; (17)
[ 1 A m 4 N 2 (TN N et
nm . m
wAsn)
IﬁMnBImMm

we obtain:
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d . (r) (Xsu) i £(e sinh wtw)
-— @ (w) = = i X W e
dw Inﬁn =y lnim ZﬂMnmeﬁm
m®m
(19)
(cosh w+e+1 ve2-1 sinh w)
X Aty 41 M (w)
(e cosh w+1) mm

In the particular case of a rotor, the matrix elements are given

by
fin A Im \

§(2A+1)(21n+1){2im+1)
16w

\o oo/

- (2)
<Im {A§?(Ek) I 1ﬂ> = e QO
(20)
where Qéz) is the intrinsic quadrupole moment of the target.

Once the amplitudes azﬁ(tg%w) are known, the total excitation

probability of a level of spin I 1s given by

lagy(+=) |2 (21)

where Ig is the spin of the ground state.

The differential scattering cross section is obtained by

multiplying the Rutherford cross section by this excitation probability:

dQ I_+1da P e

9 Rutherford 5



10.
11.

[ i PN SR R oy

L*
{:;f %

~167-

REFERENCES

B. Mottelson, Rept. Intern. Phys. Conf., Copenhagen, June 1952
Reprinted in K. Alder and Aa. Winther "Coulomb Excitation",
Academic Press, New York, New York (1966)

B. Mottelson, Office of Naval Research, European Scientific Notes,
No. 7-9, May 1, 1953. Reprinted in K. Ander and Aa. Winther
"Coulomb Excitation", Academic Press, New York, New York (1966)
T. Huus and C. Zupancic, Kgl. Dan. Vid. Selsk. Mat.

Fys. Medd. 28, No. 1 (1953)

C. L. McClelland and C. Goodman, Phys. Rev. 91 (1953) 760

K. Alder, Aa. Bohr, T. Huus, B. Mottelson and Aa. Winther,

Rev, Mod. Phys. 28 (1956) 432

F. Roesel, J. X. Saladin and K. Alder, Comp. Phys. Comm. 8
(1974) 35

K. Alder and Aa. Winther, Mat. Fys. Medd. Dan. Vid. Selsk. 32 (8)
(1960)

Aa. Winther and J. de Boer, California Institute of Technology
Technical Report, November 18, 1965, Reprinted in K. Alder and
Aa. Winther "Coulomb Excitation", Academic Press, New York,
New York (1966)

R. P. Feynman and A. R. Hibbs, "Quantum Mechanics and Path
Integrals", McGraw Hill, New York (1965)

W. H. Miller, J. Chem. Phys. 53 (1970) 1949

W. H. Miller, J. Chem. Phys. 53 (1970) 3578



12,
13.
14.
15,

16.
17.
18,
19.

20.
21.
22.
23.
24,
25,

26.

27.
28.
29.
30.
31.
32.
33.

-168-
. Miller, Chem. Phys. Lett. 7 (1970) 431
Miller and T. F. George, J. Chem. Phys. 56 (1972) 5668

T @ = I

. George and W. H. Miller, J. Chem. Phys. 57 (1972) 2458

e o~ = =

. D. Dol11, T. F. George and W. H. Miller, J. Chem. Phys. 58
(1973) 1343

S. M. Hornstein and W. H. Miller, J. Chem. Phys. 61 (1974) 745
S. D. Augustin and W. H. Miller, J. Chem. Phys. 61 (1974) 3155
A. W. Raczkowski and W. H. Miller, J. Chem. Phys. 61 (1974) 5413
R. A, Malfliet, Symposium on Classical and Quantum Mechanical
Aspects of Heavy Ion Collisions, Heidelberg (1974)

Koeling and R. A. Malfliet, Phyéa Rep. 22C (1975) 182

. Knoll and R. Schaeffer, Phys. Lett. 52B (1974) 131

Knoll and R. Schaeffer, Ann. Phys. 97 (1976) 307

Levit, V. Smilanski and D. Pelte, Phys. Lett. 53B (1974) 39
. Massmann and J. 0. Rasmussen, Nucl. Phys. 52&33(1975) 155

=X O »m Ch Cw =

. Massmann, Ph.D. Thesis, University of California, Berkeley
(1975) Unpublished

M. W. Guidry, H. Massmann, R. Donangelo and J. 0. Rasmussen,
Nucl. Phys. A274 (1976) 183

R. A. Marcus, Chem. Phys. Lett. 7 (1970) 525

R. A. Marcus, J. Chem. Phys. 54 (1971) 3965

J.N.L. Connor and R. A. Marcus, J. Chem. Phys. 55 (1971) 5636
W. H. Wong and R. A. Marcus, J. Chem. Phys. 55 (1971) 5663

R. A. Marcus, J. Chem. Phys. 56 (1972) 311

R. A. Marcus, J. Chem. Phys. 56 (1972) 3548

J. Stine and R. A. Marcus, Chem. Phys. Lett. 15 (1972) 536



~-169-

34. R. A. Marcus, J. Chem. Phys. 59 (1973) 5135

35. J. R. Stine and R. A. Marcus, J. Chem. Phys. §§,(1973) 5145

36. H. Kreek, R. L. E1Tis and R. A. Marcus, J. Chem. Phys. 62
(1975) 913

37. L. I. Schiff, "Quantum Mechanics", 3rd Ed., McGraw Hill, New York
(1968)

38. P.A.M. Dirac, "The Principles of Quantum Mechanics", 4th Ed.,
Oxford University Press, New York (1958)

39. H. Goldstein, "Classical Mechanics", Addison-Wesley, Reading,
Massachusetts (1950)

40. A. Messiah, "Quantum Mechanics", John Wiley & Sons, New York
(1966)

41. R. Donangelo, M. W. Guidry, J. P. Boisson and J. 0. Rasmussen,
Phys. Lett. 64B (1976) 377

42. L. C. Biedenharn and C. M. Class, Phys. Rev. §§_{1955) 691

43. K. Alder, R, Morf and F. Roesel, Phys. Lett. 32B (1970) 645

44. K. Alder, F. Roesel, and R. Morf, Nucl. Phys. A186 (1972) 449

45. K, Alder, in Proceedings of the International Conference on
Reactions between Complex Nuclei, Nashville, Tenn. 10-14 June,
1974, edited by R. L. Robinson, F. K. McGowan, J. M. Ball,
and J. H. Hamilton, North-Holland, Amsterdam/American Elsevier,
New York, 1974, Vol. I, p. 94ff

46. J. de Boer, H. Massmann and A. Winther, Contribution to International
Workshop 111, on Gross Properties of Nuclei and Nuclear Excitations,

Hirschegg, Austria, Jan. 13-18 (1975) (unpublished)



47.

48.
49.

50.

51.

52.

53.

54.
55.

56.

57.

58.
59.

=170~

K. Alder and A. Winther, "Electromagnetic Excitation", North-
Holland, Amsterdam/American Elsevier, New York (1975)

W. H. Miller, Adv. Chem. Phys. 25 (1974) 69

S. Levit and U. Smilansky, Weizmann Institute of Science,
Preprint WIS-76157-Ph.

J. Randrup, W. J. Swiatecki and C. F. Tsang, Lawrence Berkeley
Laboratory, preprint LBL-3603

J. P. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, to be
published in Ann. Phys.

NgG, B. Tamain, M. Beiner, R. J. Lombard, D. Mar and

H. Deubler, Nucl. Phys. A252 (1975) 237

E. Bemis, Jr., F. K. McGowan, J.L.C. Ford, Jdr., W. T. Milner,
. Stelson and R. L. Robinson, Phys. Rev. C8 (1973) 478
Hendrie, Phys. Rev. Letters 31 (1973) 478

7o = pus g

Birkelund, J. R. Huizenga, H. Friesleben, Ka L. Wolf,

Cw Cuw T W O T O

P. Unik and V. E. Viola, Jr., Phys. Rev. C13 (1976) 133
I.-Yang Lee, Ph.D. Thesis, University of Pittsburgh (1974) and
private communication

R. A. Broglia, S. Landowne, R. A. Malfliet, V. Rostokin, and

Aa, Winther, Phys. Rep. 11C (1974), 1.

H. Massmann, P, Ring and J. 0. Rasmussen, Phys. Lett. 57B (1975)
P. Frébrich, Q.K.K. Liu and K. Mohring, contribution to the
Conference Europeenne de Physique Nucleaire avec des Ions Lourds,

Caen, France, 1976



60.

61.
62.

63.

=171~

P. Frobrich, Q.K.K. Liu and K. MBhring, contribution to the 4éme
Session d'Etudes Biennale de Physique Nucléaire, La Toussouire,
France, 1977

P. Frébrich, Q.K.K. Liu and K. M8hring, private communication

E. Grosse, J. de Boer, R. M. Diamond, F. §. Stephens and P. Tjgm,
Phys. Rev. Letters 35 (1975) 565

J. K. Poggenburg, H. J. Mang and J. 0. Rasmussen, Phys. Rev.

181 (1969) 1697






