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The Classical-limit S-Matrix for Heavy Ion Scattering 

by 

Raul Jose Donangelo 

ABSTRACT 

An integral representation for the classical limit of the 

quantum mechanical S-matrix is developed and applied to heavy-ion 

Coulomb excitation and Coulomb-nuclear interference. 

The method combines the quantum principle of superposition 

with exact classical dynamics to describe the projectile-target 

system. A detailed consideration of the classical trajectories and 

of the dimensionless parameters that characterize the system is 

carried out. 

The results are compared, where possible. to exact quantum 

mechanical calcul ions and to conventional semiclassical calculations. 

We find that in the case of backscattering the classical limit S-matrix 

method is able to almost exactly reproduce the quantum-~echanical 

S-matrix elements. and therefore the transition probabilities. even 

for projectiles as light as protons. The results also suggest that 

this approach should be a better approximation for heavy-ion multiple 

Coulomb excitation than earlier semiclassical methods, due a more 

accurate description of the assical orb; in the electromagnetic 

field of target nucleus. 





! 
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Calculations using this method indicate that the rotational 

excitation probabilities in the Coulomb-nuclear interference region 

should be-very sensitive to the details of the potential at the 

surface of the nucleus, suggesting that heavy-ion rotational 

excitation could constitute a sensitive probe of the nuclear 

potential in this region. 

The application to other problems as well as the present 

limits of applicability of the formalism are also discussed. 





I, INTRODUCTION 

The collective low-lying states of the nucleus are amenable to a 

classical description in terms of oscillations in the shape of the 

nuclear surface or of rotations of the nuclear body, 

In the study of these states the fact that they can be excited by 

the electromagnetic eld of charged projectiles was first pointed out by 

Mottelson1,2 in the y 1950's, and very shortly after experimentally 

verified,3,4 This process, generally carried out at energies below the 

Coulomb barrier and known as Coulomb excitation, became an important 

tool in the study of nuclear structure, One of the strongest reasons 

for this is the good understanding of the nature of electromagnetic 

interactions, whereas the strong interactions manifested in the short­

range nuclear force are less well known, 

Initially only light ions were available as projectiles to the 

experimenters, so that only the lowest energy collective states were 

excited by the ectromagnetic eld, and the theory developed by Alder 

et 5 could explain the experimental results in full detail, More 

recently the construction of heavy ion accelerators made feasible the 

study of multiple Coulomb excitation processes, in whi through the 

strong electric field of the heavy projectile the target nucleus absorbs 

several quanta, and many nuclear states can populated, s pushed 

the old theoretical methods to their limits, Thus, stimulated by the 

world-wide interest in heavy ion induced reactions, theorists attacked 

this more complex problem by different methods, 



It was soon seen that the purely quantum mechanical methods, 

such as the coupled-channel Born approximation, which could describe 

fairly accurately collision process in the case of light 

projectiles could not handle the case of heavy ions due to the much 

larger number of partial waves and channels involved in the calculation. 

The most sophisticated coupled-channel computer code available now6 

can handle only cases for which the Sommerfeld parameter n is less 

than 30 (the number of partial waves that need to be included in the 

calculation is proportional to n), while with the heavy ion beams 

available today Coulomb excitation experiments for which n is about 

400 are already performed~ and in the near future it will be possible 

to use 238u beams to perform these experiments~ which will raise the 

value of n to about 550. For these cases a coupled-channel quantum 

mechanical calculation is completely impossible at the present time. 

However, this increase in the value of n , which makes the 

problem intractable by quantum mechanical methods, brings it closer to 

the realm of classical mechanics, since the Sommerfeld parameter is 

inversely proportional to the de Broglie wavelength. 

This fact is the basis for the different semiclassical theories 

that were used to find approximate solutions to the problem. In the 

method Alder and Winther? the relative motion of projectile and 

target is described classically, and the trajectory of the projectile 

is assumed to be a hyperbola. The target is described in quantum 

mechanical terms by means of coupled-channel equations relating the 

different ted states. This method is the foundation for the 
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Winther-de Boer code for Coulomb excitation,8 the most widely used at 

present to analyze experimental data. 

A new approach appeared a few years ago, which can be derived 

from FeynmanUs path integral formul on of Quantum Mechanics; it is 

known under the name Uniform Semiclassical Approximation (USCA), and 

was developed mostly by W. H. Mil1er'O-18 to study atomic and molecular 

collisions. More recently it was applied to the nuclear case'9-22 and 

more specifically, also to the problem of Coulomb excitation23-25 and 

Coulomb-nuclear interference. 26 In this method one evaluates Feynman's 

path integral for the S-matrix by means of stationary phase integration. 

It is easily seen10 that the trajectories for which the integrand in 

Feynman's expression for the S-matrix is stationary are, for a given 

transition, those classical trajectories that satisfy the quantized 

boundary conditions for the transition studied. For example, for the 

Coulomb excitation of a deformed even-even nucleus in its ground state, 

to find the S-matrix between the ground state and, say, the 4+ state, 

one has to find the classical trajectories which have initial value 

of the nuclear spin equal to zero, and final value of the nuclear spin 

equal to that of the 4+ state. This implies that to obtain these 

trajectories one has to search for the initial values of the internal 

degrees of freedom of the target (its orientation relative to the beam 

axis in our example)~ which evolve into the desired final boundary 

conditions (the final spin in our example). After this is done, the 

evaluation of FeynmanUs path integral by stationary phase methods is 

rather straightforward. 



is method is obviously restricted cases for which a classical 

model can be formulated to describe the system. From what we pointed 

out the beginning, this restriction does not exclude the collective, 

low lying states that are ted in the Coulomb tation process. 

Almost simultaneously with the introduction of the USCA, R. A. 

Marcus 36 and W. H. Mil1er~O-18 among others, found another way of 

evaluating by classical methods the S-matrix. In this formulation 

classical mechanical trajectories are used to construct the wavefunction 

of the system in the asymptotic region. The elements of the S-matrix 

are then obtained by projecting the system wavefunction onto final 

channels. This leads to another integral expression for the S-matrix 

but where now the integral is not over all possible paths as in Feynmanis 

expression, but over the initial values of internal degrees of 

freedom of the target, so that in this form it is possible to evaluate 

directly the integral instead of approximating it by stationary phase 

methods. This has practical advantage that eliminates the need for 

a root search~ which may become extremely difficult when the target has 

several internal degrees of freedom and/or when the transitions ng 

considered are not classically lowed (this means that for no real 

initial ue internal degrees of freedom the nal boundary 

conditions are satis ed)~ in which cases the root search has to 

extended to complex initial ues. 

In order to d confusion when referring to these methods we 

will keep the name USCA for the root search method derived from 

using the 

ion for the S-matrix, and we will follow Miller in 

ignation ass; -Limit S-Matrix (CLSM) for the integral 



expression based upon the wavefunction constructed using classical 

trajectories. The practical application of these methods is rather 

different, but the theoretical bases are related. Figure 1-1 shows 

schematically how they are connected, and describes also the essentials 

of the semiclassical Alder-Winther (A-W) method, which will also be 

extensively referred to in this work. 

The main objective of this thesis is the application of the CLSM 

formalism to several scattering problems in nuclear physics. 

In Chapter II we will develop the CLSM formalism for the case of 

Coulomb excitation of rotational states of deformed nuclei by back­

scattering of heavy ions. This will imply the study of the classical 

trajectories followed by this system and the dimensionless quantities 

that govern them. The connection with the USCA and the discussion of 

a limiting case where analytical solutions exist for the CLSM, Alder­

Winther and quantum mechanical methods is also included in this chapter. 

An extensive comparison of the CLSM formalism (Chapter II) to the Alder­

Winther semiclassical theory and to quantum mechanics is carried out in 

Chapter III. The effect of the approximate dynamics employed by the 

A-W method and the region of applicability the CLSr~ formalism are 

discussed for this case. 

In Chapter IV we extend the CLSM formalism for this problem to 

include a complex nuclear interaction between the projectile and the 

deformed target. This will imply the use of complex classical 

traj es, but it is shown that the CLSM formalism may be used 

without changes. The study of the Coulomb-nuclear interference pattern 

of the excitation probabili es a particular system suggests that 
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experiments of this sort could provide detailed information on the 

potential in the nuclear surface region. 

Chapter V discusses the application of the CLSM method to several 

scattering problems and their present status. Included here are the 

generalization to non-backward angles of the formalism presented in 

Chapter II, the study of the Coulomb excitation of the K = Ooctupole 

vibration-rotation band in 238U, and finally the problem of one-nucleon 

and cluster transfer in the collision of two nuclei, one of which is 

deformed, at energies about the Coulomb barrier. 

In Chapter VI we present our conclusions. 

Appendices A and B briefly summarize the USCA and Alder-Winther 

theories to which frequent references are made. 
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II. THE CLASSICAL-LIMIT S-MATRIX FOR COULOMB 

EXCITATION OF ROTATIONAL STATES 

1. Introduction 

ve is e to account for the 1 values of the 

e moment found in many nuclei by assuming that these 

nuclei have a permanent non-spheri shape. In this chapter we will 

focus our attention on the on of the rotational states of these 

deformed nucl through the electromagnetic interaction with a nuclear 

projectile. 

We sha 11 cially consider even-even nucl with an axially 

symmetric shape. If we denote by the moment of inertia of such a 

nucleus with respect to an axis perpendicular the symmetry s~ and 

by 1 the angular momentum operator~ the Hamiltonian is simply given by 

(1) 

The eigenfunctions and genvalues of this Hamiltonian are given by 

(2) 

where Y 1M is spherical harmonic function, I and M the total and 

magnetic angular momentum quantum numbers~ e and ~ the polar 

angles of the symmetry axis in a laboratory-fixed frame. 
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Since our nucleus is invariant under a rotation by TI about any 

axis perpendicular to the symmetry axis, its wavefunction should be 

invariant under the transformation 

therefore, only states with even I are allowed. 

For Simplicity we will restrict ourselves in this chapter to the 

head-on-case, namely the case for which the relative motion angular 

momentum is initially equal to zero. The target nucleus is initially 

in its ground state, so that its angular momentum is zero. In these 

conditions the relative motion takes place in a plane; the angular 

momenta of the relative motion and of the target nu eus have a sum 

always equal to zero and are both of them perpendicular to this plane. 

By taking the Z-axis in this plane the projection M of the target 

angular momentum on this axis will be always zero, so we will not need 

to consider it in our calculations. To simplify the notation we will 

omit the subindex M = 0 in what follows. 

We are interested in knowing the final state of the target, after 

the interaction has taken place. At the present time we cannot think of 

solving the Schrodinger equation for this system since it is a partial 

differential equation in four or more variables, This equation is 

reducible to a system of coupled channel radial equations, which can 

numerically solved for systems such that the number of channels and 

states involved is not too high. In practice this reduces the present 

range of applicability of the coupled channel method in the study of 

Coulomb excitation to "light!! systems, meaning by light systems those 
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We wri the wavefunction w+(x,r) in the following way: 

(7) 

By making the short wavelength assumption in the usual way, (see Refs. 

,38) we obtain that the amplitude A(X,r) sati es an equation for 

conservation of amplitude flux, while the phase ¢(X,r) es the 

classical Hamilton-Jacobi equation, 

(8) 

To obtain the quantities A(X,r) and ¢(X,r) the following procedure 

is followed: we run assi trajectories for a given total energy 

E with the initial conditions r"" rO 

values), Pr=<Pr "" ~2m(E-ZpZTe2/ro) 
o 

large, X"" Xo (various arbitrary 

, Px ""0. From the values of the 
o 

dynamical variables in the final asymptotic region, rf , Xf ' Pr ,Px ' 
f f 

we can determine A and ¢ as follows: 

Since A satisfies conservation of probability flux, if we consider 

the trajectories which initial value of X are in the interval 

[Xo' Xo + dXO] , they will lead finally to an interval 

[Xp Xf + dXf] The amplitude A must then sati 

2 A (xf,rf ) vf r f 
2 sinXf dXf "" (xO,rO) '110 r02 sinxO dXO (9) 

.. 

Since all initial orientations Xo are equally probable, A(XO,rO> 

is independent of Xo and it is easily shown using the normalization 

of w+ that (XO' rO) ro2 =< 1 



Therefore~ 

dXO .1 
x r 
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where we have dropped the subindex f. 

(10) 

Since it is well known from assical mechanics that the classical 

action is a on of the Hamilton-Jacobi equation (see Refs. 39 

pp. ~ and 10) the expression for <p that satisfies Eq. (8) is 

where the integral is performed along the trajectory and 00(nO) is the 

Coulomb phase ift spin 0 and for the initial velocity vO' 

The wavefunction w+(x,r) as defined by Eqs. (7), (10) and (11) 

cannot be used evaluate the S-matrix; it is immediately clear that 

we would obtain an expression for S-matrix which is dependent on 

the distance r which the final values of all magnitudes are 

evaluated. 

To surmount this difficulty it is necessary to perform a canonical 

transformation of the set variables (X,r) to a new one where this 

situation does not occur. We choose transformation the new 

(X.T), in a way which is analogous to that employed by R, Marcus 

in Ref. • that is using a so-called "Uniform; on with astic 

collision trajectories il
• 

ng function we consider is 

(12) 
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where Pr is the radial momentum along an el 

the monopole part of the Coulomb potential 

c trajectory governed by 

that the 

energy E along this elastic trajectory equals the sum of the kinetic 

plus Coulomb energies at the nt r at which is evaluated. Since 

the energy left to the parti e depends on the energy that was 

transferred to the target, Pr will depend on Px' the spin of the 

target a distance r ,as it is shown expli tly in Eq. (12). 

position along the elastic trajectory at which' Pr 
is evaluated, and rT is the turning point of the radial motion in 

the elastic collision, that is Pr(rT~p, E) = 0 • 

From . (12) and the equations shown in Ref. , p. 241, we 

obtain the new coordinates X and T 

The derivates appear are easily evaluated from the 

expression of the Hamiltonian ( , in the next section), and the 

definition of E. From them we get 

2 
- ~r 1 1 
E = 2m -+ {-

mr2 

where m is the reduced mass the system and the moment of 

inertia of the target. 

(13) 

(14) 
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From Eq. (14) 

(15 ) 

Replacing in . (13) we find 

X "" X - mPx (~1~ 1) - -2 mr 
(13! ) 

1: "" dr 

1: can i as time it 

go the turn; c the nal 

distance r -. X can seen be 

constant in fi asymptotic ion; in ion it can 
-wri as X '" X - tilT, angular veloc; 

is i s on 

transformation i 

i on ion in ics example 
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+ Transforming wavefunctions <1>1 and \jJ by means of the canonical 

transformations given by Eq. (7)9 and replacing in the expression for 

the S-matrix (Eq. (3)) we obtain: 

where 

and 

-
where <1>" '" Ei 1: - hol(n l ) 

Finally, from Eq. (3) 

- - = 

. exp U(E - ED) 'r/h} exp (iMh) 2n sin X dX d'r 

(16 ) 

( 17) 

( 18) 

(19 ) 

(20) 
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where 

The i with T. in (20) can pe rformed 32 and 

shown that the result is a 0 on i n ( I ) • Th i s the 

expression S-matrix a one-dimensional i 

ng Xo as our variable of integration and repl ng Y10(COSX) 

by 1{2I+l)/4n PI(cOSX)~ where PI is an ordi polynomial 9 

we obtain 

This expression will 

and then resul di in 

its appli 

which must 

in ,( ), 

We 

system, 

ons 1 us cons; 

solved in order 

3, 

n g, II 

( ( 

ied to several physi systems, 

Chapters~ but before going i 

assical ons motion 

eval uate quanti es ng 

a geometrical on our 

) 
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The kinetic energy is given by 

1·2 mr2 9.2 +' tZb2 K "" '2 mr + J f.' 

where m is the reduced mass of the system and J the moment of 

inertia of the target. 

The potential energy is given by 

(24) 

(25) 

where Xis defi ned by X:: B = 8, P A is the Legendre po lynomi a 1 of 

order A 9 lpe, ITe are the charges of projectile and target~ 

respectively, and Q~A)e the multipole moment of order A ,defined 

by 

(26) 

where p(r,8) is the density of ectric charge. 

We have already taken into account when wri ng Eq. 25 that the 

target nucleus we are considering has both reflection and axial 

symmetry. 

Primarily for the sake of simplicity and since it is by far the 

most important contribution, we 11 consider only the first term in 

the sum appearing in Eq. (25). When later in this work we will need 

include terms higher than the quadrupole term, it will be quite 

ghtforward do so. 



From , (24) and ( ) we can construct the ian 

on. Conservation total angular momentum implies 

(27) 

the on case. 

Then ian takes the form: 

Y(X,X . 1· 2 1 
,r) '" "2 mr +"2 ----,~~ (28) 

where X is the angle (3 - e , as ously defined, 

From the definition the canon; momenta 9 
- aY h :::: - we ave: 

Pr '" mr and Px '" mr:Y' X/ (mr2 

writing the Hamiltonian H, 

aq 

, We are now in cond; on 

2 

H(X,Px ,PrJ· + ~U + x
2 

r (cosx) 

sion Px we observe at Px "'~8 , the 

rotational angular momentum 

( ) 
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Before proceeding to write Hamilton's equations of motion it will 

be convenient to write this Hamiltonian in dimensionless coordinates. 

To this effect we define the dimensionless variables 

and the following quantities: 

mv o 

(Sommerfeld parMoeter) 

(adiabaticity parameter) 

(half distance of closest approach) 

Z Q(2) 
q = p 0 (quadrupole strength parameter) 

2 - 4 h voa2 

(30) 

(31) 

here Vo is the initial rel ve velocity at large distance where the 

interaction is negligible. We note that r is the measure ofr in 

units of a , Pr measures Pr taking as unit its in; a1 value 



A 

(in magnitude), t 1s time in 
A 

of I is obvious, 

Then: 

A 2 
A A A A A Pr 1 ( 
H(X,I ) "" ~2~+ '2 

Hamilton i
:; equations of motion are then: 

A 

dr A 

-"" P dt r 

A 

sin 2X 
"3 r 

A 

and the phase ~ is eval using 

the meaning 

) 

(33) 

on 



u 

In Fig. II we plot the solutions of this system of equations for a 

realistic case, for several values the initial orientation angle 

The results show some characteristics that are present in a larger 

or smaller extent in the trajectories followed by all systems which 

study we are pursuing, and which are therefore worth mentioning now. 

One first observation is that the angular momentum is communicated 

to the target mostly in a small time interval around the point of 

closest approach. In this interval the rad; distance does not 

change much: most of the angular momentum exchange takes place for 
A 

distances r ~ 3 $ while the minimum distance is r ~ 2. During this 

time interval the entation 1e X does not change much either: 

this means that during the most important part of the collision the 

system retains memory of its initial orientation. This is the basis 

for the sudden approximation, to be discussed in a later section. 

Another characteristic we would like to point out appears in the 

last case shown in Fig. II~2 in which the angular momentum imparted 

to the target is so high that before the projectile has had time to 

recede much, X has increased beyond 900 and the torque on the 

target has reversed in direction. This is seen as a slight decrease 
A 

in the angular momentum function I followed later when X has gone 

through 1800 an even slighter increase. Such adiabatic 

are more evident for more massive projectiles. 
A 

gure II shows the final value the angular momentum I 

plotted as a function of the initial orientation Xo ' for the same 
A 

system considered in Fig. II I(XO) reaches a maximum for an initial 
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A A 

Fig. 11-2 Values of the functions ret), x(t) and let) 

text for definitions) for three different initial 

angles X • The case shown is 86Kr at 400 MeV lab 
o 

energy on 238U, which quadrupole moment was taken to be 

Qa 2
) = 11.12b, with an energy of the state 

E2+ = 0.0449 MeV. 
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g. II Function I(Xo) for same 
as in Fig. II . 
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orientation angle of ~ 33°, On the other hand since Eq, (33) shows 
A A 

that dl/dt is proportional to sin 2X 9 we know that the quadrupole 

torque is maximum at X = 450 , The fact that the maximum is shifted 

down from 450 is a dynamical effect: for a trajectory with initial 

Xo ~ 330 the quadrupole torque sets the target in motion in such a 

way that at the point of osest approach, when the torque is strongest, 

the orientation angle approaches 45°, For XO> 33° the orientation 

angle at the point of closest approach is larger than 45°, and the 

quadrupole torque is then smaller, This shift of the maximum towards 

smaller angles is also an effect that is more marked for heavier 
A 

projectiles, In the sudden approximation we will see that I takes 

its maximum value at Xo = 450 , and besides that in this case 

l(xO) = 2q2 sin 2XO' 

Using g, 11-3 we can illustrate the procedure to be followed in 

order to evaluate the S-matrix according to the Uniform Semiclassical 

Approximation, described in general in Appendix A and in Refs, 24 and 

25 for the case Coulomb excitation. In this method one nds the 

trajectories leading the final spin I of the state we want to 

consider, This means, one has to perform a search for those values of 

the initial parameters of the physical system (the angle Xo in our 

case) that lead to the s n I we are interested in, Actually in 

Refs, 23-25 the final angular momentum of the target is chosen to be 

0,5, 2,5 9 4,5 9 "" 9 instead of 0,0. 2,0, 4,0. '" or 0,0. 12X3. 

14 x 5, ,,' Ref, documents several reasons for doing so and in a 

later section of this chapter we will show how this choice appears 

naturally from the formalism we are developing here. 



A 

From the form the function I(XO) shown in g. II we see that 

for ues of I less than the maximum there are two initial angles 

Xo that lead is final spin. 

If the transition we are interested in is for I 1 r than the 
A 

maximum I(xo) it can be seen that there are two complex ues of 
r-

Xo that sfy on I(XO) = I. In this case the equations 

of motion will i ve complex dynamical vari es, but this is no 

major obstacle as we will see 1n the following 
A 

After the roots of I(xO) = I have been 

is given an anal cal formula (see Eqs. A-13 

show how these formulas the expression 

4. onship Between the ass; 

and USCA Formulas 

If we replace the Legendre polynomial 

for the cl as cal 1m; t x (CLSM) . ( 

expression: 

, the S-matrix 

A-15) . We will 

ved here (Eq. 23). 

imit S-Matrix 

in expression 

i asymptotic 

(34) 

+l)'lTsinX 

we can rewri Eq. ( in form: 



J 
i"-o> 

50 -+ I;;; _,,= I r dXO ~ slnx 0 g~ 
2"TI 0 0 

i[6/h + (I + 1/2)X - iJ 
e 

If we change the variable of integration in the fi integral of 

Eq, (35) from Xo to TI - Xo ' all other quantities appearing in that 

equation remain unchanged except X which changes into TI - X , 

Then Eq, (35) becomes 

[
TI j - I" i[6/h + (I + 1/2)(TI - X) - *] 

So -+ I;;; _ ~ dXO ., sin Xo ~~ to 

2"TI 0 0 

+ e 
i[6/h - (I + 1/2)X + i) I 

e 
i[tl/h - (I + 1/2)X + * J 

Then. since I 1s even 

)X +i] 

(35) 

(36) 
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uation s integral onary methods 

results in expression used in and It is not hard 

to show the of onary phase equation: 

(37) 

It is worth observing th the gnting that was 

introduced cons; ons more natural 

in this formalism even if the physi reason is ous the same, 

Also the use 1+1 on tion which Refs, 23-25 

use in an almost empirical way is seen as a direct 

consequence 

having repl 

we have shown 

mation done in 

polynomial 

onship between 

imply, though, 

, (36), Le q of 

i asymptotic expression (34). 

the USCA expressions 

obtain numerical resul is milar s at di 

from a We will show in . IV the introduction 

of other terms in an our tern, even mple terms 

1 i the a 1, increases number of 

poi of ). is one USCA 

use on are 

more 

from 

may 

very 1 (2) ves are much 

more compli ess one negl i on 
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between stationary trajectories and uses less accurate expressions 

of the type of Eq. (A-12). 

The numerical calculations using the CLSM are very similar if 

one adds more terms to Hamiltonian: only Hamilton1s equations of 

motion to rewritten to include these new terms. 

Finally, we would like to point out that in the USCA there 

is a difference between lIallowed" and "forbidden" transitions 9 meaning 

by allowed transitions those for which their final spin can be reached 

through assical trajectories, in the usual sense. For example, in 

the case shown in Fig. 11-3 allowed transitions are those for which 

the final spin is less than the maximum, that is I ~ 18. The 

transitions for which I ~ 20 are forbidden in the classi sense. 

The stationary points of the integral appearing in Eq. (36), which 

are solution of Eq. (37) are complex numbers in the forbidden case. 

This means that the initial conditions for the equations of motion, 

Eq. (33), will be complex, and so will become the dynamical variables 

during subsequent integration. 

In contrast the CLSM makes no distinction between allowed and 

forbidden transitions~ and the dynamical variables are real unless 

the Hamiltonian itself is complex~ as it will be in the case in Ch. IV. 

It could appear surpri ng at fi sight that especi ly 

high spin states where roots of Eq. (37) are well into the complex 

Xo plane~ the CLSM and the USCA expressions were equivalent, apart 

from the approximations mentioned before, since those stationary phase 

points employed in the USCA are far from the real axis on ich the 

integration leading to the CLSM is performed. However~ since the 
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it is not influenced the ion of the 

l; implies in it become 

has to become infini therefore the 

in i tion onal levels 

degenerate. physical situation which 

is approached 

to the rotation 

is limit is when the ratio the lislon time 

very close zero. is is the so-called 

"sudden impact" and ng i ea 1 in t 

for the reasons , it is ose 

situation since as it was discussed in on 3 

physical 

illustrated in 

Fig. II the 

ace in a me 

The equ ons 

A 
A 

dr _ A 

"""A - Pr A 

dt dt 

From fi 

as a function 

A 

P "" ± r 

"" 

r 

where the - (+) s1 

trajectory. 

angul ar mrUTIt:>I"IT 

much smaller than 

motion are now: 

; 

ons we 

ies to incom; 

in 

i st1c case takes 

rotational period. 

(38) 

radi momentum 

{39) 
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A 

X is seen to be constant, so it equals i initial value Xo 
A 

therefore the equation for I can written as 

dI '" ± 3q 
dr 2 "3 11"'"---", 

r - 2/r 

which can be integrated yielding: 

From (41), the angular momentum of the target after the collision is 

given by 

as it was already mentioned in a previous on, 

(40) 

(41) 

(42) 

Since n '" 00 , in order to avoid problems with the Coulomb phase 

shifts we will evaluate the R-matrix, given by 

therefore the Coulomb 

phase shifts appearing in the expression for ~ in Eq, ( ) are 

cancelled, Since X is constant we can integrate rectly 

-
~ '" 0 and n '" 00 imply that X '" XO' 

Then, 

(44) 
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The R-matrix 

RO+ I "" 
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RO+ I "" 

This 

geometric 

RO+ I "" 

This 

by means 

(cos 

is given in 

sin Xo 

as 

PI ) e 

i can 

on ~ 1 as (7) 

r 
~~~. ~~.~. ~. ~ 
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ar 
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(45) 

is case~ by 

o 4 (cos XO) 
(cos XO) 

-1 '3 q2 
e dxO 

-i 4 ) '3 (46) 

in terms a confluent hyper-

o 4 I 
-1 '3 "2 e ( q2) 1 2iq2) 

(47) 

c on can so be expressed 

in same manner as in . (7) 

e recursion on 
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(1+2)(21-l) .. /21+5 R "" r(21-l(2I+l)(21+3) + +11 &'21+1 RO~1 
'I 0+1+2 l 4iq2 ~ -V ~ 

+0-1 )(21+3) ~ 21-3 RO + I 

By giving two consecutive elements of the R-matrix all of them are 

determined, 

In particular we have 

i .£ q 
R "" ~ 'IT e 3 2 [C(2Q2) 0+0 4q2 

where C{x) and S(x) are the Fresnel integrals, and 

R "" .........:.'-0+2 2~ 

(48) 

(49) 

(50) 

We see that we have succeeded in expressing the R-matrix in 

terms of analytical functions, This is not very important from a 

numerical point of view, since the integral appearing in Eq, (46) does 

not pose any computational difficulties, but it is very sign; cative 

that the analytical expression found coincides with the quantum 

mechanical solution for this same case,7,42 
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II L CLSM AND ORBITAL DYNAMI IN 

SEMI ICAL COULOMB EXCITATION THEORY 

1, Introduction 

recent 1 i heavy ions has made it ible to 

populate high spin 

processes, Exact 

for Coulomb excitation 

are impracti 

problem has used semi 

Winther7 (A-W) and embod; 

calculate multiple 

In this approach 
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light 
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methods developed der and 
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tation 1 i ties, 

1 nternal degrees freedom are treated 

le dynamics is taken as of 

a classical part; e on an energy-symmetri a. 

As Al shown43- 44 this accounts ni the 

amp 1 itude of 

significant error 

such as mul ple 

phases may 

or 

i on x ements~ but may be in 

higher order ses 

on which are sens; ve these 

ons semi ass; cal ations. 

Hi cal ons have termed "quantal" or "quantum-

mechanical" 

(Le, ~ quantal) 

Alder has poi 

ons~ since 

cul om; 

II quan tal" correction is 1 

quantum-meenan; 

the e 

exact 

ones, 

is 

a true 

a 1 in cal cul symmetri zed 
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semiclassical trajectories. The weight of the evidence presented in this 

chapter supports this point of view and we shall refer to these effects 

as orbital dynamics effects. Any effects that are of a specifically 

quantum dynamical origin (in a sense to be specified later) are probably 

beyond the range of this method, 

Ini a1 attempts to account for the "quantall1 corrections arising 

from the use of approximate orbital dynamics have involved extrapolations 

from light-ion calculations43-45 and sophisticated energy and 

angular momentum symmetrizations in the semiclassical limit46 , 

Here we will employ the method discussed in Ch, II and compare 

it with A-Wand quantum-mechanical calCUlations, From this comparison 

we expect to understand better the orbital effects in the semiclassical 

theory and even provide an estimate of the corrections to be made to 

calculations based on this theory for the case of heavy ions where the 

quantum mechanical codes available are now impractical. 

A short review of the semiclassical theory is presented in 

Appendix B. We refer to (47) for a more thorough discussion of this 

theory and also of the quantum mechanical treatment of the Coulomb 

excitation process. 

2, Comparison of CLSM, A-Wand quantum mechanical results 

In order to evaluate expression for the classical limit S-matrix 

given in Eq, (11-23) we wrote a computer code in which first 

trajectories were run corresponding to the initial condi ons: 



Xo = uniformly s 

I '" 0 o 

ues in 
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( 1 ) 

interval [0 9 'IT] 

Due to symmetry reasons, trajectories for Xo in interval 

[~ 9 'IT] correspond those in interval, [o,~] by the transformation 

x + 'IT-X 

A A 

I + - I 

(2) 
A A 

r + r 

A A 

+ Pr 

id at all . This lows us run 

only half of the es needed eval ,(II L 

therefore reduces a two or so computer time requi 

by the program. 

integration the ons motion~ ,(II ) is 

by means of a d-Adams Moulton integration ne. 

The 

r(t) (t) + X{t} dpx( 

appears in . (I I ) is eval by ng the 

Eq, (II B ) ons motion, integration is uded 

when the dis 
A 

r 'is 1 (we ue in) • 
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We should remark here that the values for the S-matrix elements were 

numerically shown to be independent of the in; al and final distances 

taken for the integration as long as these values lay well out of the 

region where the interaction takes place. This region can 

operational defined by considering whether the value of the angular 

momentum is changing or not. 

From the values of the dynamical variables at the end of each 
-trajectory the quantities X and ~ are evaluated and stored. 

In order to calculate X ,defined in Eq. (11-13 1
) we must 

perform the integral 

mp 1 

1 r ...:x (-'- + - ) dr 
- Pr mr2 J 
rT 

which in dimensionless variables is written 

jr I 

( nO 
+ t) df A 

A Pr rT 
A A 

(2) 

In Eq. (2) fT satisfies Pr(rT) :: o . This expression can be evaluated 

analytically, since 

A 

(3) P :: r 

A A 

In both Eqs. (2) and (3) I and r represent the final value of these 

variables the trajectory considered, 
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From a numerical study we have found that 50 trajectories in the 

interval [O,~] are enough give the CLSM results with good accuracy. 

The computing time required for our code is less or equal to that required 

for the Winther-deBoer code and much less than the one consumed by AROSA. 

One expects that the CLSM method will be the more valid the more 

IDclassicalil the system is, i.e., for heavy projectiles and the excitation 

large numbers of rotational states. Since this is exactly the 

situation for which quantum-mechanical culations are not yet practical 

this represents one of the attractive features of the method. On the 

other hand this means that comparisons to quantum-mechanical calculations 

can only be done exactly for light systems, for which the CLSM method 

might not be expected to work very well. In fact, we have found that 

the CLSM gives a highly accurate description of the Coulomb exci on 

process even for the lightest ions. 

The results of these calculations are shown in Figs. 111-1-4 

the projectiles 'H s 2Hs 4He and lOBe on 168Er , and are tabulated 

a closer inspection in Table 1. In the upper part of each figure we 

have plotted the amplitude and phase of the R-matrix elements for the 

~ = 0 incident partial wave as a function of angular momentum both for 

a quantum mechanical calculation and for the CLSM calculation (note 

that the radial scale is logarithmic). In the lower part of each figure 

we show the relative deviation of the amplitude and the deviation of 

the phase of the R-matrix from the quantum mechani 

for the CLSM method and for the A-W method, 

cal ation, both 

The agreement between CLSM method and the quantum-mechanical 

calculation for the amplitude and the phase of the ~ = 0 R-matrix, even for 

protons, is remarkable, 
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Fig, 111-1 (a) The £ ~ 0 R-matrix elements for Coulomb excitation 

of the ground band of by 7 MeV projectiles. The 

radial scale is logarithmic. The quadrupole moment of 

l68Er is taken to be ( 7.673 b and the energy levels 

are taken from the rotational model with E2+ = 0.0798 MeV. 

The Classical Limit S-Matrix (CLSM) calculations are in 

good agreement with the quantum mechanical calculations 

done using the computer code AROSA (QM). 

(b) The difference in between the £ = 0 quantum 

mechanical R-matrix elements and the CLSM and Alder-Winther 

(A-W) semiclassical calculations. 

(c) The relative difference in amplitudes between the 

£ g 0 quantum mechanical R-matrix elements and the CLSM 

and A-W ones. 
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1 2 
EO ::: 2" m \/0 

'If 
The resulting trajectory corresponding to EI is often referred to as 

an energy-symmetrized hyperbola, 

In short, we see the A-W method treats the target internal 

excitation degrees of freedom quantum-mechanica11y but treats the 

projectile degrees of freedom using approximate classical dynamics, 

The validity of this approximation rests on whether the wave­

packet representing the projectile behaves as a localized particle 

subject to classical equations motion and, if so~ whether the 

deviations from a Rutherford trajectory arising from the non-central 

part of the potential that was compl neglected are sufficient to 

invalidate the approximate classical dynamics employed, 

The fi question relates to whether are explicit quantum 

dynamical effects operating which cast doubt on the applicability the 

concept of a classical trajectory, It is a question about phenomena 

which vanish in the limit h ~ 0 and which can only be fully answered 

in the context a rigorous quantum mechanical analysis, The second 

question concerns which are due to approximations in the 

classical dynamics employed and which are independent of h • This 

question might reasonably be answered within a classi 

1 imit framework. 

or classical-

In the ClSM method one forsakes the semiclassical prescription 

of a quantum-mechanical treatment for the internal degrees of freedom 

of the target and approximate classical treatment of the projectile 

motion, Instead, both internal and projectile degrees of freedom 
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Here AO = h/mvO and a is defined as in (11-31), Therefore nO meas­

ures the spatial confinement of the wave-packet describing the 

projectile relative to the characteristic interaction distance, and 

indicates therefore the degree to which the wave-packet will remain 

intact during the interaction, A classical description of the projectile 

will be appropriate if nO» 1 while a full quantum mechanical treat­

ment will be necessary if no« 1, For reference we give in Table III 

values of the Sommerfeld parameter nO and also of the other 

parameters and ~ appearing in the classical equations of motion 

written in dimensionless coordinates (Eq, (II-33))~ for different 

systems we are considering in this work. We must keep in mind that 

these parameters are both system dependent and energy dependent. Their 

values for other energies can be easily found from their respective 

energy dependencies: 

- 1 nO ~ E 

q2 ~ E3/ 2 

3/2 

In these equations E is the total energy of the system taken in 

laboratory or the center of mass reference frames. 

(7) 

ther 

From Table 111-2 we see that except maybe for the very lightest 

projectiles the condition nO» 1 is well satisfied, 

Therefore we expect that the errors coming from the assumption 

that the proj le can be described as a point particle following a 

classical trajectory instead of a wave~packet obeying laws of quantum 



-54-

Table III . ues dimensionless parameters nO' s r;, the 
11 and r;, physical systems 
~= 

(MeV) nO i; 

lH + 1 7 4. o. o. o. o. 
+1 7 5. o. o. o. o. 1 

+ 168Er 14 11.5 0.630 o. o. o. 1 

1 +1 .2 2. o. o 133 o. 1 

1 + 154Sm .6 1. o. o. o. 
+ 1 1 1 · 4.08 o. o. 0.1 

+ 178H f 1 · 6.18 o. 0.043 o. 
+ 1 1 · 5. o. o. 0.112 

+ 11. 1 o. o. o. 
1 + 12.9 o. o. o. 
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mechanics are very small, Then the differences between the quantum 

mechani and semiclassical cal ations should be due mainly to the 

approximate orbital dynamics employed in the semi assical description, 

The differences between the quantum mechanical and ClSM calculations, 

on the other hand, should come mostly from the way the target is 

described~ that is, by classical mechanics plus superposition, The 

results shown before (Figs. 111-1-4 and Table III ) seem to indi 

that even for systems for which very little rotational excitation takes 

place, - those for which the assical description of the rotor is less 

appropriate-,the ClSM method furnished accurate results. It is to be 

expected that for the cases of heavy projectiles where high 

rotational spins are excited this method should work even better. 

This conclusion cannot be tested directly, since the now existing 

computer codes cannot be applied with confidence in this region, but 

we think the evidence presented here to support it is strong. 

Besides one mentioned before, the parameter nO plays 

another important role, From consideration of the equations of motion 

(11-33) we see that if we allow nO go to infinity in these equations 

the trajectory of the projectile becomes a hyperbola. Therefore l/nO~ 

or rather Q2/nO measures the deviation of the projectile orbit from 

that of a pure Rutherford hyperbola, For this reason Massmann 25 proposed 

to designate this ratio as a new parameter, which from (7) we see it 

varies quadri cally with the energy. He also observed that the product 

Q2 ~ could be taken as another parameter, with the further 

of being energy independent, and depending only on the projectile-target 
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differences between the quantum mechanical 

(QM) and semiclassical (A=W) calculations of the 

~V'UVd.~A t = 0 R~atrix elements for Coulomb excitation 

of rotational states in 154Sm • The quadrupole 
154 (2) moment of Sm is taken to be QO ~ 6.82 b and 

the energy levels are taken from the rotational 

moment with 
10 Be ions at 

= Oe082 MeVe The projectiles are 

, 40 and 50 MeV laboratory energy. 

The relative differences are seen to increase both 

with the projectile energy and with the spin of the 

excited state, 
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Same as Fig. (111-5) except that here the 

relative differences between the amplitudes 

of the R~atrix elements are plotted. 
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10 m 

50 MeV 

-I 
4 

I 

Fig. III~7 Same as Fig. (III~5) except that here the 

differences between the phases of the R~matrix 

elements are plotted. 

XBL 774-8295 
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Table 111-3. Relative errors of the R-matrix elements for t=O obtained 
by the Alder-Winther and CLSM methods. The system considered is 
lOBe + 154Sm . The 154Sm was assumed have a quadrupole moment 

Q2=6.826b and the energy levels were taken from the rotational model 
with = 0.082 MeV. 

ENERGY 
(MeV) 

30 

40 

50 

SPIN 

0 
2 
4 
6 
8 

0 
2 
4 
6 
8 

0 
2 
4 
6 
8 

ALDER-WINTHER CLSM 

0.040 0.036 
0.045 0.023 
0.099 0.076 
0.272 0.047 
0.642 

0.078 0.088 
0.113 0.013 
0.139 0.057 
0.295 0.076 
0.683 0.035 

0.116 0.109 
0.223 0.085 
0.235 0.027 
0.341 0.087 
0.7 0.008 



than the ones of the semi assical method. 

5. The limit nO + 00 

It will be instructive to consider a case where the trajectory 

of the projectile is the same in both the semiclassical and CLSM 

approaches~ since such a case would be a good test of the idea that 

the approximate orbits used in the semiclassical method are responsible 

for most of the so-called quantum affects, and it would also be a 

direct test of how well the ClSM model handles the target rotation. 

In order to obtain the same trajectories we must the 

CLSM trajectories to be hyperbolas. This is sible by taking the 

value of the parameter nO to be infinity in the equations of motion 

(11-33), In order that these hyperbolas be the same as in the Winther-

deBoer computer code 9 simplest procedure is to modify this code 

so that the energies are not symmetrized. This means that we take all 

Rutherford orbits corresponding the different excited onal 

states as ng the same energy, which is the case in the CLSM code 

when nO + 00 This modi ed Winther-deBoer computer 

lows as the "unsymmetri 

wi 11 be 

while designated in what 

gina lone will referred as the "standard" or ilsymmetrized" 

The orbits in the unsymmetri Winther-deBoer in 

ClSM for nO + 00 are exactly the same, We will now proceed to 

make comparison these two methods in is limit. 

Since it is very convenient to have quantum mechani cula-

ons as a ce, our rst case to be consi involves the light 

system lOSe + 168Er V laboratory energy. 
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The results are shown in Table 111-4, and plotted in Fig. III-S. 

Since the quantum mechanical computer code AROSA is restricted to values 

of n of up to around 30, the limit for nO + 00 was obtained from a 

parabolic interpolation from the calculations done at lower nO-so 

The analysis of the results shows several interesting features, 

First of all we see that as llnO + 0 both the QM and the CLSM values 

approach the unsymmetrized Winther-deBoer result. The way this con­

vergence takes place is very similar for the QM and CLSM methods, 

Finally, it is important to remark that the symmetrization in the 

Winther-deBoer code always modifies the unsymmetrized results in the 

direction that approaches them to the QM and CLSM results for the 

actual value of nO' 

All this is consistent with the point of view expressed before 

that the main reason for the differences between the semiclassical 

and the quantum mechanical methods lies in the approximate orbital 

dynamics considered in the former. A procedure such as the energy 

symmetrization of the Rutherford orbits which makes the trajectories 

more realistic should improve the results, and this is actually observed. 

The question now is what other steps may taken in order to 

approach even more the trajectories employed in the semiclassical 

method to the ones found classically. Recently46 attempts have been 

made to make an additional symmetrization with respect to angular 

momentum transfer. A marked improvement in the amplitude of R-matrix 

was achieved, which is consistent with the previous discussion and the 

results shown in Fig. 111-6. 
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Fig. 111-8 The! = 0 R~atrix element amplitudes squared 

for the same system shown in Fig. , showing 

the variation of both the quantum mechanical and 

CLSM results with l/nO• The dashed line at right 

indicates the actual value of nO for the system 

and energy considered. The dots at left represent 

the results of the calculations done using the 

standard Winther-de Boer computer code (full dots) 

and the one modified as described in the text 

(open circles). The CLSM and QM calculations are 

seen to be in good agreement to each other, and to 

converge to the modified Winther-de Boer results 

as llnO + O. 
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A similar study was done for the heavier system 40Ar + 238U at 

170 MeV, which lies beyond the range of applicability of computer 

code AROSA. The results appear in Table I11-5 and the cases for which 

the deviations are most apparent are illustrated in Fig. 111-9. The 

good agreement found in the previous example plus the consideration that 

as the system becomes heavier it becomes more amenable to a classical 

description constitute strong indications that the differences between 

the CLSM results at the actual value of nO and the Winther-deBoer 

calculations are a measure of the orbit dynamical effects in this last 

formalism, and since the pure quantum-mechanical effects were seen before 

to much smaller than these orbit dynamical effects, they are as well 

a good estimate of the differences to be expected between a Winther-

deBoer calculation and a quantum-mechanical one. 

We see that the rise these effects is considerable specially 

for the case of high spins. 

In Figs. 111-10 + 13 we compare our results with those of the 

Winther-deBoer code for various heavy systems. From the preceding 

remarks we concl that the differences between the results the 

two methods are fair estimates of the quantum mechani 

to the semi assical theory. 

corrections 

In Fi . 111-8 + 13 we have pl the modulus squared of the 

R-matrix elements for J = 0 without attaching to them any al 

physical significance. It should clear that they represent 

probabilities 

consider a J = 0 

exciting the fferent rotational states if we just 

al wave incident on the target. 
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Fig. 111-10 The 1 = 0 R-matrix element amplitudes squared 

for Coulomb excitation of the ground band in 
176 40 Hf by 145 MeV laboratory energy Ar 

projectiles. The quadrupole moment of 118Hf 

is taken to be 6.81 b and the energy levels are 

those of the rotational model for EZ+ ~ 0.0932 MeV. 

The comparison between the semiclassical (A-W) and 

CLSM results shows good agreement, with the same 

deviation for high spins as observed before 

(Figs. III 1-4). 
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In Fig. 111-14 and Table III we compare these amplitudes squared 

of the R-matrix elements to the excitation probabilities found by 

considering the partial wave sum over all J for a deflection angle of 

1800
. They a~e actually close in value, and we may regard the quantities 

IR~II2 as an approximate measure PO+r(1T). 

This coul.d result surprising at first sight, since there are 

many partial waves contributing to the cross section any deflection 

angle. The reason for this may be understood in a model similar to that 

employed for the Alder-Winther theory. In it we see at the 

trajectories that contribute most to backward scattering are rather 

similar, and therefore the time dependent perturbation felt by the 

target is more or less the same for all these trajectories. The fact 

that there is a close relation between the excitation probabili es 

for the J = 0 partial wave and those a deflection angle of 1800 

when all partial waves are summed appears then because those partial 

waves that most of the contribution have similar excitation 

probabilities patterns. 

6. 

The formalism presented in Ch. II requires its validity that 

the wavefunction given by Eq. (II 6) be a good approximation to the 

true wavefunction. is approximation breaks down when the Jacobian 

~ goes through zero~ because 
o 

becomes infinite. 

those points wave function 1jl(x ;r} 

In g. III 5 we show function X(Xo) for several systems. 

We see that for one case shown there~ there are points which dX/dxO 
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Fig, 111-14 Comparison of the backward scattering excitation 

probabilities found by means of the quantum mechanical 

code AROSA (in which the partial wave sum is evaluated) 

to the ~ = 0 R-matrix amplitudes squared obtained 

through the same code~ through the CLSM method and 

by the semi-classical formalism (A-W). 
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Table III . Comparison of the excitation probabilities for a 

deflection angle 1800 found by doing the partial wave sum using 

the computer code AROSA, to R, :::: 0 R-matrix el ement modul us 

squared obtained by means of the three other procedures discussed 

in the text. The system is the same as in Fig. 111-4. 

SPIN 

o 

2 

4 

6 

8 

QM 
(AROSA, ALL L) 

0.089 

0.475 

0.352 

0,078 

0,0076 

QM 
(AROSA,l::::O) 

0.121 

0.491 

0.325 

0.059 

0,0040 

ClSM A-W 
(W1NTHER-deBOER) 

0.117 0.109 

0.478 0.434 

0.340 0,354 

0,062 0.089 

0,0035 0,0103 
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-
Fig. III-15 The function X(XO) for three different ectiles 

and energies on 238u. The parameters for 238U 

are taken to be the same as in Fig. The 
- 40 behavior of X(Xo) for AI is indicated only for 

low values of Xo in order not to overcrowd the 

£i,gure. For higher values it is close to and slightly 

below that of 86Kr • We see that X(X
O

) for 136xe 

presents a point (marked with an arrow in the figure) 
d-

at which ~ = O. Only the interval of Xo from 0 to 
'iT Xo 

was plotted since the curves are symmetrical around 

'iT 'iT 
the point (2 ' 2)' 
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becomes zero, This does not mean that the results for cases like this 

are wrong, but we must accept the fact that some accuracy has been lost, 

and it is not simple to estimate the error for those cases, 

Figure 111-16 represents a plot of the region where the CLSM 

method is fully valid. We see that it is mostly a function of the 

system considered, in particular of the parameter 

(8) 

where all quantities have been defined in Ch. II Sec, 3, 

We point to the fact that this will be also the region of 

validity of the USCA approximation, since the points where dX/dxO = 0 

will appear as spurious points of stationary Phase,49 If the true 

stationary phase points for a transition are not close to these spurious 

ones, then we expect the USCA to be still applicable, but to be sure one 

needs to find these spurious points besides the usual roots of 

I(xo) = I + 1/2 and this could become a serious problem, 

Fortunately the region where the method is valid is quite wide, 

and one has to be careful only when working with very heavy projectiles, 

The alternative of finding an approximate wavefunction of the 

type of (11-16) that does not have this drawback is presently under 

study. 
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)1 
XBL 775·8585 

Fig, III~16 Diagram shows the region over which the Jacobian 

dX > 0 always, and which therefore indicates where dXO 
the wavefunction given by Eq, (11-16) does not break 

down. 
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IV. THEORY OF COULOMB-NUCLEAR INTERFERENCE FOR EXCITATION 

OF ROTATIONAL STATES 

1. Introduction 

In the previous chapters we have considered that the incident heavy­

ion and the target nucleus interact only through the electromagnetic 

forces between them, This is valid as long as these two part; es do 

not come into the range of their mutual nuclear interaction. Since the 

classical limit S-matrix (CLSM) method was seen work nicely for the 

pure Coulomb case, the idea of generalizing it include the nuclear 

potential follows very naturally. This generalization 9 however~ is not 

as simple as it might be thought. The nuclear interaction between two 

heavy ions is usually represented by means of a complex potential; the 

classical Hamiltonian then becomes complex and therefore we find our­

selves dealing with complex equations of motion and complex dynamical 

variables. The meaning of these complex quantities has to be clarified 

if we want extend the ClSM method to the region where the nuclear 

potential begins to act, 

The use of complex trajectories is by no means new in physics, 

and they were successfully employed in recent years in the study of 

molecular excitation and reactive col1isions12-18 ,33 in atomic 

physics while in nuclear physics they were applied the problem of 

elastic and inelastic scattering from spherical nuclei. 19-22 

We will consider the case of deformed nuclei. Our concern here 

will be again to describe the excitation of the rotational states and 

not to study any other phenomena that appear when two such nucl touch, 
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such as excitation of other collective modes~ transfer of one or more 

nucleons~ nor of the much more complex processes that appear higher 

es. 

will assume throughout this chapter that the incoming 

projectile and the target nucleus are the same before and after the 

collision takes place~ and that only states excited in the target 

are those of the ground rotati band, while the projectile is not 

ted at all. fact that rotational tation is not the only 

process taking place is manifested in the reduction the outgoing 

flux due to the imaginary part the potential. The real part of this 

nuclear potential will give rise a torque which is of opposi sense 

to that due to electromagnetic forces (Fig. IV-l illustrates). 

We see then that the results should be strongly dependent on 

the particular nuclear potential that is considered. In fact~ we will 

contend that this method could be a useful 1 in finding a good 

potent; i astic ng from deformed nucl 

Since in the usual Coulomb excitation experiments one carefully 

limits the beam so as to avoid getting into the region where 

the nuclear interaction becomes effective~ there is little experimental 

in this region to attempt a determination the nuclear potent; 

parameters. Experimental work in is area is currently in progress. 

2. Hamiltonian and Equations of Motion 

The Hamiltonian will be the one given by Eq. (II ) which 

we will add nuclear 

hexadecapole potential because 

this chapter projectile and 

al. We will also include an el c 

the higher ies considered in 

get oser than in the pure 
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Coulomb region and therefore this term becomes more important than 

before, The Hamil an will then be 

(1) 

Here Q~4) is the hexadecapole electric moment, P4 the usual Legendre 

polinomial of order four, VR and VI the real and imaginary part of the 

nuclear potential which pre se functional form we will give below, and 

all other quantities have been defined in Chapter II using the same 

nomenclature as here, We will take VR and VI to have a Saxon-Wood 

dependence on the radial distance r $ since this 1s the way in which 

it is most frequently expressed in the current literature, It will 

very Simple to adopt other parametri 

enough data is available to make 

ons in this formalism, when 

ible a search for most appropriate 

nuclear potential it will be interesting to consider other functional 

forms, such as the recently presented expressions in terms of proximity 

forces 50-52 , 



tJ 

We take then 

v "" R 

~87= 

v 

w (2) 

V and Ware the strength parameters of the real and imaginary parts of 

the potential. respectively, while aR and ar are their respective 

diffuseness parameters. RR(X) is given by 

and represents the sum of the radii for a relative orientation X. 

Here R~ is the real radial parameter, ~ and AT are the projectile 

and target mass numbers, respectively, the SA are the nuclear 

deformation parameters, the Y20 the spherical harmonic functions 

and the last term is included take into consideration volume 

(3) 

conservation. We will assume that the real and imaginary parts of 

the nuclear potential have the same angular dependence, so that Rr(X) 

is obtained by replacing R~ in Eq. (3) with R~. This is obviously 

a non-essential assumption, and it can be lifted very easily. It 

serves the purpose of limiting the number of parameters that we have 

to deal with. 
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We note that we are still taking the form lplT for the 

monopole-monopole electric interaction. This is not strictly so in 

the nuclear region where charge dens; es of projectile and 

target do overlap; a folded potential would be more appropriate, We 

will nevertheless retain this simpler expression~ since we will work 

at energies where very little interpenetration occurs and where 

therefore it is not worthwhile evalu 1ng a folded potential, 

From the Hamiltonian (1) the classical equations of motion are 

(4a) 
Z Q(2) 2 

+ ~ _ e 0 ,e p (cos X ) 
, r4 2 

Z Q(4)e2 a (r,X) aVI(r~X) 
+ f p 0 6 P 4 (cos X) + ~a;"'r-- + i ~a-r-~ 

r 
(4b) 

(4c) 

(4d) 

aVR{r,X) av (r,X) 
+ + " ~~-~ ax 
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And as before we add the equation for the phase: 

, 1·, , ) 
¢ '" - - (r p + X P 11 r X (5) 

We immediately see that due to the imaginary part of the nuclear 

potential the dynamical variables r, Pr' X, Px and the phase ¢ as 

well become complex numbers in the general case, 

We will start our study by looking at some examples simpler than 

the general case in order to gain familiarity with the effect of each 

of the new terms we have incorporated into the Hamiltonian, 

3, Purely Real Nuclear Potential 

For the case of a purely real nuclear potential the dynamical 

variables will be real, and therefore there is no problem associated 

with their phYSical interpretation. This will allow an unclouded view 

of the effect that additional terms included in the Hamiltonian have, 

The inclusion of the electric hexadecapole moment does not change 
A 

very much the function I(XO) shown in Fig. IV-2, nor the excitation 

probabilities, shown in Fig. IV-3. The values chosen for the electric 

multipole moments of 238U are 53 Q6 2) '" 11.12b; Q64) '" 1,96b2, At the 

energy chosen for the case shown the addition of a realistic nuclear 

potential would not appreciably change the results, 

If we increase the initial kinetic energy of the projectile the 

two nuclei begin to interact more and more strongly through their 

nuclear potential, Figure IV-4 indicates the important changes that 

take place on the function l(Xo) as we increase the energy of the 

prOjectile. The effect of the nuclear potential is most noticeable 
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Initial ti o 

Fig, IV-2 Final spin I versus initial orientation angle 
40 238 Xo for the system Ax + U at 160 MeV laboratory 

238 energy, The quadrupole moment of U is assumed to 

be 11,12b. and the effect of the hexadecupole moment 

appears as the difference between the functions for 

Q64)= 1.96 b2 (experimentally measured value53) and 

QO(4); 0, For illustration the situation QO (2)= o. 
Q64) ~ 1,96 has also been plotted. and it is clear 

XBL 774-8300 

that the difference between the two previously mentioned 

curves is given by this later function, 
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Fig. IV-3 Excitation probabilities, in the sense XBL 

defined in Chapter III, for the same system 

considered in Fig. IV-2. 
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A 40 238 
Fig. IV-4 The functions I(XO) for the system Ar+ U at three 

different laboratory energies. The mu1tipo1e moments 
238 (2) (4) 2 of U were taken to be QO ~ 11.12 b, QO = 1.96 b , 

the energy levels were taken from the rotational model 

with E2+ ~ 0.0449 MeV and a real nuclear potential was 

assumed between the collision partners defined by the 
o parameters V = 50 MeV, ~ = l.l67F, aR = 0.95 F, 

SZ = 0.237, S4 = 0.067. 
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Fig. IV-5 Excitation probabilities calculated for the 

system shown in Fig. IV-4. 
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illustrated by the fact that the results given in Refs, 23 and 24 are 

in good agreement with other theoretical calculations, 

On the other hand one should be aware of this situation before 

attempting to extend the USCA method to new cases, The fact that we 

are performing the integration directly avoids us worries about this 

type of complications when we introduce the imaginary part of the 

optical potential, as we will do next, 

4, Complex Nuclear Potential 

The equations of motion derived from the Hamiltonian given by 

Eq, (1) are in general complex, and so are the solutions to these 

equations, The fact that the dynamical variables become complex marks 

a break from the usual classical mechanics but causes no major dif­

ficulties from a quantum mechanical point of view since there the only 

necessarily real quantities are the physical observables, 

As we have seen in the USCA one has to use complex trajectories 

to study classically forbidden trans; ons, in the case of a purely 

real interaction, and for all transitions if the Hamiltonian is complex, 

The procedure followed there 25 ,26 is to choose an appropriate complex 

initial value of Xo so that at the end of the trajectory the observable 

Px (or I , in dimensionless units) be real, By looking at the 

Hamiltonian (Eq. (1)) in the asymptotic region we see that if Px is 

real then Pr will also be real. 

We will choose instead to make the variable r real at the end 

of the trajectory, In order to do this we take an appropriate complex 

time path in the asymptotic region of the integration, This complex 
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the way described before in en, II with the same observation that 

quantities such as X, ~~ , ~ are now complex numbers. 

° We have performed some calculations using the system 40Ar on 

238U; two different sets of parameters were used for the calculations. 

They are given in Table IV-l, and their dependence on r is shown in 
55 

Fig. IV-5. They were obtained by Birkelund et !l., from quasi-elastic 

scattering of 40Ar on 238U at ELab = 268 MeV, 

The calculated excitation probabilities as a function of incident 

beam energy are shown in Figs. IV 7 4, together with the values obtained 

when no nuclear potential is included. 

We emphasize our reservation about the propriety of these 

potentials for the application intended here since our calculations 

are for lower bombarding energies than those at which the nuclear 

potential parameters were determined; nevertheless they serve as a 

useful starting point for the investigation of rotational scattering 

in the barrier region and we can use them to test our method until 

enough experimental data becomes available so that we can think of 

doing a search for the best set of nuclear potential parameters to 

describe the data, 

Considering Figs. I 4 we see in all cases that at low 

energies the results coinc; with those of the pure Coulomb excitation 9 

as it might be expected due to the short range of nuclear forces. On 

the opposite end of the energy scale 9 at high energies~ all excitation 

probabilities decrease very fast with energy. This is so because the 

imaginary part of the nuclear potential absorbs an increasing larger 
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Table IV-l 

Parameter sets used in the calculationa) 

I d) II d) 

Q (b) b) 
2 

11, 12 11.12 

Q4(b2)b) 1.96 1,96 

V (MeV) ,0 17,7 

aR(Fm) 0,62 0,531 

ROR (Fm) 1.131 1,267 

W (MeV) 80,3 15,4 

aI (Fm) 0,624 0,531 

ROI (Fm) 1 ,131 1. 

B c) 
2 0,237 0,237 

f3 c) 
4 0,067 0,067 

a) Same notations as in Eq, 1-3 

b) From Ref. 55 

c) From Ref, 56 

d) Nuclear parameters from Ref, 57 
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Fig, IV~8 Excitation probability for the 2+ state in the 
40 238 , reaction Ar + U at backscatten.ng angles, The 

parameter sets used are listed in Table III~l. 
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+ Excitation probability for the 10 state in the 
40 238 reaction Ax + U at backscattering angles. The 

parameter sets used are listed in Table 111-1. 
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parameter sets used are in Table III-I. 
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+ Fig. IV-14 Excitation probability for the 14 state in the 
40 238 reaction + U at backscattering angles. The 

sets used are listed in Table 111-1. 
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fraction of the incoming flux. This represents mathematically the fact 

that at these higher energies other channels such as nucleon transfer, 

fission, and compound nucleus formation are open and complete more and 

more with the rotational excitation. 

In the region between these two extreme cases we notice first a 

progressive departure from the pure Coulomb values, finding examples of 

both destructive and constructive interference. These interference 

effects between the electromagnetic and nuclear potentials are better 

explained by means of interfering classical trajectories, as it is done 

in Ref. 26, where only the contribution of two trajectories is considered. 

In general the two potential sets predi exci on probabilities 

that do not differ by more than 25% from each other in the energy range 

considered here. This is not surprising since as Fig, IV-6 indicates, 

they are very similar in the critical region Re(r) ~ 13.5 F , where 

most rotational excitation takes place at these projectile energies. 

But, since many different states are excited, even these small di 

ences might allow for distinction between potentials I and II in 

a careful experiment. 

Because the excitation probabilities are sensi ve to Coulomb-

nuclear interference , we believe that heavy-ion rotational 

excitation near Coulomb-barrier energies could provide a detailed probe 

of the potential 1n the nuclear surface region. (The potential in the 

nuclear interior is probably inaccessible because of the strong 

absorption), One may speculate that the potential for a deformed 

nucleus may exhibit irregular variations with the polar angle 8 {see 

Fig, 11-1. For example, the imaginary potential may 1 due at 
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effects discussed here are measurable. However these considerations 

indicate that detailed information about deformed nuclear potential 

in the surface region may be available in the Coulomb-nuclear inter­

ference experiments suggested by these calculations. 

We see how a relatively minor modi cation of the theory presented 

in Ch, II allows us to treat the problem of Coulomb-nuclear interference 

for rotational scattering which is very difficult to deal with by other 

approaches. Quantum mechanical coupled-channel numerical calculations 

including the nuclear potential are feasible for light ions on1y56, 

since the most applicable computer code available now requires three to 

four times the computer time needed by the pure Coulomb excitation code 

AROSA mentioned in Ch. III. 

Other semiclassical methods of the Alder-Winther type have been 

used to describe inelastic scattering from spherical targets in the 

same energy region. 57 It is hard to imagine how they could be applied 

to scattering from deformed nuclei, since in this type of methods the 

trajectory followed by the particle does not depend on the values of 

the internal coordinates of the target. This is not very bad in the 

case of pure Coulomb excitation where the trajectory chosen does not 

deviate so much from the actual ectories where the classical 

equations of motion are solved for both projectile and targets as it 

was discussed in Ch. III. In the case we are treating now, on the other 

hand 9 the short range and strength of the nuclear forces make the 

trajectories to be very strongly dependent on the orientation of the 

target 9 so that we do not think that a method based on an assumption 

that is in direct conflict with this fact can be formulated. 
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There is another comment to be made on way the imaginary 

part of the nuclear potential is cons in our approach and in that 

of Ref. 57. In this one the real part of the nuclear potential is 

the only part of it affect; trajectory, so that all dynamical 

variables are real 9 While the imaginary part of it has mainly the effect 

of giving rise to absorption along this classical ectory; reflection 

phenomena associated with imaginary part of nuclear potential 

are not included in this theorY9 since they correspond 9 in a classi 

picture to a modification of the trajectorY9 and in this formalism it is 

not possible to modify the projectile motion according to the orientation 

of the target since the r is cribed in quantum mechanical terms. 

As mentioned in this rence s omission may give rise to serious 

discrepancies with a quantum mechanical description. 

Our approaches include the full description of the classical 

motion, and in particular the imaginary of the optical potential 

affects the actual trajectory of projectile. In this sense we think 

the ClSM method could improve these results even 

spherical targets. 

To illustrate the the imagi 

the case of 

of the nucl ear 

potential on the classical trajectories we show in g. IV-15 the 

behavior of the real part of the function I(Xo) for the nuclear 

potential given by the set of parameters I in Table IV-l, By 

comparing it with the corresponding functions obtained for the same 

set of parameters but with the strength W the imaginary part 

the nuclear potential equal to zero and case of no nuclear 
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potential, we see that the effect of the imaginary potential is not 

negligible at al19 since it increases the angular momentum, cancelling 

in part the effect of the real part of the optical potential. 
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v. FURTHER EXTENSIONS AND OTHER APPLICATIONS OF 

THE CLASSICAL-LIMIT S-MATRIX THEORY 

1. Introduction 

In the previous chapters we have considered the application of 

the CLSM to the case of excitation of the rotational states of a 

deformed even-even nucleus. The theory is certainly not limited to 

this problem, as it is already suggested by the fact that the USCA has 
11,30 

been successfu1ly applied to study vibrational excitation of molecules, 

t · 1 1 11·· 14.15.28-33 d· 1 h· h reac lve mo ecu ar co lS10ns. an In nuc ear p YS1CS. to t e 

two dimensional tunneling of a fission barrier model. 58 

Here we 11 describe the present status of our study of other 

problems in nuclear physics in which we are using the CLSM. Since other 

research groups in the world are involved in similar studies. we find it 

appropriate to discuss their work in this chapter in order to give a 

more adequate view of how much has been done and the difficul es to 

be solved in the problems that we are considering now. 

2. Multiple Coulomb excitation for all scattering angles 

We would like to generalize our treatment the backward-

scattering Coulomb excitation process described in previous chapters to 

all scattering angles. This extension is from being trivial, as we 

will see. The main reason making the backward scattering ca~e especially 

simple is that the total angular momentum of the system (J) is zero~ and 

this fact forces the orbital angular momentum of the projectile and the 

rotational angular momentum of the target to be equal in magnitude and 

opposite in direction at all times, thus effectively reducing the number 
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of variables one has to deal with. In the classical trajectories 

fat::t that J = 0 impl ies that motion takes place in a plane. This 

is not gol to be true in the general case (J ¢ 0). 

let us start our study of this case by considering the scattering 

amplitude f for the Coulomb excitation4,57 process 

~ -JI, , 0 
1 (1) 

Here jOmO(j~f) are the entrance (exit) total nuclear spin and its 

corresponding magnetic quantum number, respectively. e and ¢ are the 

polar coordinates of the direction of the exit wave vector Kf in a 

coordinate system in which the incoming wave vector kO is ong the 

z-axis and Y~m is a spherical harmonics. The variables that appear 

inside the summation signs can be interpreted as follows. J is the 

total angular momentum and ~o(JI,) the initial (final) orbital angular 

momentum quantum number, while m is the final orbital magnetic quantum 

number, being the initial one equal to zero due to the choice of 

coordinate axis. SJI,J. o· = «JI,jf J JISI (JI,ojo) J> is the S=matrix 
OJO+.lVJf 

element for the transition Jl,OjO~JI,jf given a total angular momentum J. 
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Since we are especially interested in the study of the Coulomb 

excitation of an even-even nucleus in its ground state~ we replace 

joand mO in Eq. (1) by zero, thereby obtaining the simpler 

expression 

(2) 

x 

In order to calculate the ~cattering amplitude fOO+j~f we must 

evaluate the S-matrix elements SJO+tjf . We will see how the formalism 

that we have considered before can be applied to calculate them. 

The Hamiltonian for the system can be written,'O in analogy to 

the one given by Eq. lII-32) 

A2 (cos y) 
+ t + 1 + ~=--~ __ _ 

21102 r2 r 11 ~3 o 

(3) 

where the angle Y between the rotor s and the line defined by the 

centers of target and projectile is given byl0 

32 
+ i 2 - 32 

e,"n sin cos Y = -cos qj cos qt + A ~ ~ qj qt 
2 t J 

(4) 
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A A A 

In Eqs. (3) and ( the quantities j2 f, and J are the dimensionless 

variables that represent the measures of the angular momenta of the 

target~ orbital of the projectile and total of the system in units of 

h. The quantities qj and qf are the action angle variables 
A A 

canonically conjugate to j and f respect; 

have the same meaning as in en. II. 

. The remaining symbols 

The expression for the S-matrix element in this representation 

is found in the same way as before (en. II). The result is 

where 

The quantities qj and qf are 

was in Eq. (II-13)~ that is 

(5) 

(6) 

uated in the same way as X 

(1) 
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where ~r satisfies 

(8) 

Therefore (9) 

A 

and similarly 
r d~ 

~2p 
r 

(10) 

qjo and q~o are the initial values of the variables qj and q~ , 

~(q.,q~) 
and a( J ) is the Jacobian the variables defined by Eqs. (9) and 

Clj ,q~ o a 
(10) with respect to the initia1 values q. , q~ 

JO 0 

8q. 
~ 
8q. 

8(qj,q~) 
JO 

"" det 8(qj ,q.f(, ) 
a 0 aq~ 

~ Jo 

The other quantities 

meaning given to them in Ch. II. 

8q. 
.--L 
8q~ 

0 

dq~ 
aq.f(, 

a 

ng in Eqs. (5) and (6) retain the 

(11) 
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In principle one should proceed as before, taking the equations 

of motion derived from the Hamiltonian (3), them obtain all 

quantities appearing in Eqs. (5) and (6) and then perform the double 

integral appearing in Eq. (5). Unfortunately in this case the problem 

is not as straightforward as in eh. II for a variety of reasons. 

First of all the equations of motion resulting from Eq. (3) 

cannot always integrated directly; whenever J approaches zero the 

variable qj , which represents the amount of rotation in the plane 
A 

perpendicular J becomes ill defined, since the plane itself is not 

well defined. This appears mathematically as a singularity in the 
dq, 10 

expression for ~. Miller wrote these equations in cartesian 

coordinates to avoid the problem. This implies to make a transformation 

from action angle variables to cartesian coordinates at the beginn; 

of each trajectory, to obtain the initial conditions in cartesian 

coordinates; then run the trajectories in these coordinates and finally 

transform the final values back i action angle variables. 

There are alternative ways to describe problem, cn is 

appropriate to mention here. Mil1er10 proposes the helici 

representation (qj,qm,r,j,m,Pr) where j is again the rotational 

angular momentum the target and m is the heli ty, i.e., the 

projection of the rotational angular momentum of the target onto the 

relative velocity vector and qm is its canonically conjugate variable. 

The expression for the Hamiltonian in these new variables is 
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A 2 
A" _ Pr ~ ':' 2 
H{qj~j,qm,m,r'Pr) - :r + 6n

o 
J 

+12-"2 [3 2 +S2 _2m2+ 2 ~(32_~2)(J2_~2) cos qm] 
2no r 

+1 
A 

r 

A A A 

where similarly as before we have taken J, m and J to be jib, m/b 

(12 ) 

and Jib respectively. In this set of variables the angle Y , which 

is defined as before, is given by 

cos Y "" (13) 

A 

If we consider the case J "" 0 9 from the expression of the 
A 

Hamiltonian (12) we see that m has to be identically zero during the 

whole motion. Then from (13) we see that Y = q.; in this case, and 
J 

A 

since neither m nor qm will ay any role in the Hamiltonian it 

can finally be written as 

1 2q2 (cos qj) 
+ A ---A-"3~--"'-

r nO r 

(14 ) 
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which is identical to the expression we had before for the back­

scattering case (Eq, (II-32)), It is now clear that we can regard 

this helicity representation as a natural extension of the coordinate 

set used in eh, II to the three dimensional case, We can obtain an 

expression for the S-matrix element SO~+jm in an analogous way as 

it was done in eh, II. except that now it will involve a double integral. 

and quantities such as those just defined in Eqs, (9). (10) and (11), 

It is simple to transform the S-matrix from one representation 

to the other using the relation10 

JI, 

or its reciprocal, 

. JO! n ,JI,-J S J < Jm X,-m > 1 JO+JI,j (15 ) 

Let us begin the study of the S-matrix for the J non-zero case 

by considering the simplified case analogous to one studied in eh, II, 

3, The limit ~ = O. n = 00 

The evaluation of the S-matrix elements was carried out in the 

limit ~ = O. n = 00. which was previously considered for the back­

scattering case in section 5 of eh, II, In this limit the orbit of the 

projectile is a hyperbola, Taking the z axis ong the bisector of 

this hyperbola~ and the x axis on the plane defined by it, the 

pOSition of the projectile is determined by the distance 4 and the 

azimuthal angle e ~ while the axis the target nucleus is defined 

by the polar angles, a,S l g. V-l illustration). 

During the interaction the coordinates a,S remain constant, 

and this leads to a simpl; expression for the S-matrix, Just as 
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we did in section 1I-5 we may omit the Coulomb phase shifts and give 

the R-matrix instead by the expression 

2rr 
R (It):;, 1 d 

OO+jm I41T (16) 

where It is the deflection angle of the projectile in the center-of­

mass system and the phase ¢ is evaluated following the same procedure 

of Eq. (11-45), that is 

P2(cOSY) 
'~-~~~dr 

Iprl 

where COSY is expres 

cos Y '" cos ex cos e 

e is simply related to "-r 

It cos(e - 2) 
- 1 

cos(2) 
-" ~ 
A 

r tan 2 

and Pr is given by 

( 17) 

in these coordinates as 

+ sin ex sin e cos S (18 ) 

by 

(19 ) 



P "" + r -

Using Eq, (17) ~ is computed numerically, and then Eq, (16) can be 

easily evaluated, 

(20) 

In Fig, V-2 we show an example of a culation done according 

to this prescription. The numerical results are identical to those 

obtained with the Winther-deBoer code setting all rotational energies 

to zero (infinite moment of inertia limit), This agreement was expected 

from the considerations mentioned in Ch, II. 

This ~ "" 0, n "" 00 limit could be useful to evaluate, at least 

in a semi-quantitative way~ the excitation probabilities for a given 

system, In Fig, V-3 we compare this limit with the case where the moment 

of inertia takes its actual, finite value, for the same system as in 

Fig, V-2, The agreement is seen to quite reasonable, and the 

qualitative trend of the tation probabilities is well reproduced, 

In this computer code we included an ectric hexadecapole 

potential, plus a complex nuclear potential besides the quadrupole 

potential indicated in Eq, (17), Therefore it is possible to use it 

estimate the effects of these other potent; s in the 

probabilities for partial waves other than ~ ~ O. 

4. Present status of this problem 

tation 

In to evaluate S-matrix element SO~+jm we ran 

trajectories using the equations of motion ved from the 

Hamiltonian (14). From the final values dynamical variables 

we found the quanti es qj9 and qm~ analogous to X in J "" 0 
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Fig. V-2 Probabilities to excite the ground rotational band of 

238U by 170 MeV 4°Ar ions in the ~ = 0, nO = 00 limit. 
o 

The deflection angle is 120 in the center of mass system, 

Excitation probabilities for the same value of Mare 

joined by lines to guide the eye. 
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Fiv. V~3 Comparison of the excitation probabilities obtained using 

the CLSM method in the ~ = O~ nO = 00 limit and the Alder­

Winther semiclassical theory for the actual values of the 

physical parameters. The system and deflection angle are 

the same as in Fig. V~2. 



case. the Jacobian a(qj,qm)/a(qjO,qmO) was evaluated. It was 

found this Jacobian became zero along curves in the (Qj09GmO) 

ane. For curves (caustics) the semiclassical wavefunction 

breaks down~ as discussed <in eh. III; besides it was seen that the range 

of cases cs appear is much wi der than for the 51, := 0 case, 

where they appeared only heaviest projectiles. Therefore before 

employ; the i 1 sian S-matrix it is necessary to 

deal with this em with the caustics. Probably the best way is to 

go back the 5/, '" 0 case and treat it there, ina case that is much 

easier to study and which is more familiar. As was mentioned before, 

this is 1ng considered the present time. 

In Ref. ( ) it is indicated that if the physical stationary 

pain for a 

as spurious 

element 

n transition are from the caustics, which appear 

onary paints, then the integral defining the S-matrix 

ition can be evaluated asymptotical1Y$ ignoring 

completely the spurious stationary points. 

ch a1. ,9
60 have used the stationary phase method in 

the of on. They found the method gives 

accurate res ass; ly allowed transitions, but that it 

was much harder an uniform approximation in one 

dimension, consider doubtful whether it can be 

extended in ice the study claSSically forbidden itions 

or i ncl us ion a complex nuclear potential. have 

consi ve using integral representation, but 

the ications were t they found the same type of caus c-

related ems 
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As it stands now, this appears to be rather a technical difficulty 

and not a deep conceptual problem, since it takes place for heavy 

systems, where the classical model should work best, 

5, Octupole vibration-rotation band of a deformed nucleus 

Recently Grosse a1 62 have excited lowest octupole 

vibrational band of 238U up to spin 19, They found that one 

predominantly excited was the K"" 0 band, which corresponds to an 

oscillating deformation in the nuclear shape proportional to P3(cOS8), 

where e is the azimuthal angle and P3 the standard 3rd order 

Legendre polynomia1. 

The interaction term between the projectile and target motions 

is now given by: 

V (r ,a,x) (21) 

where QJ3} is the octupole moment of the target, which is dependent on 

the amplitude a of the octupole vibration, All other quantities 

retain the meaning assigned in eh, II, 

The classical Hamil an for this system can then be found 

adding V(r~a9X) the translation, rotation and vibrational energies, 

For the backscattering case it is given by 

(22) 
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where Wo is the characteristic frequency of the octupole-vibration, 

n is 

os ci 11 

vibrational quantum number and q is the phase of the 

amplitude a is related to the phase q and n by 

(23) 

where C3 is the restoring parameter for the octupole vibration. 

wri as 

))1/2 
--~=-~- cosq 

From this expression for the Hamiltonian we can write the 

equations of motion for the system, and for final values of the 

dynamical variables we can evaluate the expression for the S-matrix 

for the transition from the initial state (I "" 0, n "" 0) to the final 

state I,n. 

121 +1 1" dXO 

2rr 
dqo ~ sin Xo sin X a(g,x) s "" O,O-+I,n llrr a(qo'xO) 

0 

x PI (cos X) (iqn) (ill/h) 

(24) 

(25) 
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In this expression qo and q are defined 1n exactly the same 

way as X was in Eq. (11-131) (See also Ref. 11 for additional 

information). ~ is given now by 

[r(t)dPr(t) + h q(t}dn(t) + X(t)dPx(t)] + X p;: 

Pr 
+ hq nf +J r dPr + h (aO(nO) + aI (nl)) 

o 

(26) 

where pxf and nf are the final values of px and n, respectively, 

and the other quantities have the same meaning as in Eq, (11-21). 

The characteristics of the problem lend themselves to a 

simplification which reduces the double integral in Eq. (25) to a 

single integral, and which besides allow for an interpretation in 

simpler terms of the expression for the S-matrix. 

This approximation 1s based on the fact that the octup?le 

vibration affects very little both the projectile motion and the 

angular momentum transfer between projectile and target. This is so 

because the octupole vibration amplitude is small and its frequency 

high. 

We can therefore assume that the octupole moment acts only in 

the phase ~ ,and then as a perturbation. In this way it is 

possible to factor the expression for the S-matrix, Eq. (25), in the 

foll owing way: 
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(27) 

-We have made use of the fact that X is independent of qa ,so that 

ax = a; therefore 
aqa 

a(Ci.x) 
a(qO'xO) 

-
= ~, ax_ 

aClO aXe 

The phase ~l is ken to be the same as in Eq, (11-21); that is. 

while ~2 = ~-~l can then be written as 

(28) 

(29) 
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in Eqs. (28) and ( we indicate by Q~3)"pO (Q~3);: 0) quantities that 

are evaluated (not) considering octupole term in Eq. ( ). 

We see that the expression for the S-matrix element given by 

Eq, ( ) is identical to the one found in Ch. II ~ Eq. (II ), for the 

Coulomb excitation of the ground band, except that the integrand is 

multiplied by a factor 

Let us consider Eq. (29). From Eqs. (21)-(27) we have 

(30) 

(31) 

(32) 

The r dependence of the integrand in Eq. (29) indicates that 

most of the contribution the integral is at the point of closest 

approach. Due to the low angular velocity of the target as compared 

to the lislon time it is then possible to approximate Eq. (29) by 

giving X its value at poi of osest approach XCA • This 

is true in the case of nf as well, since from Eq. ( ) 

(33) 
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Therefore the phase ~2 can be written in the form 

where K is approximately independent Xo . 

Therefore in (30) the dependence of a(XO) on Xo is 

essentially through the factor exp(i K P3(cOS XCA )' Since Q63) is 

very small 9 then nf and K will be small numbers. The fact that 

nf is small means that only the n = 1 state can be appreciably 

excited. We therefore drop the n = 1 subindex of the S-matrix 

element. Since K is small one may approximate 

;:::; const. {l + i K (cos XCA)) 

(34 ) 

(35) 

When replaced in Eq, ( ) the first term in Eq, (35) does not 

contribute to the integral, Therefore the S-matrix is given by 

x P1(COSX) P3(cOSXCA) exp(i~l/h) 

1=1 ,5"" 

(36) 

which is similar to Eq. (II ) except for the form factor P3(cOS XCA)' 

This form factor can be found also in a less rigorous but more 

illuminating way, K = 0 octupole vibration 

dependence. We expect the exci on this vibration by a charged 

particular trajectory projectil e to stron y dependent on 
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followed by the projectile, specially at the point of closest approach. 

In particular we expect that trajectories such as that labelled (1) 

in Fig. V-4 that approach the target along a node of the octupole 

vibration will exc; it little or not at all; while those like (2) 

will excite it much more, since their point of closest approach is 

near the region where the vibration amplitude is maximum. In general 

the excitation will go as P3(cOS XCA) , if we neglect the fact that 

the quadrupole moment of the target changes slightly the point of 

closest approach and therefore the intensity of the exciting force. 

Figure V-5 shows that P3(cos XCA ) is a good approximation to the 

expression 

P 3 (cos X ( t ) ) 
---r--- dt 

r(t) 
(37) 

where the constant C is chosen so that a(O) = 1. This is an indication 

that these other dynamical effects discussed here are small. 

In Figs. V-6,7 we show the results obtained from Eq. (33), 

normalizing them, and comparing with those obtained through the Winther­

de Boer program. The agreement is good, which indicates that the classical 

picture on which Eq, (33) was based is indeed correct and that the 

approximations involved are not excessive. This is also confirmed by 

the case shown in Fig. V-B where by ng the ~ = 0, n = 00 limit we 

have that the point of closest approach lies at a distance independent 

of the target orientation. In this case the agreement is much better. 

Table V-l summarizes all the resul for one of the cases depicted 

in the previous gures. 
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Fig. V-4 The K = 0 octupole vibration is represented as a 

standing wave on the nuclear surface. Trajectory 

labeled (2), which has its point of closest approach 

near a maximum in the vibration amplitude, excites 

the octupole vibration much more than trajectory (l)~ 

which has it close to a node in the vibration. 



1.0 

\ 
\ 

c \ 
\ 
\ 

-142-

\ 
\ 

\ 
\ 
\ 

. \ 
Go \ 

.. \ 

Fig. 

s 

u 
MeV 

) 
-=---dt 

) 

L 



l} 

43-

r+oo p 3 (cos X

4 
.. ~oo r(t) 

) 
dt, 

where the value of the constant C is chosen so that this 

last expression equals 1 when~ Xo "" O. P 3 (cos X 0) is 

also plotted as a reference. 
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Fig. V-6 Signature of the K = 0 octupole band excitat~on in 238U 

by 170 MeV 4°Ar ions. The energies are taken from the 

rotational model with El - = 0.7313 MeV for the octupole 

band and E2+ = 0.0449 MeV for the ground band. The 
238 quadrupole moment of U is taken to be 1l.l2b for both 

bands. 
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40Ar U 

ElAB :: 170 MeV 

K :: 0 Octupole Bond 

e:: 9 '70 :: CD limit 

----O-CLSM 
--A-W 

XBl 
Pig. V=8 Signature the l{ "" 0 octupole band excitation 

for the same system as in Pig. V-6 in the t "" 0 9 

Tlo "" 00 limit. 
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We should remark that we have considered the excitation of the 

K ~ 0 band of the octupole vibration. Reference 63 indicates that we 

should expect a Significant mixing of all K ~ 0, 1 ,3 octupole bands 

for high spins. Therefore predictions of our model apply specially 

to the lower spins in the band. For the higher spins, where the band 

mixing is very important, the Coriolis coupling aligns the vibrational 

angular momentum along the rotation axis, producing therefore a band 

with energy spacings identical to those of the ground band but with 

spins 3 units higher. 63 The vibration deformation is now ven by 

Y33( 8,¢ ), where the Z-axis is taking along the rotation axis. This 

vibration appears not as stationary wave, as was the case for the K ~ 0 

band but as a wave propagating on the nuclear surface, orthogonally 

to the rotation axis. The excitation of the vibration in this case 

will be independent of the direction of approach of the projectile 

(except for the effects due to the change in the point of closest 

approach caused by the octupole moment, and which we saw was negligible 

in the K ~ 0 band case), since now we have a travell ing and not a standing 

wave. Therefore the probability for exciting a high spin I in the 

octupole band will proportional to the probability of exciting the 

spin I~3 in the ground band, since the form factor exciting 

vibration (and with it the 3 un; of angular momentum that are added 

to the I-3 of the rotation) is a constant independent of the orientation 
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6. Nucleon and cluster transfer on a deformed nucleus 

The success found 1n case just discussed suggests the 

possibili of studying other processes in a similar way. One problem 

that appears to tractable by this method is that the particle 

transfer taking place between the projectile and the deformed target 

brought close together in a collision at an energy about that of the 

Coulomb barrier. 

The problem is slightly different according to the type of 

particle being transferred. For the case of a nucleon the orientation 

dependence of the transfer amplitude will be (1) the spatial 

di bution of Nilsson orbital involved in the transfer; this 

will favor orientations for which the major lobe of the Nilsson wave 

function from or to which the transfer takes place points in the 

direction the other collision partner at the point of closest 

approach, and (2) the fact that the tunneli probability depends 

strongly on the distance of closest approach, which is at its turn 

dependent on the particular orientation of the target. This will 

favor transfer for trajectories that approach the target the poles. 

Since the transfer amplitude will have a strong correlation 

with the relative orientation of the deformed target nucleus with 

respect to the impinging projectile, and therefore with excitation 

of particular rotational states of the product nucleus, we expect to 

find, as it was the case for octupole vibrations, a characteristic 

Signature for the final rotational states the target. 

In case of one-nucleon transfer the problem is complicated 

by the fact this nucleon carries with it angular momentum which 
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has to be added to the part transferred through the electromagnetic 

excitation. 

Therefore it will be easier to consider the transfer of a 

spinless part; e, such as a di-neutron or an a-particle. For this 

case the angular dependence through the Nilsson orbital appearing in 

the case of nucleon transfer would be replaced by that of the 

probability of forming the compound particle on the nuclear surface. 

This problem was studied by poggenburg63 for the case of an a-particle. 

The formalism is the same as in section 5 except that now 

a(xO) will represent the transfer amplitude. Work on this approach 

has already started. 
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VI. CONCLUSIONS 

The classical imit S-matrix formalism was shown to be a very 

useful tool in the understanding the physical processes taking 

place in the excitation of rotational states by means of heavy ions. 

It is fascinating and highly instructive to see how a theory which 

is based upon classical dynamics can give so much insight into 

problems where quantum effects are very strong. This makes us wonder 

whether there is a much deeper connection between classical and 

quantum mechanics than that the former is the limit of the latter as 

h goes to zero, or in the limit of the high quantum numbers, Neither 

of these two limits were imposed for the problems studied here, 

Nevertheless the results of the CLSM theory were seen to be in 

quantitative agreement with the quantum-mechanical results. 

Besides this theoretical question it is our opinion that the 

CLSM constitutes per se an important means to study the problem of 

rotational scattering, and it should be useful in the task of 

perfecting the most widely used theory of Coulomb excitation, the 

semiclassical method of Alder and Winther. 

Until the time arrives when faster codes and computers will 

make possible the quantum mechanical study of heavy-ion scattering 

from deformed nuclei at energies at or above the Coulomb barrier, 

where the nuclear potential can no longer be neglected, the ClSM 

will playa useful role in analyzing the experimental data that is 

starting to appear, and which we think contains much information 

about the nuclear surface region, 
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The formalism developed here has limi ions due to the 

existence of caustics in the family of classical trajectories for 

some systems. We do not think these are absolute restrictions and 

that they will be removed sooner or later by a more careful choice 

of representation. What we find to be a real limitation is that it 

can be used only for processes that can be'classically described, 

such as, the excitation of collective vibrations and rotations of 

nuclei, Even so, this leaves a large and important region of 

applicability to the CLSM method, It is interesting to note that 

processes in this region are the ones most easy to understand in 

familiar terms, since their description involves concepts common 

in macroscopic physics and therefore in everyday life, 



APPENDIX A 

The Uniform Semiclassical Approximation 

The quantum-mechanical propagator 

can be written, according to Feynman, as a path integral over all 

possible paths qa(t) satisfy; the boundary conditions qa(t1) = ql ' 

qa(t2) = q2 . 

The propagator K 1s then written as 

where ~a(q29ql) 1s the classical action calculated along the path 

qa(t) . The definition of classical action is 

where ~(q9q) is the classical lagrangian. 

(2) 

(3) 

The integrand in' Eq. (2) is a rapidly changing function of the 

path qa in cases where the action ~a(q29ql) is large (measured in 

units of h ), so that the contribution from one path is cancelled by 

the one of nearby paths. Therefore only those paths for which 

~a(q29ql) is stationary result in a net contribution to the integral 

in Eq. (2). 
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This condition can be written as 

0f~ dty(q (t),q (t)) "" 0 (4) a a 
tl 

which, as is well known in Classical Mechanics, resul in the Lagrange 

equations of motion. We see then that the paths that make a net 

contribut,ion are those classical paths which satisfy the boundary 

cond i t ions qa, ( t 1) "" ql ,qa (t2) "" q2 . I f we denote by qc (t} these 

classical paths, by expanding ¢a(Q2,Ql) to second order in the 

departures 6q(t) from the paths qc(t) one obtains gaussian integrals 

which can be evaluated to give 

where the sum is implied over all classical trajectories qc(t) 

satisfying the boundary conditions mentioned before. 

(5) 

It is interesting to note that in the limit h + 0 Eq. (5) is 

exact and classical mechanics can thus be considered as the stationary 

phase approximation to quantum mechanics, 

The quantity 2nh can be interpreted as the classical 
c 

probability of finding at time t2 the system at position q2 ' 

provided it was in position ql ' at time t" 

At this stage it is convenient to change towards Hamiltonian 

formulation, The momentum p(t) conjugate to q(t) is defined as 
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usual by: 

(6) 

and the Hamiltonian H by: 

(7) 

(We should remark that even if we are considering only one independent 

coordinate q , the extension of this formalism to more degrees of 

freedom is quite straightforward). 

In momentum representation the action integral is given bylO 

and the propagator is then written: 

where the sum is done over all classical trajectories that satisfy 

p(t1) = Pl ' p(t2) = P2 • 

The S-matrix is defined as: 

ISlpl> = tim <P2 1 e 

tl +-.00 

t2 ++00 

i 

(8) 

(9) 
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where Ip,> , Ip2> are the genstates of the unperturbed Hamiltonian 

"indices ll (or quantum numbers) in the S-matrix 

and correspond classically to the constants of motion of HO' 

We see that the S-matrix is a propagator-type quantity, and we 

can associate to it immediately a phase factor: 

t2 
¢c/P2~Pl)" E(t2-t1) + f dt[pa,qa, - H(Pa"qa,)] .; (P2Q2 - p,q,) (11) 

t, -7 _ 00 t, . 
t2 -7 + 00 

t2 
By using energy conservation,)[ H dt ,. E(t2-t1) and since 

~ tl i dt pq - (P2q2 - p,q,) "" - jtz dtqp t, 1 

~,,(P2.Pl) " - it; dt q(t) p(t) 

Therefore the stationary phase apprOXimation of the Feynman path 

integral corresponding to (10) is: 

(11 i) 

(12) 
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Equation (12) requires for it be; id, that if there is 

more than one stationary path they are not too close so that the 

second order expansion for the phase around each of these stationary 

points is a good approximation. 

This is not the case when two or more of the stationary paths 

1 ie close each other, and the problem of doing the stationary phase 

integration becomes harder solve, and was not done in the general 

case, For the particular case in which there are two stationary 

trajectories by mapping the phase unto a cubic polynomial in such 

a way that the stationary points of the phase and the polynomial 

correspond, the following improved expression 

found 

the S-matrix is 

Where $1 and $2 are the phases along the two stationary 

trajectories; Ai(x) and Ai&(x) are the usual Airy function and 

its derivative, and ~ is defi by: 

(13) 
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(14 ) 

A drawback of both expressions (12) and (13) appears for cases 

where the action integral ¢ is not a sufficiently rapidly changing 

function of the path chosen, because in the derivation of both 

expressions the mapping chosen reproduces the region around each 

stationary path for Eq. (12), or also in between the two stationary 

paths considered in Eq. (13), but the mappings are assumed to be 

valid for all the space; in cases where the remaining of the space 

·makes a significant contribution the expressions (12) and (13) are 

not valid and this happens in the cases where ¢ changes slowly. 

For this case Stine and Marcus have developed a variation of the 

uniform approximation, where the action ¢ is mapped onto a function 

the form - 1;; cos y - ky + A, with 1;; and A being real numbers and 

k an integer, and where again the stationary points of phase 

integral are mapped onto the stati points of function, 

The resulting expression is: 
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(15) 

and ~ is obtained 
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APPENDIX B 

Semiclassical Theory of Coulomb Excitation 

Since in heavy-ion Coulomb excitation projectile velocities 

are small compared to that of light, magnetic excitation, which goes 

as (v/c)2, may be ignored. Therefore the Coulomb excitation process 

is treated as due to the interaction between the electric field of 

the incoming projectile with the nuclear charge density of the target. 

The electromagnetic interaction between the projectile of 

charge zpe, with its position in space defined, at time t, by the 

coordinates r(t), e(t), ~(t) with respect to a laboratory fixed 

reference frame fixed on the target, is given by 

(1) 

where ~(E, ) is the electric mul pole moment, defined from the 
A,ll 

nuclear charge density p(r) by the relation: 

(2) 

The wavefunction the target satisfies the following 

Schrodinger equation: 

(3) 
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where HO is the Hamiltonian of the free target, We see that the 

interaction with the projectile is represented by the time dependent 

potential HE(t), 

If ! l<I>n>} is the complete set of eigenfunctions of the 

Hamiltonian HO= 

(4) 

a standard way of solving Eq, (3) is to use the fact that i l<I>n>} is 

a basis, and expand I~> in this basis: 

Replacing (5) into (3)~ and applying <<I>n l to both sides of the 

resulting expression~ we find 

da (t) '" k<E -E )t 
n =~<<I> IHE(t)1<1> > e n m a (t) m n m m 

(5) 

(6) 

Since the target is initially in its ground state, the initial 

conditions for this system of first-order coupled differential 

equation is: 

(7) 

The wave function after the interaction is determined from the 

asymptotic values of the coefficients an 

probabilities are given by 

t-++oo, The excitation 
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The matrix element <~nIHE(t)l~m> is 

Eq. (1): 

(8) 

uated by using 

(9) 

The nuclear states are specified 'by the spin quantum numbers I 

and M; therefore using Wigner-Eckart's theorem 

(10 ) 

Replacing (10) into (9), and the resulting expression into (6) 

we find: 

00 A 

ill ddt a I t~ (t ) "" 1: 
n n A""l 

I - M 
(-1) m m 

2A+1 
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Since the target is being described in quantum mechanical terms~ 

the uncertainty principle forbids a precise descr; on of how the 

instantaneous values of the internal coordinates affect the classi 

trajectory of the projectile, Therefore the trajectory of the 

projectile is supposed to be a hyperbola in which~ in order to 

into account the energy transfer between target and projectile, one 

takes a velocity 

v = (12) 

geometric mean of the velocities in the initial and nal channels. 

For a final scattering angle e ,the eccentricity of the hyperbolic 

orbit is given 

e:: = _1_ . a 
S1"2 

(13) 

A convenient parametrization of the hyperbolic orbit in the 

coordinate system in which the z axis is perpendicular to the plane 

of the hyperbola and the x axis bisects it is given by: 

x(w) = a (cosh w + e::) 

yew} = a ./e::2_1 sinh w 

z (w) = 0 

r{w} = a (e:: cosh w + 1) 

t = ! (e:: sinh w + w) v 

Using (14) we find 

(14) 
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YAll(e(t),~(t)) _ TI (cosh w + E + i ~2_1 sinh w)ll 
:\+1 - Y')-2'O) A+1 A+ 

r(t) A~ a (e cosh w + 1) II 
(15 ) 

(16 ) 

where nm and nn represent the Sommerfeld parameter in the channels 

m and n respectively~ and ~ is usually called the adiabaticity 

parameters. 

Substituting (15) and (16) in (11) and using the definitions: 

(17) 

(18 ) 

We obtain: 
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(19) 

In particular case of a ~ the matrix elements are given 

by 

(2A+l}(2I n+l)(2Im+l) 
161T 

where Qa2) is the intrinsic quadrupole moment of the target. 

(20) 

Once the ampl itudes aH,( t=+oo) are -known 9 the total excitation 

probability of a level spin I is given by 

(21) 

where Ig is the spin ground state. 

The differential scattering cross section is obtained by 

multiplying the Rutherford cross on by this excitation probability: 

dO' _ p dO' 
dQ I -+- I - I g -+- I dQ = P I I 

g Rutherford g -+- 4 s i 
( ) 
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