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Sensor Driven Robotics

Advanced robotic systems should be able to perform a variety of tasks in complex,
unstructured environments with increased level of autonomy. Robots provide the physical
link between intelligence and action. Structurally, a robot can be considered as having
three modules. These include. (1) Mechanical assemblies, such as robot arm. end effectors,
and mobility platforms, (2) Sensors, for sensing the work environment of a robot, and (3)
the Perception, Planning and Control unit, which is utilized for interpreting the sensory
inputs and for planning and controlling the actions of the robot. Most of the robotic
systems currently employed in the industry require a highly structured environment for the
robot to operate [1,2]. This requirement can be relaxed if the robot is endowed with an
array of external sensors to sense its environment. The sensor-driven operation is critical
for making robots more versatile and flexible to use. Advanced robotic systems which are
capable of utilizing sensor modalities such as vision, range, force, and touch can be employed
in a variety of application domains. Of these, vision is recognized to be a very important
sensory modality. It offers rich sensory data for accurate and detailed interpretation of
the composition of a robot’s work environment. Object recognition, determination of their
locations in the 3—dimensional workspace, inspection of their status are all important tasks
where vision derived information can be effectively utilized.

In this paper we describe efforts directed towards the design, development, and testing
of a vision system that can be employed for performing a variety of inspection and ma-
nipulation tasks. Most of our presentation and findings should be of relevance to a broad
class of industrial automation tasks. The specific operational environment which we con-
sidered in our development was that of nuclear power plants. The need for and importance
of inspection systems to be employved in Nuclear Power Plants is well documented in a
report prepared for the U. S. Nuclear Regulatory Commission by White et. al {3]. The
authors concluded that robotic inspection capabilities will reduce both radiation exposure
to personnel and plant operating costs. It is clear that for a comprehensive inspection and
surveillance system a wide array of sensory systems will have to be employed. Some of the
most important tvpes of sensors include vision. radiation, vibration. sound, and tempera-
ture. In this paper we concentrate only on the vision sensor which in its simplest form is
a black and white camera. Some of the major inspection tasks which can be accomplished
by utilizing advanced vision capability in nuclear power plants are listed in Table 1. These
inspection tasks need not be performed totally autonomously. Images acquired by station-
arily mounted cameras or those mounted on robots can be interpreted by a human observer.
In this paper we describe design of a system where the complete process beginning from

image acquisition to final interpretation of the scenes can be accomplished automatically.



Model-Based Approach in Computer Vision

The main goal of a robot vision system is to provide an accurate interpretation of a
scene utilizing images of the scene as the primary source of input. Such interpretation can
be provided in a variety of forms and at different levels of abstraction. A useful form of
interpretation may include an object location map where different types of physical objects
appearing in the scene are independently recognized and accurate locations of these objects
in the scene are determined. Also, of utility is the information regarding the status or
condition of an object. Design of a computer vision system that can perform such object
recognition and scene interpretation is a complex and challenging task. The main difficulty
arises from the fact that images are 2-dimensional projections of the 3-dimensional real
scene and innumerable combinations affecting the illumination source, scene and sensor
parameters can result in the same observable value of the recorded image intensity.

In order to make the object recognition task computationally tractable model-based ap-
proach has been proposed [4]. The approach requires models associated with objects which
are expected to appear in the scene. These models are recorded in the knowledge-base of
the system. Various features from the input images are extracted using low-level, general
purpose operators. These operators should be robust in extracting image features corre-
sponding to the various physical attributes of the objects. Finally, matching is performed
between the image derived features and the scene domain models to recognize the objects.
This is accomplished by utilizing various decision making schemes in the matching module.
Successful design and implementation of a vision system utilizing the model-based paradigm
is affected by a number of factors. These include, ability to derive suitable object models,
nature of image features extracted by the operators, computationally effective approach to
handle the task of matching, schemes utilized for knowledge representation and effective
control mechanisms for guiding the overall operation of the system.

It is usually easier to develop models for objects expected to appear in an industrial
plant environment than those appearing in outdoor natural scenes encountered in remote
sensing applications. A number of studies describe applications where model-based vision
systems are utilized for analyzing outdoor scenes as well as indoor. industrial scenes [4-
8]. In an industrial plant environment one can control illumination, viewing geometry
and background types to design practical model-based vision systems satisfying operational
requirements of accuracy, speed, and robustness. Readers interested in reviewing robot
vision svstems developed for a varietv of specialized tasks may refer to references 3, 6.
7, and 8. Most of the commercially available vision system for industrial inspection utilize
binary image processing to simplifv analysis [8]. This, however. restricts the types of objects

and scenes which can be successfully analyzed. Examination of gray scale images. on the



other hand, is more complex but one can successfully handle complex scenes with multiple

object types. The vision system we describe utilizes gray scale image inputs.
Design of a Model-Based Vision System

In this section we discuss the design of a vision system for performing a variety of
inspection and manipulation tasks. The discussion begins with a description of the test-bed
utilized in the development. The main focus of our research is on the development of an
autonomous system that is capable of performing various inspection and manipulation tasks
associated with a typical control panel. This panel is designed in consultation with experts
from nuclear industry, using only “off-the-shelf” components. The tasks range from reading
of various meters and displays to operating different types of switches and controls. Also,
included are tasks associated with valve operation. Teleoperation or automatic operation
of valves in nuclear power plants is recognized as one of the important desired capabilities
of a robotic systems [3]. Our experimental set-up includes a test panel, a robot having
multiple sensory capability, computers, and various manipulation tools. The test panel
and the robot with various sensors mounted on the arm are shown in Figure 1. We are
considering a situation that does not require a mobile platform for robot movement. The
industrial robot consists of a Cincinnati Milacron T® — 726 robot with enhanced sensory
mechanisms. The sensors mounted on the robot include vision, range, and proximity as
non-contact devices and touch and force/torque as contact devices. The camera and range
sensor point in the direction parallel to the fingers, while the proximity and touch sensors
are mounted within the fingers. The force/torque sensor is mounted between the gripper
and the face plate of the end effector for measurement of the forces acting on the gripper.

The prototype system currently being developed using the above set-up is required
to perform the tasks listed in Table 2 in an autonomous mode. Typical autonomous robot
operation will involve the following. The robot first identifies the exact geometrical position
of the panel using a camera calibration program. Next it uses a computer vision system
to develop an object location layout map for various devices appearing in the panel. The
task to be performed by the robot is specified by a code displayed on a LCD meter. After
decoding the command the robot performs requested inspection or manipulation task. The
above flow of processing steps is illustrated in Figure 2.

Vision System Architecture
The primary factors considered in the design of the vision system are as follows:

o The system utilize all meaningful information that can be extracted from image inputs.
Information from spectral, spatial, and relational domains is extracted and analyzed.

e The system should be robust. In order to ensure robustness only relative information
about the object attributes in spectral and spatial domains are used.



e Object models stored in the system’s knowledge base should be provided by the user
of the system. In the knowledge acquisition mode, the user is asked questions re-
garding her expectations about object properties manifested in the three independent
information domains. Information about objects and constituent subobjects is ac-
quired. Whenever the scene is modified, another knowledge acquisition session can be
undertaken to update the knowledge base. The exact representation of the spectral,
spatial and relational domain information is shown in Figure 3.

o The system should be modular and easy to expand.

e The system should possess an explanation capability. This feature is quite useful and
important for the user to understand the line-of-reasoning followed in the system in
making an object recognition decision.

Robustness and ease in expandability to accomodate changes in the task environment
are two key features guiding the development of the vision system. The system is compart-
mentalized in two basic groups of procedures. The first group consists of general purpose
procedures for knowledge acquisition, image acquisition, image segmentation, matching,
and camera calibration. The second group consists of special purpose procedures mainly
designed for determining status of individual objects.

The main functions supported by the first compartment of the system are:

(a) to allow a user to input object attributes in spectral, spatial and relational do-
mains, and to encode this information in the system knowledge base,

(b) to acquire gray scale images of different resolutions,
(c) to perform segmentation of input images,

(d) to extract spectral, spatial and relational domain features from the acquired gray
scale images,

(e) to perform matching of image derived features with object attributes to recognize
various objects.

(f} to determine 3-dimensional locations of objects in the field of view of the camera
using the camera calibration model [2]. This requires identification of 4 control
points in the image for the camera calibration calculations. We utilize 4 lights
mounted on the panel border as the control points. The robot acquires two
images. one with lights turned on. another with lights off. the difference image
is analyzed to detect these lights in the image plane. A transformation matrix
which allows us to transform the image coordinates into 3—D world coordinates
is calculated and stored.

The system is developed in such a fashion that the above functions are performed by
procedures which are general purpose, that is, they rely on minimal knowledge about the
scene and its constituent elements. For example, the sequence of procedures employed for
recognizing and locating a meter in the panel will be basically similar to that of recognizing
and locating a valve. The functional modules and sequence of processing steps for deriving
object location map are presented in Figure 4. A robust region growing segmentation

procedure is used to identify all distinct regions of uniform gray level intensity values. The



segmented image is analyzed to extract spectral, spatial, and relational domain features
of the detected blobs. The only spectral domain feature extracted is the mean gray level
of a blob. The spatial features extracted from each of the blobs include: size, shape,
perimeter, principal direction, coordinates of the smallest rectangle enclosing the blob.
height. width, and elongation. Relational features can be derived from the coordinates of
the smallest enclosing rectangles associated with the blobs. The matching module basically
follows a bottom—up approach by first searching for the subobjects and then examining
the appropriate relational constraints to see if an object can be formed by the detected
subobjects. Initial search for a subobject is based upon matching of the spectral and
spatial features of a blob with the corresponding properties specified in the knowledge base.
As a simple example of the system attempting to find a slider, it will first identify all blobs
which satisfy the spectral and spatial domain properties for the subobject slot, (as specified
in Figure 3), similarly all blobs satisfying the constraints associated with the subobject
handle are detected. In the next step, blobs associated with the subobject slot and handle
are examined in pairs to verify if the specified relational domain constraints are satisfied or
not. Search for objects without subobjects requires matching of only spectral and spatial
constraints. Once all of the objects are recognized in the image then the transformation
matrix calculated by the camera calibration module is used to specify the object locations
in 3-D work space of the robot. The matching module utilizes relative spectral and spatial
domain features instead of absolute values to ensure robustness. The relative features are
derived using the attributes associated with the panel for normalization.

As opposed to the above described functions and procedures the second compartment of
the system consists of procedures developed to address specialized requirements to deal with
individual objects. The main function supported by procedures in this group is to determine
the status of various objects which are recognized and located using the procedures from
the first compartment. The objects appearing on the test panel and the type of status
information associated with each one of them are listed in Table 3. Depending upon the
type and nature of the object the camera mounted on the arm is moved to take close-up
images which are analyzed to determine the status of the object. Detailed discussion of the
routines developed for object status recognition is provided in reference 9.

Verification of the Vision System Performance

The performance of the vision system is tested using the test-bed described earlier. The
system’s capability to perform the tasks listed in Table 2 has been verified. Results of the
various steps utilized by the vision system are presented in Figures 5 and 6. In Figure
5a. input gray scale images acquired by the robot after determining the panel position

are shown. Results of the segmentation are presented in Figure 5b. These results were



processed to determine the types of objects and their 3-D locations using the matching
module. Results of the object recognition module are shown in Figure 5¢c. Results of the
selected object status recognition modules are shown in Figure 6. Figure 6a shows a gray
scale image of an analog meter. A status recognizer program which employs edge detection
and Hough transform routines was used to determine the needle position as displayed in
Figure 6b. A gray scale image of another type of an analog meter mounted on the panel
is shown in Figure 6c. This image is analyzed in the manner similar to the one shown in
part (a). The needle position was accurately determined as shown in Figure 6d. Figure 6e
shows a gray scale image of a digital display meter. Edge detection and thinning routines
were employed to get the results shown in Figure 6f. These results were later processed
using Fourier shape descriptors to identify the 1.84 numeric code accurately. These results
are derived in an on-line session where the time elapsed from the acquisition of the first
image for panel position determination to the recognition of the status of various objects is
less than 2 minutes on a general purpose VAX 11/785 computer. This system has been in
operation for over a year in our laboratory. Over one hundred experiments involving varying
illumination conditions and viewing geometry have been conducted to test the robustness
and accuracy of the system. These results are most promising. In order to further test the
vision system’s performance, the vision system software was transported to another location,
involving different robot, camera, and entirely different illumination conditions. The system
has been performing successfully at these two locations. These tests lend support to the

robust, accurate and reliable nature of the system performance.
Summary

Sensor-driven robotic system are required for performing tasks in complex, unstructured
environments. In this paper we have described research efforts directed towards developing
robotic systems with advanced sensory capabilities for operation in nuclear power plants.
The only sensory modality considered in the paper is that of vision. A model-based vision
system that can be used for various inspection and manipulation tasks is designed and
developed. The system analyzes gray scale images of varying resolutions. It uses features
from spectral, spatial and relational domains. The vision system uses general purpose
procedures for recognizing various objects appearing in the scene and for determining their
3-D locations. Special purpose routines are employed to determine the status of various
objects located. The system has been extensively tested at two different laboratories. Its
performance has been accurate, robust. and reliable. Its performance has been quite robust.
Further enhancements planned for the svstem include utilization of 3-D cues sensed by stereo

or range sensors [10].
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Table 1. A list of inspection tasks required in a nuclear power plant where vision sensors
can be utilized (From reference 3).

Verification of position of valves and dampers.

Measurement of oil and liquid levels in sight meters.

Reading of instruments and gauges (pressure. temperature, flow).

Detection and location of steam/water leaks.

Verification of integrity, position. and leaktightness of pipe snubbers.

Detection and determination of liquid and oil spillage.

Detection of loosened parts and abnormalities in the operation of fans,
pumps, blowers. etc.

8. Verification of integrity of security locks.
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Table 2. List of inspection and manipulation tasks to be performed autonomously by
the robotic system.

Locate the panel.

Read command from binary light code.

Read command from a 7-segment display.
Identify, locate, and read analog meter.

Identify, locate, and read digital meter.

Monitor the status of meters and controls.
Identify, locate, and turn valve.

Identify, locate, and activate push button switch.
Identify, locate, and operate an emergency knob.
Identify, locate. and operate a slider control.
Identify, locate. and manipulate the tool for valve turning.
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Table 3. Objects appearing on the test panel and their status information.

OBJECT TYPE STATUS
1. Light On/Off
2. Analog Meter Needle Position
3. Digital Meter Numeric Code
4. Valve Position of the Holes
5. Slider Control Position of the Handle
6. Push Button Switch On/Off
7. Toggle Switch On/Off




Figure 1: The test-panel and an industrial robot with vision, range, touch, force, and
proximity sensory capabilities. The test panel includes variety of displays, meters, valves,
controls, and switches.

PANEL LOCATION DETERMINATION

MOVE ROBOT FOR ACQUIRING
AN IMAGE OF THE ENTIRE PANEL

IMAGE ACQUISITION.
IMAGE SEGMENTATION.
OBJECT RECOGNITION.
<-D OBJECT LOCATION DETERMINATION

MOVE ROBOT FOR ACQUIRING
I IMAGE OF THE COMMAND DISPLAY

IMAGE ACQUISITION.
READ COMMAND USING LCD STATUS RECOGNIZER

EXECUTE THE COMMAND USING
VISION AND MANIPULATION ROUTINES

Figure 2. Flowchart showing the sequence of operations performed by the vision guided
robotic svstem.
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Figure 3: Representation of the spectral, spatial, and relational domain knowledge of various
objects expected to appear in the scene, shown in parts a, b, and c. respectively. (Note,

that only a partial list of the spatial domain knowledge base is presented. Also, attributes
listed are normalized.)
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Figure 4: Functional modules used in the vision system to recognize objects and to determine
their locations.

Figure 5: Recognition of the objects mounted on the control panel. Part (a) shows gray
scale images of the test panel acquired by the camera mounted on the robot arm, part (b)
shows segmentation results, part (¢) shows the recognized objects.
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Figure 6: Automatic “reading” of the meters. Part (a) and (c) display gray scale images of
analog meters, part (b) and (d) show results of needle position determination, part (e) shows
a gray scale image of a LCD digital meter, part (f) displays the results of edge detection
and thinning operations. These results are further analyzed using Fourier shape descriptors
to read the code.
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