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Sensor Driven Robotics

Advanced robotic systems should be able to perform a variety of tasks in complex, 
unstructured environments with increased level of autonomy. Robots provide the physical 
link between intelligence and action. Structurally, a robot can be considered as having 
three modules. These include, (1) Mechanical assemblies, such as robot arm. end effectors, 
and mobility platforms, (2) Sensors, for sensing the work environment of a robot, and (3) 
the Perception, Planning and Control unit, which is utilized for interpreting the sensory 
inputs and for planning and controlling the actions of the robot. Most of the robotic 
systems currently employed in the industry require a highly structured environment for the 
robot to operate [1,2]. This requirement can be relaxed if the robot is endowed with an 
array of external sensors to sense its environment. The sensor-driven operation is critical 
for making robots more versatile and flexible to use. Advanced robotic systems which are 
capable of utilizing sensor modalities such as vision, range, force, and touch can be employed 
in a variety of application domains. Of these, vision is recognized to be a very important 
sensory modality. It offers rich sensory data for accurate and detailed interpretation of 
the composition of a robot’s work environment. Object recognition, determination of their 
locations in the 3-dimensional workspace, inspection of their status are all important tasks 
where vision derived information can be effectively utilized.

In this paper we describe efforts directed towards the design, development, and testing 
of a vision system that can be employed for performing a variety of inspection and ma­
nipulation tasks. Most of our presentation and findings should be of relevance to a broad 
class of industrial automation tasks. The specific operational environment which we con­
sidered in our development was that of nuclear power plants. The need for and importance 
of inspection systems to be employed in Nuclear Power Plants is well documented in a 
report prepared for the U. S. Nuclear Regulatory Commission by White et. al [3]. The 
authors concluded that robotic inspection capabilities will reduce both radiation exposure 
to personnel and plant operating costs. It is clear that for a comprehensive inspection and 
surveillance system a wide array of sensory systems will have to be employed. Some of the 
most important types of sensors include vision, radiation, vibration, sound, and tempera­
ture. In this paper we concentrate only on the vision sensor which in its simplest form is 
a black and white camera. Some of the major inspection tasks which can be accomplished 
by utilizing advanced vision capability in nuclear power plants are listed in Table 1. These 
inspection tasks need not be performed totally autonomously. Images acquired by station- 
arily mounted cameras or those mounted on robots can be interpreted by a human observer. 
In this paper we describe design of a system where the complete process beginning from 
image acquisition to final interpretation of the scenes can be accomplished automatically.
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Model-Based Approach in Computer Vision

The main goal of a robot vision system is to provide an accurate interpretation of a 
scene utilizing images of the scene as the primary source of input. Such interpretation can 
be provided in a variety of forms and at different levels of abstraction. A useful form of 
interpretation may include an object location map where different types of physical objects 
appearing in the scene are independently recognized and accurate locations of these objects 
in the scene are determined. Also, of utility is the information regarding the status or 
condition of an object. Design of a computer vision system that can perform such object 
recognition and scene interpretation is a complex and challenging task. The main difficulty 
arises from the fact that images are 2-dimensional projections of the 3-dimensional real 
scene and innumerable combinations affecting the illumination source, scene and sensor 
parameters can result in the same observable value of the recorded image intensity.

In order to make the object recognition task computationally tractable model-based ap­
proach has been proposed [4]. The approach requires models associated with objects which 
are expected to appear in the scene. These models are recorded in the knowledge-base of 
the system. Various features from the input images are extracted using low-level, general 
purpose operators. These operators should be robust in extracting image features corre­
sponding to the various physical attributes of the objects. Finally, matching is performed 
between the image derived features and the scene domain models to recognize the objects. 
This is accomplished by utilizing various decision making schemes in the matching module. 
Successful design and implementation of a vision system utilizing the model-based paradigm 
is affected by a number of factors. These include, ability to derive suitable object models, 
nature of image features extracted by the operators, computationally effective approach to 
handle the task of matching, schemes utilized for knowledge representation and effective 
control mechanisms for guiding the overall operation of the system.

It is usually easier to develop models for objects expected to appear in an industrial 
plant environment than those appearing in outdoor natural scenes encountered in remote 
sensing applications. A number of studies describe applications where model-based vision 
systems are utilized for analyzing outdoor scenes as well as indoor, industrial scenes [4- 
8]. In an industrial plant environment one can control illumination, viewing geometry 
and background types to design practical model-based vision systems satisfying operational 
requirements of accuracy, speed, and robustness. Readers interested in reviewing robot 
vision systems developed for a variety of specialized tasks may refer to references 5, 6. 
7, and 8. Most of the commercially available vision system for industrial inspection utilize 
binary image processing to simplify analysis [8]. This, however, restricts the types of objects 
and scenes which can be successfully analyzed. Examination of gray scale images, on the
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other hand, is more complex but one can successfully handle complex scenes with multiple 
object types. The vision system we describe utilizes gray scale image inputs.

Design of a Model-Based Vision System

In this section we discuss the design of a vision system for performing a variety of 
inspection and manipulation tasks. The discussion begins with a description of the test-bed 
utilized in the development. The main focus of our research is on the development of an 
autonomous system that is capable of performing various inspection and manipulation tasks 
associated with a typical control panel. This panel is designed in consultation with experts 
from nuclear industry, using only “off-the-shelf” components. The tasks range from reading 
of various meters and displays to operating different types of switches and controls. Also, 
included are tasks associated with valve operation. Teleoperation or automatic operation 
of valves in nuclear power plants is recognized as one of the important desired capabilities 
of a robotic systems [3]. Our experimental set-up includes a test panel, a robot having 
multiple sensory capability, computers, and various manipulation tools. The test panel 
and the robot with various sensors mounted on the arm are shown in Figure 1. We are 
considering a situation that does not require a mobile platform for robot movement. The 
industrial robot consists of a Cincinnati Milacron T3 — 726 robot with enhanced sensory 
mechanisms. The sensors mounted on the robot include vision, range, and proximity as 
non-contact devices and touch and force/torque as contact devices. The camera and range 
sensor point in the direction parallel to the fingers, while the proximity and touch sensors 
are mounted within the fingers. The force/torque sensor is mounted between the gripper 
and the face plate of the end effector for measurement of the forces acting on the gripper.

The prototype system currently being developed using the above set-up is required 
to perform the tasks listed in Table 2 in an autonomous mode. Typical autonomous robot 
operation will involve the following. The robot first identifies the exact geometrical position 
of the panel using a camera calibration program. Next it uses a computer vision system 
to develop an object location layout map for various devices appearing in the panel. The 
task to be performed by the robot is specified by a code displayed on a LCD meter. After 
decoding the command the robot performs requested inspection or manipulation task. The 
above flow of processing steps is illustrated in Figure 2.
Vision System Architecture

The primary factors considered in the design of the vision system are as follows:

• The system utilize all meaningful information that can be extracted from image inputs. 
Information from spectral, spatial, and relational domains is extracted and analyzed.

• The system should be robust. In order to ensure robustness only relative information 
about the object attributes in spectral and spatial domains are used.
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• Object models stored in the system’s knowledge base should be provided by the user 
of the system. In the knowledge acquisition mode, the user is asked questions re­
garding her expectations about object properties manifested in the three independent 
information domains. Information about objects and constituent subobjects is ac­
quired. Whenever the scene is modified, another knowledge acquisition session can be 
undertaken to update the knowledge base. The exact representation of the spectral, 
spatial and relational domain information is shown in Figure 3.

• The system should be modular and easy to expand.

• The system should possess an explanation capability. This feature is quite useful and 
important for the user to understand the line-of-reasoning followed in the system in 
making an object recognition decision.

Robustness and ease in expandability to accomodate changes in the task environment 
are two key features guiding the development of the vision system. The system is compart­
mentalized in two basic groups of procedures. The first group consists of general purpose 
procedures for knowledge acquisition, image acquisition, image segmentation, matching, 
and camera calibration. The second group consists of special purpose procedures mainly 
designed for determining status of individual objects.

The main functions supported by the first compartment of the system are:

(a) to allow a user to input object attributes in spectral, spatial and relational do­
mains, and to encode this information in the system knowledge base,

(b) to acquire gray scale images of different resolutions,
(c) to perform segmentation of input images,
(d) to extract spectral, spatial and relational domain features from the acquired gray 

scale images,
(e) to perform matching of image derived features with object attributes to recognize 

various objects.
(f) to determine 3-dimensional locations of objects in the field of view of the camera 

using the camera calibration model [2], This requires identification of 4 control 
points in the image for the camera calibration calculations. We utilize 4 lights 
mounted on the panel border as the control points. The robot acquires two 
images, one with lights turned on. another with lights off, the difference image 
is analyzed to detect these lights in the image plane. A transformation matrix 
which allows us to transform the image coordinates into 3-D world coordinates 
is calculated and stored.

The system is developed in such a fashion that the above functions are performed by 
procedures which are general purpose, that is, they rely on minimal knowledge about the 
scene and its constituent elements. For example, the sequence of procedures employed for 
recognizing and locating a meter in the panel will be basically similar to that of recognizing 
and locating a valve. The functional modules and sequence of processing steps for deriving 
object location map are presented in Figure 4. A robust region growing segmentation 
procedure is used to identify all distinct regions of uniform gray level intensity values. The
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segmented image is analyzed to extract spectral, spatial, and relational domain features 
of the detected blobs. The only spectral domain feature extracted is the mean gray level 

of a blob. The spatial features extracted from each of the blobs include: size, shape, 
perimeter, principal direction, coordinates of the smallest rectangle enclosing the blob, 
height, width, and elongation. Relational features can be derived from the coordinates of 
the smallest enclosing rectangles associated with the blobs. The matching module basically 
follows a bottom-up approach by first searching for the subobjects and then examining 
the appropriate relational constraints to see if an object can be formed by the detected 
subobjects. Initial search for a subobject is based upon matching of the spectral and 
spatial features of a blob with the corresponding properties specified in the knowledge base. 
As a simple example of the system attempting to find a slider, it will first identify all blobs 
which satisfy the spectral and spatial domain properties for the subobject slot, (as specified 
in Figure 3), similarly all blobs satisfying the constraints associated with the subobject 
handle are detected. In the next step, blobs associated with the subobject slot and handle 
are examined in pairs to verify if the specified relational domain constraints are satisfied or 
not. Search for objects without subobjects requires matching of only spectral and spatial 
constraints. Once all of the objects are recognized in the image then the transformation 
matrix calculated by the camera calibration module is used to specify the object locations 
in 3-D work space of the robot. The matching module utilizes relative spectral and spatial 
domain features instead of absolute values to ensure robustness. The relative features are 
derived using the attributes associated with the panel for normalization.

As opposed to the above described functions and procedures the second compartment of 
the system consists of procedures developed to address specialized requirements to deal with 
individual objects. The main function supported by procedures in this group is to determine 
the status of various objects which are recognized and located using the procedures from 
the first compartment. The objects appearing on the test panel and the type of status 
information associated with each one of them are listed in Table 3. Depending upon the 
type and nature of the object the camera mounted on the arm is moved to take close-up 
images which are analyzed to determine the status of the object. Detailed discussion of the 
routines developed for object status recognition is provided in reference 9.
Verification of the Vision System Performance

The performance of the vision system is tested using the test-bed described earlier. The 
system^ capability to perform the tasks listed in Table 2 has been verified. Results of the 
various steps utilized by the vision system are presented in Figures 5 and 6. In Figure 
5a. input gray scale images acquired by the robot after determining the panel position 
are shown. Results of the segmentation are presented in Figure 5b. These results were
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processed to determine the types of objects and their 3-D locations using the matching 
module. Results of the object recognition module are shown in Figure 5c. Results of the 
selected object status recognition modules are shown in Figure 6. Figure 6a shows a gray 
scale image of an analog meter. A status recognizer program which employs edge detection 
and Hough transform routines was used to determine the needle position as displayed in 
Figure 6b. A gray scale image of another type of an analog meter mounted on the panel 
is shown in Figure 6c. This image is analyzed in the manner similar to the one shown in 
part (a). The needle position was accurately determined as shown in Figure 6d. Figure 6e 
shows a gray scale image of a digital display meter. Edge detection and thinning routines 
were employed to get the results shown in Figure 6f. These results were later processed 
using Fourier shape descriptors to identify the 1.84 numeric code accurately. These results 
are derived in an on-line session where the time elapsed from the acquisition of the first 
image for panel position determination to the recognition of the status of various objects is 
less than 2 minutes on a general purpose VAX 11/785 computer. This system has been in 
operation for over a year in our laboratory. Over one hundred experiments involving varying 
illumination conditions and viewing geometry have been conducted to test the robustness 
and accuracy of the system. These results are most promising. In order to further test the 
vision system’s performance, the vision system software was transported to another location, 
involving different robot, camera, and entirely different illumination conditions. The system 
has been performing successfully at these two locations. These tests lend support to the 
robust, accurate and reliable nature of the system performance.

Summary

Sensor-driven robotic system are required for performing tasks in complex, unstructured 
environments. In this paper we have described research efforts directed towards developing 
robotic systems with advanced sensory capabilities for operation in nuclear power plants. 
The only sensory modality considered in the paper is that of vision. A model-based vision 
system that can be used for various inspection and manipulation tasks is designed and 
developed. The system analyzes gray scale images of varying resolutions. It uses features 
from spectral, spatial and relational domains. The vision system uses general purpose 
procedures for recognizing various objects appearing in the scene and for determining their 
3-D locations. Special purpose routines are employed to determine the status of various 
objects located. The system has been extensively tested at two different laboratories. Its 
performance has been accurate, robust, and reliable. Its performance has been quite robust. 
Further enhancements planned for the system include utilization of 3-D cues sensed by stereo 
or range sensors [10].
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Table 1. A list of inspection tasks required in a nuclear power plant where vision sensors 
can be utilized (From reference 3).

1. Verification of position of valves and dampers.
2. Measurement of oil and liquid levels in sight meters.
3. Reading of instruments and gauges (pressure, temperature, flow).
4. Detection and location of steam/water leaks.
5. Verification of integrity, position, and leaktightness of pipe snubbers.
6. Detection and determination of liquid and oil spillage.
7. Detection of loosened parts and abnormalities in the operation of fans,

pumps, blowers, etc.
8. Verification of integrity of security locks.

Table 2. List of inspection and manipulation tasks to be performed autonomously by 
the robotic system.

1. Locate the panel.
2. Read command from binary light code.
3. Read command from a 7-segment display.
4. Identify, locate, and read analog meter.
5. Identify, locate, and read digital meter.
6. Monitor the status of meters and controls.
7. Identify, locate, and turn valve.
8. Identify, locate, and activate push button switch.
9. Identify, locate, and operate an emergency knob.

10. Identify, locate, and operate a slider control.
11. Identify, locate, and manipulate the tool for valve turning.

Table 3. Objects appearing on the test panel and their status information.

OBJECT TYPE STATUS
1. Light On/Off
2. Analog Meter Needle Position
3. Digital Meter Numeric Code
4. Valve Position of the Holes
5. Slider Control Position of the Handle
6. Push Button Switch On/Off
7. Toggle Switch On/Off



Figure 1: The test-panel and an industrial robot with vision, range, touch, force, and 
proximity sensory capabilities. The test panel includes variety of displays, meters, valves, 
controls, and switches.

PANEL LOCATION DETERMINATION

EXECUTE THE COMMAND USING 
VISION AND MANIPULATION ROUTINES

IMAGE ACQUISITION.
READ COMMAND USING LCD STATUS RECOGNIZER

MOVE ROBOT FOR ACQUIRING 
V IMAGE OF THE COMMAND DISPLAY

MOVE ROBOT FOR ACQUIRING 
AN IMAGE OF THE ENTIRE PANEL

IMAGE ACQUISITION.
IMAGE SEGMENTATION.
OBJECT RECOGNITION.

<-D OBJECT LOCATION DETERMINATION

Figure 2: Flowchart showing the sequence of operations performed by the vision guided 
robotic svstem.
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Figure 3: Representation of the spectral, spatial, and relational domain knowledge of various 
objects expected to appear in the scene, shown in parts a, b, and c. respectively. (Note, 
that only a partial list of the spatial domain knowledge base is presented. Also, attributes 
listed are normalized.)
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Figure 4: Functional modules used in the vision system to recognize objects and to determine 
their locations.

Figure 5: Recognition of the objects mounted on the control panel. Part (a) shows gray 
scale images of the test panel acquired by the camera mounted on the robot arm, part (b) 
shows segmentation results, part (c) shows the recognized objects.
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(e) (f)

Figure 6: Automatic “reading'’ of the meters. Part (a) and (c) display gray scale images of 
analog meters, part (b) and (d) show results of needle position determination, part (e) shows 
a gray scale image of a LCD digital meter, part (f) displays the results of edge detection 
and thinning operations. These results are further analyzed using Fourier shape descriptors 
to read the code.
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