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FOREWORD 

The MXLKID (Maximum Parameter LiKelihood IDentifier) computer code was written 
and developed under the Lawrence Livermore National Laboratory (LLNL), 
Electrical Engineering Department Engineering Research Funds as part of the 
Signal Processing Project. Many LLNL projects are involved in experimental 
design and control which involves the fitting of nonlinear and linear dynamic 
models representing the physical phenomonology to noisy measurement data. 
MXLKID represents a state-of-the-art algorithm which is very general and 
powerful. 

The generation of this code began after the development of a nonlinear dynamic 
estimator code called DYNEST^J. MXLKID essentially is a set of 
sophisticated optimization algorithms looped around the DYNEST code. Many 
people have teen responsible for the development of DYNEST and therefore have 
contributed implicitly to the development of MXLKID. Ue would especially like 
to acknowledge the initial structural coding and DYNEST conversion by D. 
Freeman under the direction of J. Candy. 

Work continues on the development of MXLKID in the Signal Processing Project 
to be able to identify large numbers (>40) of unknown parameters from noisy 
data. This effort will enable potential users to identify parameter in 
nonlinear distributed (partial differated equation) systems. 

i 
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ABSTRACT 

MXLKID (MaXimum LiKelihood Identifier) is a computer program designed to 
identify unknown parameters in a nonlinear dynamic system. Using noisy 
measurement data from the system, the maximum likelihood identifier computes a 
likelihood function (LF). Identification of system parameters is accomplished 
by maximizing the LF with respect to the parameters. 

In the main body of this report, we briefly summarize the maximum likelihood 
technique and give instructions and examples for running the MXLKID program. 
MXLKID is implemented in LRLTRAN on the CDC7600 computer at LLNL. We include 
a detailed mathematical description of the algorithm in the appendices. 

IV 
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INTRODUCTION 

This report introduces a new tool for dynamic system analysis to the 
signal processing software library at LLL, the Maximum LiKelihood 
parameter IDentifier (MXLKID), MXLKID identifies unknown parameters of 
a dynamic system from noisy measurement data. 

Dynamic Systems are fundamentally important in the work of research 
scientists and engineers. Systems involving Newton's laws of motion, 
electromagnetics, chemical kinetics, structural vibrations, and gas 
dynamics are familiar examples of dynamic systems. Even so-called 
static systems can be considered dynamic systems at rest. Thus dynamic 
system modeling and analysis is an important field of interest to 
researchers desiring to know more about the universe around them. 

System identification is a key problem 1n systems analysis. For many 
scientific and engineering systems there is no universal theory 
explaining the system structure nor is there any direct method of 
measuring unknown system parameters. All that is available to an 
experimenter is noisy measurement data which may only be indirectly 
related to the system parameters of interest. MXLKID is a useful tool 
tor system parameter identification in this environment. While MXLKID 
will not perform the entire task of determining the structure and order 
of a system, it will numerically estimate unknown parameters in a system 
equation, using the information inherent within the measu-ement data. 

To use MXLKID, the user must specify the system dynamic aquation(s) in 
terms of a set of unknown parameters, and give initial (a-priori) 
estimates for these parameter values. MXLKID then iteratively improves 
the parameter estimates until the maximum likelihood set of parameters 
is reached. Likelihood, explained in further detail in Appendix A, is a 
useful objective function in the search for optimal parameter estimates 
because it serves as a measure of model validity in terms of consistency 
with the measured data. 
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This report is intended to provide the user with enough information to 
run the MXLKID program successfully and to gain insight from the 
results. The user is assumed familiar with FORTRAN and the Octopus 
CDC7600 computers. 

The report's main body is organized into four chapters. This 
introduction comprizes Chapter 1. In Chapter 2 we define the basic 
MXLKID problem and give an overview of the algorithm. Chapter 3 gives 
detailed Instructions and examples for set up and execution of the 
MXLKID program. Chapter 4 is a summary of the report. 

The appendices of this report contain additional detailed information 
for the serious user of the MXLKID program. Appendix A describes the 
algorithm in greater detail, and gives mathematical derivations for the 
basic formulas used. In Appendix 6, we present the details of the 
statistica1 whiteness test which is used to independently verify HXLKIO 
results. 
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2.0 Basic MXLKID Algorithm 

In this section we describe the basic parameter estimation algorithm 
found in the MXLKID program. We define the mathematical problem to be 
solved, present the algorithm designed to solve it, and then discuss the 
actual implementation. 

2.1 Problem Definition 

The MXLKID is a parameter estimation/identification algorithm 
designed to solve the following problem: 

Given a continuous nonlinear dynamical system in state space form, 

* t = f(x t, 6t) + g(u t, & t) + w t 

and discrete measurement system, 

h - h<V 'k> + v k 

where x, u, z,e are the n-state, r-input, m-measurement, and 
p-parameter vectors; f(»), g(-), h(») are the respective vector 
functions; and w +, y. are white Gaussian processes with 
respective covariances Q and R, find the best (maximum likelihood) 
estimate 0 of $. 

The algorithm designed to solve this problem uses a recursive 
state estimator (Xalman filter) to generate quantities required to 



compute the likelihood function. The likelihood {or negative 
log-likelihood) function is maximized (minimized) to find the 
"best" set of unknown parameters 0. Some of the fundamental 
references for maximum likelihood Identification are Gupta and 
Mehra D J , Kashyap £23, and Best C33. We no* dSscuas the basic 
algorithm. 

2.2 Algorithm 

MXLKID is the implementation of s..*ne standard optimization 
techniques asing a recursive estimator (Kalman filter) to generate 
some of the required quantities. The optimization algorithms 
implemented are basically gradient search techniques using the 
Levenberg-Marquardt or Gauss-Newton methods. All the methods 
involve a technique sfnn'Iar to the one sho^n below: 

log likelihood Function Calculation: 

H 

j(!) = -1/2 AI (2ir) - ̂ V e T ( ' % ! (R^^u)))"1 eti-iouP 
i=l 

Gradient Calculation: 

.J^LD+Afcj) - J(gQ L D) M p ( 4) 
A*y 

* The quantities e(1».e) and Rf(i,gJ, 1n these equations are generated 
recursively by the Kalman filteF. 
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Hessian Calculation: 

6 2J(e),_ 
8fl* 

a^tfou,) 
Ldei ae k i=l 

+ 1/2 

+1/4 t r 

Parameter Estimate Update: 

f --18R! -1 aR!" 

-1 »R«1 f , -1 BR«" 

£«EW = ^OLD + p 

Loop: 

where 

3i J d§. 

J(£) is the scalar negative log-likelihood function 

aj is the p-gradient vector 
at 

i^4- is the pxp Hessian matrix 
36 

$_ is the p-parameter vector 

& 8 t is the p-Incremental parameter change vector (only 
I t h element nonzero) 
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e is the m-innovation vector 

R* is the mxm innovation covariance matrix 

D is the pxp diagonal Marquardt matrix (contains the square 

root of the diagonal elements of 

p is the scalar step adjustment 

p is the Marquardt parameter used to weight the diagonal 
Marquardt Matrix 

If the Gauss-Newton algorithm is selected, then p is set to zero, 
while in tha Levenberg-Marquardt option it is variable, p is a 
step size parameter which is set to one (P=-l) initially, hut is 
varied during the algorithm to ensure a reduction in the negative 
log likelihood. 

MXLKIO consists essentially of these equations in an iterative 
loop with the recursive Kalman filter providing the quantities for 
equations (3) and (5). Note that the dynamic process, measurement 
and noise models of (1) and (2) are included in the Kalman filter 
formulation [4,5,61 For the interested reader, detailed 
equations for both the minimization algorithms and the Kalman 
filter are presented in Appendix A. 

2.3 Algorithm Implementation 

In this section we discuss the implementation of the MXLKID 
algorithm. We first overview the major tasks and then describe 
(simply) the program flow. 
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The main task of MXLKID is to identify the set of parameters which 
maximizes the likelihood function. To compute likelihood, we use 
both measurement data and a model of the system (equations (1) and 
(2)) of interest. The system model, provided by bhe user in a set 
of user-definable subroutines, is written in terms of the 
parameters which need to be identified. This model serves as a 
reference in a statistical, model-based, signal processing scheme 
(Kalman filter). Processing the measurement data results in the 
necessary ingredients for computing the likelihood function 
according to equation (3). 

The Likelihood is generally a nonlinear function of the unknown 
parameters because results of the signal processing are dependent 
on the system model. To maximize likelihood, one of many well 
known nonlinear programming algorithms can be employed. The user 
currently has a choice of two such algorithms within MXLKID, 
Gauss-Newton and Levenberg-Marquardt (see Appendix A, Section 3 
for descriptions of these optimization methods). Both of these 
methods rely on computing the likelihood several times during the 
search for a _*imum. 

MXLKID implementation is depicted (simply) in Figure 2-1. Note 
that after the initial parameters are set, the log-likelihood 
function is calculated using the Kalman filter to produce the 
innovations data. The log-likelihood Jacobian (partial 
derivative) is numerically calculated as are the Jacobians used in 
(5). All of this information is passed to the parameter estimator 
(gradient optimization algorithm). Once covergence is achieved, a 

"* The Kalman filter is basically used as a "whitening" filter in this 
application, i.e., correlated measurements are input and uncorrected 
innovations are output. 
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whiteness test is applied to the final innovations sequence as an 
independent verification of the Identified model's validity. 
Final results are in graphical and numerical form on output disk 
files. 

2.4 Program Structure 

The relationships of the major MXLKID subroutines are shown in 
Figure 2-2. We see that MAIN is the main drive for the program in 
which I/O assignments are made, parameters are Initialized, and 
input files are read before control is passed to MINI, the 
subroutine controlling the numerical optimization process. MINI 
directs all the calculations necessary to step the parameter 
estimates toward a maximum likelihood calculation. An important 
calculation 1s the negative log-likelihood function (NLLF) 
evaluation, since the NLLF is the cost function which needs to be 
minimized. The NL'.F 1s calculated in subroutine CFUNC using the 
formula give In equation (3). 

Calculation of the NLLF requires that measurement data be 
processed through a Kalman filter (KF). The KF code is contained 
1n subroutine FILTER, which is a block of code taken from the 
generalized extended Kalman filter program, DVNEST.™ Each 
NLLF calculation requires a separate KF run over the data , so 
CFUNC, and hence FILTER, 1s called many times during the course of 
a search for a maximum likelihood solution. 

The structure of the KF code is explained in the DVNEST manual, 
however, we show seven major modules in the organization chart 
under FILTER because their operation determines the behavior of 

* The whiteness test 1s discussed 1n detail 1n Appendix B. 
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the dynamic system model. Six of the subroutines, FSYSTM, HMEAS, 
FJACOB, HJACOB, FR, and FQ must be modified by the user to reflect 
the operation of the dynamic system of interest. These 
modifications are explained, with examples, in Chapter 3. 
Essentially, SEAR is a numerical integrator (differential equation 
solver), FSYSTM provides the equations for system dynamics and 
HMEAS gives the equations describing the measurement process. 

FJACOB and HJACOB are subroutines for analytic evaluation of 
system and measurement Jacobian matrices, respectively. (Oetails 
for programming the Jacobian evaluators are given in Chapter 3.) 
FQ and FR determine the statistics of system driving and 
measurements noises, respectively. 

This concludes our brief overview of the HXLKID program. He now 
proceed to Chapter 3, where details in program implementation are 
given. Should the user find a need for a more in depth discussion 
of the maximum likelihood algorithm, Appendix A gives the 
derivations of the formulas used in MXLKID. 
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PROGRAM PREPARATION AND EXECUTION 

In this chapter we show the HXLKID setup for a typical parameter 
Identification problem. He discuss the fundamental code requirements, 
the user-definable subroutines and program execution. We also discuss a 
sample problem which 1s used throughout to show the user how to prepare 
and execute the HXLKID algorithm. 

3.1 Program Requirements 

The MXLKID program input/output requirements are shown in Figure 
3-1. Two input files must be prepared by the user: a measurement 
file containing system measurement data, and a program control 
file, which contains all the various problem defining parameters, 
option selections, and initial conditions. Program output 1s sent 
to three places, the teletype terminal (optional), an output file, 
and a plot file. The teletype prints out parameter estimates as 
the HXLKID algorithm progresses iteratively to an optimal 
solution. The output file is filled with additional information, 
mostly the results from intermediate calculations. The plot file 
receives various data plots which can be useful later for problem 
diagnosis. 

To prepare and run HXLKID for a particular problem, the following 
steps must be taken: 

1. Prepare the INPUT file 

2. Prepare the MEASUREMENT file 
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Figure3-1. WULK lnput/Outp><t Requirements 
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3. Prepare the problem dependent SUBROUTINES: 

FSYSTM 
HMEAS 
FJACOB 
HJACOB 
FR 

FQ 

4. Execute MXLKID 

5. Obtain OUTPUTS 
The remainder of this chapter discuss the above steps in detail to 
obtain a MXLKID solution for a given problem. We first define the 
sample problem to be used in Section 3,2 and then follow the steps 
for problem solution. INPUT file requirements are discussed In 
Section 3.3 which Includes the necessary MEASUREMENT file data. 
Section 3.4 discusses the preparation of the user-defined 
SUBROUTINES and then program execution 1s discussed in 
Section 3.5. The program OUTPUTS for the sample problem are 
presented in Section 3.6 

The Sample Problem 

A sample maximum likelihood identification problem is outlined in 
Table 3-1. This example is from the report by J. F. Best.^3-1 

The system Is a two-pole resonator whose frequency and damping 
ratio are unknown. The waveform shown in Figure 3-2 is the 
driving function, which, for this problem, we assume is completely 
known. The measurement data available 1s the white noise 
corrupted signal shown in Figure 3-3. 
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TABLE 3.1 

SAMPLE PROBLEM DEFINITION 

System: (equation (1)) 

x (t) - F ° 2

 1 1 x (t) + r ° l u (t) +w( t ) 

K - 2 v 2 J L5e3j 
Measurement: (equation (2)) 

V [«4 °] * (tj) + v j ; J = 1. .... KT 

where w is white Gaussian driving noise: 

cov(w) 
el ° -:Q 

u(t) is a known Input (see Figure 3-2) 
and v is white Gaussian measurement noise: 

cov(v) = 0g =:R 

True Parameter Set: 

» = [0.6, 3.14, 4.0, 2.0, 0.0, 0.l] T 

Initial Parameter Guesses: 
flj = 0.1, e 2 = 9.0 

(All other parameters are at their true values and assumed known for this 
example.) 
Problem: Find the maximum likelihood estimate of the parameters, 0\ and 

02, given the set of measurement data {zjt j - 1, .... Ky| 
(see Figure 3-3). 
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The data shown in Figure 3-3 was actually generated by a separate 
simulator program, which is designed to model the two pole 
resonator with the parameters set to their true vr-iues. The 
simulator adds Gaussian random noise to the simulated 
measurements. 

We start the identification process with Initial guesses for the 
unknown parameters (frequency and damping) of the system. (In 
this example the guesses are quite far from the true values.) In 
the next few sections we explain how to set up the MXLKID program 
for this problem, and how to interpret tha results. The reader 
shall see that, for this example, MXLKID converges to the true 
parameter values very quickly. 

3.3 Program Inputs 

Two data sets must be prepared by the user for Input to MXLKID: a 
measurement data file and an input file. 

3.3.1 MEASUREMENT File 

The MEASUREMENT file contains the system measurement data 
and the time values at each measurement pcint. Table 3-2 
shows an example. The first data point is taken at time 
0, and the measurement value is -2.965E-01. (Since the 
time value 1s read in at each measurement point, there is 
no need for the measurement points to be equally spaced in 
time.) The format for the measurement file is 
user-definable; it is read from the input file. For the 
example shown, the format is 2E12.3. 
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Tebte 3-2. Meuoremem File (First Ten Entries) 

1 e. -2.96BE-01 
2 ff.OOeE-02 -1.974E-ei 
3 i.eeeE-oi -8.679E-62 
4 l.seeE-ei 8.146E-02 
s 2.eoeE-ei 7.0S6E-02 
« 2.SG0E-»I 1.716E-A1 
7 a.oo0E-»i 2.522E-01 
0 a.GOOE-tl 3.O09E-01 
9 4.»HE-*I 5.244E-G1 

ie 4.B6flE-ei 7.735E-«1 

Table 3-3. Input File 

1 M > N ) M 
£ 50, ,05? K T J » | _ T O 
3 O.i 0. • E 
4 0 . . R 
5 5. OE-SS - 3 . 4 E - 7 » - 3 . 4 e - 7 » * > . O E - 6 , P I 
6 <£elS.3> MEftS FMT 
7 O . J O . J xO 
3 6>5» l .e -6 i l"<*X I T R J MftJCTR Y • E l M I N 
9 l . « . 0 1 J 1 . E - 7 J 0 . J OPTN <MMF ! EETH •> EM I N> 

10 0 . 1 J 9 . 0 * 4 . O J 8 . O J O . J 0 . 1 J TMETRO 
11 S . 1 J £ J K T H J I f t 
IS 1 . 1 . NPfMF 
13 0 . j 1 4 . j O . j C R I T 

http://Oj8.OjO.j0.1j
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3.3.2 IMPUT File 

The INPUT file contains Information needed to help define 
vhe problem, assign initial conditions, select program 
options, etc. Table 3-3 shows an example of an Input file. 
Elements of the input file are described in detail below. 

N - Number of states in the system dynamic modal, i.e., 
the number of first order differential equations 
which define the system dynamics. 

M - The number of measurements taken at each discrete 
point 1n time. Dimension of the measurement vector, 
Z. 

KT - Total number of discrete time points at which 
r,3asurement data is available. 

DLTO - The initial time gap between measurements. 

Q - Diagonal elements of the driving noise covariance 
matrix. 

R - Diagonal elements of the measurement noise covariance 
matrix. Note; Q and R are initialized to zero for 
the example problem because they are parameterized by 
THETA (5) and THETA (6) during program execution. 

PI - Initial state error covariance matrix. The elements 
are listed fcy columns: PI (1,1), PI (2,1)...PI (N.l), 
PI (1,2)...etc. 

MEAS FHT - Measurement file format. 
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XO - Estimate of the initial state of the dynamic system. 

MAXITR - This is the maximum number of steps that the 
maximum likelihood algorithm will take in 
parameter space. MAXITR should be larger than 
the expected number of steps before convergence, 
i.e., it prevents the program from looping 
forever. The estimated maximum number of 
negative log likelihood function (NLLF) 
evaluations is MAXITR*KTH, where KTH is the 
number of parameters to be identified. 

MAXTRY - The maximum number of line search attempts in a 
given search direction. One NLLF evaluation is 
required for each line search try. 

EVHIN - Cutoff factor for discarding small eigenvalues 
during Hessian inversion. This causes the 
minimization algorithm to ignore step directions 
in which little improvement of the NLLF is 
likely. Eigenvalues less than EVMIN*{maximum 
eigenvalue) are ignored. 1E-6 is a good vaTue. 
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OPTN - Option array. 
0PTN(1) - HHF - Minimization method flag. MMF=1: 
Gauss Newton method. HMF=2: Harquardt Method. 
0PTN(2) - BETH - Initial Marquardt Parameter (used 
only if MMF=2). . 
0PTN(3) - BMIN - Minimum allowable value for the 
Marquardt parameter (used only if MMF=2), 

THETAO - Initial parameter list. 

KTH - Number of parameters to be identified. 

IA - Index Array. This array specifies the locations in 
THETAO which contain a parameter to be varied. All 
the other parameters in THETAO remain constant. IA 
contains KTH elements. 

NP - Iteractive Mode. NP=0 implies no interaction is 
desired, NP=-1 requests interaction only upon 
algorithm convergence or when MAXITR or MAXTRY is 
exceeded. NP > 0 calls for, in addition to the 
cases above, interaction once every NP'th interation 
(beginning with the first). 

MP - Innovations plot selector. A plot of the 
innovations (data residuals is made eyery MP 
iterations (beginning with the first). MP=0 turns 
off the innovations plotter except during the first 
and last iteration. 
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CRIT - Convergence Criteria. Convergence 1s established 
when: 

1) The Euclidian norm (sum of squared elements) 
of the gradient vector is less than CRIT{1), 
or 

2) All the parameters, for two successive 
iterations, agree In at least CRIT(2) 
significant digits, or 

3) The cost function (NLLF) for two successive 
Iterations changes by less than CRIT{3). 

Program Subroutine Preparation 

User definable subroutines were mentioned briefly in section 2.3. 
These subroutines are to be modified by the user such that they 
define the system model of interest. The subroutines are FSYSTM, 
HMEAS, FJACOB, HJACOB, FR, and FQ. They contain the dynamic 
system model, measurement model, system Jacobian, measurement 
Jacobian, measurement noise model, and driving noise model, 
respectively. 

The subroutines are set up by the user in exactly the same manner 
as explained in the DYNEST manual (GO pp. 20, 25), with the 
exception that the models may now be specified in terms of the 
unknown parameters which are to be identified by MXLKID. The 
parameters are passed to the user subroutines in the array THETA, 
which contains the parameters in exactly the same order as they 
were specified in the input file. MXLKID automatically handles 
the modification of THETA as the program steps toward an optimal 
solution. 



-23-

3.4.1 FSYSTH 

FSVSTM is a subroutine containing the differential 
equations describing the system: 

x - f(x, 8, u) (3.4-1) 

where x is a vector of n states (n is the order of the 
system), £ is the set of unknown parameters, and u_ is an 
input disturbance vector, either known, or given in terms 
of unknown parameters. 

The arrays x,, £.* and u_ are passed to FSYSTM. The user 
must insert the appropriate coding for f(.) as shown in 
the example in Figure 3-4. 

3.4.2 HMEAS 

HMEAS contains the ideal, no noise, measurement equation*. 

z = h(x, 0) (3.4-2) 

Figure 3.S shows sample coding. 

3.4.3 FJACOB 

The Kalman filter code requires the following Oacobian 
matrix*: 

F = 4 f & * & (3,4"3) 

Refer to Table A.l in Appendix A for a full set of equations for the Kalman filter algorithm. 
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PHHCTHNI FSmiHflQIfTTtXtXBOr} 
G 
C 1HI8 IMMTIME IS USED BIT THE CEIUl PACKAGE, AMD IT CONFUTES TOE 
G SYSTEM FlfflCTIOR AMD THE ER1WI GWAMAIKE PBOPACATlflH ANUT. 
c OMrmoL i s BIBECIED TBROUCH THE O O W N I B U C K TOIHECT. 
c T H I S ia A urcEssAwr notrrtitK I B A T HAS PMBLEK neraotERT C O M B S . 
G THIS ROUTINE IS FART OP THE GEAR. limSGRATIOft PACK*;.,'. 

USE LKDCCH 
DIHaiSlOR TT<I>.X<U,J(D0T<1) 
DIHEKSIOK XDUB> 

DO a ii ' i .rm 
6 X D d D ' X d r i 

AKLT'B. 

SK2 COfiTlHUE 
C 
C EVALUATE THE DERIVATIVE OF THE STATE ^ ^ 

c * * 
c * * 
c * » 
c * * 
o * * 
0 * * c * * 
G * * 
G * VOUR CODIHC FOR THE SYSTEM MODEL C0E3 HEBE. AHLT*R2 * 
G * MUST BE ADDED TO THE HODEL. PUT THIS SUM INTO AHHAY « 
G * XDDT Alt SKOWI BELOW. X 
C * * 
G * * 
C * * 
G * SET TBE HODEL rAHAHETEnS. THIS COULD BE DORE III 
C * RCUTIKE INIT ADD THE VARIABLES PASSED TO THIS ROUTINE 
G • TiUMWCH COHSC!!. 
C * 
G * 
C * 

1F(TT.LT.CB< 11 >DSIT/CD< 11 
17tfTT.ISE.C51tm.AII!>. ITT.LT.CBI2mD-l.» 
IFt4TT.KB.CDt3)) .AR9. tTT.LT.CBO)) >U»I.» 

S -2.6*<Vr-CM2>><'<CBt3}-CB<2)) 
IFtTT.CE.CD<3))U--l.» 
PUtK)»U 
XDOTtD'XDta) 
XDOTtS)—<TliErAt2)*«2)*KDtl > 

a -2sTuei-A<i>*raETAt2>txDi2) 
a +BsTUETA<3>«0 

C * 
c * 
c * 
c * 
G * 
G 
G 
€ 
G 

HL-TVKK 

Figure 3-4. Function FSYSTM 

http://17tfTT.ISE.C51tm.AII
http://IFt4TT.KB.CDt3
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FIMCTIOW IiriSASOffl.TT.X.mn 
c 
C TO 13 ROUTIKG OOi'l'UTRS T«R HEASUJIEIIECT MOREL AS A FUSCTIOH OF TOE 
«: S T A T E vecrrcR x AMD T U B T I H K T T 
c n i l 3 i s A nsBBT/jiatr KODTIMK w n e i i is- viwtivum DEPEHDKHT, 

USE L'.»COII 

DUlEIKIOn 1]II (I ) .X(1) ,T1' (1) 

c S E T n i E iiBABuarafttrr warn. 

C * S 
c * * c * * 
C * st 
c * s 
C * » c * * 
C * S-. 
C * YOUZl COD1HG FOR THE KEASURBIEKT HODKI. GOES HERE. * 
C * USE X roll THE STATE, TT FOR 11113 TIME, AM) PUT TOE * 
C * MOJ5TCL 1HTO AlfflAY H AS f'llOWN DKMIW. a c m « 
C * a 
C I * A 

U<D=TnETA(4)*X<1> 
C * * 
C !S ;; 
C » « 
ff * :.! 

C * (: 
C * ft 
C # » 

lurrtniH 

Figure 3-5. Subroutine HMEAS 
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Although this derivative could be evaluated numerically 
using multiple calls to FSYSTM, (see the DYNEST manual if 
numerical Jacob?ans are desired) the user Is given the 
opportunity to provide an analytic evaluation of the 
system Jacobian in subroutine FJACOB. The example is 
shown in Figure 3-6. 

3.4.4 HJACOB 

A similar Jacobian is needed for the measurement model: 

H = 4 hGW> (3-4"4) 

and sample coding is shown in Figure 3-7. 

3.4.5 H£ 

FQ sets up the covariance matrix for the input driving 
noise: 

Q = E { W W T } (3.4-5) 
Figure 3-8 shows the coding for the example problem. In 
the example problem, we modeled a system that had no 
driving noise, so we set Q equal to zero and held it there 
for the entire HXLKID run (Q = f\ = 0). 

3.4.6 FR 

R is the covariance of the measurement noise: 

R = E { V V T } (3.4-6) 

The sample coding is shown 1n Figure 3-9. 
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BVBnOUTIBE FJACOB(im.TT) 
c 
c m i s itouTtns COMPUTES THE JACOBIAH OF THE SYSTEM HODEL C THIS IS A NECESSARY ROuTIITE, WHCH IS PROBLEM DEFENDERT. EXTERNAL FSYSTK LOGICAL HKAZ 

USE LKDCOIl 
DIMBR3l0n TTtl) WIHENSlOJf XD<flS> 

C EVALUATE THE JACOB1AK ANALYTICALLY 
C * * C * » c * * c * * c * * c * * c * * c * * 
C * YOUR COQIITC FOR THE SYSTEM JACOBIAN GOES HERE. * C * PUT THE JACOBIAK IHTO AIUIAY FJ AS SHOWN BELOW. * 
c * * 
c * * 
C * SET THE IWBEL FARAHETEIIS. T]|1S COULD BE DOUE IK * 
C * ROUTINE IlfIT AHtt THE VARIABLE PASSED TO THIS ROUTINE * 
c * THROUGH coaaoH. * 
c * * 
c * * 
c * * 

l ' J ( l , l ) = 0 . 
F J < 1 , 2 > » 1 . 0 
F J ( 2 , 1 >s-(THETA(2)$*3> 
KJ(2.2)=-H*THETA(I >«TIIEXA<2> 

c * 3 
C * a 
C * 9 
c »• « 
0 * * c * * 
c * * c * * 

CO TO 4 
C 
C EVALUATE THE JACOBIAN NUMERICALLY 

3 COHTIKUE 
NEflZ=.FALSE. 
CALL JACOI3U'3YSTU.raf.JUf,TT,XD,HEAZ> 

4 COHTIKUE 
HKTOHff 
EKD 

Figure 3-6, Subroutine FJACOB 
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SUHUOUTIHE UJACOn(1T,X,HJAC) C G 'MIS HOUTIWE COMPUTES THE JACOBIAH OF THE MEASUREMENT MODEL C THIS JACOMAH WILL 13E AH 1 HY H MATRIX G 11IIS 10 A NECESSARY ItOUTUU: MfICK IS PROBLEM DEPENDENT. 
KOTSitNAL 1I1IKAS LOGICAL HEAZ 
USE LKDOOH 
DIMENSION HJAGfHffll, 1) ,K< 1) ,TT< 1) 
IFCKFJAC Ea.l) CO TO 1 

C SET THE MEASUREMENT JACOB J.'.3 ANALYTICALLY 
C * * C * * C * :s C * * C * s C * * C * 8 C *R St C * YOUR CODING TOR THE MEASUREHIJWT JACGBIAN GOES HERE. * C * USE X FOR THE STATE, IT FOR THE TIME, AND PUT THE * 
c * JACQUIAH itrro ARRAY UJAG AS SHOWN BELOW. * 
C * x 
c * * 

IIJACtl.l)=TiIETA<4> 
1IJACC1,2>=0. 

c •* * C x * c x * c * s c * x c * * c * * c * * 

RETOBII C C CALCULATE THE MEASUREMENT JACOB 1 AW NUMERICALLY 
i CONTINUE 
KEAZ=.TRUE. CALL JAC0B<HHEAS,M,1<.TT,X.HEAZ) RETURN END C C 

Figure 3-7, Subrouting HJACOB 
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SOBROUTIBK Ftt«Aa> 

C 
C 'J1IIS iUiU'i'lflE COMPUTED TJIE CORRELATION ARRAY OF THE SVSTEH ROISE FUBCTIOfl 
C THIS Iti A HiXESSAUY ROUTINE MIICH COULD HE PIKlBLKM bEPKMUEUT. 
G 

USE LKDCC.l 

DIHKHSIOH AQ(N721l,l> 

DO I 1*1,K 
HO 2 J<=I,lf 
A<M1,J>=0. 

2 COKTIHlfE A&<l.l)=a<I,I) i CONTINUE e< i. i>=TiitTA(s)*niErA(S> 
RETURN END 

Frgura 3-B. Subroutine FQ 

SUDROUTIrlE ni(AR) 
C 
C THIS ROUT I HE CONFUTES TBE CORRF.LATIOW OF THE KEASUR&HENT EOTSJ 
C AR IS AH r-Ca-I ARKAY 
C T«I3 IS A JIECESSA11Y ROUT!BE MIICH COULD BE PROCLIM »WKr n:r.«T. 
C 

Vi'K l."lrCW1 

D1MEKOIOW ARfNHRd) 

JJO 1 I»1,H 
BO a J=I ,h 
A R U . J ) * 0 . 

2 CUiTIHUE 
A t t < i . i ) e n R ( i , i > 

I CONTINUE ^ 
Att< 1,1 >«TnETAt6)*lTHETilC«) 
GALI f?C!UI(-l .BMR.AR.MI 

• ' L hdUI(- t , fmR.AR,H) 
ESD" 

Figure 3-9. Subroutine FR 
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3.5 Prog-ran Execution 

Once the user has prepared the Input files as explained in section 
3.3.2, and set up the system desciptor subroutines (FSYSTM> WEAS, 
FJACOB, HJACOB, FR AND FQ) as explained in section 3.4, the MXLKIO 
program is ready to be compiled and run. The executable file is 
named XMXLKID. To start up the maximum likelihood identifier, the 
user types XM'<LKID/t v. The program prompts for the name of the 
measurement, input, and output files. For the measurement and 
Input files, give the nanes of the input files that were prepared 
earlier. The user can choose any name for the output file (up to 
ten alphanumeric characters), and output data from the program 
(described in the next section; will be stored in a disk file with 
that name. 

The program now prompts for an BO-character run title. This 
title, along with time and date information, appears on the first 
line of the output file aid at the bottom of each graph in the 
plot file. The graphs ard printout can thereby be easily 
associated with a particular MXLKID run. Once the user ha* typed 
in a desired title, the program responds with the time and date. 

3.6 Program Outputs 

MXLKID sends program output to these places: the teletype 
terminal, an output file, and a plot file. The name of th£ output 
file is specified by the user when the program prompts for 
measurement, Input, and output files as explained above. The plot 
file is named FX105MLID0. 

3.6.1 TTY Printout 

The amount of priitout at the teletype depends on the 
choice of 1nterac:ive mode (see the description of NP in 
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section 3.3). We provide here a description of what can 
be expected at the teletype if the program is in 
non-interactive mode. Then we provide a quick user's 
guide to the commands available under thi interactive node. 

3.6.1.1 No Interaction 

If no interaction \'s requested (NP=0) printout 
at the teletype looks T lice the example shown in 
Figure 3-10. (This printout is from the sample 
problem described In section 3.2). Note that 
each function evaluation results in a line of 
printout, including those evaluations required 
for numerical calculation of the gradient and 
line searching. When covergence is reached, the 
program types the total execution time in 
seconds and completes with "all done." 

3.6.1.2 Interaction 

When MXLKID is in the interactive mode (NP*0), 
the user exercises a measure of control over 
program operation. If the maximum likelihood 
algorithm coverges, or if the algorithm detects 
a problem in converging*, control is handed over 
to the user. * The program types a prompt {"]") 
and the user at that point can examine the state 
of the algorithm, change certain values if 
desired, then command that the algorithm 
continue iterating for better parameter 

* Maximum number of iterations exceeded or maximum number of line search 
attempts exceeded. These maximum values are provided by the user in the 
input file. See section 3.3. 
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XMXL.KIH 
INPUT »MEA3 •OUTPUT FILES 
.XNLIB OUTSIM SRMPOUT 
TYPE A LRBEL. FOR THIS RUN (.UP TO 80 

MXL.KI33 SAMPLE RUN FDR USER'S MANURL. 
THRNK YOU 16:Q3S34R OS/'13^30 

CHARACTERS) 

[FN 1 2 3 4 5 

F 
21946.3930S465 
21946.89307969 
21946.39936422 
49859.38187218 
443.72356107 

THSTftS 
0.10000000 
0.10000001 
0.10000000 
1.04264032 
0.34970426 

9.00000000 
9.00000000 
9.00000090 

-12.79138543 
3.££?S'5642 

6 7 S 
443.72336119 
443.72332427 
-53.16623147 

0.34970429 
0.34970426 
0.53794883 

3.22735642 
3.S273&674 
3.19922502 

9 10 11 
-53.16626020 
-53.16606044 
-86.96043785 

27 061:38:00 

0.53794888 
0.53794383 
0.60954065 

3.19922502 
3.19922534 
3.14366430 

ftUL DONE 

Figure 3-10. Sample TTY Printout-No Interaction 
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estimates, or halt execution. An additional 
interactive option is available to have the 
program, prompt the user at the end of every 
Iteration (NP=1) or every np iterations (NP > 0) 
if desired. A list of user commands is provided 
below: 

HELP - Type out a brief (one line) explanation 
of each available command. 

TYPE - Type: 1) the value of the negatiave log 
likelihood function (NLLF) at the 
current parameter values, 2) the current 
parameter values, and 3) the gradient 
(derivative of the NLLF with respect to 
the parameters). 

BOUNDS - Type the parameter estimates and the 
95* confidence bounds for these 
estimates.* 

CONVERGE - Type rut the results of the most 
recent covergence test along with 
the user specified convergence 
criteria. 

MODIFY - Modify the convergence criteria. The 
program asks the user to specify which 
criterion to change (1, 2 or 3 
corresponding to gradient norm, 
significant parameter digits, or 

* Note: the confidence bound calculations are not accurate unless the 
parameter estimates are close to their true values, i.e., the algorithm is 
at or near convergence. 
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relative cost function change, 
respectively) and then asks for a new 
value. 

PARAMETER - Modify the values of the 
parameters. The program asks the 
user to specify the parameter and 
provide a new value in a manner 
similar to the MODIFY command. 

GO - Continue on from this point to iteratively 
improve parameter estimates. (Algorithm 
continues whether or not convergence or 
divergence had been previously detected.) 

END - Stop any further parameter improvement 
attempts. Complete the plots, close the 
output files, and terminate the program. 

Figure 3-11 shows a sample terminal session with 
full (NP=1) interaction. Note that typing the 
first letter of a command is sufficient for the 
interpreter to recognize the command. 

Output File 

The MXLKID program generates an output file in order to 
provide the user with a progress history of the attempts 
to iteratively improve the parameter estimates. The 
progress history can prove useful if, for example, the 
algorithm diverges. The output file can then help the 
user to diagnose the problem. 
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iNPUTfMEASf OUTPUT FILES 
• INI.IS OUTSIM SAMPOUT 
TYPE A LAFEL FDR THIS RUN <UP TO 30 CHARACTERS) 

MXLKID SAMPLE RUN FDP USER'S MANUAL 
THANK YOU 16S08S34R 05 /13 'SO 
I FN F THETAS 

1 21946.89303465 0.10000000 9.00000000 
2 21946.39307969 0.10000001 9.00000000 
3 21946.89936422 0.10000000 9.00000090 
4 49859.331S7213 1.04264032 -12.791SS543 
5 443.72356107 0.34970426 3.£2735642 

ITERATION 1 COMPLETED 
3 

T 
THIS ITERATION: F= 4.4372E+02TH= 3.4970E-01 3.2274E+00 
LAST ITERATION: F0= 2.1947E+04TH0= J.OOOOE-01 9.0Q00E+Q0 
GRADIENTS -4.9614E+02 1.4217E+03 
3 

B 
PARAMETER ESTIMATES AND 95K CONFIDENCE BOUNDS 

1. 3.4970E-01 +/- 6.S853E-02 
2. 3.2274E+00 +/- 2.4201E-01 

D 
c 
CONVERGENCE PARAMETER CALCULATIONS ARE AS FOLLOWS 
NORM OF THE GRADIENT= £ . £ 6 7 5 E + 0 6 
SIGNIFISANT DISIT CHANGE IN THE PARAMETERS™ -7.6137s~01 DISITS 
CHANSE IN THE COST FUNCTION" -2.1503E+04 
USER SPECIFIED CRITERIA FDR CONVERGENCE ARE 
5NDPH! 0. SI6DXO* 1.4000E+01 DFl 0. 
3 
* 6 443.72336119 0.34970429 3.22735642 
7 443.72332427 0.34970426 3.22735674 
S -53.16623147 0.537948S3 3.19922502 

ITERATION 2 COMPLETED 
3 
' 9 -53.16626020 0.53794333 3.19922502 
10 -53.16606044 0.53794383 3.19922534 
II -36.96043735 0.60954065 3.14366430 
ITERATION 3 COMPLETED 
3 

27 06U33:00 

ALL DUNE 

Figure 3-11. Sample Session with Full(NP=1) Interaction 
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Figure 3-12 shows a partial listing of the output file for 
our sample problem. The header portion of the output file 
merely repeats information which was supplied by inputs to 
the program. After the first line of asterisks (line 46), 
an interation by Iteration account of the progress history 
begins. Symbols used are explained in Tables 3-4 and 3-5. 

Lines 46 through 81 are typical prinout for one iteration 
of the optimization algorithm. Included are the computed 
gradient vector (fi), Hessian matrix (HESS), and step 
(parameter improvement] vector (STEP). 

Lines 82-39 are prinout for a line search attempt. Notice 
that the computed STEP resulted 1n an increase, rather 
than decrease, in the NLLF (line 79). At that po, it the 
algorithm automatically shortened the step length (p in 
equation 1-4) and tried again. This time the NLLF 
decreased, so the algorithm continued normally. The 
process of modifying p until the NLLF 1s reduced is called 
a line search. Several line search attempts may be 
necessary during a particular iteration, however, in the 
example problem, one attempt was sufficient. 

If the iteraction feature of the MXLKID code is utlized, 
any prinout at the teletype is also written (echoed) on 
the output file. Lines 90 through 102 show the 
interaction which occurred during iteration 1 of the 
sample problem. 

After several iterations the algorithm will (hopefully) 
converge. The final printout inlcudes the converged, or 
at least the final, set of paramter estimates and their 
95* confidence intervals, as determined by the algorithm. 
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• 
2 MXLKID SAMPLE RDH FOR USER'S MANUAL 
3 13:23.59U «B/I3/B« 
4 
0 EXTENDED KALHAH FILTER HUH 
6 7 THE NUMBER OF STATES IS; 2 & THE NUMBER OF MEASUREMENTS IS: 1 4 SAMPLE COUHT= SB 

1« THE IITITIAL IHTBCiUTIOH STEP SIZE ISl 6 . W N M E 4 2 
II THE IHITIAL PROCESS ROISE COVARIAHCE MATRIX IS: 
•2 • . 6 . 13 0. 0. 14 THE INITIAL MEASUREMENT HOISE COVARIAHCE MATRIX IS 15 0. 16 THE IHITIAL ERROR COVAMAIIGE MATRIX IBs 17 l.«N£-e« 6, is ». i.eeeE-86 19 26 IHITIAL CONDITION FILE - IHLID 21 MEASUREMENT FILE - GUTSIM 22 OUTPUT FILE - SAMPOUT 

?.a 24 THE IHITIAL STATE VECTOR IS: 23 e. e, 26 MINIMIZATION ROUTINE PARAMETERS ARE: 27 MAXITR* 6 2B MAXTRY* 5 
29 EVHIH= I .BB0OE-06 
30 OPTH* l.BftfteE+OB l.aft»BE-02 l.BBBBE-a? 0. 
31 IHITIAL TUETAS ARE 
33 e. i.eoeeeoE-ei 
34 2 OF THE THETAS ARE TO BE VARIED, THEY ARE: 
30 I 2 
36 TTY INTERACTION OCCURS EVERY 1 ITERATIONS 
37 MINIMIZATION CONVERGENCE CRITERIA ARE AS FOLLOWS 
38 1. NORM OF THE GRADIENT: 0. 
39 2, SIGNIFICANT DJ'IT CHANGE 1H THE PARAMETERS: |,MHE*«| 
40 3. CHANCE IS THE COST FUNCTION: 0. 
41 THE P. *" OPTION (MP) IS 1 
42 INNOVATIONS PLOTTED FVERY 1 ITERATIONS 
43 F* 2.1946B1BIE+B4 
44 TH 
49 0.1OBM8D0 9.eeaeeaaa 
47 ITR# 1 
48 F= 2.19468981E+A4 
49 TH se e.ieoooeei 9.BBBBBBBB 
SI F= 2.19468994E+04 
02 TH 
S3 e.ieeeeeee 9.eaeaao9a 
54 
53 C 
36 1 -4.96l39E-i«2 1.4217SE+03 
S7 
SB HES 
09 1 8.126BBE+B2 1.23860E+81 
60 2 1.23B6BE+B1 6.»777aE+fli 
61 62 HORM HESS 63 1 l.eeOOOE+flO S.39736E-e2 
64 2 5.30736E-02 i.BeeaaE+ee 
63 
66 EVAL 67 I 9.464Z6E-81 1.853B7E+9B 60 
69 EVEC 76 1 7.07je7E-61 7.e7197E-ei 7i 2 -7.e7i»7E-*t 7.ene7E-ei 
72 

Figure 3-12. Example Output File , 
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73 
74 
75 
76 
77 
78 
79 *» 
81 
82 
83 
B4 
B!i 
86 
87 
68 
8° 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 iei 162 
103 
194 

BES**-1 1 2 I.23404E-03-2.323B8E-04 -2.323S9E-04 1.8246BE-02 
STEP 9.42646E-01 -2.17919E+01 

4.98593BI9E+64 
-12.79188843 

RH0« l,««e»*Z+«« 

.22735642 
RH0= 2.64899E-01 

F TH 
1.64264038 STEP THY* 1 

DF* 2,79t24838Et04 DFDHHO* -3.14502074E-fO4 F= 4.43723561E+02 TH 
3.34978426 3 STEP TRY* 2 

DF= -2.15631745E+04 ITERATION 1 COHPLETED THIS ITERATION: F= 4.4372E+82TH» 3.4970E-01 3.2274E+0* LAST ITERATION! F0= 2.1947E+04TH0* 1.0000E-0I 9.0O0OE+00 GRADIENT: -4.96I4E+02 1.4217E+63 PARAMETER ESTIMATES AMD 95* CONFIDENCE BOUNDS 
1. 3.4970E-B1 +•- 6.8B53E-e2 
2. 3.2274E+O0 +/- 2.4201E-01 

CONVERGENCE PARAMETER CALCULATIONS ARE AS FOLLOWS 
NORM OF THE CRADIENT= 2.2675E+06 
SIGNIFICANT DICJT CHANGE IN THE PARAMETERS: -7.6137E-01 DIGITS 
CHANGE IN THE COST FUNCTION= -2.15O3E+04 
USER SPECIFIED CRITERIA FOR CONVERGENCE ARE 
CNORM: O. SICDIG: 1.40«0E+ei DF: 0 
****z*************±*******************x*****************X***S***' 

ITR» 2 

181 THETA" 6.O954E-01 3.I437E+00 
182 STANDARD DEVIATION- 9.6789E-03 7.9765E-03 
183 ****************************************** 
184 * PARAMETER 9555 ERROR BOUND * 
185 * 1. 6.09B4E-61 +/- 1.8971E~82 * 
186 * 2 . 3.14Q7E+66 + / - 1.S634E-02 * 
187 ****************************************** 

Figure 3-12. Example Output File (Continued) 
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Table 3-4 - Information in the Output File Corresponding to a Single Iteration 
of the Parameter Identifier. 

Variable Name Data Comment 

F Cost Function 
(NLLF) 

TH Parameter Vsiues 

G Gradient 

HES Hessian 

EVAL Eigenvalues of 
the Hessian 

EVEC Eigenvectors of 
the Hessian 

HES** -1 Modified Inverse The inverted hessian is modified to 
of the Hessian insure positive definiteness. The 

method of modification depends on the 
type of minimization algorithm used. 
See Appendix A, section 4 for details. 

STFP The computed 
parameter im­
provement step. 



• f * ' 

-40-

Table 3-5 - Information in the Output File Corresponding to a Line Search 
Attempt. 

Variable Name Data 

DF Difference between the new and previous value of the NLLF. 

DF0RH0 Computed derivative of NLLF with respect to step size. 

RHO Step size. 
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The confidence intervals provide the user with accuracy 
limits for the parameter estimates, i.e., one can say with 
95% confidence that the parameter value 1s in the region 
of the estimate, plus or minus its confidence interval. 

Plot File 

The plot file contains a sequence of innovations plots, a 
whiteness test for the final set of innovations, a plot of 
the cost function versus iteration number, and a plot of 
the search path through parameter space. These plots are 
put into an FR8D file named FX1O5MLID0. 

Innovations are defined as data residuals, i.e., the 
difference between measured and estimated data. Figure 
3-13 shows the sequence of innovations plots from the 
MXLKIQ run for our sample problem. At the user's option 
(MP in the input file), an innovates plot is made at the 
end of each Iteration of the identifier algorithm. As the 
algorithm progresses, the system model tends to improve 
due to better parameter estimates and as a result, the 
innovations statistical characteristics change. The mean 
tends toward zero and the innovations at different time 
points become uncorrected; i.e., the process approaches 
white noise. As the model becomes a more exact 
representation of the real system that produced the data, 
the innovations sequence becomes dominated by the random 
and uncorrelated measurement noise, and the correlating 
effects due to modeling error become negligible. 

The innovations plot sequence can be examined by the user 
to determine if the identifier is operating properly. For 
example, if the identifier seems to converge to a set of 
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parameter estimates, yet the final innovations are not 
"white" (uncorrected), the convergence may be to a local 
minimum or saddle point. 

MXLKIQ perforins a statistical test on the final set of 
innovations to determine if the process is white. Figure 
3-14 shows the results of the whiteness test for our 
sample problem. Basically, Figure 3-13 is a plot of the 
innovations sample autocorrelation function. We can 
conclude that our example process is white because none of 
the autocorrelations exceed the bounds indicated by the 
dashed lines ("percent out of bounds=0"). A full 
explanation of the whiteness test in included in Appendix 
B of this report. 

The plot of NLLF as a function of iteration (Figure 3-15) 
shows graphically the improvement of the NLLF as the 
algorithm progresses. It should, of course, decrease 
monotonically if the algorithm is converging. 

The parameter-space plot (Figure 3-16) shows the path of 
the identifier as it searches through parameter space for 
a minimum of the NLLF. The starting and ending points are 
indicated. With this plot, minimization algorithm 
problems such as hemstitching may be detected. Presently, 
the path plotter projects the path onto a e+xe-. 
plane, where j=i+l and i ranges from 1 to KTH-1 (KTH is 
the number of paramters). Future versions of MXLKID may 
include an option to select any two of the parameter to 
form a projection plane. 
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SUMMftRY 

In this report we have Introduced the MXLKID parameter identification 
program as a tool for system analysis and identification. Since eacn 
iteration in MXLKI^'s non7inear optimization process requires a Kalman 
filtc. pass over ti. -.et of measurement data, the program might be 
costly in terms of computer time, but as a system identification 
algorithm, it provides accurate parameter estimates and reliable 
confidence intervals in most cases. 

A summary of MSLKID functions and requirements is shown in Table 4-1. 
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Tahle 4-1. Summary of MXLK Program Functions 

•* 

* THIS IS VERSION 1 OF MXLK 
* PROGRAMMED BY) DON GAVEL, INFORMATION PROCESS I NC RESEARCH GROUP 
* X2-8539,L-lGfi 
s DATE: MARCH 3, 198» * 

HXUC - PROGRAM FOR IDENTIFICATION OF SYSTEM PARAMETERS 
USING THE MAXIMUM LIKELIHOOD METHOD 

MXLK IS A METHOD FOR IDENTIFYING PARAKETERS CHARACTERIZING A DYNAMIC SYSTEM MODELED BY EQUATION'; OF THE FORM: 
DX/DT»F(X,THETA.V,T> Z=H<X.THETA,T)+V 

W=H<e,OJ. V=NI6.R). X(«)=N(XHAT<e>,PI<»J) THETA IS A SET OF UNKNOWN PARAMETERS TO BE IDENTIFIED Q,B,XHAT(8),AND PKO) CAN BE FUNCTIONS OF THETA H(M,C> INDICATES NORMAL RANDOM VECTOR VITH MEAN, H AND COVARIANCE, C 
USER INPUTS: THETA(e) - INITIAL PARAMETER ESTIMATES R - COVAR1ANCE OF MEASUREMENT NOISE Q - COVARIANCE OF RANDOM DRIVING NOISE PICO) - COVARIANCE OF INITIAL STATE ERROR X(B) - INITIAL STATE FSYSTM - SYSTEM DYNAMICS SUBROUTINE (CONTAINS F(.)> BMEAS - SYSTEM MEASUREMENT SUBROUTINE (CONTAINS H(.JJ CHOICE OF ALGORITHM FOR MINIMIZING THE NEGATIVE LOG LIKELIHOOD FUNCTION 

A) GAUSS-NEWTON B) LEVENBEHC-MARQUARDT CONVERGENCE CRITERIA A) NORM OF GRADIENT 
B) RELATIVE CHANGE IN PARAMETERS 
C) RELATIVE CHANCE IB COST FUNCTION 

OUTPUTS: 
THETA ESTIMATES THETA ESTIMATE VARIANCES CONVERGENCE CRITERION NET OUTPUT FILE CONTAINING A HISTORY OF: 

THETAS 
COST FUNCTION VALUES GRADIENTS 
HESSIANS 
EIGENVALUES OF HESSIANS STEP DIRECTIONS IN THETA SPACE 
STEP SIZES AND HISTORY OF LINE SEARCH ATTEMPTS KAROVARDT PARAMETERS PLOT FILE CONTAINING: 
INNOVATIONS PLOT FOR EACH KALHAN FILTER BUR PATH OF THE MINIMIZATION ALGORITHM IN THETA SPACE 
COST FUNCTION VALUE VS. ITERATION NUMBER AVAILABILITY: 

HXLK IS AVAILABLE ON THE LLL CDC ?600 COMPUTER (OCTOPUS) IT IS WRITTEH IK LRLTRAH TO BE COMPILED BY THE CHAT COMPILER LOAD-TIME LIBRARIES USED: ORDERLIB, rttSOLIB, STACKLIB, EE SUBROUTINE PACKAGES USED) 
FILTER (KALMAN FILTER, FROM DYNEST4, 

INFORMATION PROCESSING RESEARCH CROUP LIBRARY) GEAR (INTEGRATOR - NUMERICAL MATHEMATICS GROUP LIBRARY) RS (EIGENVALUE PACKAGE - NUMERICAL MATHEMATICS GROUP LIBRARY) 
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APPENDIX A 
MXLKID ALGORITHM DESCRIPTION 

This appendix has been written to supplement the MXLKID users manual with more 
detailed background information on the program operation. Me include all the 
basic formulas used in the maximum likelihood algorithm. The reader is 
assumed familiar with basic probability theory, linear algebra, and dynamic 
systems. A review of these areas is given in the first three chapters of Gelb i5<. 

The maximum likelihood parameter identification algorithm, as applied to 
linear dynamic systems, has been presented in papers by Gupta and Mehra^ 
and KashyapL2J. The MXLKID program is a relatively straightforward 
application of the algorithms presented in these papers, with the exception 
that MXLKID has been extended to cover non-linear, is well as linear, dynamic 
systems models. 

Referring to the block diagram of the MXLKID alorl+'in (Figure A-l) we see that 
the main tasks of the algorithm are: 

1. Use the Kalman filter to compute e and R* (innovations and 

innovations covariance). 

2. Calculate the likelihood function, J{«). 

3. Update parameter estimates based on a gradient optimization algorithm. 

4. Calculate a Hessian matrix and insure that it is positive definite (a 

subtask of the optimization algorithm). 

5. Test the algorithm for convergence. 

6. Apply a whiteness test on the final Innovations. 
The first five of the above tasks correspond to the five sections of this 
appendix. The whiteness test (task 6) is discussed in Appendix 6. 
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Figure A -1 . MXLKID Implementation 
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A.l Kalman Filter 

In this section we present the Kalman filter as a tool for handling noisy data 
generated by a dynamic system. MXLKID uses the Kalman filter to generate an 
uncorrected innovations sequence given the correlated measurement sequence, 
based on knowledge of an underlying dynamic model. Since the filter must be 
given a dynamic model of the system to work with, the optimization algorithm 
(discussed in section A.3) can essentially identify the system by trying out 
different models in the Kalman filter until an objective function called 
likelihood (see section A.2) is maximized. Me start here by discussing 
dynamic system representations and presenting the Kalman filter algorithm. 

A dynamic system can be modeled, mathematically, by ordinary differential 
equations (ODE). Within these ODE may be several parameters we wish to 
identify. Our approach is to first re-represent the ODE by transforming them 
to a set of simultaneous first order ODE. The resulting representation is the 
one most conmonly used in modern systems analysis L5»'»8J, Simultaneous 
first order ODE are represented in vector-matrix notation as follows: 

x * f(x, £, u) (A.l-la) 
I = h(x, e) (A.l-lb) 

y. represents the dependent variable in the original OPE (or variables, y may 
be a vector), IJ is the driving function and a is the set of unknown 
parmeters. Note that in the transformation from n* n order ODE to n 
simultaneous 1st order equations, 9 vector of n Intermediate dependent 
variables, £, is introduced. The vector x is called the state, and equation 
A,l-1 is called the state-space representation. Several state-space 
representations are possible for a given n t n order ODE. w , 

A mathematical representation of a dynamic system allows us to simulate that 
system on a digital computer. Given the Initial state of the system at some 
time in the past, i(t D), plus a history of all the inputs to the system 
since that time: iji(t), tQ < t £ t nl, and assuming we know the true set 
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of parameters; £ = JLtrue* ^ " a ^ 0 " A-l-l could be uniquely solved to 
determine ^(t) for tQ s t s t n. In other words, we should ideally be able 
to simulate the true system outputs which would be measured in a laboratory 
test. 

Of course, in practice, computer-model generated data never matches real data 
exactly. One source of mismatch 1s modeling error, that Is, £ is not known 
exactly or, more seriously, the ordf.»r or non-linear structure of the system 
model is incorrect. Another source of mismatch between simulated and measured 
data is random noise. There is always some uncertainty in 1) the initial 
state, 2) the driving function, and 3) the measurement process. These noises 
are represented as follows: 

*(*„) = £ (t 0) - x(t 0) (A.l-2a) 
£ = IT+w (A.l-2b) 
1 = h(x,l) (A.l-2c) 
£ = £ + V (A.l-2d) 

where initial state error is represented byx[(t0) and estimate by &(t 0); 
the driving function has a known part, II and an unknown part w; and the data 
measured in the laboratory is z_, and is corrupted by measurement noise, v. 

So, typically, the system Identification problem is complicated. We have 
noisy data taken from an unknown system driven by uncertain inputs. 

One tool available for handling noisy data is the Kalman fiTtert5»6J (KF) 
(Figure A-2). The KF is a statistical, model-based state estimator scheme. 
With the KF, knowledge of the system dynamics and statistics of the noise 
sources is used to reconstruct estimates of the true state of the 
system, | $(*»!). tQ < t < tJ, and the true output, |£(t,i), tQ < t < 
t n|. The reader unfamiliar with the KF can quickly skim over the algorithm 
outlined in Table A.l or refer to 6elb(5]. Detailed knowledge of the KF is 
not necessary for running the MXLKIO program. 
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Two outputs from the KF are required for computing the likelihood function 
(equations A.2-1 in the next section), 1) the innovations, e k > and 2) the 
innovations covariance, R£. Let us digress for a moment to discuss the role 
played by the innovations in the model identification process. Refer to the 
block diagram of the Kalman filter shown in Figure A.Z. Note that the 
innovations, e k , are used in a feedback scheme to update state estimates in 
the model. If the filter model is valid, the innovations sequence is a 
statistically "white" and zero mean 

Observed 
data 

Z ( t , ) 
- ~ » 

*k 

innovations State estimates 

+ *|t/k , i 3t « * -GD-

h\\ I—1 h felt \-
Data 
estimate 

A 

-a-
Figure A-2 . Kalman Filter 
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TABLE A.l 

SUMMARY OF CONTINUOUS-DISCRETE EXTENDED KALHAN FILTER 

Prediction: 

k+1 
/ 

*k+l|k ~ xk|k 
/

K+i 
f{x«|lc' V d « 

_ 

Innovation: 

ek+l ' zk+l " h ( xk+l|k) 

Rk+l|k = H £ x k+l |k , f f k+l |k H £ xk+l|k> + Rk+l 

Correction: 

Kk+1 = f f k+l |k H ( xk+l|k) K+Ilk' 

J ' 
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TABLE A.1 (Continued) 

Vl|k+1 = x k+l |k * K k+l e k+l 

"k+lfk+1 = [ ! " •Vl^k+UkJJ'k+llkL1 " Kk+lH ( xk+l|kJ] 

+ K k+l R k+l K k+l 

where 

F(x k,,.):= 3f(x) 
K , K 8X 

and 

H(x k . k ) = a.(h(xn 
Ox 

x=x. k|k 
A 

X=X, k|k 

S k + l | k : s C o v ^ k + l L k > f o r V l l k 1 3 xk+l " xk+l|k 

x o ~ N< xo,o»V> 
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process, that i s , uncorrected from one time point to the next (F ig^e A.3). 
innovations whiteness is useful as an independent s ta t is t ica l test to 
determine i f the maximum likelihood algorithm has converged to a viable set of 
parameter estimates. For this reason, a plot of the innovations for each KF 
fun is stored in an output f i l e during MXLKID execution. After the algorithm 
lias converged, a test of the innovations mean and whiteness is applied to 
assure the va l id i ty of the estimated model parameters. Details of th is test 
#re given in Appendix B. 

ymf>1A9WWfciA.vw, <& nfKt fS vrfibft-h VVUf&b -temnmte. \Tfift. Yrm test* -prwrfffc S-nSYS-iS 
information concerning the statistics of process and measurement noise, and 
fhe dynamics of the system. (Detailed information on providing thi'5 
information to the program is contained in Chapter 3 of this report-) The 
necessary starting ingredients include: R, the covariance of the measurement 

; i J iranm* § 

. tl Ji irV rt\ 
•n v] r VI 
' 

• i • • t . 

TIME 

Figure A - 3 . Example cf a White Innovations Sequence 

file:///Tfift
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ntise, Q, the covariance of the random part ?f the driving function, f|(t), 
tfje covariance of the initial condition error, plus a specification of system 
dynamics in a form similar to equations A.l-la and b. Some or all of the 
above information may be expressed in terms of an unknown set of parameters, d_ 
which are to be identified by MXLKID. An initial "guess" for £ must also be 
specified. 

We now proceed to derive an expression for likelihood which uses the results 
of the Kalman filtering just described. 
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A.2 The Likelihood Function 

Likelihood is a measure of the validity of a dynamic system model. The 
maximum likelihood algorithm is based on the assumption that the parameter 
vector 1s closest to the true set of system parameters when the likelihood 
function (LF) is at its maximum. We define the LF to be a conditional 
probability density'••'•J as follows: 

L(e) = P(Z(N) i) = 1 7 - = - * — 
k=oy5iT|R«'tk,jSi)| 

1/2 . expj-l/2eT(tk,e) /R*(t k >i)\ _ 1e(t k >£}[ (A.2-1) 

nere, Z represents the entire observed data sequence Z(N) = z(t k); 
k = 0, ..., N and 9. represents the set of unknown parameters which we wish to 
identify. 

Me choose a statistical measure of model validity because of the 
underlying statistical nature of the system identification process. 
Measurement error, random driving noise, and an uncertain initial state all 
contribute to randomness in the search for an Ideal system model. 

The equation for likelihood given above is an approximation, valid only 
insofar as we can assume a Gaussian PDF (probability density function) for 
Z(N) conditioned on e_. Among other things this assumes a linear or linearized 
system model. L9I In practice, however, many non-linear models have worked 
quite satisfactorily, the requirement being that the model be not too 
ill-behaved, so that linearized approximations can work to a certain extent. 

Likelihood is computed by running the observed data through a Kalman filter to 
generate the innovations sequence, £.&.,$_), and sequence of innovations 
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coveriances, R'^-.fl); 1=1,... N. Note that, since the LF i: conditioned 
upon fl., we must specify the parameter set before computing tte LF. How can we 
specify such a e., if initially it is unknown? Since the objective is to 
maximize L(P) with respect to a choice of e_, we make an initial guess, and 
then, according to some numerical optimization scheme (we discuss optimization 
schemes in the next section) £ is sequentially improved until the maximum of 
L{6) 1s reached. This sequential alogrithm requires at least one function 
evaluation at each step along the way. 

1(9) can be maximized if we minimize its negative logarithm. Me define a new 
function, t*io negative log-likelihood function (NLLF) as follows: 

J(i) = - *n[L(9)] = -1/2 in (Z„) 
N 

-1/2 / 1=1 eT(t., e) k'(t., 0)'\ Ae(t., e) 

+ in Re(t|, A (A.2-2) 

A minimum of the NLLF is a maximum of the LF because the logarithmic 
transformation is monotonic. 

Having defined a suitable cost function (hereafter, when we mention the "cost 
function", we refer to the NLLF) all that remains to the maximum likelihood 
parameter identification scheme is the minimization of this cost function with 
respect to the unknown set of parameters. In the next section we discuss the 
numerical minimization techniques available in the MXLKID program. 
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A.3 Minimization Techniques 

The main task of the maximum likelihood parameter Identification algorithm is 
to find the parameter set, £, which minimizes the cost function, J(£). There 
exists a multitude of methods for numerically minimizing a function. 
Basically, they all follow an interative procedure resembling the 
following: 

1. Pick a starting e, 

2. Calculate J(0)(using the Kalman filter). 

3. Using an algorithm of your choice, pick some new j>. 

4. Calculate the new J(e). 

5. If the new J(fl.) is less than the old J(£) return to step 3 and 
continue until some convergence criterion is met. 

6. If the new J($) is not less than the old 0(£), use some default 
algorithm to pick a better o_ and return to step 4, or give up. 

The iterative minimization methods can be any of tha many non-linear 
programming techniques developed over the years. "11 nf these, the gradient 
methods seem to offer the best success. In the MXLKID program two gradient 
methods are available: the Gauss-Newton algorithm and the Levenberg-Marquardt 
algorithm. In both these algorithms, the first derivative of the cost 
function (the gradient) is used to determine the direction of search for an 
improved 6} 
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i i + 1

 a it~ fill (A.3-1) 

t*<Lt 

where h is a pxp (where p is the number of parameters) matrix, and p is a 
scalar and t is ths iteration index. (The selection of h and p are determined 
by the particular type of method used, as we shall show.) Note that the 
parameters are modified in a direction opposite the gradient (the direction 
may be modified somewhat by the h matrix), i.e., they are walked down the 
slope toward the minimum of 3 { 9 ) . When the minimum is reached, g is 
(theoretically) a zero vector, and the algorithm has converged to solution 
for e_. 

The gradient, 3, is calculated numerically in the MXLKID algorithm as follows: 

J(eWVj{fl) . i = 1 p ( A . 3 _ 2 ) 
1 A0j 

where &lr^' is ?. p-vector whose only non-zero element is the 1 " element, 
which iSAflv The Kaltnan filter is run p+1 times, once to calculate J(j»), 
2nd then p more times to calculate J(f + A £ ) f ° r i =l to p. As would be 
expected, the gradient calculation is usually the most time consuming task in 
the MXLKID algorithm. 

Let us now present the particular optimization algorithms progranmed in MXLKID 
and discuss their individual characteristics. 
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A.3.1 Gauss-Newton 

The Gauss-Newton method assumes the cost function surface to be, 
'.3 a f irst approximate, a parabolic bowl (Figure A-4). This 
optimization method is designed to teediately send JJ to the 
lowest point within the bowl. 

Cost 

Figure A-4. Example of a Parabolic Approximation to a Cost Function Surface 
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We substitute the following terms into equation A.3-1: 

P = 1 
and 

where 

H" 1 

d2X6) 

(A.3-3) 

H.. 

H, called the "Hessian" of the cost function, contains surface 
curvature information and must be computed at each e_. (Numerical 
Hessian calculation techniques are discussed in Section A-4.) 
Note from Figure A-5 that h modifies the step direction, T, 
slightly away from the negative of the gradient, ^g, so that 
parameters are moved directly toward the minimum point. 

Lines of constant cost 

Figure A-5. Cost Function Contour Plot, sis the step 
direction, g is the gradient. 
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The Gauss-Newton algorithm generally provides fast convergence to 
the minimum of J(0) so long as £ starts out near that minimum. 
Problems arise however, when the cost function suface does not 
have a positive curvature, in which case the parabolic bowl 
approximation mentioned abov? cannot be applied. The Gauss-Newton 
algorithm may tend to take steps directly away from the minimum, 
and thus diverge, or the algorithm could coverge to a saddle point 
on the surface. 

A.3.2 Levenberg-Marquardt 

To introduce the Levenberg-Marquardt algorithm, we first discuss 
steepest descent methods. 

If 6_ lies far from the minimum, the Gauss-Newton approach may 
prove ineffective. Better results may be obtained if the 
parameters are forcsd to step in a direction directly opposite the 
gradient (i.e., along the line of "steepest descent"), ignoring 
the local surface curvature. In equation A.3-1, we set h equal to 
the identity matrix, and the step size, p , is arbitrary. (The 
step size must be modified when necessary to Insure that the cost 
function decreases.) 

Steepest descent methods provide rapid initial parameter 
improvement, avoiding the problems of the Gauss-Newton method, but 
convergence tends to be slow in the local vicinity of the cost 
function mlnimim1. Ideally, at some point during the search, one 
should switch over to a Gauss-Newton algorithm to speed up final 
convergence. 

The Levenberg-Marquardt (LM) algorithm 
[12] 

offers an alternative 
to explicitly switching the minimization method in the middle of 
the optimization procedure. This technique uses a sliding 
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parameter,P, which, when large, causes the algorithm to act 
similar to steepest descent, and when small, causes the algorithm 
to act similar to Gauss-Newton. p Is adjusted according to the 
success achieved during previous iterations; the better the 
improvement in J(£), the smaller P becomes. 

The following is an outline of the LM algorithm as implemented in 
MXLKIO: 

1. Set P (Marquardt parameter) equal to some initial value, say 
0.01. 

2. Use equation A.3-1 with 
P« 1 
h = (H + P D 2 ) - 1 (A.3-4) 
where D 2 is a diagonal matrix containing the diagonal 
elements of H. (pmay need to be modified here to force h to 
be positive definite. See section A.4.) 

3. If the cost function, NLLF, is reduced, accept the new value 
for e., reduce P by a factor of ten, and begin another 
interation (return to step Z\ . Otherwise, if the cost 
function increases, continue. 

4. Check the angle between the negative gradient, -jg_, and the 
step direction, -ha- If this angle Is greater than 45°, 
increase p by a factor of ten and return to step 2. 
(Increasing P brings uie step direction more in line with the 
negative gradient). Otherwise, continue. 

5. Search along the line defining the step direction (i.e., vary 
p) and accept the first e. which reduces the cost function. 
(The search method used in MXLKID is a parabolic interpolation 
described 1n Bard "™ .) Return to step 2 after reducing p 
by a factor of ten. 
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This concludes our general introduction to gradient minimization 
techniques. In the next section we discuss in more detail an 
important subtask of the minimization algorithms, calculation and 
inversion of the Hessian matrix. 
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A.4 Hessian Calculation and Inversion Techniques 

In the previous section, we discussed methods of minimizing a non-linear 
function of a set of parameters, with respect to the parameters. The methods 
discussed, along with several other second order techniques, require the 
evaluation of a Hessian matrix, that is, a second derivative of the objective 
function with respect to the parameters. The Hessian provides information 
about the curvature of the objective function surface, and this information is 
useful to help determine both direction and step size in the search of a 
minimum. 

For the maximum likelihood identification problem, direct numerical 
calculation of the Hessian would require p^ Kalman filter runs, where p is 
the number of parameters. Fortunately, an approximation is possible which 
eliminates the need for so many KF runs. The approximation uses information 
generated during the numerical gradient calculation. 

In this section we introduce the Hessian approximation technique used 1n 
MXLKID. We also discuss methods of forcing the Hessian matrix to be positive 
definite (a necessary condition in second order optimization methods) L10J 
and present the techniques used for inverting the matrix. 

A.4.1 Hessian Approximation 

The following fact is known from parameter estimation theory: L13J 

d'ln He) 
de^dBj 

= -E ainL(fl) ainUfl) 
d6i 90i (A.4-1) 

where L{£) is the likelihood function as defined in section A.2, 
and repeated below: 

L(£) -p(Z{n)|fl) (A.4-Z) 
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Likelihood is the probability density for an observed set of data 
Z{n} conditioned upon the set of parameters* £. Using the 
following definitions: 

J(£) = -in L(e) (A.4-3a) 
(A.4-3b) 

and 1J - 30*30,- JfiJ 

Vie can simplify A.4-1 as follows: 

:{HU} - E M } 

(A.*-JcJ 

(A.4-4) 
The above equation shows that gradient information alone can be used to 
calculate the Hessian. Gupta and MehraW derive the following 
approximate formula for the Hessian: 

f -1 atf -l dsl 
+ V2tr[(R«) ^ (R-) j l 

+ 1/4 tr * -1 K 
ae. tr t -1 BRl 

(A.4-5) 
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where e^ and Rt are, respectively, the innovations and 
innovations covariances resulting from the model-based signal 
processing {Kalman filtering) of the measurement data. e k and 
Rt are dependent on the parameter set, 6, because the system 
model in the Kalman filter is dependent on j>. The partial 
derivatives of e^ and R^are computed numerically, concurrently 
with a, as follows: 

J ( g + A O t * > ) - J(O) (ft^_6) 

f k _ S k { f l W f ? ) -efc(g) (A 4-7) 
8ffi Afl-j 

aA . "if tAtf*1*)-"{(«) ( A i 4. e ) 

as 7- a^ l ; 

(i = 1, .... p) 

where Afl^' j s a p-vector whose only non-zero element is the 
i t h element, which isA^-. Recall that the Kalman filter must 
be run p+1 times in order to calculate these partial derivatives. 

A.4.2 Hessian Inversion Techniques 

We stated in section A-3 that lo insure that a gradient algorithm 
approaches a true minimum, the h matrix in equation A.3-1 must be 
positive definite, h, in the Gauss-Newton method (and 1n the 
Levenberg-Marquardt method as js approaches zero), would normally 
be equal to the inverse of the Hessian. However, if and only if 
the Hessian Is positive definite, will h also be positive 
definite. We introduce here methods of modifying the Hessian 
Inversion procedure so that h is guaranteed positive definite. 
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We first normalize the Hessian matrix, with respect to its 
diagonal elements: 

H* = D ^ H D - 1 (A.4-b) 

where T> is a diagonal matrix defined as foTiows? 

°ii = H i J / 2 : Dii " ° if '« 

If H is positive definite, then H is also; therefore all of the 
i • 

eigenvalues of H are greater than zero. If we decompose H 
into its eigenvalues and eigenvectors, we can say: 

H - 1 = D - ^ H W 1 

= D" l | £ e .eJ j fMD" 1 (A.4-7) i^f-1 

j. t. i 

where A^ is the 1 eigenvilue of H , and ê . is the 
eigenvector corresponding to the i t h eigenvalue. 

Suppose some of the eigenvilues of H are less than or 
numerically close to zero. (By numerically close, we mean 
relative to unity; since tie matrix H' is normalized, the 
positive eigenvalues should typically be on the order of one-) 
What is done now depends on which minimization algorithm we are 
usinj. In the Gauss-Newton algorithm, eigenvalues less than some 
small value (say 10~ 6) are not included in the summation shown 
in equation A.4'7. 
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h - D-*( £ e fe{ KA O-1

 ( J U W J 

al l A'S ' 
^min 

where *min > 0 

In the Levenberg-Marquardt algorithm, the Marquardt parameter is 
added to each of the eigenvalues in equation A.4-7, provided the 
parameter 1s large enough to force all of the eigenvalues to be 
greater than zero. If the Marquardt parameter is not large 
enough, i t is set equal to the absolute value of the smallest 
(negative) eigenvalue (plus some small number)t so that i t does 
become large enough. 

{§«* T*1 » • O'ME e,ej (x, + P)"1 D"1 (A.4-9) 

where P= M a x k p m 1 n , [Hin x,; 1=1, ...,p|j 

In the next section, we discuss convergence criteria and parameter 
estimate accuracy. 



A-24 

A.5 Algorithm Convergence and Parameter Estimate Accuracy 

Theoretically, a minimization algorithm has converged to a soi'- 2" 0 0 when 
the gradient vector becomes zero. Of course, with computer pyflierical 
accuracy, attaining an exact zero is not practical. Even conv e r9ence to 
near zero gradient may require an intolerably large number of tiny steps 
in theta space while the theta values may, all along, be within 
"acceptable" limits of accuracy. So the question of convergence ro&y 
-reaYiy lie s u.uesVnm xH Yne tesireft BOforacy 'in trie parameter WtSTntfies. 
On the other hand, due to a finite signal to noise ratio and limited 
amount of measurement data available, the desired parameter accuracy may 
not aven be theoretically attainable. 

We shall first discuss algorithm convergence criteria and then address 
the issue of parameter estimate accuracy. We can typically c h o o s e o n e o f 

three types of convergence criteria for a minimization algorithm: 1) 
near zero gradient, 2) small change in the parameters or 3) small change 
in the cost function. Typically a user may wish to employ all three 
types of criteria to make sure the algorithm stops at some point. 
(MXLKID also includes a provision to detect divergence or extremely slow 
convergence by placing a user specified limit on the total numP e r a f 

The MXLKID program has a provision for stopping the algorithm fhen any 
convergence criterion is achieved and user interaction is not i n effect. 
If user interaction is in effect, the program will prompt the |J s e r» who 
must then specifically end tte program by typing "END." The u?er (in 
interactive mode) also has tte option of continuing the algorif1"' (° r 

even changing the convergence criteria) as that point. Refer f-° section 
3.6.1 for details of user interaction. 

The three convergence tests are as follows: 
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1. Norm of the Gradient: 

KTH 
Ml ==5>i (A.6-1) 

1=1 

|JG||<CRIT(1) = > Convergence 

Z. Smafr Cnange fn the Parameters: 

L e t e o l d represent the old (previous iteration) parameter estimates, 
a n d 6 new r e P r e s e n t t n e current estimates. The significant change 
in the parameter estimate is computed by: 

S = -1og 1 0 [ max |2 o l d(i] - ̂  (i)|] (A.5-2) 
i=i,ith 

S can be interpreted as the number of significant digits in the 
parameter estimatt. 

S > CRIT(2) => convergent" 

3. Small Change in the Cost Function: 

|J(0 o l d) - J(fl n e w)| <CRIT( 3) ̂ convergence 

Parameter estimate accuracy is the final tc?ic o' discussion. The 
maximum likelihood method of parameter identification has a distinct 
advantage of providing error bounds concurrently with the parameter 
estimates. This is due to the fact that the variance of the parameter 
estimates are related to the Hessian matrix in the following manner 
(according to the Cramer-Rao bound): 

[13] 
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EJ(l-i) ( l - l ) T \ -H-1 (A.5-3) 
Therefore 

955t Confidence Interval = 1.96 { H " 1 ) ^ 2 (A.5-4) 

The i t n diagonal element of the "information matrix" (inverse of the 
Hessian) is tfle variance of the i t h parameter estimate.* These confidence 
intervals are printed out at the end of MXLKID program execution and apply to 
the parameter estimates at the final iteration. 

* Variance = standard deviation squared. 95% confidence interval = 1.96 times 
the standard deviation for Gaussian random variables. Please refer to 
PapoulisC'J or any standard text on probability for a discussion of these 
terms. 
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STATISTICAL TEST PACKAGE 

MXLKID also includes a feature to test the statistical properties of the 
innovations sequence leA — a procedure used to indicate proper filter 
performance. It is well known [e.g., see Hehra Q4]]tnat a necessary 
condition for optimum Kalman filter performance is that the innovations are a 

zero mean, independent (white) sequence. These properties are satisfied when 
the filter -fs properly tuned and the estimator model is satisfactory. In 
fact, testing properties of IzA enables the user to evaluate how well the 
estimator mde? <tesictes" reatrty. Ttesyp snupAe tests c&? <??$# *P atfiwi to ifj 
the designer in "tuning" the filter {adjusting Q, R, i?0) for satisfactory 
performance, 

the first property evaluated is the independence or whiteness of <£],>• We 
assume that the filter has reached a statistical steaciy-state and that the 
innovation^ sequence is ergodic (time average equals ensemble average). The 
sample meah and sample autocorrelation are estimated using 

and 

n 2 e, {i! 
i=l x 

S v , ) 

(B-l) 

' !"-*£ (e(i) - e ( N ) ) (e(i-i) - e (N)) (8-2)* 

1-1+1 

*Since the R« 1s the assumed covariance of a white sequence, we calculate 
only the diagonal covariancea and assume the cross terms are null. 
Statistical te;>ts can also be~ implemented to validate this assumption. 
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The normalized autocorrelation, p*(i), is then calculated and tested. 
Asymptotically, for large N, it can be shown that £ e(l) - N(0,I/^ ) for 
i f 0; therefore, the 95* confidence limits are: (see Hehra C14] for details) 

" M 6 V T s P i i { i > - i ^ / ^ j f d i 2 30) (a-3) 

where 

Thus, if i e ss than %S of the p ^ exceeds the limits of (B-3), we are 95% 
confident that the innovations sequence is white. Tighter bounds could be 
constructed, however, for tuning purposes this test is satisfactory. 

The second propety evaluated is a test for zero mean. Since the sample me an 
is a line a r combination of Gaussian random variables, it is distributed: 
e ( * ) ~ N (0,R e/ N). Again the 95% confidence interval can be constructed 
using the sample covariance of (B-2), i.e., 

In the sample problem of section 3.2, we performed these tests (see 
Fig. (B-l), we see that innovations are near 2ero mean and white. In the 
MXLKID algorithm, the whiteness test is performed on the set of innovations 
corresponding to the final set of parameter estimates. 
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