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FOREWORD

The MXLKID (MaXimum Parameter LiKelihood IDentifier) computer code was written
and developed under the Lawrence Livermore National Laboratory (LLNL},
Electrical Engineering Department Engineering Research Funds as part of the
Signal Pro.essing Project. Many LLNL projects are involved in experimental
design and control which involves the fitting of nonlinear and 1inear dynamic
models representing the physical phenomonology to noisy measurement data.
MXLKID represents a state-of-the-art algorithm which is very general and
powerful.

The generation of this code began after the development of a nonlinear dynamic
estimator code called UYNEST[4 . MXLKID essentially is a set of

sophisticated optimization algorithms 1ooped around the DYNEST code. Many
people have taen responsibie for the development of DYNEST and therefova have
contributed implicitly to the development of MXLKID. MWe would especially like
to acknowledge ihe initial structural coding and DYNEST conversion by D.

Freeman under the direction of J. Candy.

Work continues on the development of MXLKID in the Signal Processing Project
to be able to identify large numbers (>40) of unknown parameters from noisy
data. This effort will enable potential users to jdentify parameter in
nonlinear distributed (partial differated equation) systems.
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ABSTRACT

MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to
identify unknown parameters in a nonlinear dynamic system. Using noisy
measurement data from the system, the maximum 1ikelihood identifier computes a
likelihood function (LF). Identification of system parameters is accomplished
by maximizing the LF with respect to the parameters.

In the mafn body of this report, we briefly summarize the maximum likelihood
technigue and give instructions and examples for running the MXLKID program.
MXLKID is implemented in LRLTRAN on the CDC?600 computer at LLNL. We include
a detailed mathematical description of the algorithm in the appendices.

iv
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INTRODUCTION
SNk,

This report introduces a new tool for dynamic system analysis to the
signal procassing software library at LLL, the MaXimum LiKelihood
parameter IDentifier (MXLKID}, MXLKID identifies unknown parameters aof
a dynamic system from noisy measurement data.

Dynamic Systems are fundamentally important in the work of research
scientists and engineers. Systems involving Newton's laws of wotion,
electromagnetics, chemica?l kinetics, structural vibrations, and gas
dynamics are familiar examples of dynamic systems. Even so-called
static systems can be considered dynamic systems at rest. Thus dynamic
system modeling and analysis is an important field of interest to
researchers desiring to know more about the universe around them.

System identification is a key problem in systems analysis. For many
scientific and engineering systems there is no universal theory
explaining the system structure nor is there any direct method of
measuring unknown system parameters. A1l that is available to an
experimenter is noisy measurement data which may only be indirectly
related to the sysiem parameters of interest., MXLKID is a useful tog)
for system parameter identification in this environment. While MXLKID
will not perform the entire task of determining the structure and order
of a system, it will numerically estimate unknown parameters in & system
equation, using the infgrmation inherent within the measu-ement data.

To use MXLKID, the user must specify the system dynamic squation(s} in
terms of a set of unknown parameters, and give initial (a-priori)
estimates for these parameter values. MXLKID then fteratively improves
the parameter estimates until the maximum 11kelihood set of parameters
is reached. Likelihood, explained in further detail in Appendix A, is a
useful objective function in the search for optimal parameter estimates
because it serves as a measure of model validity in terms of consistency
with the measured data.
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This report is intended to provide the user with enough information to
run the MXLKID program successfully and to gain insight from the
results. The user is assumed familiar with FORTRAN and the Qctopus
CDC7600 computers.,

The report's main body is organized jnto four chapters. This
introduction comprizes Chapter 1. 1In Chapter 2 we define the basic
MALKID problem and give an overview of the algorithm. Chapter 3 gives
cetailed instructions and examples for Set up and execution of the
MXLKID program. Chapter 4 is a summary of the report.

The appendices of this report contain additional detailed information
for the serious user of the MXLKID program. Appendix A describes the
algorithm in greater detajl, and gives mathematical derivations for the
basic formulas used. In Appendix B, we present the details of the
statistica” whiteness test which s used to independently verify MXLKID
resuits.
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Basic MXLKID Algorithm

In this section we describe the basic parameter estimation algorithm
found in the MXLKID program. We define the mathematical problem to be
solved, present the aigorithm designed to solve it, and then discuss the
actual implementation.

2.1

Prablem Definition

The MXLKID is a parameter estimation/identification algoritnm
designed to sotve the following problem:

Given a continuous nonlinear dynamical system in state space form,

it = f(xt, 9t) + g(ut, B) + Wy

and discrete measurement system,

z) = h(xk, ok) v

where X, u, 2,0 are the n-state, r-input, m-measurement, and
p-parameter vectors; (-}, g(-), h{«) are the respective vector
functions; and L' v, are white Gaussian processes with
respective covariances Q and R, find the best {maximum 1ikelihood)

estimate 8 of 4.

The aigorithm designed to solve this problem uses a recursive

state estimator (Xalman filter) to generate quantities required to
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compute the Tikelihood function. The 1ikelihood {or negative
iog—1ike11hood) function 7s maximized (minimized) to find the
"hest" set of unknown parameters €. Some of the fundimental
references for maximum itkelihood identification are Gupta and
Wehra [13, Kashyap £23, and Best [3]. MWe now distuss ihe basic
algorithm.

2.2 Algorithm

MXLKID is the implementation of s.me standard optimization
techniques using a recursive estimator (Kalman filter) to generate
some of the required quantities. The optimization algorithms
implementad are basically gradient search techniques using the
Levenberg-Marquardt or Gauss-Newion methods. Ali1 the methods
involve a technique similar to the one shown below:

Log Likelihood Function Calculation:

i
Jg) = -1/2 m (2n) - 1/223(1;%9) (RE (1,85, p)) ™ £{1,6gy p)
i=l

. *
+ In ' R‘(i,gow)l (3)
Gradient Calculation:
od,. [20(e)] o *284) - Hagn) 4= 1, ..., 0 (@)
B_Q. 39! AQ‘

FThe quantities (1,87 and R(1,9), 1in these equations are gererated
recursively by the Kalman filter,



Hessian Calculation:

N .8 . 2
Pae) [ J‘*’uw) 5“3 oo eyt B o)
e v i

ectart  -Lamsl
+1/2 tr |(RS) Ea—j—(Ri) EE,:J

€ -1 BR? - € -1 aR? -
+1/4 tr (R"I) —az tr (R,‘) -5;’—'(- (o

Parameter Estimate Update:

7-1
82
R a(o) 2] 8
fnew = Boip *"[ 38 P2 3
Loop:
Oyew ~ Co1n
where

J(8) is the scalar negative lng-likelihood fun:tion

ad 1s the p-gradient vector
ag

2
nggﬂl is the pxp Hessian matrix

8 is the p-parameter vector

Aol 1s the p-incremental parameter change vecior {only
h alement nonzero)
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€ is the m-innovation vector
R® is the mxm innovation covariance matrix

D is the pxp diagonal Marquardt matrix (contains the square

2
root of the diagonal elements of(%—ggg%)

:]:]
P is the scalar step adjustment

B is the Marquardt parameter used to weight the diagonal
Marquardt Matrix

If the Gauss-Newton algorithm is selected, then B is set to zevo,
while in the Levenberg-Marquardt option it is variable. p 15 &
step size parameter which is set to one (p=1) initially, but is
varied during the algorithm to ensure a reduction 1n the negative
1og likelihood,

MXLKID consists esseutially of these equations in an fterative
loop with the recursive Kalman filter providing the guantities for
equations (3) and (5). Note that the dynamic process, measurement
and noise models of {1) and {(2) are included in the Kalman filter
formulation[4,5,61. For the interested reader, detailed
equations for both the minimization algorithms and the Kalman
filter are presented in Appendix A.

Algorithm Implementation

In this section we discuss the implementation of the MXLKID
algorithm. We first overview the major tasks and then describe
(simply) the program flow.
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The main task of MXLKID s to identify the set of parameters which
maximizes the 1ikeiihood function. To compute 1ikelihood, we use
both measurement data and a model of the system (equations (1) and
(2)) of interest. The system model, provided by the user in a set
of user-definable subroutines, is written in terms of the
paraseters which need to be identified, This model serves as a
reference in a statistical, model-based, signal processing scheme
(Kalman filter). Processing the measurement data results in tae
necessary ingredients for computing the likelihood function
according to equation {3).

The Likerihood is generally a nonlinear function of the unknown
parameters because results of the signal processing are dependent
aon the system model. To maximize Yikelihaod, one of many well
known nonlinear programming algoritims can be employed. The user
currently has a choice of two such algorithms within MXLKID,
Gauss-Newton and Levenberg-Marquardt (see Appendix A, Section 3
for descriptions of these optimization metheds). Both of these

methods rely on computing the Yikelihood several times during the
search for a _<imum.

MXLKID implementation is depicted (simply)} in Figure 2-1. Wote
that after the initial parameters are set, the log-likelihood
function is calculated using the Kalman filter to produce the
inmovations data.” The log—liké]ihoad Jacobian (partial
derivative) is numerically calculated as are the Jacobians used in
(5). A1l of this information is passed to the parameter estimator
{gradient optimization algorithm}. Once covergence is achieved, a

*  The Kalman tilter is basically used as a "whitening® filter in this

application, i.e., correlated measurements are iaput and uncorrelated
innovations are output.
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whiteness test is applied to the final innovations sequence Es an
independent verification of the identified model's validity.
Final results are in graphical and numerical form on output disk
files.

2.4 Program Structure

The relationships of the major MXLKID subroutines are shown in
Figure 2-2. MWe see that MAIN is the main drive for the program in
which I/0 assignments are made, parameters are initialized, and
input files are read before control is passed to MINI, the
subroutine controiling the numerical optimization process. MINI
directs all the calculations necessary to step the parameter
estimates toward 2 maximum likelihood calculation. An important
calculation is the negative log-1likelihood function (NLLF)
evaluation, since the NLLF is the cost function which needs to be
minimized. The NLLF is calculated in subroutine CFUNC using the
formula give in equation (3).

Calculation of the NLLF requires that measurement data be
processed through a Kalman filter {KF). The KF code is contained
in subroutine FILTER, which is a block of code taken from the
generalized extended Kalman filter program, DYNEST.nD Each

NLLF calculation requires a separate KF run over the data , so
CFUNC, and hence FILTER, is called many times during the course of
a search for a maximum 1ikelihood solution.

The structure of the KF code is explained in the DYNEST manual,
however, we show seven major modules in the orgarization chart
under FILTER because their operation determines the behavior of

* The whiteness test is discussed in detail in Appendix B.
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the dynamic system model. Six of the subroutines, FSYSTM, HMEARS,
FJACOB, HJACOB, FR, and FQ must be modified by the user to reflect
the operation of the dynamic system of interest. These
modifications are explained, with examples, in Chapter 3.
Essentially, BEAR is a numerical integrator (differential equation
salver), FSYSTM provides the equations for system dynamics and
MEAS gives the equations describing the measurement process.

FJACOB and HJACOB are subroutines for anmalytic evaluation of
system and measurement Jacobian matrices, respectively. (Details
for programming the Jacobian evaluators are given in Chapter 3.)
FQ and FR determine the statistics of system driving and
measurements nojses, respectively.

This concludes our brief overview of the MXLKID program. e now
proceed to Chapter 3, where details in program impiementation are
given, Should the user find a need for a more in depth discussion
of the maximm likelihood algorithm, Appendix A gives the
derivations of the formulas used in MXLKID.
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3.0 PROGRAM PREPARATION AND EXECUTION

In this chapter we show the MXLKID setup for a typical parameter

identification problem. We discuss the fundamental code requirements, '
the user-definable subroutines and program execution. We also discuss a

sample problem which 1s used throughout to show the user how to prepare

and execute the MALKID algorithm.

3.1 Program Reguirements

The MXLKID program input/output requirements arz shos in Figure
3-1. Two input files must be prepared by the user: a measurement
file containing system measurement data, and a program control
file, which contains all the various problem dafining parameters,
option selections, and initial conditions. Program outpui is sent
to three places, the teletype terminal (opticnal), an output file,
and a plot file. The teletype prints out parameter estimates as
the MXLKID algorithm progresses iteratively to an optimai
solution. The output file 1s filled with additfonal information,
mostly the results from intermediate calculations. The plot file
receives various data plots which can be useful later for problem
diagnosis.

To prepare and run MILKID for a particular problem, the following
steps must be taken:

1. Prepare the INPUT file

2. Prepare the MEASUREMENT file




input
file

Measure-
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file
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3. Prepare the problem dependent SUBROUTINES:

FSYSTM
HMEAS
FJACOB
HJIACOB
FR

FQ

4. Executa MXLKID
5. Obtafn OUTPUTS

The remainder of this chapter discuss the above steps in detail to
obtain a MXLKID solution for a given problem. We first define the
sample problem to be used in Section 3.2 and then follow the steps
for problem solution. INPUT file requirements are discussed in
Ssction 3.3 which includes the necessary MEASUREMENT file data.
Sectjon 3.4 discusses the preparation of the user-defined
SUBROUTINES and then program execution {is discussed in

Section 3.5. The program OUTPUTS for the sample problem are
presented in Section 3.6

The Sample Problem

A sample maximum 1ikelihood identification problem is outlined in
Table 3-1. This example is from the report by J. F. Best.[33

The system is a two-pole resonatar whose frequency and damping
ratio are unknown. The waveform shown in Figure 3-2 is the
driving function, which, for this problem, we assume is completely
known. The measurement Jata availeble 1s the white noise
corrupted signal shewn in Figure 3-3.
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TABLE 3.1

SAMPLE PROBLEM DEFINITION

System: (equation (1))

g 0,1 )+ [0 u +ue
-92 -29102 503

Measurement: ({equation (2))

zj = [64 0] 5 (tj) + vj; J = 1, essy KT
where w is white Gaussfan drivirg noise:

6Z o
cov{w) = 0 9; =30

u(t) is a known input {see Figure 3-2)

and v s white Gaussian measurement noise:
cov{v} = Bg =:R
True Parameter Set:
o= [0.6, 3.14, 4.0, 2.0, 0.0, 0.1]7
Initial Parameter Guesses:
8, = 0.1, 8y = 9.0

(A11 other parameters are at their true values and assumed known for this
example.)

Problem: Find the maximum 1ikelihcod estimate of the parameters, g1 and
82, glven the set of measurement data {zjs j =1, ..., Kt}
(see Figure 3-3). ]
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The data showr in Figure 3-3 was actually generated by a separate
simulator program, which is designed to model the two pole
resonator with the parameters set to their true vzlues. The
simulator adds Gaussian random noise to the simulated
measurements, '

We start the identification process with initial guesses for the
unknowr, parameters (frequency and damping) of the system. (In
this example the guesses are quite far from the true values.) In
the next few sections we explain how to set up the MXLKID program
for this problem, and how to inLerpret tha results. The reader
shall see that, for this example, MXLKID converges to the true

parameter values very quickly.

Program Inputs

Two data sets must be prepared by the user for input to MXLKID: a
measurement data file and an input file,

3.3.1 MEASUREMENT File

The MEASUREMENT file contains the system measurement data
and the time values at each measurement pcint. Tabie 3-2
shows an axample, The first data point is taken at time
0, and the measurement value is -2.965E-01l. (Since the
time value is read in at each measurement point, there is
no need for the measurement points to be equally spaced in
time.) The format for the measurement fiie is
user-definable; it is read from the jnput file. For the
example shown, the format is 2E12.3.
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Tabia 3-2. Maasuremen: File (First Ten Entries)

COONAARRN-

-

e. -2.960E-D1
5.000E-62 -1.974E-D1
1.660E-01 -8.679E-02
1.500E-01 8.140E-02
2.0086E-01 7.056E-02
2.508E-01 1.716E~61
3.000F-01 2.622E-01
3.600E-91 3.609E-61
4.080E-01 5.244E-01
4.060E-01 7.733E-61

Table 3-3. Input File

[l el
Mlﬁh*c?mtbﬁlmﬁﬂaton)u
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I4PUT File

The INPUT fite contains information needed ¢o help define
che problem, assign initial conditions, select program
options, etc. Table 3-3 shaws an example of an input file.
Elements of the input file are descrihed in datail below.

N - Number of states in the system dynamic modal, i.e.,
the number of first order differential equations
which define the system dynamics.

M - The numher of measurements taken at each discrete
point in time. Oimension of the measurement vector,
Z.

KT - Total number of discrete time paoints at which
r.2asurement data is available.

DLTD - The initial time gap between measurements.

Q - 0Dfagonal elements of the driving noise covariance
matrix.

R - Diagonal elements of the measurement noise covariance
matrix. Note: Q and R are initialized to zero for
the example problem because they are parameterized by
THETA (5) and THETA (6) during program execution.

PI - Initial state error covariance matrix. The elements
are 1isted ty columns: PI (1,1), PI (2,1)...P1 (N1},
P1 (1,2)...etc.

MEAS FMT - Measurement file format.
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X0 - Estimate of the initjal state of the dynmamic system.

MAXITR -

MAXTRY -

EVMIN -

This is the maximum number of steps that the
max fmum 1ikelihood algorithm will take in
parameter space. MAXITR should be larger than
the expected number of steps before convergence,
i.e., it prevents the program from looping
forever. The estimated maximum number of
negative log likelihood function (NLLF)
evaluations is MAXITR*TH, where KTH is the

number of parameters to be identified.

The maximum number of line search attempts in a
given search direction. One NLLF evaluation is

reguired for each line search try.

Cutoff factor for discarding small eigenvalues
during Hessian inversion., This causes the
minimization algorithm to ignore step directions
in which little improvement of the NLLF is
Tikely. Eigenvalues less than EVMIN*{maximum

eigenvalue) are ignored. 1E-6 is a good value,
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OPTN - Option array.

OPTN(1) - MMF - Minimization method flag. MMF=1:
Gauss Newton method. MMF=2: Marquardt Method.
OPTN(2) - BETH - Initial Marquardt Parameter (used
only if MMF=2).

OPTN(3) ~ BMIN - Minimum allowable vaiue for the
Marquardt parameter (used only if MMF<=2).

THETAO - Initial parameter 1ist.

KTH -

IR -

NP -

MP -

Number of parameters to be identified.

Index Array. This array specifies the locations in
THETAO which contain a parameter to be varied. A1l
the other parameters in THETAD remain constant. IA
contains KTH elements.

Iteractive Mode. NP=0 implies no interaction is
desired, NP=-1 requests interaction only upon
algorithm convergence or when MAXITR or MAXTRY is
exceeded. NP > 0 calls for, in addition to the
cases above, interaction once every NP'th interation
(beginning with the first).

Innovations plot selector. A plct of the
innovations (data residuals is made every MP-
iterations (beginning with the first). MP=0 turns
off the innovations plotter except during the first
and last iteration.
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CRIT - Convergence Criteria. Convergence is established
when:

1) The Euclidian norm {sum of squared elements)
of the gradient vector is less than CRIT{1),
or

2} A1l the parameters, for two successive
jterations, agree fn at Teast CRIT(2)

significant digits, or

3) The cost function (NLLF) for two successive
{terations changes by less than CRIT(3).

Program Subroutine Preparation

User definable subroutines were mentioned briefly in section 2.3.
These subroutines are to be modified by the user such that they
define the system model of interest. The subroutines are FSYSTM,
HMEAS, FJACOB, HJACOB, FR, and FQ. They contain the dynamic
system model, measurement model, system Jacobian, measurement
Jacobian, measurement noise model, and driving noise model,
respectively.

The subroutines are set up by the user in exactly the same manner
as explained in the DYNEST manual ( (8] pp. 20, 25), with the
exception that the models may now be specified in terms of the
unknown parameters which are to be identified by MXLKID. The
parameters are passed to the usei: subroutines in the array THETA,
which contains the parameters in exactly the same order as they
were specified in the input file. MXLKID automatically handles
the modification of THETA as the program steps toward an optimal

solution.
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3.4.1 FSYSTM

FSYSTM is a subroutine containing the differential
equations describing the system:

k=f(x 0,4 (3.4-1)
where x is a vector of n states (n is the order of the
system), @ is the set of unknown parameters, and p is am

input disturbance vector, either known, or given in terms
of unknown parameters.

The arrays %, 8, and u are passed ta FSYSTM, The user
must insert the appropriate coding for f{.) as shown in
the example in Figure 3-4.
3.4,2 HMEAS
HMEAS contains the ideal, no noise, measurement equation:
z = h(x, 9 (3.4-2)
Figure 3.5 shows sample coding.

3.4.3 FJACOB

The Kalman filter code requires the following Jacobian
matrix*:

.0
F = ax f(i& 8, !) (3.4-3)

* Refer to Table A.1 in Appendix A for a full set of equations for the Kalman
filter algorithm.
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FURCTION FSYSTH(NN,TT, X, XBGT)

[
[ THIS ROUTINE IS USED BY THE CEAR PACKACE, AND IT COMPUTES THE
€ CTION AND THE ERNOR COVARIANCE PROPACATION ANRAY. i
] m 18 DINECTED COMHON BLOCK FRIRECT.
G THIS I8 A NECESSARY ROUTINE TUAT MAS PRODLEM DEFENDEIXT CODINRG.
¢ THI® mmlm 18 PART OF THE CEAR [NTUARATION PACKR:. .
USE LKDCOn -
pLENgIon rr(n:.x«l).mu)
DINENSIOR XD
®
[ ]
®
Do B Ii=f.NN
8 RXIKII)eR(ET)
. AMLT=8.
¢ COHTINVE
g EVALUATE THE DERIVATIVE OF THE STATE
] = | ]
[+ n -
[} ® ®
[+ Ll bl
G * )
¢ 1 =
i = :
=
[+ = YOUR CODING FOR THE SYSTEN MODEL COES NIERE. AMLT#H2 *
[ = HUST BE ADDED TO TUE MODEL. FUT THIS SUM IRTO ARHAY »
[ = XDOT AE SHEOWN BELOW. =
[ * =
' * *
(1] * n
c * SET THE MODEL PAHAMETENS. THIS COULD BE DONE IR
c 1 IWU'I‘H!E INIT ARD THE VARIADLES PASSED TO TiHIS ROUTINE
€ . G COMMCH.
[} x
€ ®
< *
1F(TP. LY, CA¢ 1) SU=TT/CBC L)
TFCTT. CB. CLL1 ). AND, (TT.LT.CBI2)) YU=] .0
lru'rr.w.cmzn +AND. ¢TT. L¥.CB(3)) =10 :
Mﬂ(i))/(ﬂl(s)—cﬂ(zn \
IFATT.CE. CI!(B)JIJ‘-I & '
PUCKYSU
XDOT(1)»XD{(2)
XDOT(2)s=(THETAA2)}#32 0ED(

a =2%TUETA u)mmumm(z:

& +BENUETACS )T .
£ * = ;
c x x .
c * =
c = s
a £ ]

] - »

L4 * x

§ = * .
RETURN

.
i
\

j
H

Figure 3-4. Function FSYSTM
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FURCTIOR NLEAS R, TT,X.MH)

THIZ ROUTIKE COUIPUTES TR, NEASURENENT MODEL AS A FUNCTION OF TR
GTATE VECTCR X AND THE TINE TT

IS 16 A NECESUARY ROUTINE WIS 17 PRODLEM DEPENDENT,

USE Lheol

DIAERSION II(1),X(1),TT(1)

SET' THUE NHEASUARMENT MODEL

-
£ )
* x
L] %
*® x
] *
+ &
& s
® ®
* YOURR CODIRG FOR THE MEASURFNENT MODEL GOES HERE. %
£ USE X FOR THE STATE, TV FOR 'HE TINE, AND PUT THE *
* MODEL INTO ARNAY H AS {f1OWN BRLov. B
= *
& b
kel %
RCO=THETA(4)%X(1)

* ik
- *®
* u
& 2
* 3
- b3
* %
* (2 eamspe vie

HHEAS=0.
HEITVRA
"D

Figure 3-5. Subroutine HMEAS
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Although this derivative could be evaluated numerically
using multiple calls to FSYSTM, (see the DYNEST manual if
numerical Jacobians are desired) the user is given the
opportunity to provide an anmalytic evaluation of the
system Jacobian in subroutine FJACOB. The example is
shown in Flgure 3.-6.

HJACOB

A similar Jacobian is needed for the measurement madel:
H= ‘a_ai h(x,8) (3.4-4)
and sample coding is shown in Figure 3.7,
!4
FQ sets up the covariance matrix for the input driving
noises

Q= E{WT} (3.4-5)
Figure 3-8 shows the coding for the exampie prablem. In
the example problem, we modeled a system that had no

driving noise, so we set Q egual to zero and held it there
for the entire MXLKID run (Q = pz = 0).

ER
R is the covariance of the measurement noise:
R = E{va} (3.4-6)

The sample coding is shown in Figure 3-9.
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SUBROUTINE FJACOB(AN,TT}

TH1S ROUTINE COMPUTES THE JACOBIAN OF THE SVYSTEM MODEL
TS 18 A NECESSARY ROUTINE, WHICH 13 PROBLEM DEFENDENRT.

EXTERNAL
LOGICAL MEAZ
USE LXDCoi

DIMERSIOR TT(1)
DIHERSION XD{NS)

EVALVATE THE JACOBIAN ANALYTICALLY

YOUR CODING FOR THE SYSTEM JACOBIAN GOES HERE.
PUT THE JACOBIAN INTO ARRAY FJ AS SHOWN BELOW.

SET THE HODEL PARAMETFRS. TS COULD BE DORE IN
ROUTINE INIT AND ‘IHE VARTABLES PAGSED TO Tili8 ROUTIRE
THROUGH COMMON.

LA R S XS EEEEEERENE

*

FJ(1,1)=0.

FJ(1,2)=1.08
FJ€2,1)==(THETA(2)2%2)
FJ(2,2)=-2+THETA (1 )*THETA(2)

FhESHLHEN

AR A E R EEE SRS EE R LY

LE X X RtE-F)

[t pe e 2 e s o Sl il S 2
GO 10 4

EVALUATE TUE JACOBIAN NUMERICALLY
3 CONTINUE

MEAZ=.FALBE.

CALL JACOB(FSYSIH,NN. XN, TT,dD,HEAZ)
4 CONTIRUE

HETURKN

END

Figure 3-6. Suproutine FJACOS
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SURROVITRE ILJACOGITT . X, HJAC)
THIS ROUTINE COHPUTES THE JACOBIAN OF THE MEASUREMENT MODEL -
THIS JACONIAN WILL BE AN W HY H MATRIX
THIS 18 A NECESSARY ROUTING WiHICH IS8 PROBLEM DEPENDENT.
EXTZIINAL MIFAS
LOGICAL MEAYZ
USE LKDSOM
DIMENSION HJAC(NMR, 1) ,XC(1),TTC1)
IFCKFIAC EQ.1) CO TO 1
SET THE MEASVIIMENT JACOBJTAS ANALYTICALLY

=z

aaon

*
*
B
*
*
YOUiL. CODING FOR THE MFASUREHENT JACGDIAN GOES HERE,

k]
*
*
E] USE X FOR THE STATE, I't FOR 'illE TIHE, ARD PUT THE
* JACCBIAN INTO ARRAY UJAC AS SHUWN BELOW.

*

*

atadaadacecomnnn
HURHHARR LN RN

»
JAC(1,1)=TIETA{4)
JACED ,2)=0.

aaaaannan
LA AR LE X3
L EE R R KR E

FRRN: X R

RETURN

CALCULATE THE MEASUREMENT JACOBIAN NUMFRICALLY
1 CONTINUE

WEAZ= , TRUE.
CALL JACODCHHEAS,M,N,TT,X,HEAZ)
END '

aa

[=1;]

Figuro 3-7. Subroutine HIACOB
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SUHACLTINE Fa(AQ)

THIS aLUTIAE €0HPUTES THE CORRELATION ARPAY OF THE SYSTEM ROISE FUKCTION
I8 13 A HECESSARY ROUTINE WIIICH COULD BY PROBLEM DEPENDENT.

USE LKPCC.I
DINENSION AQ(N:L, 1)

P01 1#1,N

uo 2 g1 ,N

AG1,3)30.

COKYINUE

Aell,1)=e(1,1)

CONTINVE
@(1,1)=THETA(S)*THETA(S)
8(2,2)2Q01,1)

RETURN

END

Figura 3-B. Subroutime FQ

SUBROUTINE FR{AR)

TAI3 ROUTINE COMPUTES THE CORRELATION OF TUE MEASURSHENT POIST
AR 18 AN F2OT ARRAY
THIZ 18 A NECESSARY ROUTIRE WHICH GCULD BE PROCLEM WEPEFOIWET.

il LY nGe
DIMERQTON AR(NKR,1}

o1 I=1,N

DU 2 J=1 D

AU IS0,
CUircEHYE
AL, 1) =RRCI, 1)

1 CONTIRUE

ARC1, 1) *THETACG)XTHETAC6)
€ALI BCLM(~1,NHR,AR. M)
YL 5CLM(~1,NHR,AR,H)

P Y YN

END

Figure 3-9. Subroutins FR
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Program Execution

Once the user has prepared the input files as explained in Section
3.3.2, and set up the system desciptor subroutines (FSYSTM, MEAS,
FJACOB, HJACOB, FR AND FQ) as explained in section 3.4, the MXLKID
program is ready to be campiled and run. The executable file is
named XMYXLKID. To start up the maximum 11keiihood identifier, the
user types XM{LKID/t v. The program prompts for the name of the
measurement, input, and autput files. For the measurement and
input Files, give the names of the input files thai were prepared
earlier. The user can ctoose any name for the output file (up to
ten alphanumeric characters), and output data from the program
(described in the next section) will be stored in a disk file with
that name.

The program now prompts for an 80-character rum title. This
title, along with time amd date information, appears on the first
line of the output file ad at the bottom of each graph in the
plot file. The graphs and printout can thereby be easily
associated with a particular MXLKID run. Once the user has typed
fn a desired title, the program responds with the time and date.

Program Qutputs

MXLKIP sends program cutmut to these places: the teletype
terminal, an output file, and a plot file. The name of the output
file is specified by the user when the program prompts for
measurement, input, and aitput files as explained above. The plot
file is named FX195MLIDD.

3.6.1  ITY Printout

The amount of priztout at the teletype depends on the
choice of interac:ive mode (see the description of NP in
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section 3.3). We provide here a description of what can
be expected at the teletype if the program is in
non-interactive mode. Then we provide a quick user's
guide to the commands available under th: interactive mode.

3.6.1.1

3,6.1.2

No Interaction

If no interaction ‘s requested (NP=0) printout
at the teletype looks 1ike the example shown in
Figure 3-10. (This printout is from the sample
problem described in section 3.2). Note that
each function evaluation results in a Yine of
printout, including those evaluations required
for numerical calculaticn of the gradient and
Tine searching. When covergenc<e is reached, the
program types the total execution time in
seconds and completes with "all done."

Interaction

When MXLKID is in the interactive mode {NP#0),
the user exercises a measure of control over
program operation, If the maximum Tikelihood
algorithm coverges, or if the algorithm detects
a problem in converging*, control is handed over
to the user.: The program types a prompt ("3")
and the user at that point can examine the state
of the algorithm, change certain values if
desired, then command that the algorithm
continue iterating for better parameter

* Maximum number of iterations exceeded or maximum number of line search
attempts exceeded. These maximum values are provided by the user in the
input file. See ssition 3.3.
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HMXLKID
INPUTSMERSS OUTPUT FILES

«INLID DUTSIM SAMPRUT

TYPE A LREEL FOR TWIs Run (ur Ta 80 CHARACTERS)
MELKID ZAMPLE RAUN FOR USER’S MANUAL

THANK YDU 165 08:34r 05,1330

THETAS

IFN F
1 21946.39308465 0.108600000 2. 00000000
& 21946.8%307969 0.10000001 9. 00000000
3 21946,.8993€422 0.10000000 9. 00000030
4 49252,28137218 1.04264032 =12.791:38543
5 443, 72396107 0.34970426 3.227245642
e 443,72336119 0.34970429 3.22735642
7 443, 72332427 0.324970426 3.2273%674
8 ~-53. 16623147 0.337948383 3. 19922502
9 -532. 16626020 0.537948388 3.19%22502
10 =-53. 16606044 0.53794883 3.19%22534
11 -26.96043735 0.60954D65 3. 14366430
27 051:38:00
Al.L DONE

Figursy 3-10. Sample TTY Printout—No Interaction
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estimates, or halt execution. An additional
interactive option is available to have the
progran. oromet the user at the end of every
{teration (NP=1) or every np iterations (NP > )
if desired. A list of user commands is provided
below:

HELP - Type out a brief (one line) explanation
of each available command.

TYPE - Type: 1) the value of the negatiave log
likelihood function (NLLF) at the
current parameter values, 2) the current
parameter values, and 3) the gradient
{derivative of the NLLF with respect to
the parameters).

BOUNDS - Type the parameter estimates and the
95% confidence bounds for these
estimates.*

CONVERGE - Type tut the results of the most
recent covergence test along with
the user specified convergence
criteria.

MODIFY - Modify the convergence criteria. The
program asks the user to specify which
criterion to change (1, 2 or 3
corresponding to gradient norm,
significant parameter digits, or

F Note: the confidence bound calculations are not accurate unless the
parameter estimates are close to their true vaiues, 1.e., the algarithm is
at or near convergence.
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relative cost function change,
respectively) and then asks for a new
value.

PARAMETER - Modify the values of the
parameters. . The program asks the
user to specify the parameter and
provide a new value in a manner
similar to the HODIFY command.

G0 - Continue on from this point to iteratively
improve parameter estimates. (Algorithm
continues whether or not convergence or
divergence had been previously detected.)

END - Stop any further parameter improvement
attempts. Complete the plots, close the
output files, and terminate the program.

Figure 3-11 shows a sample terminal session with
full {NP=1) interaction. Note that typing the
first letter of a command is sufficient for the
interpreter to recognize the command.

OQutput File

The MXLKID program generates an output file in order to
provide the user with a progress history of the attempts
to iteratively improve the parameter estimates. The
progress history can prove useful if, for example, the
algorithm diverges. The output file can then help the
user to diagnose the problem.
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WMYLKID

INFUTY MEARSIOUTPUT FILES
«INLID OUTSIM SAMPOUT

TYPE A LABEL FOR THIS RUN (Up TO 30 CHARARCTERS)
MXLKID SAMFLE RUN FOP WSER’E MRHUAL

THANK vrOu 16:03:34r 05-13-80

IFN F THETAS
1 21946, 832024965 0.10000000 2.00000000
2 21946.£93307°9¢9 0.10000001 2.004000000
2 21946.2993€6422 0.10000000 9. 000¢93090
4 49859.22187218 1. 049264032 -12.79138543
5 4432, 72356107 0.393704286 3. 22725842

ITERATIDMN 1 cOMFLETED

T
TH1s ITERATION: F=  4.4272e+02TH=  3.4970e-01 3,2274e+00
LAST ITERATION: Fl= Z.1947e+047n0= 1,0000e-01 S.0000s+00

GRADIENT= =4.9614e+02 1,4217Ve+03

b
E
PARAMETER ESTIMATES AND 95X CONFIDENCE POUNDS
1. 3.4970e-01 +/=  B6.833532e~02
2. 2.2E874+00 +r/=  2.9201e-01
]
=g

COMVERGEMCE FARAMETER CALCULATIONE ARE AS FOLLOWS
NORM OF THE GRADIENT= 2.267Se+05

SIGNIFIGANT DISIT GHANGE IN THE PARAMETERS= ~7.6137=-01 pIisiTs
CHRNGE IM THE COST FuncTIaon= -2, 1S02e+04

USER SPECIFIED CRITERIA FOR CONVERGBENCE ARE

snapM? 0. s1s0pI6! 1.4000e+081 pF: 0.
]

G
[ 443.72336119 0. 34970429 3.2273%5¢42
7 443,.72332427 0.34970426 2.287335674
2 -53. 156523147 0.53794523 3.19982502
ITERATION 2 -—DOMPLETED

]

3
9 ~53. 16626020 0.53794238 3. 19922502
io ~532. 16606044 0.53794233 3, 19922534
11 -36,.96043739 0. 40354059 3.14366430
ITERATION 3 COMPLETED

E

27 061:233:00
ALL DONE

Figure 3-11. Sample Session with Full {NP=1) Interaction
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Figure 3-12 shows a partial 1isting of the output file for
cur sample problem. The header portion of the output file
merely repeats information which was supplied by inputs to
the program. After the first Vine of asterisks (line 46),
an interation by iteration account of the progress history
begins. Symbols used are explained in Tables 3-4 and 3-5.

Lines 46 through 81 are typical prinout for one iteration
of the optimization algorithm. Included are the computed
gradient vector (G), Hessian matrix (HESS), and step
(parameter improvement) vector (STEP).

Lines 82-89 are prinout for a line search attempt. HNotice
that the computed STEP resutted in an increase, rather
than decrease, in the NLLF (Tine 79). AL that po.t the
algorithm automatically shortened the step length (p in
eguation 1-4) and tried again. This time the NLLF
decreased, so the algorithm continued normally. The
process of modifying p until the NLLF {5 reduced is called
a line search. Several line search attempts may be
necessary during a particular jteration, however, in the
example problem, one attempt was sufficient.

If the iteraction feature of the MXLKID code is utlized,
any prinout at the teletype is alsc written {echoed) on
the output file. Lines 90 through 102 show the
interaction which occurred during iteration 1 of the
sample prcblem,

After several iterations the algorithm will {hopefully)
converge, The final printout inlcudes the converged, or
at least the final, set of paramter estimates and their
95% confidence intervals, as determined by the algorithm.
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MXLXID SAMPLE RUN FOR USER'S MANUAL
13123:89U €3/13/7860

EXTENDED KALMAN FILTER NUN

THE NUMBER OF STATES 16: 2
THE NUMBER OF MEASUREMENTS IS: 1
SAMPLE COUNT=
THE INITIAL INTECRATION STEP BIZE IS1 §.0000000E-¢.
‘THE INITIAL PROCESS NOISE COVARIATCE MATRIX IS‘
[ .

. @,
THE INITIAL MEASUREMENT ROISE COVARIANCE MATRIX 1S
TAE INITIAL ERROR COVARIANCE MATRIX 18:

1.000E-086 0.
@e. 1.000E-06
INITIAL CONDITION FILE - INLID
MEASUREMENT FILE ~ OUTSIM

OUTPUT FILE = SAMPOUT
THE INITIAL STATE VECTOR 18:
MIRIMIZATION ROUTINE PARAMETERS ARE:
MAXITR= 6

MAXTRY= ]
EVHIN= 1.0000E-06
OPTN=_ 1.0600E+00 1.8000E-02 1.6000E-07 0.
IRITIAL THETAS ARE
1.008000E-01 9.0000002::0 4.000000E+00  2.000800X+00

e, 1.080000E-61
2 OF TﬁEz'l'HL'l"As ARE TO BE VARIED, THEY ARE:
TTY INTERACTION OCCURS EVERY 1 ITERATIONS
MINIMIZATION CONVERGENCE CRITERIA ARE AS FOLLOWS
1. NORM OF THE GRADIENT: @.
2, SICNIFIGANT DITIT CHANGE SN THE PARAMETERS: 1,4886E+«01
CHANGE IN THE COST FUM.TI‘]ONS o.

'l'HE P. T OPTION (MP) IS
NNOVATIDONG PLOTTED FVERY 1 ITERATTONRS

Pz 2.19468981 BHM
TH

0. 10000000 9.00000000

kAR RN TRERRRR RN KEERRRREREFEE RN RRR R RR B LS RRTEERERREERERERR R R
ITR» 1
F=  2.194608981E+04
TH
0.140000801 9.60000000
'l;; 2.19468994E+04
8.18000000 9.00000090

G

1 -4,96139E+02 1.42173E+63
HES

1 8. 126B0E+02 1 .23860E+01

2 1.2386BE+81 6.3777HE+O1
NORM HESS

1 1.00000E+00 3,30736E-02

2 5.30736E-02 1 .00000E+00
EVAL

] 92.46426E-01 1.363567E+00
EVEC

1 7.07107E-01 7,07107E-0]

2 ~7.07107E-01 7.07107E~-91 M

Figure 3-12. Example Output File |
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HES¥*¥-1
1 1.23404E-03-2,.32380E-04
2 ~2.32380E-04 1.52460E-02

STEP
1 9.42640FE-01~2.17919E+9]
F= +4.98393819E+064

TH
1.84264032 -12.79188543
STEP TRY# 1
DF= 2.79124838E+04 RHO= 1,00080Z1+09
DFDREO= -3.14802074E+04
F=  4,43722561E+82

2.34970426 8.2273%042
STEP TRY» 2
DF= -2,15631743E+04 RHO= 2.6489%9E-01

ITERATION 1 COMPLETED
THIS ITERATION: F= #4.4372E+02TH= 3.4970E-01 3.2274E+00
LAST ITERATION: F0= 2.1947E+04THO=* |.0000E-01 9.0000E+00
GRADIENT= -4.9614E+82 1.4217E+63
PARAMETER ESTIMATES AND 93X CONFIDENCE BOUNDS
1. 3.4970E-81 +/- 6.8B53E~-82
2. 3.2274E+00 +/~ 2.4201E-01
CONVERGENCE PARAMETER CALCULATIONS ARE AS FOLLOWS
NORM OF THE GRADIENT= 2.2675E+86
SIGNIFIGART DICIT CHANGE IN THE PARAMETERS:= ~7,6137E-01 DIGITH
CHANGE IN THE COST FURCTION= -2.1383E+64
USER SPECIFIED CRITERIA FOR CONVERGENCE ARE
CRORM: ©. SIGDIG: 1.4080E+01 DF: @.

",

1TR» 2

THETA= 6.0934E-01 3.(437E+09
STANDARD DEVIATION= 9.6789E-03 7.9765E-03

* PARAMETER 935% ERROIRL BOUND *
*® 1. 6.0964E-01 +/~ 1.8971E-02 =
* 2, 3.1487E+00 +/— L.3634E-02 =

Figure 3-12. Exampla Output File (Continued)
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Table 3-4 - Information in the Qutput File Corresponding to a Single Iteration
of the Parameter Identifier,

Variable Name

TH

HES

EVAL

EVEC

HES**-]

sTFP

Pata

Cost Function
(NLLF)

Parameter Vziues
Gradient
Hessian

Eigenvalues of
the Hessian

Eigenvectors of
the Hessian

Modivied Inverse
of the Hessian

The computed’
paerameter im-
provement step.

Comment

The inverted hessian is modified to
insure positive definiteness. The
method of modification depends on the
type of minimization algorithm used.
See Appendix A, section 4 for detaiis.
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Table 3-5 - Information in the Output File Corresponding to a Line Search

Attempt.
Yariable Name Data
OF Difference between the new and previous value of the NLLF.
DFDRHQ Computed derivative of NLLF with respect to step size.

RHO Step size.




3.6.3

~41-

The confidence intervals provide the user with accuracy
Timits for the parameter estimates, i.e., one can say with
95% confidence that the parameter value 15 in the region
of the estimate, plus or minus its confidence interval.

Plot File

The plot file contains a seguence of inpovations plots, a
whiteness test for the final set of innovations, a plot of
the cost function versus iteration number, and a plot of
the search path through parameter space. These plots are
put into an FRBD file named FX105MLIDO.

Innovations are defined as data residuals, i.e., the
difference between measured and estimated data. Figure
3-13 shows the seguence of innovations plots from the
MXLKIO run for our sample problem. At the user's option
(MP in the input file), an innovetians plot is made at the
end of each iteration of the identifiz2r algorithm. As the
algorithm progresses, the system model tends to improve
due to better parameter estimates and as a result, the
innovations statistical characteristics change. The mean
tends toward zero and the innovations at different time
points become uncorrelated; i.e., the process approaches
white noise. As the model becomes a more exact
representation of the real system that produced the data,
the innovations seguence becomes dominated by the random
and uncorrelated measurement noise, and the correlating
effects due to modeling error become negligible.

The innovations plot sequence can be examined by the user
to determine if the identifier is operating properly. For
example, if the identifier seems to converge to a set of
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parameter estimates, yet the final innovations are not
“white" {uncorrelated), the convergence may be to a local
minimum or saddle point.

MXLKID performs a statistical test on the final set of
innovations to determine if the process is white. Figure
3-14 shows the results of the whiteness test for our
sample problem. Basically, Figure 3-13 is a plot of the
innovations sample autocorrelation function. We can
conclude that our example process is white because none of
the autocorrelations exceed the bounds fndicated by the
dashed lines {“percent out of bounds=0"). A full
explanation of the whiteness test in included in Appendix
B of this report.

The plot of NLLF as a function of iteration (Figure 3-15)
shows graphicaliy the improvement of the NLLF as the
algorithm progresses. It should, of course, decrease
monotonically if the algorithm is converging.

The parameter-space plot (Figure 3-16) shows the path of
the identifier as it searches through parameter space for
a minimum of the NLLF. The starting and ending points are
indicated. With this plot, minimization algorithm
problems such as hemstitching may be detected. Presently,
the path plotter projects the path onto a 9. xq]

plane, where j=i+l and i ranges from 1 to KTH-1 (KTH is
the number of paramters). Future versions of MXLKID may
include an option to select any two of the parameter to
form a projection plane.
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.9k SoOMEANANITENESS TESTower
INNOUATIONS VARIAMCE: FILTERw 1.00000E-02
0.8 : SAKPLEw 1, 1 JO04E-02
ENEANS- 1, 295520E-G2 (BOUND= 2,920382E-02>
PERCENT OUT OF BOUNDS= O, (CNT= @)
0.7
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Figure 3-14. Innavations Whiteness Test
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SUMMARY

In this report we have introduced the MXLKID parameter identification
program as a tool for system analysis and identification. Since eacn
iteration in MXLKI™'s nonlinear optimization process requires a Kalman
filte, pass over t. set of measurement data, the program might be
costly in terms of computer time, but as a system identification
aigorithm, 1t provides accurate parameter estimates and reliable

confidence intervals in most cases.

A summary of MXLKID functions znd vequivements is shown in Table 24-1.
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‘Table 4-1. Summary of MXLK Program Functions

-

* THIS IS VERSION 1 OF MMIX

L3 PROCRAMMED BY: DON GAVEL,INFORMATION PROCESSING RESEARCH GROUP
* X2-8539, L~156

x DATE: MARCH 3. 1980

* i

FWRE L

MXIK -- PROGRAM FOR IDENTIFICATION OF SYSTEM PARAMNETERS
USING THE MAXIMUM LIKELIHOOD METHOD

MK IS A METHOD FOR IDENTIFYING PARAMETERS GEARACTEHIZING
A DYRAMIC SYSTEM MODELED BY EQUATION'3 OF THE FORM

DX/PT=F (X, THETA,¥,T)
Z=H(X,THETA,T)+V

WHERE:
W=H(@,Q}, VsN{O.R), X(A)=N(XHAT{(0},PI(Q))
THETA IS A SET OF UNKNOWN PARAMETERS TO BE IDENTIFIED
Q,R,XHAT(9),AND P1{©®) CAR BE FURCTIONS OF THETA
H(M,C> INDICATES NORMAL RANDOM VECTOR WITH MEAN, M ARD
COVARIARCE, C©

USER INPUTS:
THETA(6) - INITIAL PARAMETER ESTIMATES
R = COVARIAREE OF MEASUREMENT NOISE

@ - COVARIANCE OF RANDOM DRIVING NOISE
PI(®) = COVARIANCE OF INITIAL STATE ERROR
3(@) - INITIAL STATE
FSYSTM - SYSTEM DYNAMICS SUBROUTINE (CONTAIRS F¢.))

HMEAS - SYSTEM MEASUREMENT SUBROUTINE (CORTAINS H(.))
CHOICE OF ALGORITHM FOR MINIMIZING THE
NEGATIVE LOG LIKELIHGOD FUNCTIOR
A) GAUSS-NEWTON
B) LEVENBERG-MARQUARDT
CONVERGENRCE CRITERIA
A) NORM OF GRADIENT
B) RELATIVE CHANGE IN PARAMETERS
C) RELATIVE CHANGE IK COST FUNCTIOR

TAETA ESTIMATES

THETA ESTIMATE VARIANWCES
CORVERGENCE CRITERION MET
OUTPU"{_HELE CONTAINING A HISTORY OF:

AS
COST FUNCTION VALUES
GRADIENTS
HESSBIANS
EI1GERVALUES OF HESSJANS
STEP DIRECTIORS IN THETA SPACE
STEP SIZES AND HISTORY OF LINE SEARCH ATTENPTS
ARDT PARAMETERS

MARQU. 1 4
PLOT FILE CONTAINING:
-INNOVATIONS PLOT FOR EACH KALMAN FILTER RUN
PATH OF THE MINIMIZATION ALGORI'HM IN THETA SPACE
COST FUNCTION VALUE V8. ITERATION NUMBER
AVAILABILITY:
MXLK IS8 AVATLABLE ON THE LLL CDC 7600 COMPUTER (OCTOFUS)
IT I8 WRITTEN IN LALTRAW TO BE COMPILED BY THE CBAT COMPILER
LOAD-TIME LIBRARIES USED: ORDERLIB, ri@9LIB, STACKLIB, EE
SUBROUTIHE PACKAGES USED:
ILTER (XALMAN FILTER, FROM DYNEST4,
[NFORMATION FROCESSING RESEARCH GROUP LIBRARY)
GEAR (IKTECRATOR - NUMERICAL MATHEMATICS GROUF LIBRARY)
RS (EICENVALUE PACKACE - NUMERICAL MATHEMATICS GROUP L1BRARY)
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APPENDIX A
MXLKID ALGORITHM DESCRIPTION

This appendix has been written to supplement the MXLKID users manual with more
detailed background information on the program operation. WKe include all the
basic formulas used in the maximum likelihood algorithm. The reader is
assumed familiar with basic probability theory, 1inear algebra, and dynamic
systems. A review of these areas i5 given in the first three chapters of Gelb & .

The maximum 1ikelihood parameter identification algorithm, as applied to
linear dynamic systems, has been presented in papers by Gupta and Hehra[ﬂ
and Xashyap 2. The MXLKID program is a relatively straightforward
application of the algorithms presented in these papers, with the exception
that MXLKID has been extended to cover non-linear, as well as linear, dynamic
systems models.

Referring to the block diagram of the MXLKID alori*hm (Figure A-1) we see that
the main tasks of the algarithm are:

1. Use the Kalman filter to compute € and R (innovations and
innavations covariance).

2. Calculate the likelihoad function, J{(8).
3. Update parameter estimates based on a gradient optimization algorithm.

4. Calculate a Hessian matrix and insure that it is positive definite (a
subtask of the optimization algerithm).

5. Test the algorithm for convergence.
6. Apply 2 whiteness test on the final innovations.

The first five of the above tasks correspond to the five sections of this
appendix. The whiteness test (task 6) is discussed in Appendix B.
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A.1 Kalman Filter

In this section we present the Kalman filter as a tool for handling noisy data
generated by a dynamic system. MALKID uses the Kalman filter to gemerate an
uncorrelated innovations sequence given the correlated measurement sequence,
based on knowledge of an underlying dynamic model. Since the filter must be
given a dynamic model of the system to work with, the optimization algorithm
(discussed in section A.3) can essentially identify the system by trying out
different models in the Kalman filter until am objuctive function called
likelihood (see section A.2) is maximized. We start here by discussing
dynamic system representations and presenting the Kalman fiTter algorithm.

A dynamic system can be mucdaled, mathematically, by ordinary differential
equations (ODE). Within these ODE may be several parameters we wish to
identify. Our approach is to first re-represent the ODE by transforming them
to a set of simultaneous first order ODE. The resulting representation is the
one most commonly used in modern systems analysis [5’7’8]. Simultanecus
first order ODE are represented in vector-matrix notation as follows:

X = f(x, 8, ¥ (A.1-1a)
Yy =h(x, 9) (A.1-1b)

Y represents the dependent variable in the original ODE (or variables, y may
be a vector), u is the driving function and g is the set of unknown
parmeters., Note that in the transformation from nth order QDE to n
simultaneous lst order equations, a vector of n intermediate dependent
variables, x, is introduced. The vector x is called the state, and equation
A.1-1 is called the state-space representation. Several state-space
representations are possible for a given nth grder ope. (4,

A mathematical representation of a dynamic system allows us to simulate that
system on a digital computer. Given the initial state of the system at some
time in the past, x(t,), plus a history of all the inputs to the system
since that time: {_q(t). tysts tn}' and assuming we know the true set
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of parameters; § = g,..., equation A.1-1 could be uniquely solved to
determine y(t) for t, =t =t . In other words, we should ideally be able
to simulate the true system outputs which would be measured in a laboratory
test,

Of course, in practice, computer-model generated data never matches real data
exactly. One source of mismatch is modeling error, that is, # is not known
exactly or, more seriously, the order or non-linear structure of the system
model is incorrect. Another source of mismatch between simulated and measured
data is random noise. There is always some uncertainty in 1) the initial
state, 2) the driving function, and 3) the measurement process. These noises
are represented as follows:

x(ty) = & (t) - X)) (A.1-2a)
u=T+w (A.1-2b)
¥ = hix,8) (A.1-2¢)
Z=y+y {A.1-2d)

where initial state error is represented by zxta) and estimate by g(to);
the driving function has a known part, U and an unknown part w; and the data
measured in the laboratory is z, and is corrupted by measurement noise, v.

So, typically, the system identification problem is complicated. We have
noisy data tzken from an unknown system driven by uncertain inputs.

One tool available for handling noisy data is the Kalman fiTter[s’ﬁa (KF)
(Figure A-2). The KF is a statistical, model-based state estimator.scheme.
With the KF, knowledge of the system dynamics and statistics of the noise
sources s used to reconstruct estimates of the true state of the

system, {ﬁ(t,g), ty s t s tp, and the true output, {i(t,g), t,sts

tni. The reader unfamiliar with the KF can quickly skim over the algorithm
outlinred in Table A.1 or refer to Ge1bEﬂ. Detailed knowledge of the KF is
not necessary for running the MXLKID program.
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Two outputs from the KF are required for computing the 1ikelihood function
(equations A.2-1 in the next section), 1) the innovations, €y, and 2) the
innovations covariance, R§. Let us digress for a moment to discuss the role
played by the innovations in the mode) identification process. Refer to the
block diagram of the Kalman filter shown in Figure A.2. Note that the
innovations, €> are used in a feedback scheme to update state estimates in
the model. If the filter model is valid, the innovations sequence is a
statistically "white" and zero mean

Observed
data innovations State estimates
N d {
z(y) + £ + ek T Fox

Data
estimate

Figure A-2. Kalman Filter
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TABLE A.l

SUMMARY OF CONTINUOUS-DISCRETE EXTENDED KALMAN FILTER

Prediction:
K+
A A A
"k+1|k Skt ﬂxa'k’ u) da
k
K+

~ = A ~ % T A
fk+afk E:("nk)’h]k * o () + Qa]d“

k
Innovation:

_ A
Ba1 = Zkel = MOfag )

_oarh - T,A
Reva]e = BTl Craagid * Re

Correction:

T,A -1
Kt = T (g Reaape)

R % sy e

e
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TABLE A.1 {Continued)

A - A
Sat kel = Mt KerrBinr

~ - A i A T
Mesapeel = [1 - "k+1“("k+1|kzlllk+1|k[1_ - Kk+lﬂ(xk+1|kﬂ

T
* Ke1Ri+aKen
where
A A
F(xk )= af(x) . H(xk k) = g(h(x))
Jk ax ‘ F13
A A

XXk *klx

and
-~ - [ ~r - - A
Tpay | *™ Cav(xk,,,uk) for Rl Xpal - xk+1|k

A ~
%o~ "(xolo'"ow)
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process, that is, uncorrelated fran one time point to the next (Figure A.3).
Innovations whiteness is useful as an independent statistical test to
determine §f the maximum Tikelihood aTgorithm has converged to a viable set of
parameter estimates. For this reason, a plot of the innovations for each KF
run is stored in an output file during MXLKID execution. After the algorithm
pas converged, a test of the innovations riean and whiteness is applied to

assure the validity of the estimated model parameters. Details of this test
are given in Appendix B.

WAk Y A B G WYL ALY demands Ul i user provide ST
jnformation concerning the statistics of process and measurement noise, and
ghe dynamics of the system. (Detailed information on providing this
information to the program is contained in Chapter 3 of this report,) The
pecessary starting ingredients include: R, the covariance of the measurement

€ (51 - INNOVATION"

TIME

Figure A-3. Example o a White Innovations Sequence
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ncise, Q, the covariance of the random pari of the driving function, ii(to),
tlbe covariance of the initial condition error, plus a specification of system
dynamics in a form similar to equations A.l-1la and b, Some or all of the
above information may be expressed in terms of an unknown set of parameters, @
which are to be identified by MKLKID. An initfal "quess" for ¢ must also be
specified.

We now proceed to derive an expression for 1ikelihood which uvses the results
of the Kalman filtering just described.
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A.2 The Likelihood Function

Likelthood is a measure of the validity of a dynamic system model. The
maximm 1ikelihood algorithm is based on the assumption that the parameter
vector is closest to the true set of system parameters when the 1ikelihood
function (LF) is at its maximum. We define the LF to be a conditional
probability density 1 as follows:

N
L(e) = p(Z(N) #) = 1
(8} = p(Z(N) @) g Vﬁlﬂ"*k-ﬁﬂ

172 . exp{-llZgT(tk,g) (R‘(tk,g_))'lg(tk,g)}. (A.2-1)

nere, Z represents the entire observed data sequence Z(N) = z(tk);
k=0, ..., N and 8 represents the set of unknown parameters which we wish to
identify.

We choose a statistical measure of model validity because of the
underlying statistical nature of the system jdentification process.
Measurement error, random driving noise, and an uncertain initial state all
contribute to randomness in the search for an ideal system model.

The equation for 1ikelihood given above is an approximation, valid only
insofar as we can assume a Gaussian PDF {probability density furction) for
Z(N) conditioned on 8. Among other things this assumes a linear or linearized
system mndei.ﬂﬂ In practice, however, many non-Tinear models have worked
quite satisfactorily, the requirement being that the model be not too
il1-behaved, so that Tinearized approximations can work to a certain extent.

Likelihood is computed by running the observed data through a Kalman filter to
generate the innovations sequence, £(t;,8 ), and sequence of innovations
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covariances, R*(t;, 8); i=1,... N. Note that, since the LF i: conditioned
upon 8, we must specify the parameter set before computing tfe LF. How can we
specify such a g, if initially it is unknown? Since the objective is to
maximize L(8) with respect to a choice of g9, we make an initial guess, and
then, according to some numerical optimization scheme (we discuss optimization
schemes in the next section) 8 is sequentially improved untii the maximum of
L{g) is reached. This sequential alogrithm requires at least one function
evaluation 4t each step along the way.

L(8) can be maximized if we minimize its negative logarithm. We define a new
function, t'm negative log-likelihood function (NLLF) as follows:

J(8) = - nlL(8)] = -1/2tn (2n)

N
vz Giehte, 0 [®i, 0) e, 0

RE (t.'ls ﬁ)l i (A.Z-Z)

+ £n

A minimum of the NLLF is a maximum of the LF because the logarithmic
transformation is monotonic.

Having defined a suitable cost function (hereafter, when we mention the "cost
function”, we refer to the NLLF) all that remains te the maximum likeljhoed
parameter identification scheme is the minimization of this cost function with
respect to the unknown set of parameters. In the next section we discuss the
numerical minimization techniques available in the MXLKID program.
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A.3 Minimization Techniques

The main task of the maximum 1ikelihood parameter identification algorithm is
to find the parameter set, @, which minimizes the cost function, J(g). There
exists a multitude of methods for numerically minimizing a function.
Basically, they all follow an interative procedure resembling the

following: [10]

1. Pick a starting g,

2. Calculate J(¢)}{using the Kalman fitter).

3. Using an algorithm of your choice, pick some new 8.
4. Catculate the new J{g).

5. If the new J(8) is less than the ¢1d J(@) return to step 3 and
continue until some convergence criterion is met.

6. If the new J(8) is not less than the old J(@), use some default
algorithm to pick a better g and return to step 4, or give up.

The iterative minimization methods can be any of thke many non-linear
programming techniques developed over tie years. llj Nf these, the gradient
methods seem to offer the best success. In the MXLKID program two gradient
mathods are available: the Gauss-Newton algoritim and the Levenberg-Marguardt
algarithn. In both these algorithms, the first derivative of the cost
function (the gradient) is used to determine the direction of search for an
improved g:
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A A
£‘+1 = _gl- Phﬂl (A.3-1)
a3d(e
where g,* a8
8=9,

where h is a pxp (where p is the number of parameters) matrix, and p is a
scalar and £ is the iteration index. (The selection of h and p are determined
by the particular type of method used, as we shall show.) Mote that the
parameters are modified in a direction oppesite the gradient {the direction
may be modified scmewhat by the h matrix), i.e., they are walked dewn the
slope toward the minimum of J(g). When the minimum is reached, g is
(theoretically) a zero vector, and the algorithm has converged to solution
for @.

The gradient, g, is calculated numerically in the MXLKID algorithm as folltows:

_ae+edt) - ae) | . i
g v ; 1=1, ..oy p (A.3-2)

where Ag(ﬂ is 2 p-vector whose only non-zero element is the ith

which is Ae;. The Kalman filter is run p+l times, once to caiculate J{p),
2rd then p more times to calcutate J(g +A_9_“)) for i=1 to p, As would be
expected, the gradient calculation 1s usually the most time consuming task in
the MXLKID algorithm.

element,

Let us now present the particular optimization algorithms programmed in MXLKID
and discuss their individual characteristics.




e

A-14

A.3,1 Gauss-Newton

The Gauss-Newton method assumes the cost function surface to be,
12 a first approximate, a parabolic bowl (Figure A-4). This
optimization method is designed to irmadiately send g to the
lowest point within the bowl.

Cost

8y

Figure A-4. Example of a Parabolic Approximation to a Cost Function Surface
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We substitute the following terms into equation A.3-1:

P=1 (A.3-3)
and h o= H'l
2
where H.. = 3" 3(e)
i 2026y

H, called the “Hessian" of the cost function, contains surface
curvature information and must be computed at each g. (Numerical
Hessian calculation techniques are discussed in Section A-4.)
Note from Figurs A-5 that h modifies the step direction, S,
slightly away from the negative of the gradient, -g, so that
parameters are moved directly taward the minimum point.

\_\ /- Lines of constant cost

Minimum point

6] o1

Figure A-5. Cost Function Cantour Plot. s the step
direction, g is the gradient.
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The Gauss-Newton algorithm generally provides fast convergence to
the minimum of J(9) so long as 8 starts out near that minimum.
Problems arise however, when the cost function suface does not
have a positive curvature, in which case the parabolic bowl
approximation mentioned above cannot be applied. The Gauss-Newton
algorithm may tend to take steps directly away from the minimum,
and thus diverge, or the algorithm could coverge Lo a saddle point
on the surface.

A.3.2 Levenberg-Marquardt

To introduce the Levenberg-Marquardt algorithm, we first discuss
steepest descent methods.

If 8 1ies far from the minimum, the Gauss-Newton approach may
prove ineffective. Better results may be obtained if the
parameters are forcved to step in a direction directly opposite the
gradient {i.e., along the line of "steepest descent"), ignoring
the Tocal surface curvature. In equation A.3-1, we set h equal to
the identity matrix, and the step size, p, is arbitrary. (The
step size must be modified when necessary to insure that the cost
function decreases.)

Steepest descent methods provide rapid initial parameter
improvement, avoiding the problems of the Gauss-Newton method, but
convergence tends to be slow in the Tocal vicinity of the cost
function minimur. Ideally, at some point during the search, one
should switch over to a Gauss-Newton algorithm to speed up final
convergence,

The Levenberg-Marquardt (LM) algorithm[?é] offers an alternative
to explicitly switching the minimization method in the middle of
the optimization procedure. This technique uses a sliding
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parameter, B, which, when large, causes the algorithm to act
similar to steepest descent, and when small, causes the algorithm
to act similar to Gauss-Newton. P is adjusted according to the
success achieved during previous iterations; the better the
improvement in J(8), the smaller B becomes.

The following is an ocutline of the LM algorithm as implemented in
MXLKID:

1. Set B (Marquardt parameter) equal to some initial value, say
0.01.

2. Use equation A.3-1 with
p=1
h = (H +p0%)-1 (A.3-4)
wher ¢ D? is a diagonal matrix containing the diagonal
elements of H. (pmay need to be modified here to force h to
be positive definite. See section A.4.)

3. If the cost function, NLLF, is reduced, accept the new value
for @, reduce @ by a factor of ten, and begin another
interation (return to step 2. . Otherwise, if the cost
function increases, continue.

4, Check the angle between the negative gradient, -g, and the
step direction, -hg. If this angle is greater than 45°,
increase 8 by a factor of ten and return to step 2.
(Increasing p brings cne step direction more in line with the
negative gradient). Otherwise, continue.

5. Search along the line defining the step direction (i.e., vary
P} and accept the Tirst p which reduces the cost function.
{The search method used in MXLKID is a parabolic interpolation
described in Bard ﬂd‘.) Return to step 2 after reducing g
by a factor of ten,
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This concludes our general introduction to gradient minimization
techniques. In the next section we discuss in more detail an
important subtask of the minimization algorithms, calculation and
inversion of the Hessian matrix.
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A.4 Hessian Calculation and Inversion Techniques

In the previous section, we discussed methods of minimizing a non-linear
function of a set of parameters, with respect to the parameters. The methods
discussed, along with several other second order techniques, require the
evaluation of a Hessian matrix, that is, a second derivative of the objective
function with respect to the parameters. The Hessian provides information
about the curvature of the objective function surface, and this information is
useful to help determine both direction and step size in the search of z
minimum.

For the maximum Tikelihood identification problem, direct numerical
calculation of the Hessian would require p2 Kalman filter runs, where p is
the number of parameters. Fortunately, an approximation is possibie which
eliminates the need for so many KF runs. The approximation uses information
generated during the numerical gradient calculation.

In this szction we introduce the Hessian approximation technique used in
MALKID, We also discuss methods of forcing the Hessian matrix to be positive
definite (a necessary condition in second order opiimization methods) EQ]
and present the technigues used for inverting the matrix.

A.4.1 Hessian Approximation

The following fact is known from parameter estimation theory:[;q

£ 8% an La){. ¢ } _8ml{s) aenl(e) (A.4-1)
961065 20 203

where L{g) is the likelihood function as defined in section A.2,
and repeated below:

L(g) = p(z(n)]|®) (A.4-2)
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Likelihood is the probability density for an observed set of data
Z(n) conditioned upon the set of parameters, g. Using the
follewing definitions:

3g) = -t L(g) (A.4-3a)
9;(8) = i J8) (A.4-3b)
and 35 = 301 % Xej (A.4-3c)

We can simplify A.4-1 as follows:

E Hij} = E{gig}} (A.4-4)
The above equation shows that gradient information alone can be used to
calculate the Hessian. Gupta and MehralJJ derive the following
approximate formula for the Hessian:

aei 30;

-1 aR; -1 Bk
+1/72 tr {(RE) —=—> (RE) —
/2 tr ﬁ} %) a0 (Ry) 805

-1 3R} -1 8R¢
+1/4 tr |(RS) —%] tr [(n;) 33';— (A.4-5)
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where €, and Ri are, respectively, the innovations and
innovations covariances resulting from the model-based signal
processing (Kalman filtering) of the measurement data. e, and
RE are dependent on the parameter set, g, because the system
model in the Kalman filter is dependent on 9, The partial
derivatives of 6 and Riare computed numericaTly, concurrently
with g, as follows:

.. 83(9) =_QL§-hAB(i)) - J(8), (A.8-6)
9% Vo0, a0; )
*y =M9+Ae{”) - Ek(8) | (A.4-7)
88 A8 '

8RS RE {i)y _ RS
k . _k{o+ae'’’} - k(e) -
P 50, (A.4-8)

(i =1, «<eau p)

where Ao(i) is a p-vector whose only non-zero element is the
{th element, which is asi. Recall that the Kalman filter must
be rup p+l times in order to calculate these partial derivatives.

Hessian Inversion Techniques

We stated in section A-3 that .o insure that a gradient algoritim
approaches a true minimum, the h matrix in equation A.3-1 must be
positive definite. h, in the Gauss-Newton method (and in the
Levenberg-Marquardt method as p approaches zero), would normally
be equal to the inverse of the Hessian. However, if and only if
the Hessian 1s positive definite, will h also be positive
definite. We introduce here methods of modifying the Hessian
inversion procedure so that h is guaranteed positive definite,
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We first normalize the Hessian matrix, with respect to its
diagonal elements:

H = p~lup-l (A.4-6)
whnere D s a 0312gonal matrix defined as Tollows:

i];/z ; Do, = 0 §f i#j

D;. =H i

11

If H is positive definite, then H' is also; therefore all of the

]
eigenvalues of H are greater ‘than zero. If we decompose H

into its eigenvalues and eigenvectors, we can Say:

y-1

p~H(n'y~To~!

(A.4-7)
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wherex1 is the it eigenvilue of H', and g; is the

eigenvector corresponding to the ;th eigenvalue.

Suppose some of the eigenvilues of H' are less than or
numerically close to zero. (By numerically close, we mean
relative to unity; since tie matrix H' 1is normalized, the
positive eigenvalues should typically be on the order of one.)
What is done now depends on which minimization algorithm we are
using. In the Gauss-Newton algorithm, eigenvalues Jess than some
small value (say 10~0) are not included in the summation shown

in equation A.4-7,

N e
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. T -1\ o1
h=0 ( E &8 )“ (A.4-8)
all Als
>Amin

“where Amin >0

In the Levenberg-Marguardt algorithm, the Marquardt parameter is
added to each of the eigenvalues in eguation A.4-7, provided the
parameter is large enough to force all of the eigenvalues to be
greater than zero. If the Marquardt parameter is not large
enough, it i5 set equal 1o the absolute value of the smallest
(negative) eigenvalue {plus some small number), se that it does
become large enough.

p
n =0 21 el G+l (A.4-9)
i=a

where B= Max[ﬂ,ﬁmin, lMin Ags i1, ....pl]

Bln*h': >0

In the next section, we discuss convergence criteria and parameter

estimate accuracy.
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A.5 Algorithm Convergence and Parameter Estimate Accuracy

Theoretically, a minimization algorithm has converged to a sot1icion when
the gradient vector becomes zero. Of course, with computer nmerical
accuracy, attaining an exact zero is not practical. Even convérgence to
near zero gradient may require an intolerably large number of tiny steps
in theta space while the theta values may, all along, be withiD
"acceptable" limits of accuracy. So the question of convergent€ may
TEYy ‘DR 3 QUESTION UF ‘Une tesived aucduraty In Une parameter BSLIMALRS.
On the other hand, due to a finite signal to noise ratio and 1imited
amount of measurement data awailable, the desired parameter accuracy may
not aven be theoretically attainable.

We shall first discuss algorithm convergence criteria and then address
the issue of parameter estimate accuracy. We can typically choose one of
three types of convergence criteria for a minimization algorithm: 1)
near zero gradient, 2) small change in the parameters or 3) smdll change
in the cost function. Typically a user may wish to empToy all three
types of criteria to make sure the algorithm stops at some point.

(MXLKID also includes a provision to detect divergence or extrémely Slow
convergence by placing a user specified 1imit on the total mmper of
itanatiane, Wlawad.Y

[

The MXLKID program has a provision for stopping the algorithm when any
convergence criterion is achieved and user interaction is not in effect,
If user interaction is in effect, the program will prompt the user, who
must then specifically end the program by typing "END." The user (in
interactive mode) also has tie option of continuing the algarifhm (or
even changing the convergence criteria) as that point. Refer 0 section
3.6.1 for details of user intaraction,

The three convergence tests ae as follaws: 1
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1. Norm of the Gradient:
KTH
- 2
el =6 (8.5-1)
i=1
lelj <crIT(1) == Convergence
Z. Small Change 7n the Parameters:
A
Let en‘ﬂd represent the old (prericus iteration) parameter estimates,

and § | represent the current estimates. The significant change
in the parameter estimate is computed by:

5= -logyg [ max 854000 - o, (D] (A.5-2)
11,1t

S can be interpret:d as the number of significant digits in ihe
parameter estimate.

v

S > CRIT(Z) == convergents

3. Small Change in the Cost Function:

'|J(é‘°,d) - J(é\new” < CRIT(3)=—>convergence

Parameter estimate accuracy is the final tcpic of discussion. The
maxfmum 1ikelihood method of parameter identification has a distinct
advantage of providing error bounds concurrently with the parameter
estimates. This is due to the fact that the variance of the parameter
estimates are related to the Hessian matrix in the following manner
(actording to the Cramer-Rao bound): (3
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E{(é B (- DT =wt (A.5-3)

Therefore

95% Confidence Interval = 1.9 (H'1)¥2 (A.5-4)

The ith diagonal element of the "information matrix" (inverse of the
Hessian} is the variance of the jth parameter estimate.* These confidence
intervals are printed out at the end of MXLKID program execution and apply to
the parameter estimates at the final iteration.

* Variance = ¢tandard deviation squared. 95% onfidence interval = 1.96 times
the stanld d deviation for Gaussian random variables, Please refer to
:apgu]-js,SE or any standard text on probability for a discussion of these

erms,

o e ——

mapm



APPENDIX B

STATISTICAL TEST PACKAGE

MXLKID alsp includes a feature to test the statistical properties of the
innovations sequence €yf =~ @ procedure used to indicate proper filter
performance, [t is well known [?.9., see Mehra D@I]that a necessary
condition for optimum Kalman filter performance is that the innovations are a
zerg mean, jndependent {white) sequence. These properties are satisfied when
the filter is properly tuned and the estimator mode! is satisfactory. 1In
fact, tesiing properties of {sk} enables the user to evaluate how well the
estimator mode? matokes™ reality. These simple tosts cam @ise e wsad 8o a3
the designer in “tuning" the filter (adjusting Q, R, 7 ) for satisfactory
performance,

The first property evaluated {s the independence or whiteness of {Ek}' We
assume thay the filter has reached a statistical steady-state and that the
innovationy sequence is ergodic {time average equals ensemble average), The
sample mean and sample autocorrelation are estimated using

- ]
N :E: e, (i)
£ (N) = .rli Y &) =},— = (B-1)
i=] .
N - .
2, 5l
&
and
A€ N A A T
(o) = & Z (€(i) - E (W) (e(i-1) - € (N)) (B2

*Since the R€ {5 the assumed covariance of a white sequence, we calculate

only the diagenal covariances and assume the cross terms are null.
Statistica) tests can also bé implemented to validate this assumption.



The normyyized autocorreiation, #€(t), is then calculated and tested.
Asymptotically, for large N, it can be shown that A€(£) ~ N(O. 1/ ) for
L# 0; therefore, the 95% confidence limits are: (see Mehra (143 for detailg)

_1.96/\(—N— SQ‘H(I) < l.BEIW(N = 30) (8-3)
where
58| - ‘151'#‘)
iile) =z
R;(0)

Thus, if lgss than %5 of the &ﬁ exceeds the limits of (B-3), we are 95%
confident that the innovations sequence is white. Tighter bounds could be
constructed, however, for tuning purposes this test is satisfactory.

The secong prope- ty evalucted is a test for zero mean. Since the sample meap
is a linear combination of Gaussian random variables, it is distributed:
e(=)~ N (O,R‘IN). Again the 95% confidence interval can be constructed
using the sample covariance of (B-2), i.e.,

A
-2. 55 r{(.—‘iei (ef,ju =& = 1 NV/W N o R . R~)

In the sample problem of section 3.2, we performed these tests (see

Fig. (B-1), We see that innovations are near zero mean and white. In the
MXLKID algorithm, the whiteness test is performed on the set of innovations
corresponding to the final set of parameter estimates.
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Figurs B-1. Mean/Whiteness Test
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