
A m R I C A L  METHOD FOR SOLVING 
E U I P T I C  BOUNDARY VALUE PROBLEMS 

XI4 UNBOUmDfGD D-NS* 

Charles 1- Goldstoin 

Applied Mathematics Depar-ent 
Brookhaven National Laboratory 

Upton, New York 11973 

For inclusion in the Proceedings of the E l l i p t i c  Problem Solvclts 
Conference, held in Santa Fe, Hew Mexico, June 30 - July 2 ,  1980. 

*The submitted manuscript has been authored under contract 
DE-AC02-76CH00016 with the tl. S, Department of Energy, 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



-. 

A NUMERICAL METHOD FOR SOLVING 
ELLIPTIC BOUNDARY VALUE PROBLEMS 

IN UNBOUNDED DOMAINS* 

Char les  I. Go lds t e in  - .  . - - 

Applied Mathematics Department 
Brookhaven Na t iona l  Laboratory  

Upton, N e w  York 11973 

I. INTRODUCTION 

-- - 
In -  t h i s  paper- we- s h a l l  d e s c r i b e  - a  nunie r ica rmethod  -f 0-r - - 

s o l v i n g  e l l i p t i c  boundary v a l u e  problems i n  unbounded domains. 
- - - -  -- - -- - - - -- - - > 

For a  su rvey  of v a r i o u s  methods f o r  s o l v i n g  such problems, 

see--f-11. -Here w e  s h a l l  - de sc r ibe  a  p a r t i c u l a r  method obta-ined 

by f i r s t  i n t r o d u c i n g  an a r t i f i c i a l  boundary .near  i n f i n i t y ,  

say  a sphe re  r of l a r g e  r a d i u s  R ,  and an approximate l o c a l  
R 

boundary c o n d i t i o n  on r 
R '  

A f i n i t e  element method i s  t h e n  - - 

employed t o  d i s c r e t i z e  t h i s  approximate problem. S ince  R 

must be  l a r g e  i n  o r d e r  t o  s u i t a b l y  e s t i m a t e  t h e  e r r o r  due t o  

t h e  a r t i f i c i a l  boundary, t h e  r e s u l t i n g  system of l i n e a r - - -  - - - - -  

equa t i ons  i s  u s u a l l y  q u i t e  l a r g e .  We s h a l l  d e s c r i b e  how t o  

reduce t h e  number of l i n e a r  equa t i ons  t o  t h e  a sympto t i ca l l y  

op t ima l  amount; w h i l e  p r e s e r v i n g  ~ p t i m a ~ e r r o r  es t imates -and- -  

t h e  s p a r s e n e s s  of  t h e  ma t r i x ,  by g r ad ing  t h e  mesh system- 

a t i c a l l y  i n  such a  way t h a t  t h e  element mesh s i z e s  a r e  i n -  

c r e a s e d  a s  t h e  d i s t a n c e  from t h e  o r i g i n  i n c r e a s e s .  - - -  - -- 

* The submi t ted  manuscr ip t  ha s  been au thored  under c o n t r a c t  
DE-AC02-76CH00016 wi th  t h e  U.S. Department of Energy. 

. . - .  - .  



11. THE MESH GRADING PROCEDURE 

3 Let  R denote  a bounded s u b s e t  of R w i t h  smooth boundary, 

C a n .  Denote t h e  complement of 5 by R and l e t  x = (x1,x2,x3) 

3 denote  an a r b i t a r y  p o i n t  i n  R . For s i m p l i c i t y ,  w e  cons ider  

t h e  fol lowing model problem: 

2 c au 
( - A - K  ) u = f i n  !d , - =  0 on a n  . - . . - - . -. - . an 

and ( 2 . 1 )  
au ( X I  1 1 + ( E - i K ) ~ ( ~ ) = ~ ( - - )  a s r =  1x1 + - ,  

a where an denotes  t h e  outward d i r e c t e d  normal t o  a n ,  f and a n  
. - 

a r e  smooth, K i s  real  and f has  bounded suppor t .  This  prob- 

lem i k  well-posed. When K # 0 ( K  = 0 )  , (2: 1) is  r e f e r r e d  t o  a s  - 

t h e  e x t e r i o r  Helmholtz - (Laplace) . . . problem. Our method . and . .  

r e s u l t s  may be r e a d i l y  extended t o  o t h e r  boundary va lue  

problems, i nc lud ing  t h o s e  wi th  v a r i a b l e  c o e f f i c i e n t s  and more 

gene ra l  boundary cond i t i ons .  

We next  fo rmula te  an  approximate problem on a bounded 

domain. Define t h e  sets SR and QR by SR = { X E R ~ :  lx 1 s R }  and 

Q R = s R m  ', where R i s  l a r g e .  Now cons ider  t h e  fol lowing 

problem: 

and 

% + ( ; - i K )  1 u = O  on r R -  a r  R 
- asR. 

This  problem i s  a l s o  well-posed. Note t h a t  t h e r e  a r e  va r ious  

o t h e r  approximate boundary cond i t i ons  t h a t  may be imposed on 

rR  ( s e e ,  e .g . ,  [ l ] )  f o r  which ou r  method a p p l i e s .  

- i K r  S e t  U(x) = e u (x )  , where u s a t i s f i e s  (2 .1)  . I t  may be 

proved t h a t  

I D % ( x )  I 5 f o r  r s u f f i c i e n t l y  l a r g e ,  



where D ~ U  denotes  an a r b i t r a r y  d e r i v a t i v e  of U of o r d e r  l a l .  

I n  view of ( 2 . 3 ) ,  we s h a l l  approximately s o l v e  f o r  U and 

- i K r  E 1 
U = e  uR ( x )  , where u  s a t i s f i e s  (2.2) . Le t  H = H ( aR)  

R R R 

denote  t h e  space of complex-valued f u n c t i o n s  whosede r iva t ives  

of o r d e r  less than  two a r e  square- in tegrab le  over QR. I t  

fo l lows  from i n t e g r a t i o n  by p a r t s  t h a t  UR s a t i s f i e s  
- - - - - - - - -  - - -. . 

- E 
AR(UR,V)  = (F,V) = 1 F(x )V(x )dx  f o r  each V i n  H R I  (2.4) 

Q~ 

where 

i K r  
F ( x )  = e f  (x) and v ( x )  = e -iKrV(x) . 

W e  s h a l l  approximately s o l v e  (2.4) us ing  t h e  f i n i t e  

element method. For a  d e t a i l e d  d i scuss ion  of t h e  f i n i t e  

element method, s e e  [ 2 ] .  For s i m p l i c i t y  w e  assume he re  t h a t  

h  E ou r  one-parameter family  of f i n i t e  dimensional  spaces ,  S  C H R ,  

a r e  de f ined  f o r  hE(O,=) a s  fo l lows .  Suppose t h a t  w e  have a  

p a r t i t i o n  of n i n t o  s imple  s u b s e t s  ( e l emen t s ) ,  denoted by 
R . . 

th , wi th  diameter  of o r d e r  0  (h)  . sh then c o n s i s t s  of a l l  

h  cont inuous complex-valued f u n c t i o n s  vh such t h a t  v  I h E  P p  , 
- t 

where P p  denotes  t h e  set of polynomials of degree  . - less than  - 

2 f o r  some i n t e g e r  R g r e a t e r  t han  one. I t  may be r e a d i l y  

h 3 -3 seen t h a t  dim(S )= 0 ( R  h  1. Since  R i s  l a r g e ,  t h e  number of 

l i n e a r  equa t ions  w i l l  be l a r g e .  .. 

W e  nex t  c o n s t r u c t  a  new fami ly  of spaces  sh, de f ined  f o r  

hE ( O , 1 ]  , s a t i s f y i n g  

d im( ih )  S ~ h - ~  , (2.5) 

where C i s  independent of R ( a s  w e l l  a s  h ) .  S e t  

j -1  j R 
S = {x:2 .< 1x1 s 2  1 and L? = S .  n O R ,  j  = 1 ,..., JR ,wi th  
j j I 



R R 
J R $ l o g 2 R .  S e t  n o =  Qk - 3 Q .  and assume f o r  s i m p l i c i t y  t h a t  

j=1 3 
R and s u p p ( f )  a r e  c o n t a i n e d  i n  t h e  u n i t  s p h e r e  and (2 .3)  hol& 

o u t s i d e  of t h i s  s p h e r e .  W e  now c o n s t r u c t  a  new p a r t i t i o n  of 
h  

Q i n t o  e lements ,  t j , w i t h  d i a m e t e r -  of o r d e r  0 ( h .  ) i n  each R 3 

, a n n u l a r  r e g i o n  QR W e  d e f i n e  t h e  i n c r e a s i n g  sequence  of pos- 
1 

. . . . . . . . . . . . . . . . . . . . . . . . .  ........... . .. . . . . . . . . . . - - . . .  i t i v e  numbers, h j, by - -. 

. . . . . . . .  
. . . . . . .  a-5 ho = h and h. = 2 " j h  w i t h  1 < < - 

J . . . - . . .  . . . .  2-1, j = 1 - , J , 
(2 .6)  

W e  now d e f i n e  gh t o  c o n s i s t  o f  t h o s e  c o n t i n u o u s  f u n c t i o n s  v h 

h  such  t h a t  v I h .  €PI. The m o t i v a t i o n  f o r  t h i s  c o n s t r u c t i o n  
t J 

and t h e  proof of  (2 .5 )  are based on approx imat ion  t h e o r y  and 

(2 .3)  and are  g i v e n  i n  [ 3 ] .  
. . . . . . .  . . . . . .  . . . . . . . . . . .  . . .  . . . . . . . . . . .  

- 

111. ERROR ESTIMATES 
- . -  

Our main t h e o r e t i c a l  r e s u l t s  e s t a b l i s h  t h e  e x i s t e n c e  and 

h  un iqueness  of  t h e  f i n i t e  e l ement  approx imat ion ,  U R ,  s a t i s f y i n g  

f o r  each V 
h  

as w e l l  a s  e r r o r  e s t i m a t e s  f o r  U-U These r e s u l t s  a r e  e a s i e r  
R '  

t o  prove  when K =  0 s i n c e  t h e  b i l i n e a r  form, A R (  , , i s  non- 

n e g a t i v e  d e f i n i t e .  A d e t a i l e d  t r e a t m e n t  of  t h i s  c a s e  i s  g i v e n  

i n  [ 3 ] .  When K #  0 ,  t h e  p r o o f s  a r e  c o n s i d e r a b l y  more d i f f i c u l t  

and a r e  g i v e n  i n  [ 4 ]  (where t h e  c a s e  of  v a r i a b l e  c o e f f i c i e n t s  

. and o t h e r  e x t e n s i o n s  of  Theorem 3 . 1  below a r e  t r e a t e d ) .  Here 

w e  mere ly :  s t a t e  some o f  o u r  main r e s u l t s .  

C Theorem 3.1:  Suppose t h a t  B i s  a f i x e d  s u b s e t  of R , 

h E ( O , l ]  and R i s  s u f f i c i e n t l y  l a r g e .  Then t h e  f o l l o w i n g  

r e s u l t s  ho ld .  

(a )  There  e x i s t  p o s i t i v e  cons tan t s ,  y l  and y 2 ,  such t h a t  

i f  KR s y l  and h  s y 2 R ,  t h e r e  e x i s t s  a  un ique  s o l u t i o n ,  
h  

JR 
U~ ' 

of 3 . 1 .  Fur the rmore ,  t h e  f o l l o w i n g  e s t i m a t e s  ho ld :  



J 
and -- 

h 2 a - 1  2 ( I  ~U-U, \  dx)' c ( R - ~ + ~ ' +  ( R  2 + h  ) ) ,  
R~ 

where C i s  independen t  of  h and R. 

( b )  There  a r e  c o n s t a n t s  C and A such  t h a t  t h e r e  
K I R  

e x i s t s  a un ique  s o l u t i o n ,  of (3 .1)  p rov ided  u ~ '  
. . 

Fur thermore ,  estimates ( 3  - 2 )  and (3.3)  h o l d  i n  t h i s  c a s e .  

Observe t h a t  Theorem 3 . l ( b )  i m p l i e s  t h a t  t h e  l a r g e s t  - 

mesh s i z e  hJ must s a t i s f y  t h e  a d d i t i o n a l  s t a b i l i t y  con- -. ,- 

R 
s t r a i n t ,  ( 3 . 4 ) ,  when KR i s  n o t  s u f f i c i e n t l y  s m a l l .  The con- 

s t a n t  C becomes l a r g e  a s  KR->-. Hence t h e  number of 
K I R  

e q u a t i o n s  must i n c r e a s e  a s  t h e  f requency  K i n c r e a s e s .  

I V .  NUMERICAL RESULTS 

I n  c o l l a b o r a t i o n  w i t h  A l v i n  B a y l i s s ,  t h e  a u t h o r  h a s  begun 

a numer ica l  i n v e s t i g a t i o n  of t h e  mesh g r a d i n g  p rocedure .  W e  

s h a l l  demons t ra te  t y p i c a l  r e s u l t s  w i t h  r e s p e c t  t o  a n  a x i a l l y  

symmetric  problem ana logous  t o  (2 .1)  w i t h  R =  Ix :  1 x 1 ~ . 5 1 ,  f  = 0 

au and t h e  boundary c o n d i t i o n  on an g i v e n  by K =  9 .  The data g cor- 
i K  1 x-x 

r e s p o n d s  t o  t h e  s o l u t i o n ,  u ( x )  = e s 
- 4lTIx-x , where xs i s  a f i x e d  

s 1 
a x i a l  p o i n t  such  t h a t  Ix 1 = . 4 .  I n t r o d u c i n g  t h e  a r t i f i c i a l  

S 

boundary TR as b e f o r e  and employing s p h e r i c a l  p o l a r  coordinates  

and a x i a l  symmetry, w e  c o n s i d e r  t h e  computa t iona l  domain, 

R R =  I ( r , ~ ) :  .5 dr  S R ,  0 S 8 s n l ,  f o r  problem ( 2 . 2 ) .  W e  d e n o t e  

t h e  l a s t  boundary c o n d i t i o n  i n  (2 .2 )  by BluR = 0 on r R a n d a l s o c m  

s i d e r  t h e  boundary c o n d i t i o n  

The boundary o p e r a t o r s ,  B1 and B 2 .  cor respond t o  t h e  f i r s t  two 



i n  a h i e r a c h y  of  approximate  boundary o p e r a t o r s  developed 

F4e employ c o n t i n u o u s  p i e c e w i s e  l i n e a r  f i n i t e  e l ements  on l 
a t r i a n g u l a r -  p a r t i t i o n  i n  ( r ,  8) c o o r d i n a t e s  t o  o b t a i n  a n  I 
approximate  s o l u t i o n  u s i n g  b o t h  a uni form and a g raded  mesh. I 
I n  t h e  f o l l o w i n g  computa t ions ,  w e  keep t h e  g r i d  e v e n l y  spaced 

. . . . . . . . . . . . . . . . . . . . .  .- ... . . . . . . . . . . . . . .  

i n  t h e  e - d i r e c t i o n  w i t h  4 1  g r i d  p o i n t s  and u s e  6 g r i d  p o i n t s  

i n  t h e  r - d i r e c t i o n  w i t h  R =  1.125. When employing a uni form I 
mesh w e  u s e  t h e  g r i d  p o i n t s  r = r  + . 1 2 5 j ,  j = 0 ,  .... 5 ,  i n  t h e  

j 0 - 

r - d i r e c t i o n  w i t h  r =.5. When mesh g r a d i n g  i s  employed, w e  
0 

f a c t o r  o u t  e i K r  as d e s c r i b e d  i n  S e c t i o n  2 and g r a d e  t h e  mesh 

i n  t h e  r - d i r e c t i o n  i n  accordance  w i t h  r = r  + . 0 4 7  and 
. . . .  3 . . . . . . .  - 1 0  -- . 

r = r j - l +  5r:-1, j = 2,  ..., 5. Only a few changes  w e r e  
j 

n e c e s s a r y  t o  modify t h e  c o m p u t e r ' ~ r o g r a m  s o  a s  t o  i n c o r p o r a t e  I 
t h e  m e ~ h ~ g r a d i n g .  W e  measure t h e  e r r o r  Ei, d e f i n e d  by 

liu-ull I 

%, = 
j 

R''L2 ( , cor respond ing  t o  t h e  bo:ndary o p e r a t o r  
1 1 ~ l l  -, 

 an) 
B j = 1 , 2 ,  where uh = eixru; i s  computed a s  d e s c r i b e d  i n  

j R 

S e c t i o n s  2 and 3 .  I n  t h e  f o l l o w i n g  t a b l e ,  w e  compare t h e  I 
e r r o r s ,  E o b t a i n e d  u s i n g  t h e  graded mesh w i t h  t h o s e  o b t a i n e d  

j 
u s i n g  a uni form mesh f o r  v a r i o u s  v a l u e s  of  K .  

Tab le  I. 

E2 ( % I  
Graded Uniform 

2 . 3 9  I 3 . 7 4  1 1.17 3.5 

Observe t h e  s u b s t a n t i a l  improvements due  t o  mesh g r a d i n g  

u s i n g  b o t h  Bl and B2.  These r e s u l t s  a r e  t y p i c a l  of o u r  



numer ica l  exper iments .  Note t h a t  a s  t h e  f requency  K i n -  . . 

. c r e a s e s ,  t h e  e r r o r  i n c r e a s e s .  A s  w e  i n d i c a t e d  i n  S e c t i o n  3 ,  

t h i s  i s  t o  b e  e x p e c t e d  s i n c e  w e  a r e  keeping t h e  number of  

e q u a t i o n s  f i x e d .  W e  a l s o  o b s e r v e  t h a t  t h e  main l i m i t a t i o n  on 

the.number o f  e q u a t i o n s  i n  o u r  computa t ions  i s  t h e  s t o r a g e  

requ i rements  o f  t h e  banded Gauss s o l v e r .  W e  a r e  a t t e m p t i n g  

t o  c i rcumvent  
. . .  

t h i s  d i f f i c u l t y  by u s i n g  i t e r a t i v e  
- .- - 

methods. 

A more comple te  d i s c u s s i o n  o f  o u r  numer ica l  r e s u l t s  w i l l  

appear  e l sewhere ,  [ 6 ] .  
I 

. - - - - . -  - -  
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L 

- where D"U denotes  an a r b i t r a r y  d e r i v a t i v e  of U of o r d e r  Icr 1 .  
I n  view of ( 2 . 3 ) ,  we s h a l l  approximately s o l v e  f o r  U and 

E 1 
UR = e - i K r ~ R  (x )  , where u  s a t i s f i e s  (2.2) . L e t  HR = H ( n R )  

R 

denote  t h e  space of complex-valued func t ions  whosede r iva t ives  

of o r d e r  l e s s  t han  two a r e  square- in tegrab le  over $2 R'  
It 

fo l lows  from i n t e g r a t i o n  by p a r t s  t h a t  UR s a t i s f i e s  
- - - .  - . -- . . . . . 

- E 
A ~ ( u ~ , v )  = (F ,V)  = I F (x )V(x )dx  f o r  each V i n  H R f  ( 2 . 4 )  

Q~ 

where 

i K r  - i K r  F  (x )  = e f  (x )  and v  (x)  = e V(x) . - 
- - -. ..- 

W e  s h a l l  approximately s o l v e  (2.4) u s ing  t h e  f i n i t e  

element method. For a  d e t a i l e d  d i scuss ion  of t h e  f i n i t e  

element method, s e e  [ 2 ] .  For s i m p l i c i t y  we assume h e r e  t h a t  

h  E our  one-parameter fami ly  of f i n i t e  dimensional  spaces ,  S  C H R ,  

a r e  def ined  f o r  hE(0,m) a s  fol lows.  Suppose t h a t  w e  have a  

p a r t i t i o n  of R i n t o  s imple  s u b s e t s  ( e l emen t s ) ,  denoted by 
R 

h  
th, wi th  diameter  of o r d e r  0  (h )  . S then c o n s i s t s  of a l l  

h  cont inuous complex-valued f u n c t i o n s  vh such t h a t  v  I 
P p  , L 

L 

where Pa  denotes  t h e  s e t  of polynomials of degree  l e s s  than  
- -. -. 

2 f o r  some i n t e g e r  R g r e a t e r  than  one. I t  may be r e a d i l y  

h  3 - 3  seen t h a t  dim ( S  )= 0 ( R  h  . Since  R i s  l a r g e ,  t h e  number of 

l i n e a r  equa t ions  w i l l  be l a r g e .  
.- . 

-h  W e  nex t  c o n s t r u c t  a new family  of spaces  S , de f ined  f o r  

h E ( O , l ] ,  s a t i s f y i n g  

where C i s  independent of R ( a s  w e l l  a s  h ) .  S e t  



R 
J R $ l o g 2 R .  S e t  no = O R -  '$ nR and assume f o r  s i m p l i c i t y  t h a t  

j=1 3 
fi and s u p p ( f )  a r e  con t a ined  i n  t h e  u n i t  s p h e r e  and (2 .3 )  holds 

o u t s i d e  of t h i s  sphe re .  W e  now c o n s t r u c t  a  new p a r t i t i o n  of 
h  

Q i n t o  e lements ,  t j , w i t h  d iamete r  of o r d e r  0 ( h .  ) i n  each 
R 3 

annu l a r  r e g i o n  fin W e  d e f i n e  t h e  i n c r e a s i n g  sequence  of  pos- 
j e 

J 
!Z8j 11-3-, h o = h  and h  = 2  h  w i t h  1 < P *  <=, 

j 
j = 1 . .  J .  ( 2 . 6 )  

W e  now d e f i n e  gh t o  c o n s i s t  of  t h o s e  con t i nuous  f u n c t i o n s  v h  

h  such t h a t  v I h .  EP,. The m o t i v a t i o n  f o r  t h i s  c o n s t r u c t i o n  
t 3  

and t h e  proof of ( 2 . 5 )  a r e  based on approximat ion t heo ry  and 

(2 .3)  and a r e  g i v e n  i n  [ 3 ] .  

11.1. ERROR ESTIMATES 
. . . . 

Our main t h e o r e t i c a l  r e s u l t s  e s t a b l i s h  t h e  e x i s t e n c e  and 

h  uniqueness  of t h e  f i n i t e  e lement  approx imat ion ,  U R ,  s a t i s f y i n g  

h h  h  - h  A ~ ( U ~ , V  ) = (F,V ) f o r  each vh i n  S  , (3 .1)  

a s  w e l l  a s  e r r o r  estimates f o r  U-U These r e s u l t s  a r e  e a s i e r  
R '  

t o  prove when K = O  s i n c e  t h e  b i l i n e a r  form, A R (  , ) , i s  non- 

n e g a t i v e  d e f i n i t e .  A d e t a i l e d  t r e a t m e n t  of t h i s  c a s e  i s  g iven  

i n  [3]. When K #  0 ,  t h e  p r o o f s  a r e  c o n s i d e r a b l y  more d i f f i c u l t  

and a r e  g iven  i n  [ 4 ]  (where t h e  c a s e  of v a r i a b l e  c o e f f i c i e n t s  

and o t h e r  e x t e n s i o n s  of  Theorem 3 .1  below a r e  t r e a t e d ) .  Here 

w e  me re ly  s t a t e  some of  o u r  main r e s u l t s .  

Theorem 3.1 :  S u p p o s e  t h a t  B i s  a  f i x e d  s u b s e t  of QC, 

hE(O , l ]  and R is  s u f f i c i e n t l y  l a r g e .  Then t h e  fo l l owing  

r e s u l t s  hold .  

( a )  There e x i s t  p o s i t i v e  cons t an t s ,  y l  and y 2 ,  such t h a t  
I- 

i f  KR L y l  and h  " y Z R ,  t h e r e  e x i s t s  a  unique  s o l u t i o n ,  u:, 
JR 

of ( 3 . 1 ) .  Fur thermore ,  t h e  fo l l owing  e s t i m a t e s  ho ld :  



where C i s  independen t  of h  and R. 

( b )  There  are c o n s t a n t s  C and A such  t h a t  t h e r e  
K , R  

e x i s t s  a un ique  s o l u t i o n ,  of (3.1)  p rov ided  u ~ '  

Fur thermore ,  e s t i m a t e s  (3 .2 )  and ( 3 . 3 )  hold  i n  t h i s  c a s e .  

Observe t h a t  Theorem 3 . ' l ( b )  i m p l i e s  t h a t  t h e  l a r g e s t  -- 

mesh s i z e  hJ must s a t i s f y  t h e  a d d i t i o n a l  s t a b i l i t y  con- .- . . 
R 

s t r a i n t ,  ( 3 . 4 ) ,  when KR i s  n o t  s u f f i c i e n t l y  s m a l l .  The con- 
- 

s t a n t  C becomes l a r g e  as KR -+ r n .  Hence t h e  number of 
K , R  

e q u a t i o n s  must i n c r e a s e  a s  t h e  f requency  K i n c r e a s e s . '  .. 

I V .  NUXERICAL RESULTS 

I n  c o l l a b o r a t i o n  w i t h  A l v i n  B a y l i s s ,  t h e  a u t h o r  h a s  begun 

a  n u m e r i c a l  i n v e s t i g a t i o n  of  t h e  mesh g r a d i n g  p rocedure .  W e  

s h a l l  demons t ra te  t y p i c a l  r e s u l t s  w i t h  r e s p e c t  t o  a n  a x i a l l y  

symmetric  problem ana logous  t o  (2 .1)  w i t h  R = ( x :  1x 1 s. 51,  f  = 0 

and t h e  boundary c o n d i t i o n  on a n  g i v e n  b  = g.  The data g  cor- 

e i ~ l x - x  7 a n  
r e s p o n d s  t o  t h e  s o l u t i o n ,  u ( x )  = s 

_ 4TFIx-x , where x i s  a f i x e d  
S I S 
- 

a x i a l  p o i n t  such  t h a t  Ix 1 = . 4 .  I n t r o d u c i n g  t h e  a r t i f i c i a l  
S 

boundary r as b e f o r e  and employing s p h e r i c a l  p o l a r  coord ina tes  
R 

and a x i a l  symmetry, we c o n s i d e r  t h e  computa t iona l  domain, 

S t R = C ( r , 8 ) :  . 5 r r s R ,  0 ~ 0 ~ ~ ~ 1 ,  f o r  problem ( 2 . 2 ) .  W e  d e n o t e  

t h e  l a s t  boundary c o n d i t i o n  i n  (2 .2 )  by BluR = 0  on PRandalsocon- 

s i d e r  t h e  boundary c o n d i t i o n  

The boundary o p e r a t o r s ,  B1 and B2, correspond t o  t h e  f i r s t  tmo 
A - 



i n  a  h ie rachy  of approximate boundary o p e r a t o r s  developed 

i n  I S ] .  

We employ cont inuous piecewise  l i n e a r  f i n i t e  elements on 

a  t r i a n g u l a r -  p a r t i t i o n  i n  ( r , e )  coo rd ina t e s  t o  o b t a i n  an 

approximate s o l u t i o n  us ing  bo th  a uniform and a  graded mesh. 

I n  t h e  fol lowing computations,  w e  keep t h e  g r i d  evenly spaced 
--- - 

i n  t h e  e -d i r ec t ion  w i t h  4 1  g r i d  p o i n t s  and use  6 g r i d  p o i n t s  

i n  t h e  r - d i r e c t i o n  wi th  R=1.125.  When employing a  uniform 

mesh we u s e  t h e  g r i d  p o i n t s  r = r o +  .125j ,  j  = O f . .  . , S t  i n  t h e  
. . . . . . .  . .  . . . . . . . . . . . . . . .  . . . . . . . . .  - . .  ~ . -  j ~ . ~ .  

r - d i r e c t i o n  w i t h  r o = . 5 .  When mesh grading i s  employed, we 

f a c t o r  o u t  e  iKr a s  desc r ibed  i n  Sec t ion  2 and g rade  the-mesh 

i n  t h e  r - d i r e c t i o n  i n  accordance wi th  r = r  + .047  and 
3 - - 1 0  

r = r  +Sr:-l, j  = 2, ..., 5. Only a  few changes w e r e  j j-1 

necessary t o  modify t h e  computer 'program s o  a s  t o  inco rpo ra t e  

t h e  mesh-grading.  W e  measure t h e  e r r o r  E,, de f ined  by 
I ~ U - U W ~ I  2 J 

X = 
j 

( a ') , corresponding t o  t h e  boundary ope ra to r  
lluii 9 . . . .  

~ ~ ( a o )  
B j = 1 , 2 ,  where u:= eiKru; i s  computed a s  desc r ibed  i n  

j 

Sec t ions  2  and 3. I n  t h e  fol lowing t a b l e ,  we compare t h e  

e r r o r s ,  E ob ta ined  us ing  t h e  graded mesh wi th  t hose  obta ined 
j 

us ing  a  uniform mesh f o r  va r ious  va lues  of K .  

Observe t h e  s u b s t a n t i a l  improvements due t o  mesh grading 

Table I. 

4.26 6.08 1.33 4.03 

using both B1 and B2.  These r e s u l t s  a r e  t y p i c a l  of our 

6 

9  

1 2  

4.62 7.37 

5.9 1 8.1  

8.4 ' 1 21.4 

2.4 5.68 

8.17 

9.4 

8.8 

17.2 



C 

numer ica l  exper iments .  Note t h a t  a s  t h e  f requency  K i n -  

. c r e a s e s ,  t h e  e r r o r  i n c r e a s e s .  A s  w e  i n d i c a t e d  i n  s e c t i o n  3 ,  

t h i s  i s  t o  be  expec ted  s i n c e  w e  a r e  keeping t h e  number of  

e q u a t i o n s  f i x e d .  W e  a l s o  obse rve  t h a t  t h e  main l i m i t a t i o n  on 

t h e  number of e q u a t i o n s  i n  o u r  computa t ions  i s  t h e  s t o r a g e  

requ i rements  o f  t h e  banded Gauss s o l v e r .  W e  a r e  a t t e m p t i n g  
.-. . 

' to  c i rcumvent  t h i s  d i f f i c u l t y  by u s i n g  i t e r a t i v e  methods. 

A more comple te  d i s c u s s i o n  o f  o u r  numer ica l  r e s u l t s  w i l l  

appear  e l sewhere ,  [ 6 ] .  
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