

2  
BNL-28138  
AMD 862

CONF - 800699--1

A NUMERICAL METHOD FOR SOLVING  
ELLIPTIC BOUNDARY VALUE PROBLEMS  
IN UNBOUNDED DOMAINS\*

MASTER

Charles I. Goldstein  
Applied Mathematics Department  
Brookhaven National Laboratory  
Upton, New York 11973

July 1980

For inclusion in the Proceedings of the Elliptic Problem Solvers  
Conference, held in Santa Fe, New Mexico, June 30 - July 2, 1980.

\*The submitted manuscript has been authored under contract  
DE-AC02-76CH00016 with the U. S. Department of Energy.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

beg

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

A NUMERICAL METHOD FOR SOLVING  
ELLIPTIC BOUNDARY VALUE PROBLEMS  
IN UNBOUNDED DOMAINS\*

Charles I. Goldstein

Applied Mathematics Department  
Brookhaven National Laboratory  
Upton, New York 11973

I. INTRODUCTION

In this paper we shall describe a numerical method for solving elliptic boundary value problems in unbounded domains. For a survey of various methods for solving such problems, see [1]. Here we shall describe a particular method obtained by first introducing an artificial boundary near infinity, say a sphere  $\Gamma_R$  of large radius  $R$ , and an approximate local boundary condition on  $\Gamma_R$ . A finite element method is then employed to discretize this approximate problem. Since  $R$  must be large in order to suitably estimate the error due to the artificial boundary, the resulting system of linear equations is usually quite large. We shall describe how to reduce the number of linear equations to the asymptotically optimal amount, while preserving optimal error estimates and the sparseness of the matrix, by grading the mesh systematically in such a way that the element mesh sizes are increased as the distance from the origin increases.

\*The submitted manuscript has been authored under contract DE-AC02-76CH00016 with the U.S. Department of Energy.

## II. THE MESH GRADING PROCEDURE

Let  $\Omega$  denote a bounded subset of  $\mathbb{R}^3$  with smooth boundary,  $\partial\Omega$ . Denote the complement of  $\bar{\Omega}$  by  $\Omega^C$  and let  $x = (x_1, x_2, x_3)$  denote an arbitrary point in  $\mathbb{R}^3$ . For simplicity, we consider the following model problem:

$$(-\Delta - K^2)u = f \text{ in } \Omega^C, \quad \frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega \quad (2.1)$$

and

$$\frac{\partial u(x)}{\partial r} + \left(\frac{1}{r} - iK\right)u(x) = o\left(\frac{1}{r}\right) \text{ as } r = |x| \rightarrow \infty,$$

where  $\frac{\partial}{\partial n}$  denotes the outward directed normal to  $\partial\Omega$ ,  $f$  and  $\partial\Omega$  are smooth,  $K$  is real and  $f$  has bounded support. This problem is well-posed. When  $K \neq 0$  ( $K = 0$ ), (2.1) is referred to as the exterior Helmholtz (Laplace) problem. Our method and results may be readily extended to other boundary value problems, including those with variable coefficients and more general boundary conditions.

We next formulate an approximate problem on a bounded domain. Define the sets  $S_R$  and  $\Omega_R$  by  $S_R = \{x \in \mathbb{R}^3 : |x| \leq R\}$  and  $\Omega_R = S_R \cap \Omega^C$ , where  $R$  is large. Now consider the following problem:

$$(-\Delta - K^2)u_R = f \text{ in } \Omega_R, \quad \frac{\partial u_R}{\partial n} = 0 \text{ on } \partial\Omega \quad (2.2)$$

and

$$\frac{\partial u_R}{\partial r} + \left(\frac{1}{r} - iK\right)u_R = 0 \text{ on } \Gamma_R = \partial S_R.$$

This problem is also well-posed. Note that there are various other approximate boundary conditions that may be imposed on  $\Gamma_R$  (see, e.g., [1]) for which our method applies.

Set  $U(x) = e^{-iKr}u(x)$ , where  $u$  satisfies (2.1). It may be proved that

$$|D^\alpha U(x)| \leq \frac{C}{r^{|a|+1}} \text{ for } r \text{ sufficiently large,} \quad (2.3)$$

where  $D^\alpha U$  denotes an arbitrary derivative of  $U$  of order  $|\alpha|$ .

In view of (2.3), we shall approximately solve for  $U$  and

$U_R = e^{-iKr} u_R(x)$ , where  $u_R$  satisfies (2.2). Let  $H_R^E = H^1(\Omega_R)$  denote the space of complex-valued functions whose derivatives of order less than two are square-integrable over  $\Omega_R$ . It follows from integration by parts that  $U_R$  satisfies

$$A_R(U_R, V) = (F, V) = \int_{\Omega_R} F(x) \overline{V(x)} dx \text{ for each } V \text{ in } H_R^E, \quad (2.4)$$

where

$$A_R(U_R, V) = a_R(u_R, v) = \int_{\Omega_R} (\nabla u_R \cdot \nabla \bar{v} - K^2 u_R \bar{v}) dx$$

$$+ \oint_{\Gamma_R} \left( \frac{1}{R} - iK \right) u_R \bar{v} ds,$$

$$F(x) = e^{iKr} f(x) \text{ and } v(x) = e^{-iKr} V(x).$$

We shall approximately solve (2.4) using the finite element method. For a detailed discussion of the finite element method, see [2]. For simplicity we assume here that our one-parameter family of finite dimensional spaces,  $S^h \subset H_R^E$ , are defined for  $h \in (0, \infty)$  as follows. Suppose that we have a partition of  $\Omega_R$  into simple subsets (elements), denoted by  $t^h$ , with diameter of order  $O(h)$ .  $S^h$  then consists of all continuous complex-valued functions  $v^h$  such that  $v^h|_{t^h} \in P_\ell$ , where  $P_\ell$  denotes the set of polynomials of degree less than  $\ell$  for some integer  $\ell$  greater than one. It may be readily seen that  $\dim(S^h) = O(R^3 h^{-3})$ . Since  $R$  is large, the number of linear equations will be large.

We next construct a new family of spaces  $\tilde{S}^h$ , defined for  $h \in (0, 1]$ , satisfying

$$\dim(\tilde{S}^h) \leq Ch^{-3}, \quad (2.5)$$

where  $C$  is independent of  $R$  (as well as  $h$ ). Set

$$S_j = \{x: 2^{j-1} < |x| \leq 2^j\} \text{ and } \Omega_j^R = S_j \cap \Omega_R, \quad j = 1, \dots, J_R, \text{ with}$$

$J_R \approx \log_2 R$ . Set  $\Omega_0^R = \Omega_R - \bigcup_{j=1}^{J_R} \Omega_j^R$  and assume for simplicity that  $\Omega$  and  $\text{supp}(f)$  are contained in the unit sphere and (2.3) holds outside of this sphere. We now construct a new partition of  $\Omega_R$  into elements,  $t_j^h$ , with diameter of order  $O(h_j)$  in each annular region  $\Omega_j^R$ . We define the increasing sequence of positive numbers,  $h_j$ , by

$$h_0 = h \text{ and } h_j = 2^{\ell' j} h \text{ with } 1 < \ell' < \frac{\ell - \frac{1}{2}}{\ell - 1}, \quad j = 1, \dots, J_R. \quad (2.6)$$

We now define  $\tilde{S}^h$  to consist of those continuous functions  $v^h$  such that  $v^h|_{t_j^h} \in P_\ell$ . The motivation for this construction and the proof of (2.5) are based on approximation theory and (2.3) and are given in [3].

### III. ERROR ESTIMATES

Our main theoretical results establish the existence and uniqueness of the finite element approximation,  $U_R^h$ , satisfying

$$A_R(U_R^h, v^h) = (F, v^h) \text{ for each } v^h \text{ in } \tilde{S}^h, \quad (3.1)$$

as well as error estimates for  $U - U_R^h$ . These results are easier to prove when  $K = 0$  since the bilinear form,  $A_R( \cdot, \cdot )$ , is non-negative definite. A detailed treatment of this case is given in [3]. When  $K \neq 0$ , the proofs are considerably more difficult and are given in [4] (where the case of variable coefficients and other extensions of Theorem 3.1 below are treated). Here we merely state some of our main results.

Theorem 3.1: Suppose that  $B$  is a fixed subset of  $\Omega^C$ ,  $h \in (0, 1]$  and  $R$  is sufficiently large. Then the following results hold.

(a) There exist positive constants,  $\gamma_1$  and  $\gamma_2$ , such that if  $KR \leq \gamma_1$  and  $h_{J_R} \leq \gamma_2 R$ , there exists a unique solution,  $U_R^h$ , of (3.1). Furthermore, the following estimates hold:

$$\left( \int_{\Omega_R} |\nabla(u - u_R^h)|^2 dx \right)^{1/2} \leq C(R^{-2} + h^{\ell-1}) \quad (3.2)$$

and

$$\left( \int_{\Omega_R} |u - u_R^h|^2 dx \right)^{1/2} \leq C(R^{-2} + h^\ell + (R^{-\frac{3}{2}} + h^{\ell-1})^2), \quad (3.3)$$

where  $C$  is independent of  $h$  and  $R$ .

(b) There are constants  $C_{K,R}$  and  $\Lambda$  such that there exists a unique solution,  $u_R^h$ , of (3.1) provided

$$C_{K,R} K h_{J_R} \leq \Lambda. \quad (3.4)$$

Furthermore, estimates (3.2) and (3.3) hold in this case.

Observe that Theorem 3.1(b) implies that the largest mesh size  $h_{J_R}$  must satisfy the additional stability constraint, (3.4), when  $KR$  is not sufficiently small. The constant  $C_{K,R}$  becomes large as  $KR \rightarrow \infty$ . Hence the number of equations must increase as the frequency  $K$  increases.

#### IV. NUMERICAL RESULTS

In collaboration with Alvin Bayliss, the author has begun a numerical investigation of the mesh grading procedure. We shall demonstrate typical results with respect to an axially symmetric problem analogous to (2.1) with  $\Omega = \{x: |x| \leq .5\}$ ,  $f = 0$  and the boundary condition on  $\partial\Omega$  given by  $\frac{\partial u}{\partial n} = g$ . The data  $g$  corresponds to the solution,  $u(x) = \frac{e^{ik|x-x_s|}}{4\pi|x-x_s|}$ , where  $x_s$  is a fixed axial point such that  $|x_s| = .4$ . Introducing the artificial boundary  $\Gamma_R$  as before and employing spherical polar coordinates and axial symmetry, we consider the computational domain,  $\Omega_R = \{(r, \theta): .5 \leq r \leq R, 0 \leq \theta \leq \pi\}$ , for problem (2.2). We denote the last boundary condition in (2.2) by  $B_1 u_R = 0$  on  $\Gamma_R$  and also consider the boundary condition

$$B_2 u_R = \frac{\partial^2 u_R}{\partial r^2} + \left(\frac{4}{r} - 2ik\right) \frac{\partial u_R}{\partial r} + \left(\frac{3}{r} - 4ik\right) \frac{u_R}{r} - K^2 u_R = 0 \text{ on } \Gamma_R.$$

The boundary operators,  $B_1$  and  $B_2$ , correspond to the first two

in a hierarchy of approximate boundary operators developed in [5].

We employ continuous piecewise linear finite elements on a triangular partition in  $(r, \theta)$  coordinates to obtain an approximate solution using both a uniform and a graded mesh. In the following computations, we keep the grid evenly spaced in the  $\theta$ -direction with 41 grid points and use 6 grid points in the  $r$ -direction with  $R = 1.125$ . When employing a uniform mesh we use the grid points  $r_j = r_0 + .125j$ ,  $j = 0, \dots, 5$ , in the  $r$ -direction with  $r_0 = .5$ . When mesh grading is employed, we factor out  $e^{iKr}$  as described in Section 2 and grade the mesh in the  $r$ -direction in accordance with  $r_1 = r_0 + .047$  and  $r_j = r_{j-1} + 5r_{j-1}^2$ ,  $j = 2, \dots, 5$ . Only a few changes were necessary to modify the computer program so as to incorporate the mesh grading. We measure the error  $E_j$ , defined by  $E_j = \frac{\|u - u_R^h\|_{L^2(\partial\Omega)}}{\|u\|_{L^2(\partial\Omega)}}$ , corresponding to the boundary operator  $B_j$ ,  $j = 1, 2$ , where  $u_R^h = e^{iKr} U_R^h$  is computed as described in Sections 2 and 3. In the following table, we compare the errors,  $E_j$ , obtained using the graded mesh with those obtained using a uniform mesh for various values of  $K$ .

Table I.

| K  | $E_1$ (%) |         | $E_2$ (%) |         |
|----|-----------|---------|-----------|---------|
|    | Graded    | Uniform | Graded    | Uniform |
| 0  | 2.39      | 3.74    | 1.17      | 3.5     |
| 3  | 4.26      | 6.08    | 1.33      | 4.03    |
| 6  | 4.62      | 7.37    | 2.4       | 5.68    |
| 9  | 5.9       | 8.1     | 8.17      | 8.8     |
| 12 | 8.4       | 21.4    | 9.4       | 17.2    |

Observe the substantial improvements due to mesh grading using both  $B_1$  and  $B_2$ . These results are typical of our

numerical experiments. Note that as the frequency  $K$  increases, the error increases. As we indicated in Section 3, this is to be expected since we are keeping the number of equations fixed. We also observe that the main limitation on the number of equations in our computations is the storage requirements of the banded Gauss solver. We are attempting to circumvent this difficulty by using iterative methods.

A more complete discussion of our numerical results will appear elsewhere, [6].

#### REFERENCES

- [1] Goldstein, C. Numerical Methods for Helmholtz Type Equations in Unbounded Regions. Mathematical Methods and Applications of Scattering Theory. Ed. J. A. DeSanto, A. W. Saenz, and W. W. Zachary. Lecture Notes in Physics. Springer-Verlag, Berlin-Heidelberg-New York (1980).
- [2] Ciarlet, P. G. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
- [3] Goldstein, C. I. The Finite Element Method with Non-Uniform Mesh Sizes for Unbounded Domains. (To appear), BNL Report Number 27307, AMD Report Number 839.
- [4] Goldstein C. I. The Finite Element Method with Non-Uniform Mesh Sizes Applied to the Exterior Helmholtz Problem. (To appear), AMD Report Number 861.
- [5] Bayliss, A., M. Gunzberger, and E. Turkel. Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions. ICASE Report 80-1 (1979).
- [6] Bayliss, A. and C. I. Goldstein. (To appear).

A NUMERICAL METHOD FOR SOLVING  
ELLIPTIC BOUNDARY VALUE PROBLEMS  
IN UNBOUNDED DOMAINS\*

Charles I. Goldstein  
Applied Mathematics Department  
Brookhaven National Laboratory  
Upton, New York 11973

July 1980

For inclusion in the Proceedings of the Elliptic Problem Solvers  
Conference, held in Santa Fe, New Mexico, June 30 - July 2, 1980.

\*The submitted manuscript has been authored under contract  
DE-AC02-76CH00016 with the U. S. Department of Energy.

where  $D^\alpha U$  denotes an arbitrary derivative of  $U$  of order  $|\alpha|$ .

In view of (2.3), we shall approximately solve for  $U$  and

$U_R = e^{-iKr} u_R(x)$ , where  $u_R$  satisfies (2.2). Let  $H_R^E = H^1(\Omega_R)$  denote the space of complex-valued functions whose derivatives of order less than two are square-integrable over  $\Omega_R$ . It follows from integration by parts that  $U_R$  satisfies

$$A_R(U_R, V) = (F, V) = \int_{\Omega_R} F(x) \bar{V}(x) dx \text{ for each } V \text{ in } H_R^E, \quad (2.4)$$

where

$$A_R(U_R, V) = a_R(u_R, v) = \int_{\Omega_R} (\nabla u_R \cdot \nabla \bar{v} - K^2 u_R \bar{v}) dx$$

$$+ \oint_{\Gamma_R} \left( \frac{1}{R} - iK \right) u_R \bar{v} ds,$$

$$F(x) = e^{iKr} f(x) \text{ and } v(x) = e^{-iKr} V(x).$$

We shall approximately solve (2.4) using the finite element method. For a detailed discussion of the finite element method, see [2]. For simplicity we assume here that our one-parameter family of finite dimensional spaces,  $S^h \subset H_R^E$ , are defined for  $h \in (0, \infty)$  as follows. Suppose that we have a partition of  $\Omega_R$  into simple subsets (elements), denoted by  $t^h$ , with diameter of order  $O(h)$ .  $S^h$  then consists of all continuous complex-valued functions  $v^h$  such that  $v^h|_{t^h} \in P_\ell$ , where  $P_\ell$  denotes the set of polynomials of degree less than  $\ell$  for some integer  $\ell$  greater than one. It may be readily seen that  $\dim(S^h) = O(R^3 h^{-3})$ . Since  $R$  is large, the number of linear equations will be large.

We next construct a new family of spaces  $\tilde{S}^h$ , defined for  $h \in (0, 1]$ , satisfying

$$\dim(\tilde{S}^h) \leq Ch^{-3}, \quad (2.5)$$

where  $C$  is independent of  $R$  (as well as  $h$ ). Set

$$S_j = \{x : 2^{j-1} < |x| \leq 2^j\} \text{ and } \Omega_j^R = S_j \cap \Omega_R, \quad j = 1, \dots, J_R, \text{ with}$$

$J_R \approx \log_2 R$ . Set  $\Omega_0^R = \Omega_R^R - \bigcup_{j=1}^{J_R} \Omega_j^R$  and assume for simplicity that  $\Omega$  and  $\text{supp}(f)$  are contained in the unit sphere and (2.3) holds outside of this sphere. We now construct a new partition of  $\Omega_R^R$  into elements,  $t_j^h$ , with diameter of order  $O(h_j)$  in each annular region  $\Omega_j^R$ . We define the increasing sequence of positive numbers,  $h_j$ , by

$$h_0 = h \text{ and } h_j = 2^{\ell-j} h \text{ with } 1 < \ell < \frac{\ell-1}{\ell-1}, \quad j = 1, \dots, J_R. \quad (2.6)$$

We now define  $\tilde{S}^h$  to consist of those continuous functions  $v^h$  such that  $v^h|_{t_j^h} \in P_\ell$ . The motivation for this construction and the proof of (2.5) are based on approximation theory and (2.3) and are given in [3].

### III. ERROR ESTIMATES

Our main theoretical results establish the existence and uniqueness of the finite element approximation,  $U_R^h$ , satisfying

$$A_R(U_R^h, v^h) = (F, v^h) \text{ for each } v^h \text{ in } \tilde{S}^h, \quad (3.1)$$

as well as error estimates for  $U - U_R^h$ . These results are easier to prove when  $K = 0$  since the bilinear form,  $A_R(\cdot, \cdot)$ , is non-negative definite. A detailed treatment of this case is given in [3]. When  $K \neq 0$ , the proofs are considerably more difficult and are given in [4] (where the case of variable coefficients and other extensions of Theorem 3.1 below are treated). Here we merely state some of our main results.

Theorem 3.1: Suppose that  $B$  is a fixed subset of  $\Omega^C$ ,  $h \in (0, 1]$  and  $R$  is sufficiently large. Then the following results hold.

(a) There exist positive constants,  $\gamma_1$  and  $\gamma_2$ , such that if  $KR \leq \gamma_1$  and  $h_{J_R} \leq \gamma_2 R$ , there exists a unique solution,  $U_R^h$ , of (3.1). Furthermore, the following estimates hold:

$$\left( \int_{\Omega_R} |\nabla(u - u_R^h)|^2 dx \right)^{1/2} \leq C(R^{-2} + h^{\ell-1}) \quad (3.2)$$

and

$$\left( \int_{\Omega_R} |u - u_R^h|^2 dx \right)^{1/2} \leq C(R^{-2} + h^\ell + (R^{-\frac{3}{2}} + h^{\ell-1})^2), \quad (3.3)$$

where  $C$  is independent of  $h$  and  $R$ .

(b) There are constants  $C_{K,R}$  and  $\Lambda$  such that there exists a unique solution,  $u_R^h$ , of (3.1) provided

$$C_{K,R} K h_{J_R} \leq \Lambda. \quad (3.4)$$

Furthermore, estimates (3.2) and (3.3) hold in this case.

Observe that Theorem 3.1(b) implies that the largest mesh size  $h_{J_R}$  must satisfy the additional stability constraint, (3.4), when  $KR$  is not sufficiently small. The constant  $C_{K,R}$  becomes large as  $KR \rightarrow \infty$ . Hence the number of equations must increase as the frequency  $K$  increases.

#### IV. NUMERICAL RESULTS

In collaboration with Alvin Bayliss, the author has begun a numerical investigation of the mesh grading procedure. We shall demonstrate typical results with respect to an axially symmetric problem analogous to (2.1) with  $\Omega = \{x: |x| \leq .5\}$ ,  $f = 0$  and the boundary condition on  $\partial\Omega$  given by  $\frac{\partial u}{\partial n} = g$ . The data  $g$  corresponds to the solution,  $u(x) = \frac{e^{ik|x-x_s|}}{4\pi|x-x_s|}$ , where  $x_s$  is a fixed axial point such that  $|x_s| = .4$ . Introducing the artificial boundary  $\Gamma_R$  as before and employing spherical polar coordinates and axial symmetry, we consider the computational domain,  $\Omega_R = \{(r, \theta): .5 \leq r \leq R, 0 \leq \theta \leq \pi\}$ , for problem (2.2). We denote the last boundary condition in (2.2) by  $B_1 u_R = 0$  on  $\Gamma_R$  and also consider the boundary condition

$$B_2 u_R = \frac{\partial^2 u_R}{\partial r^2} + \left(\frac{4}{r} - 2ik\right) \frac{\partial u_R}{\partial r} + \left(\frac{3}{r} - 4ik\right) \frac{u_R}{r} - K^2 u_R = 0 \text{ on } \Gamma_R.$$

The boundary operators,  $B_1$  and  $B_2$ , correspond to the first two

in a hierarchy of approximate boundary operators developed in [5].

We employ continuous piecewise linear finite elements on a triangular partition in  $(r, \theta)$  coordinates to obtain an approximate solution using both a uniform and a graded mesh. In the following computations, we keep the grid evenly spaced in the  $\theta$ -direction with 41 grid points and use 6 grid points in the  $r$ -direction with  $R = 1.125$ . When employing a uniform mesh we use the grid points  $r_j = r_0 + .125j$ ,  $j = 0, \dots, 5$ , in the  $r$ -direction with  $r_0 = .5$ . When mesh grading is employed, we factor out  $e^{iKr}$  as described in Section 2 and grade the mesh in the  $r$ -direction in accordance with  $r_1 = r_0 + .047$  and  $r_j = r_{j-1} + 5r_{j-1}^2$ ,  $j = 2, \dots, 5$ . Only a few changes were necessary to modify the computer program so as to incorporate the mesh grading. We measure the error  $E_j$ , defined by

$$E_j = \frac{\|u - u_R^h\|_{L^2(\partial\Omega)}}{\|u\|_{L^2(\partial\Omega)}},$$

corresponding to the boundary operator  $B_j$ ,  $j = 1, 2$ , where  $u_R^h = e^{iKr} u_R^h$  is computed as described in Sections 2 and 3. In the following table, we compare the errors,  $E_j$ , obtained using the graded mesh with those obtained using a uniform mesh for various values of  $K$ .

Table I.

| K  | $E_1$ (%) |         | $E_2$ (%) |         |
|----|-----------|---------|-----------|---------|
|    | Graded    | Uniform | Graded    | Uniform |
| 0  | 2.39      | 3.74    | 1.17      | 3.5     |
| 3  | 4.26      | 6.08    | 1.33      | 4.03    |
| 6  | 4.62      | 7.37    | 2.4       | 5.68    |
| 9  | 5.9       | 8.1     | 8.17      | 8.8     |
| 12 | 8.4       | 21.4    | 9.4       | 17.2    |

Observe the substantial improvements due to mesh grading using both  $B_1$  and  $B_2$ . These results are typical of our

numerical experiments. Note that as the frequency  $K$  increases, the error increases. As we indicated in Section 3, this is to be expected since we are keeping the number of equations fixed. We also observe that the main limitation on the number of equations in our computations is the storage requirements of the banded Gauss solver. We are attempting to circumvent this difficulty by using iterative methods. A more complete discussion of our numerical results will appear elsewhere, [6].

#### REFERENCES

- [1] Goldstein, C. Numerical Methods for Helmholtz Type Equations in Unbounded Regions. Mathematical Methods and Applications of Scattering Theory. Ed. J. A. DeSanto, A. W. Saenz, and W. W. Zachary. Lecture Notes in Physics. Springer-Verlag, Berlin-Heidelberg-New York (1980).
- [2] Ciarlet, P. G. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
- [3] Goldstein, C. I. The Finite Element Method with Non-Uniform Mesh Sizes for Unbounded Domains. (To appear), BNL Report Number 27307, AMD Report Number 839.
- [4] Goldstein C. I. The Finite Element Method with Non-Uniform Mesh Sizes Applied to the Exterior Helmholtz Problem. (To appear), AMD Report Number 861.
- [5] Bayliss, A., M. Gunzberger, and E. Turkel. Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions. ICASE Report 80-1 (1979).
- [6] Bayliss, A. and C. I. Goldstein. (To appear).