BNL_28138
AMD 862

CONF - 300649 —— |

A NUMERICAL METHOD FOR SOLVING

ELLIPTIC BOUNDARY VALUE PROBLEMS
IN UNBOUNDED DOMAINS*

MAs Ty

Charles I. Goldstein

Applied Mathematics Department
Brookhaven National Laboratory
Upton, New York 11973

July 1980

For inclusion in the Proceedings of the Elliptic Problem Solvers
Conference, held in Santa Fe, New Mexico, June 30 - July 2, 1980.

*The submitted manuscript has been authored under contract
DE-AC02-76CH00016 with the U. S. Department of Energy.

OISCLAMER

Tt bork was
7 Bmeared & a0 gcorunt of
Malthis s L [T peem—
* the Linfiad Stitm Govarrymen B 30 ey of g Lo,
Shpren o - 15wy ey Peesed, o -~y -:-tn ..-:m“ -
e Ao e ey

"y """""ﬂ
iy 1) adoraeeng - AT, ¥ Otherwise, don
o any agEncy thereal T eammardation, & tevoring piaphes
AR Ty SO 7 rhfiae (ha e Uining
1herse of the Uninet Staens G SIS ) hernn G per
TTROL UF 2 Rty et

DISTRIBUTION OF THIS DOCUMERT I8 UNL) ED




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



A NUMERICAL METHOD FOR SOLVING
ELLIPTIC BOUNDARY VALUE PROBLEMS
IN UNBOUNDED DOMAINS*

Charles I. Goldstein S e
Applied Mathematics Department

Brookhaven National Laboratory
Upton, New York 11973

I. INTRODUCTION

"““”Iﬁfthis”paﬁefwwe_ShaII“déscribemé“hﬁﬁéfiéal;methodwfdr”“”

solv1ng elllptlc boundary value problems in unbounded domalns.

For a survey of various methods for solv1ng such problems,
see*fl];w~Here-we~shallwdescribe a particular method obtained-
by first introducing an artificial boundary near infinity,

say a sphere I'_, of large radius R, and an approximate local

R
boundary condition on T_+ A finite element method is-then —-

R

employed to discretize this approximate problem. Since R
must be lerge in order to suitably estimate the error due to
the'artificial-boundary) the resulting system of linear-—----—
equations is usually quite large. We shall describe how to
reduce the number of linear equations to the asymptotically
optimal'amount;'whilempreserving:optimal*error”estimateSMand""
the sparseness of the matrix, by grading the mesh system-

atically in such a way that the element mesh sizes are in-

creased as the distance from the origin increases.- - -—- -

*The submitted manuscript has been authored under contract
DE-AC02-76CH00016 with the U.S. Department of Energy.




IX. THE MESH GRADING PROCEDURE

Let @ denote a bounded subset of R3 with smooth boundary,

3Q. Denote the complement of 0 by QC

and let x = (xl,xz,x3)
denote an arbitary point in R3. For simplicity, we consider

the following model problem:

(-A - Kz) u=f in QC, -g—lr—i- = :0 ON 9 - e e e
and ﬁ . (2.1)

du(x) R IR S _ - '

o + (Z-iK) ulx) = o(Y) as r = [x] » =,

where %H_deqotes the outward directed normal to aa,mgAgngmag;
are smooth, X is real and f hés bounded support. This prob-v
lem is well-posed. When K#0(K=0), (2.1) is referred o as
the exterior Helmholtz (Laplace) problem. Our method and
resulﬁs may be readily extended to other boundary value
p;oblems, including those with variable coefficients and more
general boundary conditions.

We next formulate an approximate problem on a bounded

domain. Define the sets Sp and @ by S, = {XER3:[x|:SR} and

QR==SRIWQC, where R is large. Now consider the following
problem:
Ju
L2y . R _
(-A-K )uﬁ-f in QR’ 5T =0 on 3Q
and : (2.2)
57t (£-1iK)u =0 on I =3S..

This problem is also well-posed. Note that there are various
other approximate boundary conditions that may be imposed on

e (see, e.g., [1]) for which our method applies..

Set U(x)==e-lKru(x), where u satisfies (2.1). It may be

proved that

IDGU(x)| < ;T%TII for r sufficiently large, (2.3)
r .




where D®U denotes an arbitrary derivative of U of order |af.

In view of (2.3), we shall apprdximétely solve for U and

U ==e-lKruR(x), where u

. satisfies (2.2). Let HE=H1(QR)

R

denote the space of complex-valued functions whose derivatives

R

~ of order less than two are square-integrable over QR. it
follows from integration by parts that UR satisfies
AR(U V) = (F,V) = [ F(x)V(x)dx for each V in HE, (2.4)
R QR R .
where v .
' 7y — - ‘ cus _ w2, 3 :
AR(UR'V)“" aR(uR'V)WT”[QR‘YPR VYm.KwPRV)éﬁ_"WM%f“@__fW
; $ '(ln;iK)u Gés
- L PTO R TRICTS £
R H
Fx) = eTEG0 and vin) = e VG0

We shall approximately solve (2.4) using the finite
element method. For a detailed discussion of the finite

element method, see [2]. For simplicity we assume here tha;v

E

our one-parameter family of .finite dimensional spaces, Sh<ZHR,

are defined for hé€(0,~) as follows. Suppose that we have a

‘partition of @, into simple subsets (elements), denoted by

R
th, with diameter of order 0(h). Sh then consists of all
continuous complex—valued functions vh such that vhl hEPz’
' “t

where P, denotes the set of polynomials erdeg:ee‘}essmthgévm
2 for somebinteger 2 greater than one. It may be readily
seen that dim(Shk=0(R3h73L Since R is large, fhe number of
linear equations will be large.

We next construct a new family of spaceé éh, defined for

he€(0,1], satisfying

dim(éh) < Ch-3, : . . (2.85)

where C is independent of R (as well as h). Set

j-1 j R : . .
S. = {x:2j < |x{=2"} and Q. =8.Nqa_, =]1,...,J_,with




J_ % log,R. Set R =g - Jz o} and assume for simplicity that
R 2 S S

0 and supp(f) are contained in the unit sphere and (2.3) holds

outside of this sphere. We now construct a new partition of
h.

QR into elements, t 3, with diameter of order O(hj) in each

. annular region Q?. We define the increasing sequence of pos-

oo

hy=h and hy=2"Jh with 1<a- <23

y 3J=1,...,3,. (2.6)

0

-

R
, ~h ; . . . h
We now define S to consist of those continuous functions v

such that vhl h. €P The motivation for this construction

X
tJ ,
and the proof of (2.5) are based on approximation theory and

(2.3) and are given in [3].
III. ERROR ESTIMATES

Our main theoretical results establish the existence and

uniqueness of the .finite element approximation, Uh satisfying

RI

Aé(Ug,Vh) = (F,Vh) for each Vh in éh, ‘ S (3.1)

-as well as error estimates for U—Ug. These results are easier
to prove when K=0 since the bilinear ﬁorm, AR( » ), is non-
negatiVe definite. A detailed treatment of this case is given
in [3]. When K# 0, the proofs are considerably more difficult
and are given in [4] (where the case of variableucoefficigpps
and other_extensioné-of.Thedrem 3.1 below are treated). Here
we mérelyc state séme of our main results.

Theorem 3.1l: Suppose that B is a fixed subset of QC,_V

hE(d,l] and R is sufficiently large. Then the following

results hold. |
(a) There exist positive'constants,yl and Yor such that

, . h
if KR sYl and hJRfiyzR, there exists a unique solution, UR’

of (3.1). Furthermore, the following estimates hold:




(, [v(U ol [ax)® s c®@ %+ 0 - (3.2)
and 2. % -2 g ‘% 2-1,2
(f IU Ug ].dx>2 SC(R “+h + (R “+h" ), - (3.3)

where C is independent of h and R.

(b) There are constants C and A such that there

K,R
.exists a unique solution, UE,Aof (3.1) provided
= ’ 3.4
CK'RKhJR A. . - )

- Furthermore, estimates (3.2) and (3.3) -hold in this case.
Observe that Theorem 3.1(b) implies that the largest

mesh size hJ must satisfy the additional stability con-
_ = R - i SRS mene L starlhar by RN »

straint, (3.4), when KR is not sufficiently small. The con-
stant CK R becomes large as KR~ «, Hence the number of
7

equations must increase as the frequency K increases.

Iv. NUMERICAL RESULTS

In‘collaboraﬁion with Alviﬁ Bayliss, the author has begun
a numerical investigation of the mesh grading procedure. We
shall demonstrate typical results with respect te_an axielly
symmetric problem analogous to (2.1) with Q= {x:|x|<.5}, £=0
and the boundary conditien on 3% given b

iK|x-x
" responds to the solution, u(x)==iTr =% > , where Xs is a fixed
_ o - o , s R .

a_r;:g The data g cor-

axial point such that [xsl==.4. Introducing the artificial
“boundary Ty as before and empleyihg spherical polar coordinates
and axial symmetry, we consider‘the.computational domain,v_ _
gp={(r,8): .5sr=<R, 08 s}, for problem (2.2). We denote

the last boundary condition in (2.2) by B -0 mmPRandalaacmr

1"

sider the boundary condition

' 32y 3u
R, 4 .. R
Boup=3rz * (- 2iK)5p

+ (§—4ik)ER—K2u ¥0 on T._.
r r ) R R

The boundary operators, Bl and Bz, correspond to the first two

- -




in a hierachy of approximate boundary operatore.developed
in [5).

We employ continuous piecewise linear finite elements on
a triangular_ partition in (r;e) coordinates to obtain ahb
approximate solution using both a uniform and a graded mesh.
In the follOW1ng computatlons, we keep the grld evenly spaced
in the 6- direction w1th 41 grld p01nts and use 6 grld p01nt;>
in the r-direction with R=1.,125. When employing a unlform
mesh we use the grld p01nts rJ-—r + .1253, j-—O,...,S, in the

0

r- dlrectlon w1th ro .S. When mesh gradlng is employed we

factor out elKr as described in Section 2 and grade the mesh -

in the r-dlrgctlon in accordance with rl-ro-+ .047 and

r.=r -+Sr2 ' j~—2,...,5. Only a few changes were

i T3-1 -1’

necessary to modify the computer ‘program so as to incorporate

" the mesh_grading. We measure the error Ej defined by
- hh'uRhL2(3p)
o

3 T 2

L°(39) . _ ,
Bj’ j=1,2, where ug==elKrU§ is computed as described in

’ correspondlng to the boundary operator‘

Sections 2 and 3. In the following table, we compare the
errors, Ej, obtained using the graded mesh with those obtained

using a uniform mesh for various values of K.

Table I.
K El(%) : Ez(%)
Graded Uniform Graded Uniform

0 2.39 3.74 1.17 - 3.5

3 4.206 6.08 1.33 4.03
6 4.62 7.37 2.4 5.68
9 5.9 8.1 8.17 8.8
12 8.4 21.4 9.4 17.2

Observe the substantial improvements due to mesh grading

uSing both Bl and Bz. These results are typical of our




numerical experiments.’ Notevthet es the frequency K in-
.creases, the error increases. As we indicated in Section 3,
this is to be expectedvsince we are keeping the number of
equations fixed. We also observe that the main limitation on |
theynumber of equations in our computations is the storage

requirements of the bénded Gauss solver. We are attempting

to circumvent this diffieultyibj'ﬁsingbiteratiVe‘methods.
A more complete discussion of our numerical results will

appear elsewhere, [6].
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where D®U denotes an arbitrary derivative of U of order |a

In view of (2.3), we shall approximately solve for U and

U ==e_lKruR(x), where u

R satisfies (2.2). Let HE==H1(QR)

R

denote the spacé of complex-valued functions whose derivatives

R

 of order‘less than two are square—integrable over QR. It

follows from integration by parts that UR satisfies

_ — . E .
Ap (U, V) = (F,V) = fQ F(x?V(x)dx for eachvV in Hp, (2.4)

R
where :
_ _ . 2 L
AL (UL, V) = aR(uR,v)mf_fQR(zuR vV - Kw}ﬁﬁﬂ ax R
_ + é b—-lK)u vds, e
F(x) = lKrf(x) and v(x) = e “IRTy k).

We shéll approx1mately‘solve (2.4) using the finite
element method. For a detailed discussion of the finite
element method, see [2]. For simplicity we assumé_here that
our one-parameter family of finite dimensional spaces, Sh<:Hi,
are defined for hG(O,Q) as follows. Suppose that we have a
partition of 2
th, with diameter of order 0(h). Sh then consists of all
?

into simple subsets (elements) , denoted by

confinﬁogs complex-valued functions vh such that v | hEPQ’
-where P, denotes the set of polynomials of degree less than
% for some integer % greater than one. It may be readily
séen that dim(ShF=0(R3H?3L Since R is large, the number of
linear equations will be large. |

We next construct a new family of spaceé éh, defined for
he€(0,1], satisfying

aim (8% = cn”3, .. (2.5)

where Cvié independent of R (as wellbas h). Set

s. = {x:2971« |x| =27} ana Q§==SjiWQR, j=1,...,3_,with

J R




J

o]

Jp % log,R. Set szg‘= Q'I"{—

Q? and assume for simplicity that
l
0 and supp(f) are contalned in the unit sphere and (2.3) holds

w.
I C

outside of this sphere. We now construct a new partition of
: o h.

QR into elements, t J, with diameter of order O(hj) in each

annular region Q?. We define the increasing sequence of pos-

_1t1ve numbers, hj ' by o o o
A oy ‘
h =h and hJ-Zz Jh with l< k2 i_z( j=1,...,J

(2.6)

’-l

Rf,. R
~h . . . h
We now define 8§ to consist of those continuous functions v
: h ' L .. .
such that v | TH GPR. The motivation for this construction
t

‘and the proof of (2.5) are based on approximation theory -and

(2.3) and are given in [3].
III. ERROR ESTIMATES

Our main theoretical results establish the existence and

uniquenéss‘of the finite element approximation, Uh satisfying

RI

Aé(Ug,Vh) = (F,Vh) for each Vh in Sh S (3.1)

as well as error estimates for U—Ug. These results are easier
to prove when K=0 since the bilinear form, Aﬁ( , ), 1is non-
negative definite. A detailed treatment of this case is given
in {3]. When K# 0, the proofs are considerably mbre difficult
andvare given'in [4] (where £he case of variable.coefficienys
and other extension; of Theorem 3.1 bélow are treated). Here
we merely. state some of our main results.

Theorem 3.1: ‘Suppose that B is a fixed subset of QC,

h€(0,1] and R is sufficiently large. Then the following

results hold.
(a) There exist positive constants,yl and Yoo such that

: . . h
if KR =y, and hJRriyzR, there exists a unique solution, Ug,-

of (3.1). Furthermore, the following estimates hold:




. L - - .
(f, 17m-0D) [%an)? s c(r72+n"™h | (3.2)
o |
) o | 3
and 2. 4. T2 . 8-1.2

(f |UU dx)zSC( +h” "+ (R“+h"" )%, (3.3)

where C is independent of h and R.

(b) There are constants CK R and A such that there
exists a'unique,solution, Ug, of (3.1) provided
= ' 3.4
CK’RKhJR A. : | (3.4)

 Furthermore, estimates (3.2) and (3.3) hold in this case.
" Observe that Theorem 3.1(b) implies that the largest =

mesh size hJ must satisfy the additional stability con-

R .
straint, (3.4), when KR is not sufficiently small. The con-
stant Cp o becomes large as KR+, Hence the number of
14

equations must increase as the frequency K increases.

Iv. NUMERICAL RESULTS

Ih colléborafion witﬁrAlviA Bayliss, the author has begun_
a numerical investigation of the mesh grading procedure. We
shall demonstrate typical results with respectrtq_an axially
symmetric problem analogous to (2.1) with Q=={X:[x|S.5} £=0
and the boundary condition on 3Q glven bT —-g The data g cor-
.responds to the_solgtiop, u‘g)f=z%$§f§ZT—, where xs 1s a flxed
axial point such that Ixs]= 4. Introddc1ng the artificial
boundary Iy as before and employing sphefical polar coordinates
and axial symmetry, we consider the computational ddmain,v_
QR=={(r,8): .5sr <R, 08 =7}, for problem (2.2). We denote

1

the last boundary condition in (2.2) by B up =0 marRandalsacmr

31der the boundary condltlon

B 4 _ 5 dug
"R 3r2 t (5 2iK)gp R R

The boundary operators, By and B,y correspond to the first two

- —

3 oY 2.
+ (=-4ik)-R-K“u_=0on T
r r




in a hierachy of approximate boundary eperatore.developed
in (5]. | |
We employ continuous piecewise linear finite elements_on

~a triangular_ partition in (r,6) coordinates to ebtain aﬁ
approximate solution uSing both a uniform and a graded mesh.
In the following computatlons, we keep the grld evenly spaced
in the 6- dlrectlon w1th 41 grld p01nts and use 6 grld pOLAts
in the r-direction with R=1.125. When employing a uniform

0

r- dlrectlon w1th r0 .5. When mesh gradlng is employed we

as described in Section 2 and grade the mesh -

mesh we use the grld p01nts rj*—r + .1257, j-—O,...,S, in the

factor out elKr

in the r-dirgction in accordance with r)= r04- .047 and -

r.=r j=2,...,5. Only a few changes were

j T3-1 -1’
necessary to modify the computer program so as to incorporate

+ 512
i

the mesh grading. We measure the error EJ defined by

le-uRil 2 (509 ”
E. = . ’ correspondlng to the boundary operator
J il 5
L™ (a0) h iKr_h
Bj' j=1,2, where up=e UR is computed as described in

Sections 2 and'3, In the following table, we compare the
errors, Ej' obtained using the graded mesh with those obtained

using a uniform mesh for various values of K.

" Table I.
K El(%) EZ(%)
‘Graded Uniform Graded Uniform -

0 2.39 3.74 1.17 3.5

3 4.26 6.08 1.33 4,03

6 4.62 7.37 2.4 5.68

9 5.9 . 8.1 8.17 8.8

12 |+ 8.4 21.4 9.4 _17.2

Observe the substantial improvements due to mesh grading

using both B, and B These results are typical of our

1 2°




‘numerical experiments. Note that as the frequency K in-
;éreaseé, the error increases. As we indicaﬁed in Section 3,
fhis is to be expected since we are keeping the number of.
equations fixed._ We also observe that the main limitation on
the number of eguations in ouf computations is the storage

requirements of the banded Gauss solver. We are attempting

to circumvent this diffiéuity>by'ﬁsing iterative methods.
A more complete discussion of our numerical results will

appear elsewhere, [6].
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