

MASTER

SAND--77-1096 C
CONP-771109-36

FIRST IN-CORE MOLTEN FUEL POOL EXPERIMENT*

H. G. Plein
G. A. Carlson
Sandia Laboratories
Albuquerque, New Mexico

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

If during a LMFBR accident a fuel debris bed is not adequately cooled by overlying sodium and dryout occurs, then the fuel would heat up and melt. Molten fuel pools are of concern due to their potential for ablation of the supporting structure and possible penetration of the reactor vessel.

A number of experimental techniques have been utilized to measure heat flow within simulated molten fuel pools.¹⁻³ However, heating methods, or materials, only approximately simulated the accident situation in which decay heated oxide fuel contacts structural materials. Experimental information is required on the interaction of volumetrically heated molten fuel pools with supporting structure and on heated fuel crust behavior under the complex melting processes occurring at the boundaries of the pool.

The major goal of the molten fuel pool program has been to develop a versatile experiment in which heat flux and structural ablation could be studied using real materials under typical temperature and heating conditions. This has now been accomplished, using the Annular Core Pulse Reactor (ACPR) to fission heat enriched UO_2 . In the first experiment conducted, a small portion of a 0.834 kg UO_2 sample was melted, and temperature data were recorded to above the melting point of the UO_2 using ultrasonic thermometry.⁴

The experiment capsule, shown in Fig. 1, held the granular UO_2 (100 to 1000 μm particle size) in a 3.2 mm thick ThO_2 crucible which, in turn, was surrounded by two tungsten crucibles and low

* This work was supported by the United States Nuclear Regulatory Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

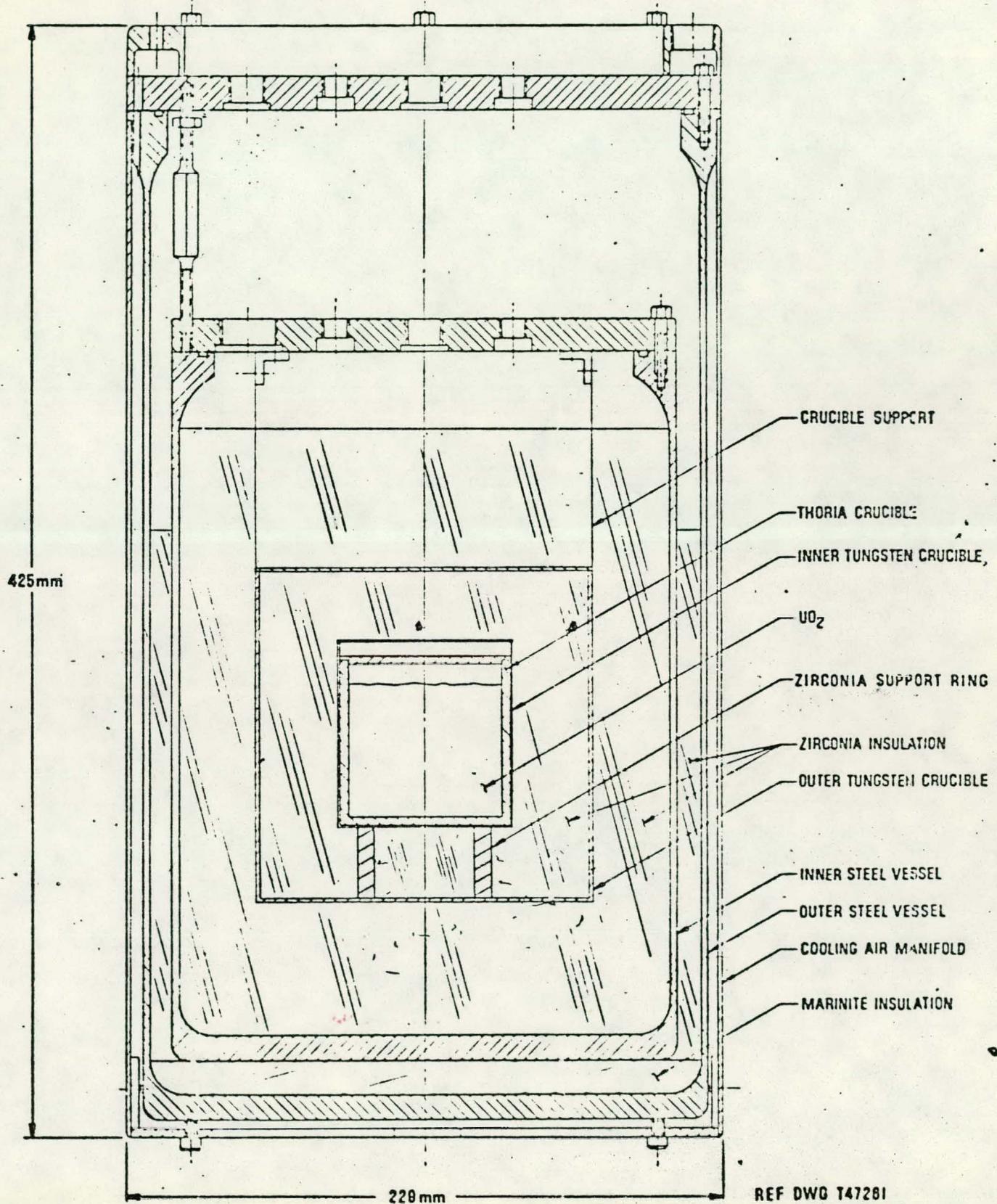
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

density (960 kg/m^3) ZrO_2 insulation. The capabilities of these materials under the experimental conditions were determined in an out-of-core material compatibility study.⁵ The fuel bed was 57 mm in diameter and initially 51 mm in depth. Fuel bed specific power was about 2.4 kW/kg at an ACPR power level of 600 kW. Containment of gases and vapors was provided by a concentric pair of 2.54 mm thick steel vessels surrounding the inner crucibles. Cooling air flow was maintained by an aluminum air flow guide surrounding the outer steel vessel.

System diagnostics included pressure transducers, thermocouples, and ultrasonic thermometers. Tungsten-rhenium thermocouples were used to monitor fuel and crucible temperatures, while chromel-alumel thermocouples were used on the steel vessels. Two ThO_2 -sheathed tungsten ultrasonic thermometers were placed near the axial centerline of the fuel bed. Each ultrasonic sensor was designed to measure temperatures over 5 axial zones, each about 10 mm long. During the experiment, the ultrasonic thermometer data were sent to the Data Acquisition and Display System (DADS) computer for real time conversion and display.

Fuel temperature histories were obtained from both ultrasonic thermometers and thermocouples. The ultrasonic thermometer data indicated incipient fuel melting was reached after 16.5 min. at power. Heating of the fuel was terminated approximately one minute later. Thermal neutrons were not specifically filtered in the experiment; therefore, the energy deposition was peaked on the edges of the fuel. However, as predicted by calculations, the ultrasonic thermometers showed that the fuel temperatures were not peaked at the edges, but were approximately 250 K higher at the center.


This experiment demonstrated that volumetrically heated fuel pool studies utilizing fission heated UO_2 are practical within ThO_2

containment and that ultrasonic thermometry has the capability to measure fuel temperatures and temperature gradients through melting of the fuel to provide relative heat fluxes. In future experiments, a larger fraction of the UO_2 sample will be melted, UO_2 -steel mixtures will be studied, and additional ultrasonic thermometers will provide radial as well as axial temperature gradients.

References

1. F. A. Kulacki and R. J. Goldstein, *J. Fluid Mechanics* 55, Part 2, 271 (1972).
2. A. Suo-anttila and I. Calton, "Thermal Convection Experiments with Internal Heating," the Second Annual Post-Accident Heat Removal (PAHR) "Information Exchange," SAND76-9008, Jan 1977.
3. L. Baker, et al., *Postaccident Heat Removal Technology*, ANL/RAS 77-2, Jan 1977.
4. H. J. Sutherland, G. A. Carlson, and L. A. Kent, "Acoustic Diagnostic Techniques for Post-Accident Heat Removal Experiments," presented at the International Meeting on Fast Reactor Safety and Related Physics, Chicago, Ill., Oct 5-8, 1976.
5. G. A. Carlson and H. G. Plein, "Material Compatibility Studies for PAHR In-Core Molten Pool Experiments," *Trans. Am. Nucl. Soc.*, 26, 358 (1977).

SMALL CAPSULE EXPERIMENT PACKAGE
(FUEL-ONLY EXPERIMENT)

