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ABSTRACT

Time~dependent deformation and time-dependent strength are being characterized
for several candidate polymeric composites for flywheels. This presentation highlights
the motivation and the philosophy of the characterization adopted by the authors in
establishing the ongoing programs at LLL. This overview is intended to provide a basis
for inferring the type of engineering data being generated for different aspects of
flywheel design. The details of these data can be obtained from the published reports
and articles. Two aspects of flywheel design data are addressed: those dealing with
time-dependent statistical strength, and those dealing with deformation and strength
under time-varying history.

DISCUSSION type of data being generated is typified
in Fig. 3. From curves such as these, we
Time-dependent statistical strength can determine the amount of derating in
data are needed to predict failure proba- stress level that is required to attain

bilities for a flywheel operating under
various stresses associated with input,
storage, and output of energy. Stress-—
rupture tests at constant load levels are
used as baseline benchmarks. Such tests
are required because even a nominal vari-
ation in static strength (typically less
than 57%) can lead to large scatter in
stress~rupture life (in excess of 100%),
as shown in Fig. 1 To provide the neces-
sary statistical parameters for reliabil-
ity design, large data samples from long-
term testing are now being accumulated in
testing facilities capable of simultane-
ous testing of 100 samples (Fig. 2). The
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Fig. 1. Nominal scatter in static Fig. 2. Stress-rupture test for facil-
strength data which can result in large ities; 100 stations are available for
scatter of lifetime predictions. simultaneous testing of many samples.
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Fig. 3. Stress-rupture lifetime data for
several composite materials being con-
sidered for flywheels. For S~glass and
Kevlar 49 compositesf 2 to 100% fail-

ure bands are displayed.

the desired degree of reliability in the
operating life.

Deformation and strength under
time-varying history are pertinent in
assessing the dimensional stability and
fatigue sensitivity of materials employed
in flywheel application. For a flywheel,
dimensional stability is directly related
to the hub attachment and containment
design; it is also indirectly related to
strength augmentation through prestress-
ing and hybrid designs. Deformation
under time-varying history can be esti-
mated from load-deformation constitutive
relations. We are adopting the convolu-
tion integral form for such reactions:

[t do
e(t) = J(t - T) e dt .
0

In this program, we record the time-
varying stress—-history o(t) and the time-
varying, strain history €(t). With these
data, we establish the limits of linear-
ity and qualitatively determine the creep
compliance J(t).

The characterization of strength
under time-varying load history depends
on the identification of damage param—
eters which provide meaningful engineer-
ing sensitivity. A damage parameter may
be regarded as a failure criterion in
time. For example, under stress-rupture
conditions, the creep strain £(t) may be
used as a damage criterion (Fig. 4a).
However, creep strains for polymeric com-

posites often approach an asymptotic
limit and this, combined with the usual
material scatter, leads to a large uncer-
tainty, At, in life prediction (Fig. 4a).
Hence, we seek a damage function V¥ of the

form,
t
‘P=] f(o,e,t,0)dt ,
t

0

such that V¥ would exhibit the property
depicted in Fig. 4b, providing a higher
sensitivity or a smaller uncertainty of
life prediction. The exploratory effort
to identify such damage function requires
comprehensive instrumentation for record-
ing the multitude of time-varying param-
eters, i.e., o(t), €(t), t, 6(environ-
ment). The comprehensive instrumentation
and mechanical testing are provided by
five servo-hydraulic testers and 44 creep
and programinterruptable creep machines
serviced by three computers for data
acquisition and data processing. A
sample of the data being recorded is
shown in Fig. 5; some intermediate cycles
are expanded in Fig. 6.

The overall objective of these pro-
grams is to provide time-dependent deform-
ation and material strength data in
sample sizes that are large enough to be
statistically meaningful as well as to
present data in quantitative forms amen~
able to design applications.
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Fig. 4. Damage parameters: (a) use of
creep strain as a damage parameter may
result in a large uncertainty in the
lifetime prediction; however, in (b) a
damage parameter is being constructed
to reduce the uncertainty in the life-
time predictions.
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Fig. 5. Time-dependent strain history in Fig. 6. Expanded plot of the strain
fatigue of an aramid fiber strand com- history in fatigue of Kevlar 49 strand
posite exhibiting accelerated creep composite exhibiting creep and
strain.

recovery within each stress-cycle.



