

**Computer Plotting of Drill Hole
Geochemical Data
(SECTION.REV 1 User's Guide)**

by

Carol Withrow

July 1980

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**EARTH SCIENCE LABORATORY
UNIVERSITY OF UTAH RESEARCH INSTITUTE
420 Chipeta Way, Suite 120
Salt Lake City, Utah 84108**

**Prepared for the
DEPARTMENT OF ENERGY
DIVISION OF GEOTHERMAL ENERGY
UNDER CONTRACT NO. DE-AC07-80ID12079**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees; nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of Utah Research Institute or the U.S. Department of Energy to the exclusion of others that may be suitable.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT.	1
INTRODUCTION.	2
I. INITIAL DATA ORGANIZATION	3
II. SEC-IO USAGE.	5
III. PLAN-IO USAGE	12
IV. CONVERSION TO OTHER SYSTEMS	14
APPENDIX A	
Flow Charts.	A-1
APPENDIX B	
Sample Plots	B-1
APPENDIX C	
File Structure	C-1
APPENDIX D	
Examples of Terminal Sessions.	D-1
SEC-IO Input	D-2
SEC-IO Add	D-5
SEC-IO Edit	D-8
SEC-IO List	D-11
SEC-IO Move	D-15
SEC-IO Adjust	D-20
SEC-PLOT	D-22

ABSTRACT

SECTION is a program package that provides plots of core sample geochemical data for any or all drill holes in a given area projected onto any predetermined section line. Plot size is user-defined by keyboard input. Holes are plotted in cross section as straight lines defined by collar coordinates, bearing angle, dip angle and length. The program is applicable to small problem areas with relatively short drill holes that are approximately straight. The program is implemented on the University of Utah UNIVAC 1108 computer system. The plotting functions are accomplished by using a plotting library that is similar to a Calcomp subroutine library.

INTRODUCTION

This program package is designed to plot core sample data for any or all drill holes in a given problem area projected onto any predetermined section line. Various plot parameters including size are user-defined; however, only a straight line model of the drill hole is accommodated by this program.

SECTION is a package of two interactive programs named SEC-IO and SEC-PLOT which communicate with each other by means of referencing a common direct-access data file. SEC-IO is concerned with constructing this data file by means of keyboard input. It also allows this file, called the work file, to be manipulated in various ways, such as editing, listing, and storing on a master file called the merge file. SEC-PLOT reads the work file, solicits plot parameters from the user, and generates plots.

These programs were designed to provide maximum output flexibility with minimum expense while maintaining a simple man-computer dialogue. This report discusses all facets of preparing and formatting data and using the programs.

This system was designed by Robert W. Bamford. Programming was by D. T. Purvance. Modifications were programmed by Carol Withrow.

I. Initial data organization

Given a problem area (i.e., a cluster of drill holes and an assemblage of composite sample data) the first step is to index or number manually all drill holes from 1 to N and all sample intervals from 1 to M. This assigns to each drill hole and to each sample interval a computer name that is unique to the problem area. Drill hole and sample interval indices can be assigned in any pattern but, for obvious clerical reasons, drill holes should be indexed from west to east (or north to south) and sample intervals indexed beginning at the top of drill hole #1 and ending at the bottom of #N (N = number of drill holes in the problem area).

Once indexing is complete, two booking tables can be constructed. One table lists drill hole collar coordinates, dip, bearing and length, and the other lists sample interval footages and corresponding geochemical data.

A. Table 1 -- Drill Lab Data

To project a drill hole onto a sectional plane, six numbers which describe the drill hole in three-dimensional space are needed. They are: (X,Y) collar coordinates, collar elevation, dip from vertical, bearing of dip and length. To list this information in an orderly fashion, Table 1 should be tabulated as follows:

TABLE 1

DH Index	1 collar Y-coord	2 collar X-coord	3 collar elev	4 bearing	5 dip	6 length
1						
2						
3						
:						
N						

Collar map coordinates for a drill hole are measured relative to a chosen problem area's origin. The positive X-coordinate axis is defined to run from west to east, and the positive Y axis from south to north. Collar elevation is given from mean sea level. Collar coordinates can be given in units of feet or meters. Dip is measured in degrees from the horizontal. Bearing of dip is measured in degrees clockwise from north.

B. Table 2 -- Sample Interval Footage and Geochemical Data

Having indexed core sample intervals, a second table is to be constructed as shown below:

TABLE 2

Sample Index "Z"	DH Index	Footage From	Footage To	Percent Silicate	Geochem Data "A"	...	Geochem Data
1							
2							
3							
:							
M							

Sample intervals are not numbered by drill hole but by problem area. Therefore each sample interval is assigned an index number corresponding to its drill hole. Many samples will have the same drill hole index. This is tabulated in column 2, "DH Index." Sample interval "from" and "to" footages, or beginning and ending footage measurement, are assumed to be measured in true length down a drill hole. Geochem data types "A" and so on are listings of any type of analysis done on the sample.

II. SEC-I0 Usage

Once data is on paper as explained above, it must be placed in computer storage. An interactive input/add/edit/list/move/adjust program, SEC-I0, is used to do this. This program easily allows the user to manipulate the data without having to be concerned with the details of manipulating data files.

There are three kinds of keyboard input to be supplied by the user. Alphanumeric input can be any keyboard character and is used for labels. Integer input consists of numbers only. Floating point input is a number with or without a decimal point. Both integer and floating point numbers may be preceded by a + or - sign. Keyboard input lines are always terminated with a carriage return.

A. Data record arrangement

The contents of Tables 1 and 2 are stored in a direct access data file with records numbered 1 through 207 in the following order:

<u>Record Number</u>	<u>Contents</u>
1	all of Table 1
2	column 2, Table 2, DH Index
3	column 3, Table 2, Footage From
4	column 4, Table 2, Footage To
5	column 5, Table 2, Silicate
6 - 207	columns 6 - on, Table 2

B. Program Operation

The user is first presented with the following menu of options:

1. Initial input of data
2. Data additions
3. Data edit
4. Data list
5. Move records or files
6. Adjust for silicate
7. Terminate program

The user enters a number from 1 to 7 indicating the option he desires. The program executes the option and returns to this menu repeatedly until the option to terminate the program is selected. A flow chart depicting this may be seen in Appendix A-1.

Terminal output for sample sessions may be seen in Appendix D. There is at least one example of each of the above options.

C. Information required for each program option follows, with the numbering and order corresponding to those in the above list.

1. Initial input

a. Record 1

- 1) project area name (max. 60 characters - alphanumeric input), input and output on two 30-character lines;
- 2) number of drill holes (integer input);
- 3) drill hole names (max. 6 characters, alphanumeric input);
- 4) collar map coordinates, collar elevation, bearing, dip and length (floating point input).

b. Records 2,3 and 4

- 1) number of data points for initial input (max. 700, integer input);
- 2) For record 2, enter next the drill hole indices from column 2 of Table 2; For record 3, enter next the "Footage From" column of Table 2; For record 4, enter next the "Footage To" column of Table 2 (all floating point input). The user will be prompted before each one of these entries with an ordinal number and a question mark; for example:

1?

c. Other Records

- 1) figure number (max. 18 characters - alphanumeric input);
- 2) figure name (max. 36 characters - alphanumeric input);
- 3) sample type (max. 25 characters - alphanumeric input);
- 4) analytical method (max. 18 characters - alphanumeric input);
- 5) number of data points for initial input (max. 700, integer input);
- 6) number of digits to the right of the data decimal point to be plotted (integer input). A maximum of 10 character positions is available.

Use the following codes:

- 1 = no decimal will be plotted (e.g., 123);
- 0 = 0 digits to right of decimal will be plotted (e.g., 123.);
- 1 = 1 digit to right of decimal will be plotted (e.g., 123.0);
- 2 = 2 digits to right of decimal will be plotted (e.g., 123.00), and so on.

7) Data values (max. 700, real input)

Special character output features, where the value input is V:

<u>Input</u>	<u>Output</u>
$V < -1,000,000$	'ND'
$-1,000,000 < V < 0$	< V
$0 < V < 1,000,000$	V
$V > 1,000,000$	> (V-1,000,000)

2. Data additions

a. Record 1

- 1) number of drill holes to add (integer input);
- 2) drill hole names (max. 6 characters, alphanumeric input);
- 3) collar map coordinates, collar elevation, bearing dip and length (floating point input).

b. Other records

- 1) number of sample additions (integer input);
- 2) data values (floating point input).

3. Data edit

a. Record 1

The user is presented with a menu from which he selects the item to be edited: area name, number of records entered, number of drill hole names or drill hole parameters. If drill hole parameters are selected, the program types "Enter DH index, column, value change." The column referred to is the column of Table 1. The three values are integer, integer, floating point. If one of the other items is selected, the program types the current information before soliciting the new information.

b. Other records

The user is presented with a menu from which he selects the item to be edited: figure number, figure name, sample type, analytical method, number of digits for plotting, number of data items, or data. If an item besides data is selected, the

program types the current information before soliciting the new information. If it is the data itself to be edited, enter the sample index to be corrected and the value (integer, floating point input). To exit from this loop enter two values of zero.

4. Data list

The user is presented with two options: index or data list. The index option will provide the highest record number that has been written on the file. In addition the user may elect to view a list of record names and the number of data items in each record.

The data list option requires the following input from the user:

- 1) number of records to list (max. 6, integer input)
- 2) record numbers to be listed (integer input)

If it is desired to list record 1, this should be done alone rather than as part of a request for listing other records. This is because the format is unique; the output of record 1 is all of Table 1.

5. Move

This option combines a number of functions concerned with moving data files in and out of the work space or moving records within a file. These various choices are presented as the following menu, from which the user selects by typing a number from 1 to 6:

- 1 Move 1 record
- 2 List merge file directory
- 3 Save work file
- 4 Restore work file
- 5 Initialize merge file
- 6 Exit this routine

Each of these will be explained in detail using the same numbering.

1 = Move 1 record

This enables the user to move a record in the current data file, called the work file. The program solicits both input and output record numbers (integer input). It then reads the input record and writes this record on the output record. Any information already in the output record will be overwritten. The input record is unchanged.

2 = List merge file directory

The merge file is a master back-up file. A number of work files may be copied into the merge file and then restored to the work space as desired. This option will produce a list of the individual work file names that are in the merge file, together with the number of data records in each file.

3 = Save work file

The current data file in the work space, called the work file, is backed up by writing it in the merge file. A subsequent list of the merge file directory will confirm that there is a new entry.

At the end of each period of data input on a given project, the work file should be saved in the merge file, thereby permitting use of the program by other workers without loss of your data. Several files containing similar data may thus be generated for a single project. These will be identified in the merge file by the merge file index number, the project (area) name and the number of records. The work file will remain intact after "saving" until it is overwritten.

4 = Restore work file

Any file that is in the merge file can be restored to the work file. The user will be asked to provide the index number of the file (integer input). This index number can be seen in a listing of the merge file directory. Whatever is in the work space will be overwritten. The copy of the restored file that is in the merge file remains unchanged.

If a saved file is restored and changed, and it is desired to preserve this version in the merge file, then a new copy of the file is saved. This will appear in the directory as a new listing with a new index number to be used for restoring it to the work space.

Files cannot be selectively deleted from the merge file.

5 = Initialize merge file

Initialization of the merge file effectively deletes the information in the merge file.

This file can consist of a maximum of 800 records. When it is filled a message will be produced. At this point the user will probably want to back up the entire merge file or selected individual files in the merge

file. Advise a programmer of your desire. After the files have been saved on tape by the programmer, and after it has been ascertained that no other user's files will be deleted, the user may initialize the merge file. A password must be provided to effect this. This is to prevent inadvertent destruction of data.

Upon initializing the file, the user must enter a file title, maximum 72 characters. This will be listed whenever a directory listing is made.

The number of work files that can be saved varies depending on the number of records written in each. A work file may contain as many as 207 records. Thus the merge file (800 records) will store three full work files or more than three partially full work files. The directory index includes the number of records in each file.

Initialization of the merge file in no way affects the work file.

6 = Exit this routine

The program exits the MOVE routine and produces the initial menu.

6. Adjust

This option will adjust geochemical data for silicates and write the results on a new record, the number of which is selected by the user. The same record number may be used, in which case the original data is overwritten. The formula used is:

$$\text{new value} = \text{old value}/(1 - A/100)$$

where A is the percent silicate for that particular sample. If the silicate is 70%, then A = 70 (not .70). If any silicate value is outside the range of zero to 85, it is set to one of these two numbers, whichever is closer, for the above calculation.

These silicate values must be on record 5. If there are no silicate values, some information should be entered into record 5 in order for certain program options not to produce an error termination. The Move 1 Record capability (see previous section) is one easy way to do this.

When the new silicate-adjusted record is created, the user is requested to enter figure number and figure name for it (alphanumeric input, max. 18 and 36 characters respectively). When the program requests this information, it provides the

figure number and figure name of the input record as a reminder to the user.

III. PLAN-PLOT Usage

The data being stored, the final task is to define the specific parameters for plotting this data at the right size and scale and along a specific sectional line. These parameters are explained below. The names on the left are used by the program PLAN-PLOT when selecting user input. The meaning of these parameters may be further clarified by referring to the figure in Appendix B-2.

Units	1. if user units in feet. 2. if user units in meters (floating point input).
Scale	Scale factor, i.e., the number of feet represented by one inch or the number of meters represented by one centimeter on the plot (floating point input).
XM	Abscissa length in inches if user units are in feet or in centimeters if user units are meters (<99.7" or <253.3 cm, floating point input).
YM	Vertical length of plot in inches if user units are in feet or in centimeters if user units are in meters (<31.9" or <81 cm, floating point input).
CH	Character size in inches (.07"-.2", floating point input). An entry of zero defaults to .07".
DMIN	Minimum depth elevation in user units to be represented on depth axis (floating point input).
DMAX	Maximum elevation on depth axis (floating point input).
DINT	Interval between tics on the depth axis (floating point input).
XFAC	The horizontal scale divided by the vertical scale (floating point input). If this is not 1, the scaling is done in the horizontal direction.
X0,Y0	Starting map coordinates of section line, given relative to the origin of the problem area, in feet or meters (floating point input).
AZB	Azimuthal bearing of section line in degrees (floating point input).
BARL	Perpendicular distance (in user units) from section line beyond which sample intervals will not be plotted (floating point input). Beyond BARL drill holes are "dashed in."

The program will also require the user to enter the number of drill holes to plot, the indices of these drill holes, the number of plots to generate, and a record number of the geochemical data to go with each plot, all integer input. In addition, the following two parameters must be entered for each plot:

MAX CONC Concentration value represented by one concentration bar length (floating point input).

CONC BAR LENGTH

The length in inches or centimeters of the concentration bar; also the maximum bar length of the sample bars. If the sample value represented exceeds this length, a small arrow will be drawn on the sample bar.

The plotting program first asks for the plot parameters explained above, including the drill hole indices to be plotted and the data record number storing the data to be plotted. Drill hole indices and record numbers are integer inputs. With this information the plotting program automatically retrieves the data on records 1 through 4 and then generates the plots. The message "PLOT N GENERATED" then appears on the terminal once for each plot. A sample plot may be seen in Appendix B-1.

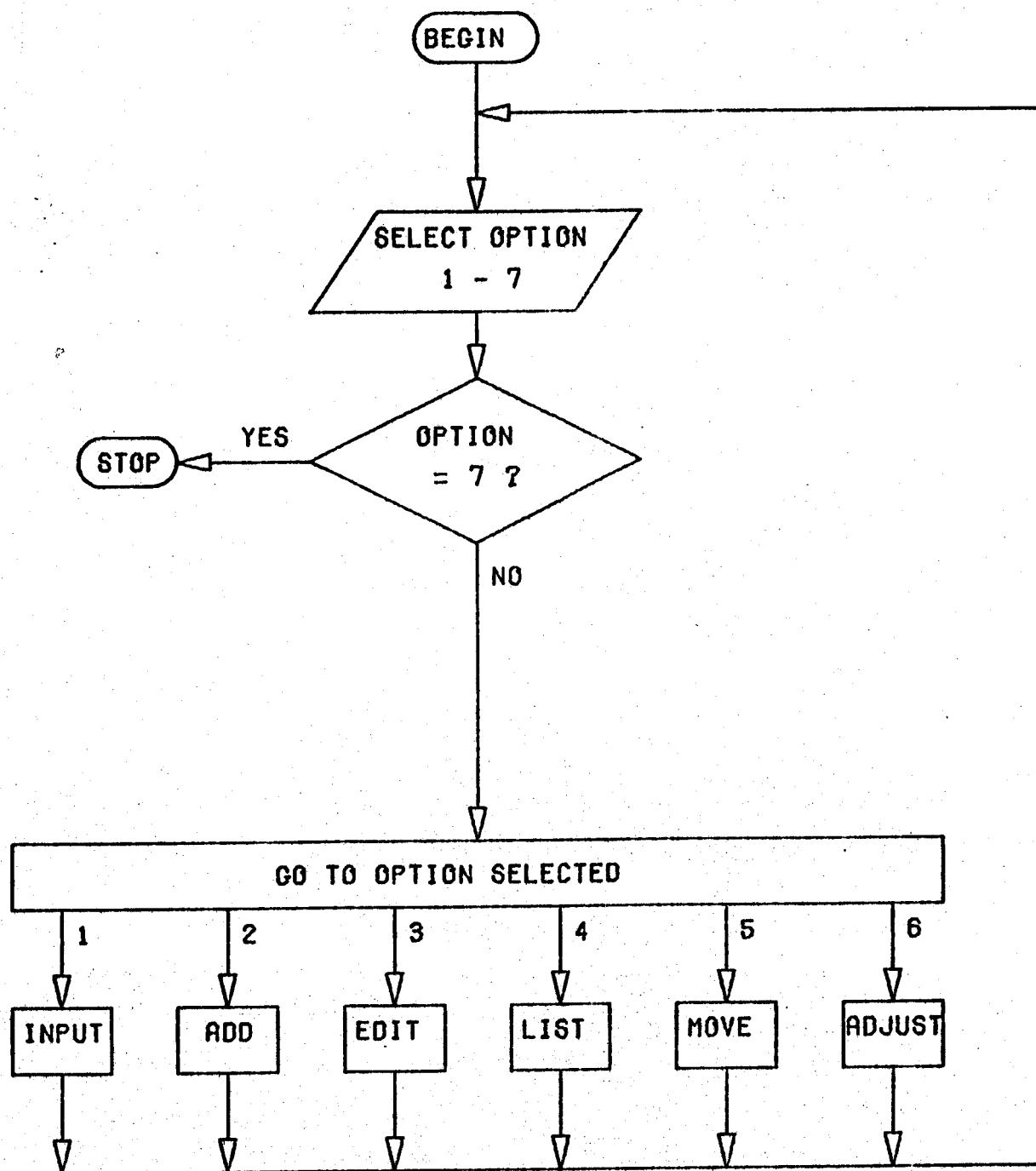
IV. Conversion to Other Systems

SECTION should normally be adaptable to another computer system with only a moderate effort by a programmer familiar with his system. Although the programs described here are implemented on a UNIVAC 1108, their conversion to minicomputers should not present problems of program size or computational precision.

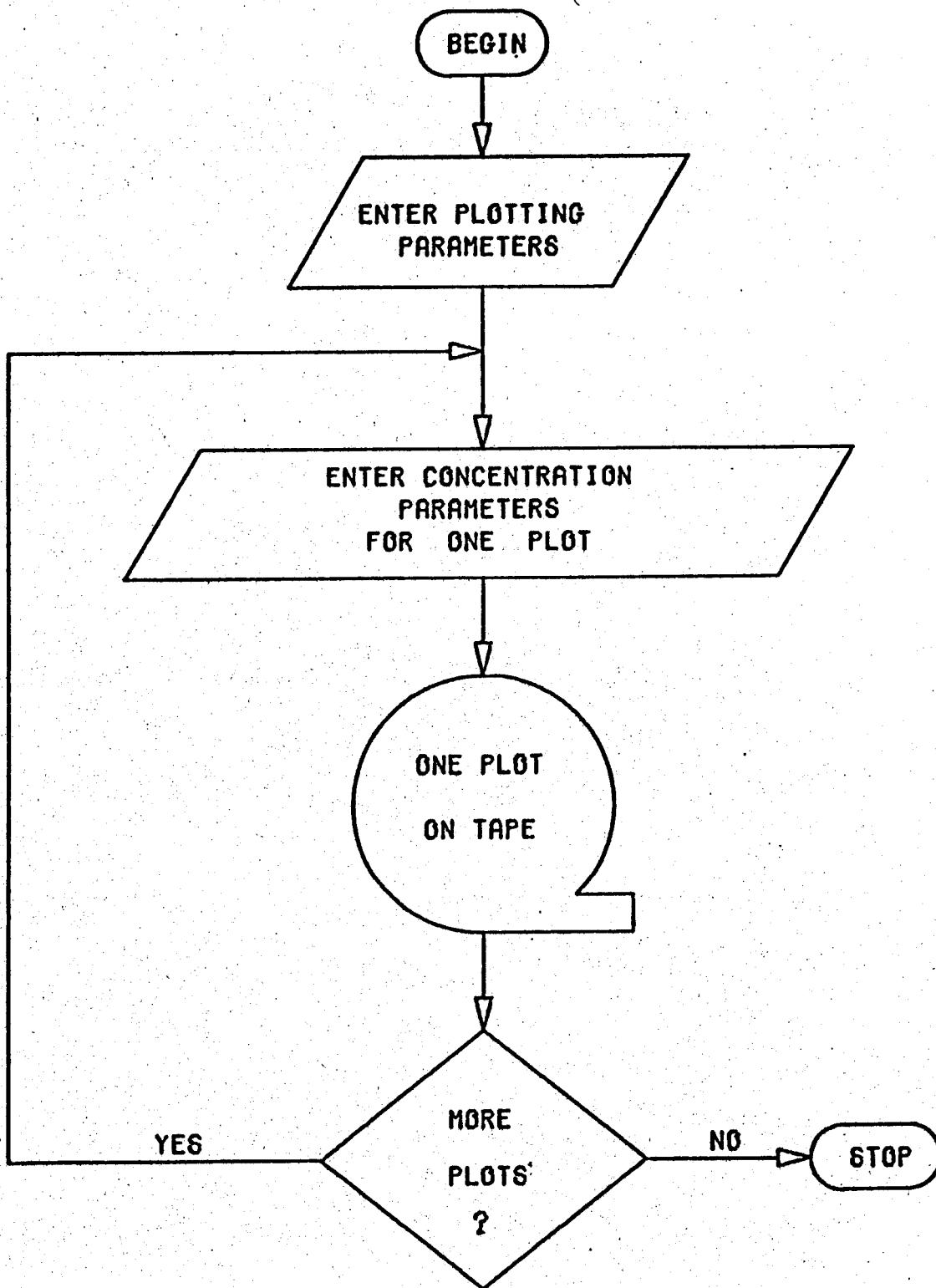
It is necessary, of course, for the system to have a digital plotting device. SECTION uses a plotting library similar to the standard Calcomp plotting library. Any computer system that has a plotting capability similar to a Calcomp plotter will be able to provide the needed plotting functions.

Alphanumeric data storage may have to be modified for another system. The UNIVAC 1108 uses an internal six-bit character code called Fieldata. The word length is 36 bits, so alphanumeric characters are stored six to a word. If the number of characters to a word is different from six, both programs will have to be modified. The data file width may also have to be changed accordingly. Diagrams of the file structures may be found in Appendix C.

The work file and the merge file are direct-access files. The files are described to the programs by means of the DEFINE FILE statement that appears at the beginning of the main programs. This syntactic element is an extension of standard FORTRAN IV that is available in most but not all versions of FORTRAN. The first argument is the file length in records, and the second argument is the file width in words. SECTION files are 720 words wide. The READ and WRITE statements that reference the files use IBM direct-access syntax. If SECTION is to be developed on a system that does not have direct-access file capability, it would be difficult to make modifications that would accommodate the substitution of another file type, such as a sequential file.

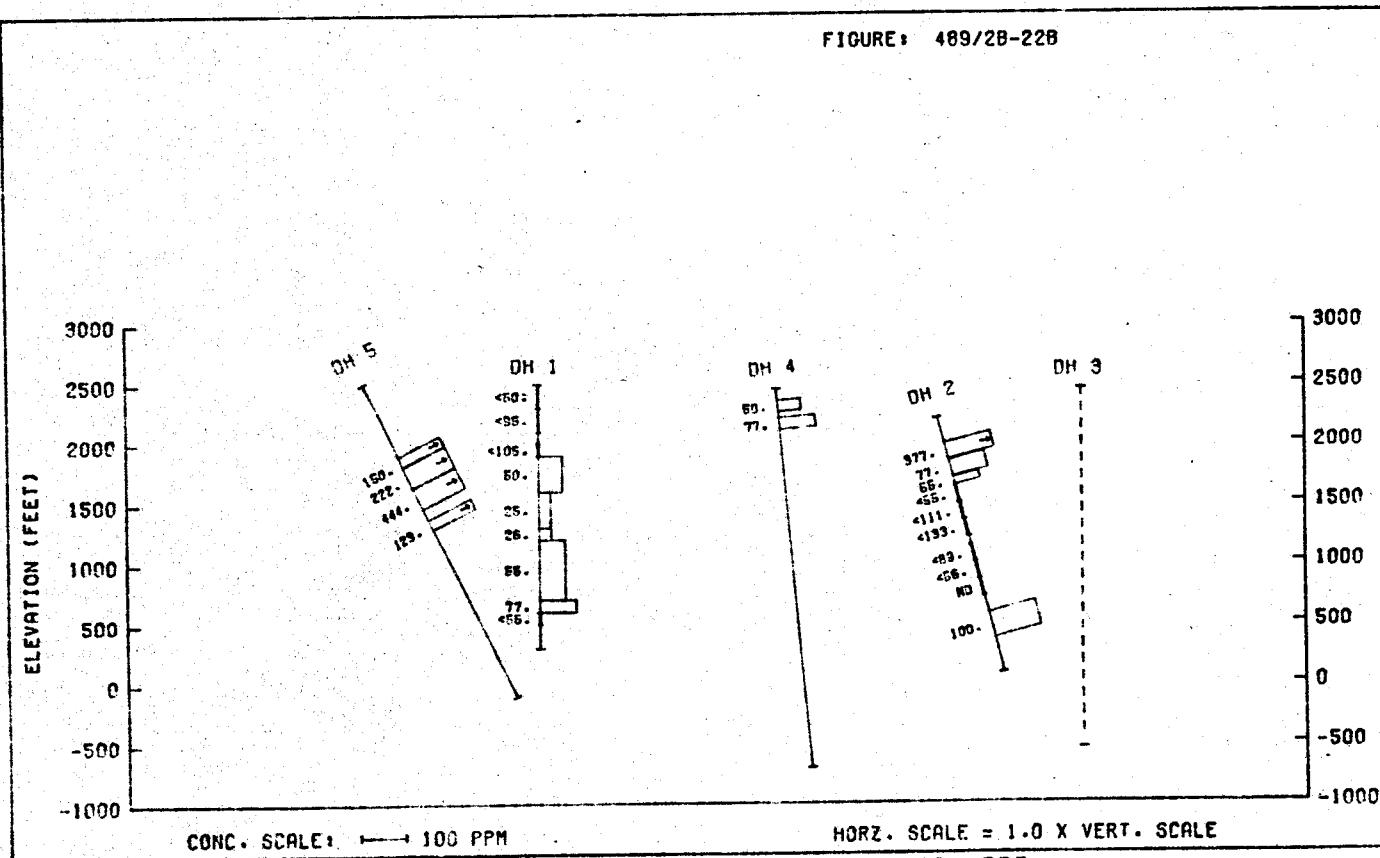

Subroutine MOVE of SEC-10 requires a password to be entered before initializing a file. This password is represented in the program as the numerical contents of a word containing Fieldata characters. The implementer may want to supply his own password and number.

The subroutine GETPEN of SEC-PLOT allows user-selected pen color and width, and it will have to be modified on another system. It uses a routine, CALOPR, that sends a message to the person operating the plotter. The implementer may want to delete subroutine GETPEN altogether.


Appendix A

Flow Charts

SEC-IO



SEC-PLOT

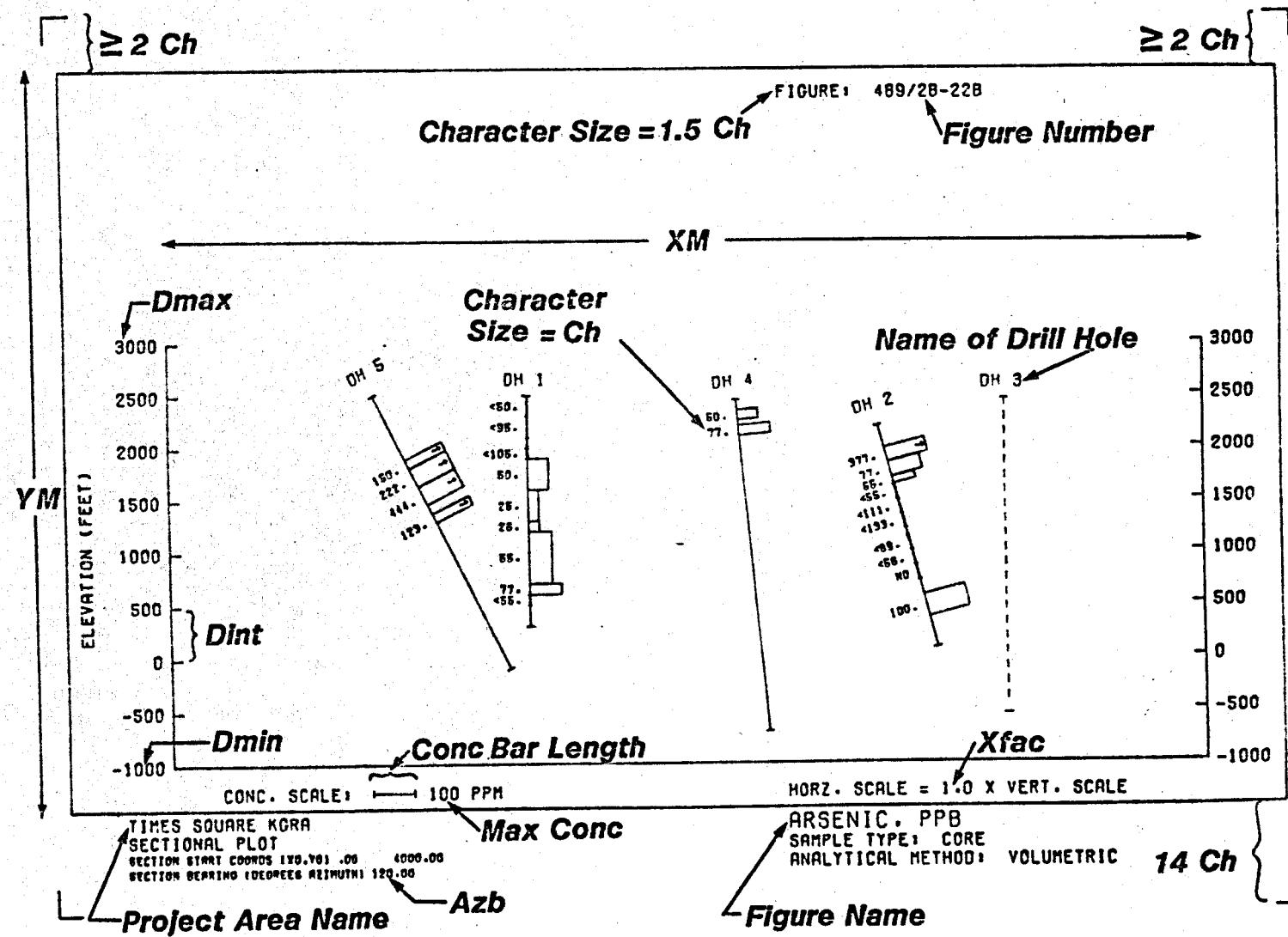

Appendix B
Sample Plots

FIGURE: 489/28-228

**TIMES SQUARE KGRA
SECTIONAL PLOT
SECTION START COORDS (X0,Y0) .00 .00 4000.00
SECTION BEARING (DEGREES AZIMUTH) 120.00**

ARSENIC, PPB
SAMPLE TYPE: CORE
ANALYTICAL METHOD: VOLUMETRIC

Appendix C
File Structure

SEC-DATA FILE STRUCTURE

RECORD
NUMBER

1	NAM 1(5)	NAM 2(5)	NR	#DH	DH NAMES	X	Y	ELEV	BEARING	DIP	LENGTH	6
	10		1	1	50							

Repeat for each DH

2	UNUSED	FIG NAME	NO. DIGITS	NO. DATA	DRILL HOLE INDICES (Repeating)	700
	11	6	1	1		

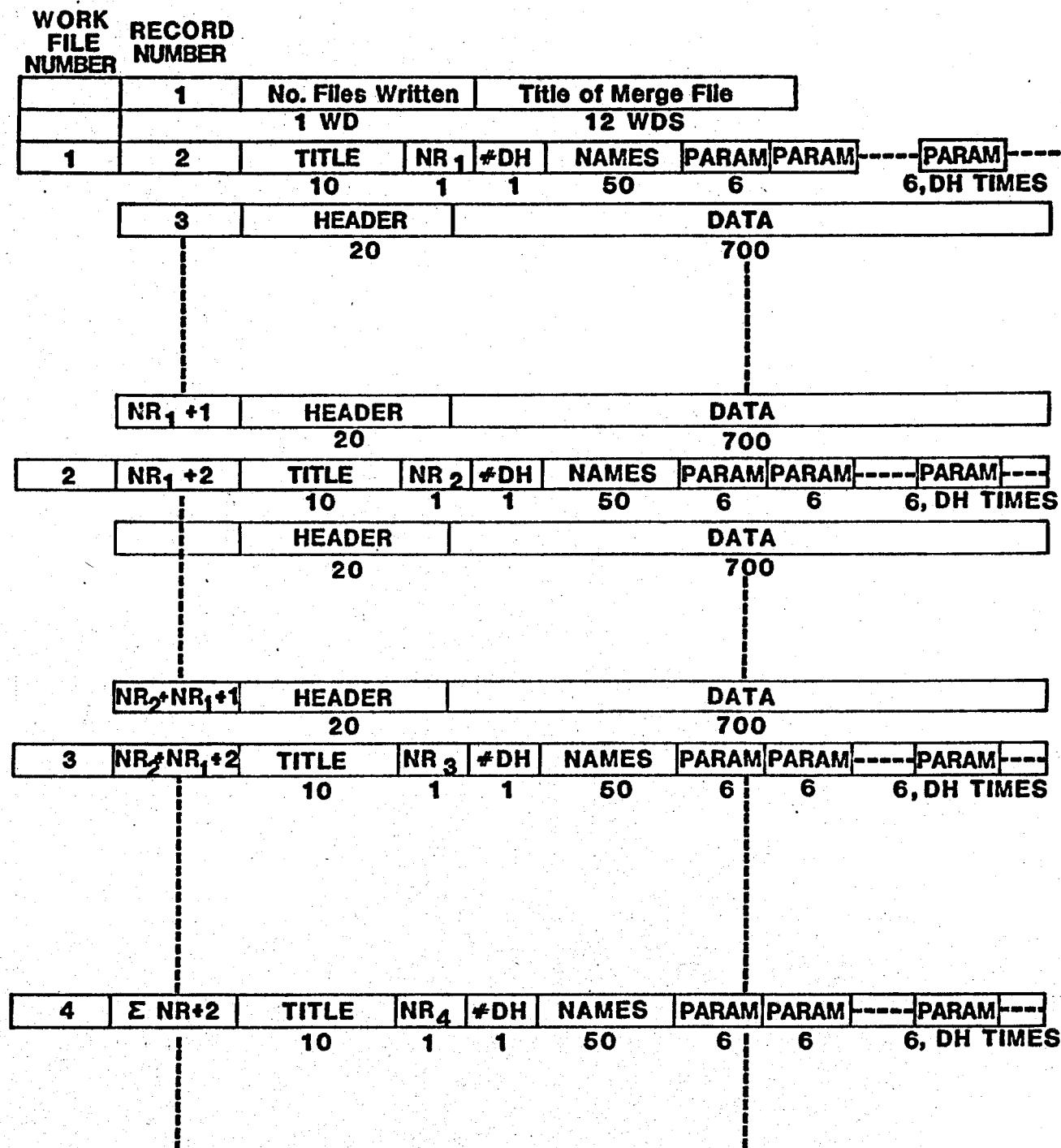
3	UNUSED	FIG NAME		NO. DATA	FOOTAGE BEGIN	700
	11	6	1	1		

4	UNUSED	FIG NAME		NO. DATA	FOOTAGE END	700
	11	6	1	1		

5	HEADER	NO. DIG	NO. DATA	PERCENT SILICATE	700
	18	1	1		

6	HEADER	NO. DIG	NO. DATA	GEOCHEM VALUES #1	700
	18	1	1		

7	HEADER	NO. DIG	NO. DATA	GEOCHEM VALUES #2	700
	18	1	1		


207	HEADER	NO. DIG	NO. DATA	GEOCHEM VALUES #202	700
	18	1	1		

18-WORD HEADER (ALPHANUMERIC)

FIGURE NUMBER	SAMPLE TYPE	ANALYTICAL METHOD	FIGURE NAME	NOT USED
4	5	2	6	1

First four Words
are fixed data in
records 2, 3, 4

SEC-MERGE FILE STRUCTURE

Appendix D
Examples of Terminal Sessions

Examples of the Use
of
SEC-10

Input Examples

>ADD SEC-ID.RUN

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>1 ENTER RECORD NUMBER <I>
>1 ENTER PROJECT AREA NAME, PT. 1 (MAX 30 CHAR)
>ROOSEVELT HOT SPRINGS KGRA
PROJECT AREA NAME, PT. 2 (MAX 30 CHAR)
>BEAVER COUNTY, UTAH
ENTER NUMBER OF DRILL HOLES TO INPUT <I>
>3 ENTER NAME OF DRILL HOLE 1 (MAX 6 CHAR)
>UNO ENTER X,Y,ELEV,BEARING,DIP,LENGTH OF DRILL HOLE 1 <F>
>2500,1300,2500,0,90,2200
ENTER NAME OF DRILL HOLE 2 (MAX 6 CHAR)
>DOS ENTER X,Y,ELEV,BEARING,DIP,LENGTH OF DRILL HOLE 2 <F>
>6000,600,2200,45,59,3000
ENTER NAME OF DRILL HOLE 3 (MAX 6 CHAR)
>TRES ENTER X,Y,ELEV,BEARING,DIP,LENGTH OF DRILL HOLE 3 <F>
>8500,2500,2450,0,90,3000
DATA STORED

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>1 ENTER RECORD NUMBER (I)
>9 ENTER FIGURE NUMBER (MAX 18 CHAR)
>22/QED77 ENTER FIGURE NAME (MAX 36 CHAR)
>COPPER ENTER SAMPLE TYPE (MAX 25 CHAR)
>WHOLE ROCK ENTER ANALYTICAL METHOD (MAX 18 CHAR)
>GRAVIMETRIC ENTER NUMBER OF INITIAL DATA VALUES, NDIG (I)
>28,0 ENTER DATA (F)
1 ?
>46 2 ?
>56 3 ?
>67 4 ?
>78 5 ?
>89 6 ?
>-1000000 7 ?
>77 8 ?
>55 9 ?
>-22 10 ?
>-33 11 ?
>55 12 ?
>66 13 ?
>-1000000 14 ?
>1000120 15 ?
>67
.....
27 ?
>76 28 ?
>54 DATA STORED

Add Examples

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>2 ENTER RECORD NUMBER (1)
>1 INPUT NUMBER OF ADDITIONS (1)
>2 ENTER NAME OF DRILL HOLE 4 (MAX 6 CHAR)
>QUATRO ENTER X,Y,ELEV,BEARING,DIP,LENGTH OF DRILL HOLE 4 (F)
>4250,300,2450,0,98,3200
>ENTER NAME OF DRILL HOLE 5 (MAX 6 CHAR)
>CINCO ENTER X,Y,ELEV,BEARING,DIP,LENGTH OF DRILL HOLE 5 (F)
>800,1700,2500,90,71,3000
DATA STORED

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>2 ENTER RECORD NUMBER (I)
>9 INPUT NUMBER OF ADDITIONS (I)
>2 29 ?
>61.1 30 ?
>63.2 DATA STORED

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>7
NORMAL EXIT. TIME: 293 MILLISECONDS.

Edit Examples

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>3 ENTER RECORD NUMBER (I)

>1 ENTER: 1 AREA NAME
2 NO. RECORDS
3 NO. OF DRILL HOLES
4 DRILL HOLE NAMES
5 DRILL HOLE PARAMETERS
6 END EDIT REC 1

>4

RC 1
ENTER NAME OF DRILL HOLE 1 (MAX 6 CHAR)

>DH-1 RC 2
ENTER NAME OF DRILL HOLE 2 (MAX 6 CHAR)

>DH-2 RC 3
ENTER NAME OF DRILL HOLE 3 (MAX 6 CHAR)

>DH-3 RC 4
ENTER NAME OF DRILL HOLE 4 (MAX 6 CHAR)

>DH-4 RC 5
ENTER NAME OF DRILL HOLE 5 (MAX 6 CHAR)

>DH-5 ENTER: 1 AREA NAME
2 NO. RECORDS
3 NO. OF DRILL HOLES
4 DRILL HOLE NAMES
5 DRILL HOLE PARAMETERS
6 END EDIT REC 1

>5

ENTER DH INDEX, COLUMN, VALUE CHANGE - OR 0,0,0 (I,I,F)

>5,2,1700
ENTER DH INDEX, COLUMN, VALUE CHANGE - OR 0,0,0 (I,I,F)

>0,0,0
ENTER: 1 AREA NAME
2 NO. RECORDS
3 NO. OF DRILL HOLES
4 DRILL HOLE NAMES
5 DRILL HOLE PARAMETERS
6 END EDIT REC 1

>6

DATA STORED

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>3 ENTER RECORD NUMBER (I)
>9

ENTER: 1 FIGURE NUMBER
2 FIG NAME
3 SAMPLE TYPE
4 ANALYTICAL METHOD
5 NO. DIGITS
6 NO. DATA
7 DATA
8 FINISHED EDIT THIS REC

>2 PEYCENTE SILCATE
ENTER NEW FIGURE NAME, MAX. 36 CHAR.
>PERCENT SILICATE, OLD VALUES

ENTER: 1 FIGURE NUMBER
2 FIG NAME
3 SAMPLE TYPE
4 ANALYTICAL METHOD
5 NO. DIGITS
6 NO. DATA
7 DATA
8 FINISHED EDIT THIS REC

>7 ENTER INDEX, VALUE CHANGE - OR 0,0 (I,F)
>21,81
>22,83
>24,76
>0,0

ENTER: 1 FIGURE NUMBER
2 FIG NAME
3 SAMPLE TYPE
4 ANALYTICAL METHOD
5 NO. DIGITS
6 NO. DATA
7 DATA
8 FINISHED EDIT THIS REC

>8 DATA STORED

List Examples

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>4

ENTER: 1 INDEX
2 DATA LIST

>1

HIGHEST RECORD WRITTEN = NO. 8
DO YOU WANT A LIST OF TITLES? (Y=YES, N=NO)

>Y

REC	TITLE	DATA
1	DRILL HOLE PARAMETERS.	28
2	DRILL HOLE INDEX	28
3	FOOTAGE BEGIN	28
4	FOOTAGE END	28
5	PERCENT SILICATE	28
6	ZINC	28
7	ZINC, SILICATE-ADJUSTED	28
8	COPPER	28

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>4 ENTER: 1 INDEX
2 DATA LIST

>2 ENTER NUMBER OF RECORDS TO OUTPUT - 6 MAX
>1 ENTER THE 1 RECORD NUMBERS TO OUTPUT
>1

AREA NAME: TIMES SQUARE KGRA
NEW SECTION PLOT
NO. REC = 8

DH INDEX	DH NAME	1 X-COORD	2 Y-COORD	3 ELEV	4 BEARING	5 DIP	6 LENGTH
1	DH-1	2500.00	1300.00	2500.00	.00	90.00	2200.00
2	DH-2	6000.00	600.00	2200.00	45.00	59.00	3000.00
3	DH-3	8500.00	2500.00	2450.00	.00	90.00	3000.00
4	DH-4	4250.00	300.00	2450.00	.00	100.00	3200.00
5	DH-5	800.00	1700.00	2500.00	90.00	71.00	3000.00

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

ENTER: 1 INDEX
2 DATA LIST

>2 ENTER NUMBER OF RECORDS TO OUTPUT - 6 MAX
>3 ENTER THE 3 RECORD NUMBERS TO OUTPUT
>5,6,7

AREA NAME: TIMES SQUARE KGRA
NEW SECTION PLOT

COL 1 IS PERCENT SILICATE	NDAT = 28
FIGURE NO.= 001/1A-10A	
SAMPLE TYPE= CORE	
ANALYTICAL METHOD= GRAVIMETRIC	NDIG= 0
COL 2 IS ZINC	NDAT = 28
FIGURE NO.= 002/2B-22B	
SAMPLE TYPE= CORE	
ANALYTICAL METHOD= ICPQ AT ESL	NDIG= 0
COL 3 IS ZINC, SILICATE-ADJUSTED	NDAT = 28
FIGURE NO.= 003/2C-23B	
SAMPLE TYPE= CORE	
ANALYTICAL METHOD= ICPQ AT ESL	NDIG= 0

	1	2	3
1	80.00	-49.00	-245.0
2	78.00	-94.00	-427.3
3	72.00	-105.0	-375.0
4	71.00	50.00	172.4
5	70.00	25.00	83.33
6	69.00	26.00	83.87
7	67.00	55.00	166.7
8	66.00	76.00	223.5
9	55.00	-54.00	-120.0
10	53.00	377.0	802.1
11	56.00	77.00	175.0
12	59.00	56.00	136.6
13	61.00	-55.00	-141.0
14	65.00	-111.0	-317.1
15	67.00	-133.0	-403.0
16	68.00	-89.00	-278.1
17	69.00	-56.00	-180.6
18	70.00	180.0	600.0
19	74.00	1001+07	1002+07
20	76.00	499.0	2079.
21	79.00	-1000+07	-4545+07
22	79.00	200.0	952.4
23	80.00	55.00	275.0
24	86.00	77.00	513.3
25	75.00	150.0	600.0
26	72.00	222.0	792.9
27	60.00	443.0	1107.
28	58.00	122.0	290.5

Move Examples

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>5 ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>1 ENTER NUMBER OF THE RECORD TO BE MOVED <1>
>5 ENTER DESTINATION RECORD NUMBER <1>
>9 RECORD 5 WRITTEN ON RECORD 9

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>4 ENTER FILE NUMBER (1).
- WORK FILE WILL BE OVERWRITTEN WITH THIS FILE.

>22 FILE 22 NOT FOUND. NO. FILES SAVED= 3
TRY OPTION 2, LIST DIRECTORY.

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>2
DIRECTORY OF MASTER FILE

FIRST MERGE FILE FOR BACKUP OF PSPLLOT+SEC-DATA. FILES.

1	TIMES SQUARE KGRA	NEW SECTION PLOT
2	7 RECORDS	
2	TIMES SQUARE KGRA	NEW SECTION PLOT
3	8 RECORDS	
3	TIMES SQUARE KGRA	NEW SECTION PLOT
	9 RECORDS	

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>3

FILE NO. 4 ADDED TO MERGE FILE.

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>4

ENTER FILE NUMBER (1).
WORK FILE WILL BE OVERWRITTEN WITH THIS FILE.

>2

FILE 2 RESTORED

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>6

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>7

NORMAL EXIT.

>

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>5

THIS WILL DESTROY THE ENTIRE CONTENTS OF THE
MERGE FILE (BUT NOT THE WORK FILE). ARE YOU
SURE YOU WANT TO CONTINUE? (Y = YES)

>Y

ENTER PASSWORD

>OPEN SESAME

IMPROPER PASSWORD. MERGE FILE NOT INITIALIZED.

ENTER: 1 MOVE 1 RECORD
2 LIST MERGE FILE DIRECTORY
3 SAVE WORK FILE
4 RESTORE WORK FILE
5 INITIALIZE MERGE FILE
6 EXIT THIS ROUTINE

>6

Adjust Example

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>6 ENTER INPUT RECORD NUMBER (1)
>6 ENTER OUTPUT RECORD NUMBER (1)
>7 RECORD 6 FIGURE NUMBER =
002/2B-22B
ENTER NEW FIGURE NUMBER, MAX. 18 CHAR.
>003/2C-23B
RECORD 6 FIG NAME =
ZINC
ENTER NEW FIG NAME, MAX. 36 CHAR.
>ZINC, SILICATE-ADJUSTED
SILICATE-ADJUSTED VALUES STORED, RECORD 7

ENTER: 1 INITIAL INPUT
2 ADDITIONS
3 EDIT
4 LIST
5 MOVE
6 ADJUST
7 TERMINATE

>7
NORMAL EXIT.

**Example of the Use
of
SEC-PLOT**

>SADD SEC-PLOT.RUN

ENTER UNITS, SCALE, XM, YM, CH (F)
>2,360,21.5,16,0
ENTER DMIN, DMAX, DINT, XFAC (F)
>-1000,3000,500,.8
ENTER X0, Y0, AZB, BARL (F)
>0,4000,120,3500
ENTER NO. OF DRILL HOLES TO PLOT (I)
>5
ENTER DRILL HOLE INDICES TO PLOT (I)
>1,2,3,4,5
ENTER NO. OF PLOTS TO GENERATE (I)
>3
ENTER RECORD NO.S TO PLOT (I)
>5,6,7
ENTER MAX CONC, CONC BAR LENGTH
FOR RECORD 5 (F)
>100,1
PLOT 1 GENERATED
ENTER MAX CONC, CONC BAR LENGTH
FOR RECORD 6 (F)
>200,1
PLOT 2 GENERATED
ENTER MAX CONC, CONC BAR LENGTH
FOR RECORD 7 (F)
>500,1
PLOT 3 GENERATED
NORMAL EXIT. TIME: 1282 MILLISECONDS.