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ABSTRACT

A prototype water-air solar assisted heat pump (SAHP), built by Northrup 
Incorporated has been tested at BNL as part of a DOE sponsored contract for 
the "development of marketable solar assisted heat pumps." The steady state 
test results indicate that the nominal performance goal for the prototype, COP 
of 6 at 90 F entering water temperature, was achieved.^- The transient and 

cycling tests of the Northrup prototype are described in this report. Tests 
were performed while the unit cycled under a conventional and modified control 
mode. Results indicate that cycling performance can be significantly enhanced 
by operation under the modified control mode where the supply fan is run after 
the compressor is turned off to extract heat still available at the end of the 
duty cycle.
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INTRODUCTION

A prototype water-air heat pump designed for use in solar assisted heat
pump (SAHP) systems was constructed by Northrup, Inc. as part of a contract
awarded by the U.S. Department of Energy (DOE) for the "Development of Market­
able Solar Assisted Heat Pumps." The final phase of the effort included the 
testing of the prototype by Brookhaven National Laboratory (BNL). A nominal 
performance goal for this prototype was set early in the period of the con­
tract. This goal was a steady state coefficient of performance (COP) of 6 at
90 F entering water temperature. The steady state tests of the unit have been 
completed and show that this goal has been achieved. The results of this
steady state testing are reported in references 1 and 2.

The dynamic tests of this SAHP prototype are important because the 
results comprise a proven heuristic heat pump component model for use in SAHP 
system simulations. In addition, the results demonstrate the merit of a
control scheme which promises to improve cycling performance.

Features of the final Northrup design are:
(1) 1-1/2 ton and 2-1/2 ton rotary compressors with common suction and 

discharge lines and separate accumulators;
(2) Coaxial evaporator with refrigerant in the inner line;
(3) Three row slanted air-cooled condenser;
(4) An electric expansion valve;
(5) Cooling is achieved via a separate water/air heat exchanger which

receives chilled water from the heat pump, the condenser being
cooled by outside air.

The transient tests of the Northrup prototype SAHP were performed using 
the BNL Solar Heat Pump Simulator, a device which creates realistic operating 
conditions and provides for the determination of the performance of liquid-air 
and liquid-water heat pumps. The three subsystems of the simulator as they 
were arranged for transient testing of the Northrup prototype are depicted 
semi-schematically in Figure 1.

The Air Load Subsystem provides for measurement and control of all condi­
tions pertaining to the "air side" of the heat pump. The Water Load Subsystem 
is used by the Air Load Subsystem to withdraw heat at the heat pump's sup­
ply side via an air/water coil, at a rate which is controlled to keep the
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Figure 1. BNL Simulator Air Load Subsystem Used to Test Northrup SAHP

temperature of the room air which is returned to the unit at a constant tem­
perature (usually at residential space temperatures of 20 to 21 C (68 to 70 
F). All instrumentation and procedures followed closely the recommendations 
of ASHRAE.3

Transient -and cycling tests were performed with entering water temper­
atures of 90, 70, and 50 F circulated through the evaporator at 9 gpm. The 
entering air temperature was maintained at 70 + 0.2 F at a flowrate of 1100 
SCFM. Power was supplied at 230 + 0.5 volts. All data were recorded in a 
period of 5 seconds by a datalogger at a frequency of 2 scans per minute. 
Details of the instrumentation employed may be found in references 1 and 2.

The integrated COP at a given point in time is the integrated heating 
capacity divided by the integrated compressor power. The heating capacity 
during each record interval was assumed to be constant and equal to the aver­
age of the instantaneous capacities measured at the beginning and the end of 
each interval. The compressor power consumption during each interval was 
assumed to be constant and equal to the instantaneous power measured at the 
end of the interval.

-2-



That is:

Integrated COP = £ [(Qi + Qi+1)/2]/^ Wi+1 
i=0 ' i=0

where: = instantaneous heating capacity at time 30i seconds from startup
W-£ = instantaneous compressor power consumption at time 30i seconds 

from startup.
COLD START TRANSIENT TESTS

For the cold start transient tests the unit remained inoperative for a 
period greater than 2 hours. The external conditions were already established 
at the time the unit was energized. The unit was run for 15 minutes at which 
time the compressor was turned off. The fan was left running and data were 
recorded until such time as the integrated COP began to fall (i.e., the resi­
dual heating capacity did not justify the required fan power). The cold start 
transient runs were performed at 50, 70 and 90 F entering water temperature. 
Examples of test results for these runs are given in Figures 2, 3, and 4 for 
the respective entering water temperatures. Important observations from these 
results are:

(1) Steady state is reached within approximately 3 minutes of start up;
(2) The integrated COP is from 75 to 80% of the steady state value at 

the time steady state is reached;
(3) The integrated COP was 92 to 95% of the steady state value at the 

end of the 15 minute period and it reached 98% during the period 
after the compressor was deenergized.

CYCLING TESTS

The heat pump was run under cycling scenarios composed of off-periods 
3-1/2 minutes and greater and on-periods 3 minutes and greater at entering 
water temperatures of 50, 70, and 90 F. All external conditions except air 
flowrate were maintained throughout 4 contiguous cycles of the heat pump.
Tests were performed under the conventional control mode, where the compressor 
and fan are turned off simultaneously; and under the modified control mode 
where the fan is allowed to run after the compressor is turned off to distri­
bute heat still available from the condenser. During the testing under the
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modified control mode the compressor was shut off and the fan allowed to con­
tinue running until the integrated COP began to fall at which time the fan was 
also turned off. The air flowrate was reestablished within 2.5 seconds of the 
beginning of each on-period.

Typical data from the cycling tests are shown in Figure 5. The results 
are summarized in Table 1. Important observations from these data are:

(1) For all cycling scenarios the integrated COP at the end of each 
cycle; the length of time required to reach steady state; and the 
steady state COP and heating capacity did not depend on the 
off-period. Thus the data may be meaningfully represented in the 
form of Figure 6. Here the ratios of integrated COP and 
corresponding steady state COP at the end of multiple on-periods are 
given as functions of duration of on-period for entering water 
temperatures of 50, 70, and 90 F under the conventional control mode 
and under the modified control mode. These data are correct only 
for cycling scenarios consisting of off-periods greater than 3-1/2 
minutes.

(2) The maximum integrated COP (or the projected integrated COP for an 
indefinite number of cycles) was 70 to 80% of the steady state value 
under the conventional control mode but between 96 and 97% of the 
steady state value under the modified control mode for the minimum 
on-period.
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Table 1. Summary of Cycling Test Data

Integrated COP at end of cycle
Conventional | Modified Corresponding
control mode | control mode 1 steady state COP

On-time | Off-time |
J L

90 70 50 j 90 70 50
1 1

j 90 70 50
1

3 3.5 4.6 3.5 2.6 5.5 4.7 3.4 5.8 4.9 3.5
5 3.5 5.1 4.0 3.0 5.6 4.8 3.4 5.8 4.9 3.5

12 3.5 5.5 4.5 3.3 5.7 4.8 3.4 5.8 4.9 3.5
3 5 4.6 3.5 2.7 5.5 4.7 3.4 5.8 4.9 3.5

12 5 5.5 4.5 3.3 5.7 4.8 3.4 5.8 4.9 3.5
3 12 4.6 3.5 2.7 5.5 4.7 3.4 5.8 4.9 3.5

12 12 5.5 4.5 3.3 5.7 4.8 3.4 5.8 4.9 3.5
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Figure 6. Ratio of Integrated COP to Steady State vs. Duration of On-Period, 
Entering Water Temperature and Control Mode.

(3) The maximum ratio of integrated COP to the corresponding steady 
state COP under the conventional control mode ranged between 75% and 
95% for on-periods between 3 minutes and 15 minutes.

(4) The maximum ratio of integrated COP to corresponding steady state 
COP under the modified control mode for all on-periods greater than 
3 minutes is nearly constant, ranging from 96% to 98%.

No consideration was given for any heat passively given off by the heat 
pump to the surrounding space during off-periods under the conventional con­
trol mode. Thus the results reported under the conventional control mode 
represent a minimum possibility.

The results of this study show that the wide capacity/load mismatch as­
sociated with high source temperatures may not be a serious problem and the 
high COPs possible with high source temperatures may be achieved if cycling 
losses are not severe. The control mode used in this study is a simple and 
inexpensive one to implement. Similar results have been obtained for absorp­
tion chillers by others using this scheme.^
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