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I nt roduct i o n  

The Kra f la  geothermal f i e l d  i n  northeastern 
Ice land consis ts  o f  several  zones, which conta in  
f l u i d s  o f  d i f f e r e n t  composition and thermodynanic 
s t a t e  (Stefansson, 1981). I n  th is paper we exan im 
production data from we l ls  which are completed i n  
two-phase zones. 
and f lowing enthalpy are analyzed t o  obta in  i n s i g h t  
i n t o  r e l a t i v e  ( l i q u i d  and gas phase) permeabi l i t ies,  
and other reservo i r  parameters. 

Transient changes i n  flow r a t e  

Numerous s tud ies have shown tha t  p red ic t ions  
o f  geothermal reservo i r  behavior are s t rongly  
dependent upon the choice o f  r e l a t i v e  permeabil i ty 
functions. There i s  an extensive l i t e r a t u r e  on 
gas-oi l  and oi l -water r e l a t i v e  permeabi l i t ies,  but 
steam-water r e l a t i v e  permeabi l i t ies  which are n e d -  
ed for  geothermal reservo i r  analys is  are poor ly  
known. Laboratory experiments by Chen e t  e l .  
(1978) and Counsil and Ramey (1979) have provided 
some data which, however, seem t o  be a t  variance 
w i t h  r e l a t i v e  permeabi l i ty  Character is t ics  deduced 
from f i e l d  data by Grant (1977) and Horne and Raney 
(1978). The d i f ferences may r e f l e c t  uncer ta in t ies  
i n  the analysis methods used, or they may r e f l e c t  
" rea l "  d i f ferences i n  r e l a t i v e  permeabi l i ty  be- 
hav ior  o f  f ractured reservo i rs  from tha t  o f  porous 
medium-type laboratory cores. Recent t h e o r e t i c a l  
work by Henzies ( 1 9 8 2 )  and Cudmundsson e t  a l .  
(1983) has substant iated the r e l a t i v e  permeabi l i ty  
charac ter is t i cs  obtained by Horne and Raney (1978) 
for  Wairakei wells. 

Production Data 

K r a f l a  wells completed i n  two-phase zones show 
st rong t rans ients  i n  f low r a t e  and enthalpy *en 
f i r s t  put on production. 
of t h i s  behavior, Figure 1 shows product ion d8ta 
from w e l l  12. 
mately 14 kg/s of water and 20 kg/s of s t e m  from 
a reservo i r  a t  a temperature of approximately YZO'C. 
Within a few days water production ceased, and 
steam product ion dropped t o  approximately 10 kq/s. 
After  three months steam product ion had decl ined t o  
6 kg/s, whi le enthalpy continued t o  increase slowly. 

tha lpy are inf luenced by many reservo i r  proper t ies 
i n  the v i c i n i t y  o f  the wel l .  In  general, the main 
parameters governing w e l l  behavior are: perme- 
a b i l i t y ,  poros i ty ,  e f f e c t i v e  wellbore radius (sk in ) ,  

As a t y p i c a l  example 

I n i t i a l l y  the w e l l  produced approxi- 

The observed t rans ien ts  of flow r a t e  and en- 

in-place vapor saturat ion,  and r e l a t i v e  permeabi l i ty  
charac ter is t i cs  o f  the medium. Many o f  these proper- 
t i e s  may be s p a t i a l l y  var iable,  and a p r i o r i  
knowledge of the relevant parameters i s  l im i ted .  

In  Figure 2 m have p l o t t e d  f low r a t e  on a 
logar i thmic scale versus f lowing enthalpy f o r  
several  K r a f l a  wel ls  completed i n  two-phase zones. 
When p l o t t e d  i n  th is  fashion, most data po ints  f a l l  
on smooth curves, with some approximately l i n e a r  
sect ions (Stefansson e t  el., 1982). The sizeable 
sca t te r  o f  the data present i n  some cases f o r  wells 
12 and 14 occurs because o f  var ia t ions  i n  w e l l  head 
pressure. We have drawn smooth curves through the 
data points,  which f o r  wel ls  12, 13, and 15 are 
approximately p a r a l l e l .  This ind icates s i m i l a r  
r e l a t i v e  permeabi l i ty  charac ter is t i cs  f o r  these 
ml ls .  Well 14, which i s  completed i n  a d i f f e r e n t  
reservo i r  zone (Bodvarsson e t  al., 1983a1, i s  oper- 
ated a t  a much higher well head pressure, and shows 
a d i f f e r e n t  c o r r e l a t i o n  between f low r a t e  and 
enthalpy. 

Relat ive Permeabil i ty Analysis 

We have used the  smoothed f i e l d  data (see 
f i g u r e  2)  t o  study the r e l a t i v e  permeabi l i ty  be- 
hav ior  o f  e l l s  12 through 15. 
analys is  i s  s i m i l a r  t o  tha t  o f  Grant (19771, and 
can be summarized w i t h  the fo l low ing  equations. 
The f low r a t e  o f  a two-phase well i s  w r i t t e n  

Our method of 

Here P I  i s  the p r o d u c t i v i t y  index o f  the well, 
p i s  an average reservo i r  pressure i n  the 
v i c i n i t y  o f  the well, and Pwb i s  the flowing 
down-hole pressure. 
l i qu id  phase are: 
densi ty  PL, and v i s c o s i t y  ut, w i t h  analogous 
d e f i n i t i o n s  apply ing t o  the vapor phase. 
p a r m e t e r  group P I  (P-Pwb) i s  i d e n t i c a l  t o  
the  parameter B used by G r a n t  (1977). 

Expressing f lowing enthalpy as: 

Parameters s p e c i f i c  t o  the 
r e l a t i v e  permeabi l i ty  kre,  

The 



. 
we have two equations r e l a t i n g  the measured quan- 
t i t i e s  q and h t o  the three unknowns k r i ,  kp,, and 
E. Grant (1977) obtained the needed t h i r d  equa- 
t i o n  by considering a we l l  which a t  some time was 
f lowing at  single-phase l i q u i d  condit ions, i n  
which case 

PP 
"0 

q p = B -  

To obta in  &values f o r  other wells, G r a n t  
s h i f t e d  t h e i r  log  q vs. h-p lo ts  t o  obta in  the 
best canmon p lo t .  
necessary, because a l l  wel ls  considered here 
d i d  ac tua l l y  reach single-phase (vapor) f low 
condit ions, so tha t  the vapor form o f  equation 
( 3 )  can be used d i rec t l y .  The r e l a t i v e  perme- 
a b i l i t i e s  obtained on t h i s  basis, assuning an 
average reservo i r  temperature o f  T = 3OO0C, are 
p lo t ted  versus f lowing enthalpy i n  Figure 3. 
The curves f o r  d i f f e r e n t  wal ls  are ra ther  
d i f f e ren t ,  w i th  w e l l  12 r e l a t i v e  permeab i l i t ies  
genera l ly  considerably l a rge r  than those for  the 
other wells. 

In our case t h i s  step i s  not 

The above analys is  was based on the assumption 
tha t  B i s  a constant parameter for each well ,  inde- 
pendent o f  Flowing enthalpy. We suggest t ha t  t h i s  
i s  a ra ther  poor approximation, because both flow- 
i n g  "downhole pressure p& and average reservo i r  
pressure p near the we l l  may vary considerably w i t h  
Flowing enthalpy. Using the smoothed data as shown 
i n  F igure 2, we compute B both for  single-phase 
l i q u i d  (ht = 1344 k3/kg) and for single-phase 
vapor (hv = 2749 kJ/kg). The r e s u l t s  are given 
i n  Table 1. 
h data, using equations ( 1 )  and (2 )  w i t h  l i n e a r  
i n te rpo la t i on  fo r  the w e l l  i nd ices  between t h e i r  
l i q u i d  and vapor values: 

We then re-analyze the smoothed q vs. 

h-h0 
= E p  + - LEv - 801 

hv-h0 

Figure 4 shows that w i t h  t h i s  renormalization 
the r e l a t i v e  permeab i l i t ies  for wel ls  12, 13, and 
15 p r a c t i c a l l y  col lapse i n t o  s ing le  curves. This 
provides evidence tha t  the r e l a t i v e  permeab i l i t ies  
for these wel ls  are i n  fac t  v i r t u a l l y  iden t ica l ,  
and that the approximation made i n  (4) i s  va l id .  
Well 14 shows a somewhat d i f f e r e n t  behavior, which 
may ind ica te  a t rue  d i f fe rence i n  r e l a t i v e  pame- 
a b J l i t y  charac ter is t i cs  between d i f f e r e n t  reservo i r  
zones. 

Inspection o f  F igure 4 shows tha t  k r r  + krv' l  

A s im i l a r  conclusion was reached by 
t o  a good approximation over the e n t i r e  
hg'h<hv. 
Bodvarsson e t  a l .  (1983b), based on observed 
t rans ien ts  i n  s t e m  ra te  a t  the separators for we l l  
13, i n  response t o  i n j e c t i o n  i n t o  nearby w a l l  7. 
I t  i s  also i n te res t i ng  t o  note tha t  the shape o f  
the r e l a t i v e  permeabil i ty curves i s  ra ther  s im i la r  
t o  the theo re t i ca l  streamtube model p red ic t ions  of 
Menties (1982) and Gudmundsson e t  a i .  (1983). 

range 

I t should be emphasized tha t  the r e l a t i v e  
permeabi l i ty  in format ion obtained from the above 
analys is  remains incomplete. Figure 4 disp lays 
r e l a t i v e  permeabi l i t ies  as functions o f  f lowing 
enthalpy. However, for appl icat ions i n  geother- 
mal reservo i r  modeling i t  i s  necessary t o  express 
r e l a t i v e  permeabil i ty as a funct ion o f  thermo- 
dynamic s ta te  variables, such as in-place vapor 
saturation. The re la t i onsh ip  between S and f lowing 
enthalpy h i s  unknown, so tha t  the r e l a t i v e  permea- 
b i l i t i e s  as given i n  F igure 4 cannot be used i n  a 
numerical model. 
functions kSp(S), krv(S) w i t h  k r t  + krv 
and monotonic dependence upon S are consistent w i th  
the r e s u l t s  o f  our analysis. 

In  fact ,  any r e l a t i v e  permeabil i ty 
1 

Modeling o f  f low r a t e  and enthalpy t rans ients  

The foregoing r e l a t i v e  permeabi l i ty  analysis 
employed only the observed co r re la t i on  between f low 
ra tes  and enthalpies. The actual  temporal va r ia t i on  
o f  q and h d i d  not enter  i n t o  the discussion. Here 
we s h a l l  examine the t rans ien ts  as observed for w e l l  
12 (see Figure 1) t o  deduce fu r ther  in format ion about 
reservo i r  parameters and condit ions. 

(Pruess and Schroeder, 1980) and ,MULKOM (Pruess, 
1983) t o  model the t ime dependence o f  f low r a t e  
and enthalpy. 
measured f low ra tes  as input  t o  the simulator, and 
attempt t o  match the  observed enthalpy transients. 
Table 2 shows parameters which were kept f i xed  i n  
the  simulations. Assuming uniform i n i t i a l  vapor 
saturat ion,  we made an extensive parameter search 
fo r  poros i ty ,  permeabil i ty, e f fec t i ve  formation 
thickness, and r e l a t i v e  permeabi l i ty ,  using both 
porous and f ractured porous medium models. This 
p a r t i c u l a r  e f f o r t  f a i l e d  t o  produce anything resem- 
b l i n g  the observed enthalpy t rans ient .  The main 
shortcoming o f  a l l  models w i th  uniform vapor satura- 
t i o n  i s  tha t  they pred ic t  8 much more rap id  r i s e  i n  
enthalpy than i s  observed i n  the actual  tes t .  This 
discrepancy suggests that  vapor sa tura t ion  at  the 
t ime when w e l l  12 was opened for  discharge was i n  
fact nonuniform, w i t h  smaller values near the well .  

We have used our numerical simulators SHAFT79 

As a f i r s t  approach we use the f i e l d -  I 

A poss ib le  explanation for a nonuniform satu- 
r a t i o n  d i s t r i b u t i o n  may be found i n  the d r i l l i n g  
and completion pract ice.  During d r i l l i n g  the 
reservo i r  region around the  bore i s  cooled by c i r -  
cu la t i ng  d r i l l i n g  f l u id ,  which may cause some 
s t e m  condensation i n  the formation. Furthermore, 
a t  the end o f  the d r i l l i n g  process co ld  water i s  
continuously i n jec ted  for a few days during we l l  
logging, test ing,  and s t imulat ion.  The average 
t o t a l  mass of i n jec ted  water has been estimated 
as 3000-5000 tonnes (Benediktsson, personal com- 
munication, 1982). Subsequently the we l l  heats * 
up for several weeks before being placed on pro- 
duction. I f  steam condensate and in jec ted  water 
remain i n  the v i c i n i t y  o f  the bore rather  than 
being dispersed over a la rger  reservo i r  region, 
t h i s  would provide an explanation for  a non- 
uniform i n i t i a l  vapor saturation. 
NZ/HZ r a t i o  o f  produced waters show that indeed 
for  several days a f t e r  p lac ing  a we l l  on production 
a mixture o f  in jec ted  and reservo i r  waters i s  pro- 
duced (Cislason e t  al., 1978). 

Changes i n  the 

2 



. 
Based on these considerations a conceptual 

model was developed i n  which the bulk  o f  the reser- 
v o i r  has a "background" vapor sa tura t ion  sb, whi le 
near the w e l l  the i n i t i a l  vapor sa tura t ion  i s  S,<Sb. 
The "excess mass" present near the w e l l  due t o  s t e m  
condensation and co ld  water i n j e c t i o n  i s  

( 5 )  

where Vn i s  the volume o f  the zone' w i t h  SSn. 

would be slower, as ind icated by the f i e l d  data. 
The rad ius o f  the "near-zone" Vn, which contains 
the excess mass and i s  i n  high-permeabil i ty con- 
t a c t  w i th  the well, was ra ther  a r b i t r a r i l y  f i x e d  
at  Rn = 10 m (Corresponding t o  a negative skin 
value o f  s = -4.5). By varying r e l a t i v e  permea- 
b i l i t y  funct ions and poros i ty  i n  the near-zone, 
several  excel lent  matches t o  the enthalpy tran- 
s ien ts  were obtained. 
F igure 5, whi le  Table 3 gives the key parmeters  
f o r  d i f f e r e n t  cases. 

w Because o f  t h i s  excess mass enthalpy t rans ients  

Examples are shown i n  

I t  i s  apparent tha t  the data can be matched 
equal ly  well w i t h  d i f f e r e n t  values for  i r r e d u c i b l e  
water sa tura t ion  and i n i t i a l  vapor saturat ion.  
d i f f e r e n t  cases a l l  agree c lose ly  i n  the excess 
mass present near the wel l ,  wftich a lso  agrees -11 
w i t h  the t o t a l  mount  of water in jected.  This 
together w i t h  the good q u a l i t y  o f  the enthalpy 
match gives strong support f o r  the conceptual model 
employed i n  the simulations. 

The 

Despite the success o f  the model i n  matching 
f i e l d  data i t  provides only  ra ther  l i m i t e d  i n s i g h t  
i n t o  reservo i r  parameters. I t  does show c l e a r l y  
tha t  the i n j e c t e d  water remains near the w e l l  f o r  
a per iod o f  weeks. Furthermore, the water i s  i n  
high-permeabil i ty contact w i t h  the wellbore. How- 
ever, none of  the important reservo i r  permeters, 
such as poros i ty ,  volune o f  the near-zone, i n i t i a l  
vapor sa tura t ion  i n  the near zone, funct ional  form 
o f  r e l a t i v e  permeabi l i t ies,  and i r r e d u c i b l e  satura- 
t ions ,  are uniquely defined. 

D e l i v e r a b i l i t y  Model 

The model discussed i n  the previous sect ion 
employs par t  o f  the t e s t  data (time-dependent f low 
ra tes)  t o  p red ic t  the enthalpy t ransients.  m i l a  
t h i s  has yielded a good match and a consis tent  
descr ipt ion,  i t  i s  des i rab le t o  develop a more 
comprehensive model i n  which a l l  t e s t  data are 
matched w i t h  ca lcu lated values rather  than pre- 
sc r ib ing  some as input. 

v Here we present r e s u l t s  from a " d e l i v e r a b i l i t y  
model", i n  which product ion r a t e  depends upon 
reservo i r  pressure according t o  equation (1).  
the time-dependence o f  both f low r a t e  and enthalpy 
is predic ted by the simulator. 
( 1  
p d  = 2.0 MPa, p = 10.7 HPa, we obta in  P I  = 3.8  x 

mJ. The permeabil ity.thickness product 
was f ixed at  the value 1.20 dm obtained from in jec-  
t i o n  t e s t s  (Bodvarsson e t  el., 19BSa). Using d i f -  
ferent r e l a t i v e  permeabi l i ty  funct ions,  and d i f f e r -  
ent values f o r  vapor saturat ion,  reservo i r  poros i ty ,  
and radius An o f  the near zone w i t h  excess l i q u i d  

Thus 

Evaluat ing equation 
f o r  single-phase vapor flow, using qv = 10 kq/s, 

(see Table 41, we have been able t o  obta in  a number 
o f  excel lent  m 8 t C h e S  t o  both f low r a t e  and enthalpy 
(see Figures 6 and 7 ) .  

It turns out tha t  the match i s  very sens i t i ve  
t o  the choice o f  poros i ty  and of 5,. 
choices o f  Rn can be compensated for by making 
appropr iate adjustments i n  0 ,  such tha t  0 Rn* 
remains constant. The value of sb must corre- 
spond t o  immobile or near ly  immobile l i q u i d ,  and 
i s  determined t o  within 5-10s. The excess mass 
present m a r  the well due t o  condensation and in- 
j e c t i o n  i s  estimated as approximately 0.5 x 106 kg 
i n  most cases, which agrees very w e l l  wi th  the 
in jec ted  mass. For Corey r e l a t i v e  permeabi l i ty  
funct ions a s i g n i f i c a n t l y  l a r g e r  Mex i s  obtained 
than f o r  l i n e a r  functions. The q u a l i t y  o f  the f i t  
f o r  [ q ( t ) ,  h ( t ) ]  i s  good i n  a l l  cases, i n d i c a t i n g  
tha t  the t rans ien ts  are very sens i t i ve  t o  the 
excess mass, but not sens i t i ve  t o  the funct ional  
form o f  kpt(S) and k r v  (5). 

D i f f e r e n t  

Conclusions 

Our analysis o f  f low r a t e  and enthalpy data 
fran several  we l ls  completed i n  the same two-phase 
zone o f  K r a f l a  geothermal reservo i r  has y ie lded 
consis tent  r e l a t i v e  permeabi l i ty  parameters. We 
f ind t h a t  k r l  + k r v  = 1 over the e n t i r e  range o f  
two-phase f low condi t ions from immobile l i q u i d  t o  
immobile vapor. The avai lab le data provide re la-  
t i v e  permeabi l i ty  parameters as a funct ion o f  f low-  
i n g  enthalpy only. The r e l a t i o n s h i p  between f lowing 
enthalpy and in-place vapor sa tura t ion  remains un- 
known, so tha t  the r e l a t i v e  permeabi l i ty  in format ion 
obtained i s  o f  l i m i t e d  value f o r  quant i ta t i ve  model- 
i n g  o f  geothermal reservo i r  performance. 

Nuner ical  s imulat ion o f  f low r a t e  and enthalpy 
t rans ien ts  has y ie lded excel lent  matches t o  produc- 
t i o n  data from well 12. However, there i s  l i t t l e  
informat ion about the reservo i r  which can be deduced 
i n  an unambiguous way, because the f i e l d  data could 
be matched w i t h  a v a r i e t y  o f  ra ther  d i f f e r e n t  para- 
meter choices. 
mation obtained i s  t h a t  the water i n j e c t e d  i n t o  the 
w e l l  dur ing d r i l l i n g  and completion remains i n  the 
v i c i n i t y  o f  the wel lbore dur ing several  weeks of 
mnnUp. 

The only unambiguous piece o f  i n f o r -  
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Table 1. Well indices.  

Well Index 8 
( 10-6 pa am3 1 Well 

L i q u i d  Vapor 
~~ 

12 8.3 4.1 

13 3.1 2.5 

14 4.4 5.7 

15 1.7 1.6 

Table 2. KG-12 Simulat ions - f i x e d  Parameters 

Parameter 
~ 

produced f lowra te  as observed i n  the 

rese rvo i r  temperature 32OoC 
rese rvo i r  pressure 112.89 bars (=sa tura t ion  

rock densi ty 2650 kg/m3 
rock s p e c i f i c  heat 
rock heat conduct iv i t y  2.0 W/m°C 

skin -4.5 

i r r e d u c i b l e  vapor 0 

f i e l d  (time-dependent) 

pressure a t  T=320°C) 

1000 J/kgo C 

sa tu ra t i on  

Table 3.  Simulations w i t h  prescr ibed 
(observed) f low rate.  

s' 

parameter Case 1 Case 2 Case 3 

kH (Dm1 
r e l e t  i v e  
permeebi l i  t y 
func t ion  

SIX* 

sS; 

spv 

'b 

'n 

@ 

Mex(10 .kg)  6 

2.0 

l i n e a r  

J O  

.oo 
1 .oo 

.70 

.45 

.08 

3.78 

1.2 

Corey 

.30 

.oo 
1 .oo 

S O  

.30 

.ll 

4.16 

1.2 

smoothed 
l i n e a r  

.40 

.05 

0.65 

.65 

.38 

.08 

4.09 

* .  i r r e d u c i b l e  l i q u i d  sa tu ra t i on  
+ i r reduc ib le  vapor sa tu ra t i on  
#per fec t l y  mobile vapor sa tu ra t i on  
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Table 4. Simulations using a de l iverabi l i ty  model. 

. 

Parameter Case 1 Case 2 Case 3 Case 4 

re lat ive  perme- 
ab i l i ty  function 

sIlr 

'sr 

'b 

'n 

R n ( m )  

6 Mex(10 kg) 

moot hed 
linear 

A 0  

.os 

.65 

.24 

.01s 

20 

4.66 

smoothed Corey smoothed 
linear l inear 

.so .30 .40 

.os .O .os 

.5s .so .65 

.16 .06 .24 

.06 .06 .06 

10 10 10 

4.43 5.00 4.66 

1. Production data for well 12. 

1 3  1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 

flowing enthalpy (MJIkg) 

1 3 1 5  1 7  1 9  2.1 2.3 2.5 2.7 2.9 

flowing enthalpy (MJIkg) 

0 W . u  12 
0 Well 13 
VW.1114 
0w.u 15 

Fkrring enthalpy ( kllkg) 
I.-*" 

2. Observed correlation between flow rate and 
flowing enthalpy. 

5 .  Relative permeabilities assuming constant 
wall indices. 

5 



0 .  Renormalized re la t ive  permeebilities. 

6. Comparison between calculated and observed 
flow rates  for well 12 (de l iverabi l i ty  model). 

Ik Ilo. S I  rnvn 

5. Comparison between calculated and observed 
enthalpies for  well 12 (calculation uses 
observed flow ra tes ) .  

L7 - 
u- 

L7 - 
u- 

A U t  
0 Sr. 

7. Comparison between calculated and observed 
enthalpies for well 12 (de l iverabi l i ty  model). 

. 
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