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Abstract

Only two kinetic models appear to be appropriate for recrystallization of metals and 
crystallization of metallic glasses: Kolmogorov-Johnson-Mehl-Avrami (KJMA) and Speich- 
Fisher (SF). However, much confusion prevails on the proper use of these models because their 
limitations are not well understood. Fortunately, computer simulations are proving to be 
effective for simulating kinetic behavior. In particular, a simplified computer model, which 
simulates a regular geometric grain growing in an impingement cell, provides kinetic simulations 
that agree with experimental data. The computer model isolates specific concepts that the kinetic 
models were formulated on, and it also simulates different time-dependent growth relations.

The KJMA model is based on linear interfacial growth and uses an extended-volume 
concept to compensate for impingement. The computer model isolated the effect of the extended- 
volume concept, and it also was used to determine why some experimental data conform to 
KJMA kinetics while others do not. The analyses indicated that essentially linear KJMA 
behavior can occur in reerystallization of metals that have reached an effectively constant state of 
recovery or in crystallization of amorphous metals that have reached a constant state of disorder.

The SF relation is based on inverse-time-dependent growth, and it is effective for 
recrystallization that is retarded from an initial linear rate by factors such as the simultaneous 
occurrence of recovery. The computer model clearly defines the limitations of the SF model.

This work demonstrates that computer simulations can define the limitations of the 
existing kinetic models and increase our understanding of them.

Introduction

Much uncertainty exists on the proper use of kinetic relations for recrystallization, 
primarily because of an incomplete understanding of the limitations of the kinetic relations and 
the extent to which these limitations affect the predictive capability of the kinetic relations. Many 
recrystallization studies have relied on the popular model developed independently by 
Kolmogorov,[ 1] Johnson and Mehl,[2] and Avrami[3-5] (KJMA). The KJMA kinetic relation 
has been used extensively to model reerystallization kinetics and is suitable for many materials. 
A major problem in the use of the KJMA relation, however, is that the later stages of 
reerystallization in many metals show severe negative deviation from linear KJMA behavior. 
This deviation has been attributed to factors such as simultaneous recovery and nonuniform 
deformation. [6-10] Speich and FisherfTJ (SF) developed a kinetic relation that appears to 
overcome this limitation to some extent and is effective for many materials, but again, confusion 
seems to prevail on the limitations and the extent to which they restrict the use of the SF relation.

Both kinetic relations are composed of two independent parts: a geometric model and a 
time-dependent term that models the growth rate. Compensation for grain impingement is
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essential in the geometric models; however, impingement geometry is sufficiently complex that 
impingement condensation can only be approximated. In fact, much of the confusion on the use 
of the kinetic relations has stemmed from uncertainty about the limitations of the geometric 
models and the accuracy of their impingement compensation. Fortunately, the limitations of 
these models and their accuracy can now be analyzed with computer simulations.

Several workers have used computer models to simulate various aspects of 
recrystallization.[l 1-13] This paper will concentrate on results generated with a simplified 
computer simulation (SCS) model[14,15]. The model rigorously compensates for grain 
impingement and has demonstrated that both infringement models do predict reasonable 
impingement compensation with respect to the scatter of experimental data. Effective simulations 
of reerystallization and reerystallization kinetics also have been performed by Srolovitz and co- 
workers[16,17] using Monte Carlo (MC) simulations, and their work also will be reviewed.

The Kinetic Rglato

The geometric model used in the KJMA kinetic relation is the well-known extended- 
volume concept - an explicit impingement model. This model assumes a random distribution of 
spherical phases, and the extended volume is defined as the total volume that would be obtained 
if the spheres grew through each other for the appropriate time, t, with no impingement The 
actual volume transformed, V, is related to the extended volume, Vex, by the relation,

dV/dVex = (1 - V). (1)

Integration and normalization to unit volume yields

fex = ln[l/(l-f)] (2)

where f and fex are the respective volume fractions. Assuming linear time-dependent growth, 
which Christian[18] states is appropriate for interface-controlled reactions, Eq. 2 yields the 
commonly accepted form of the KJMA relation,

f=l-exp(-ptn) (3)
where f is now the volume fraction and P is an effective reaction-rate constant that includes 
geometric, nucleation, and growth terms. For three-dimensional growth (which applies to the 
SCS model), n = 3 for site-saturated (instantaneous) nucleation, and n = 4 for a linear nucleation 
rate; for two-dimensional growth (which applies to the MC model), n = 2 and 3, respectively.

The geometric model used in the SF kinetic relation - an implicit impingement model - is 
the empirical parabolic relation,

A = Kaf(l-f) ' (4)

where A is the InterfacM area between recrystallized and unrecrystallized material and Ka is a 
constant. Experimental data obtained from Fe-3.25 Si by SF agreed remarkably well with Eq. 
(4). The SF kinetic relation uses 1/t growth in conjunction with Eq. 4 to obtain

f/(l-f) = Kgtn (5)

where Kg and n are constants. The SF kinetic relation for reerystallization agrees reasonably 
well with data from materials that show strong negative deviation from KMJA behavior.

IMCongaterMAls
The SCS model is based on the growth of geometric grains distributed on a regular, 

infinite lattice. [10] This simplified geometry permits simulations with a single grain growing in 
an impingement cell that conforms to a Wigner-Seitz construct on the distribution lattice. Grain 
growth is monitored by V and A of the portion of the grain that remains within the impingement 
cell; V is normalized tof by using a cell size of unit volume. A distinct advantage of this 
simplified model is that rigorous compensation for grain impingement is executed, and one form 
of the KJMA extended volume can be defined as the total volume of the SCS grain with no 
impingement compensation. Disadvantages of the model are that it is highly ordered and it 
applies rigorously only to site-saturated or instantaneous nucleation, but these conditions appear 
to correlate better with experimental behavior than random nucleation and growth. The technique



for generating kinetic plots from the SCS data was discussed previously[14] and is demonstrated 
elsewhere in these proceedings. [15]

The MC technique developed by Doherty and co-workers[9,10,16,17] also yields 
effective simulations of both reerystallization and various aspects of grain growth. Most of their 
simulations are two-dimensional and use a finite-element network composed of triangular 
elements; their typical simulated field is 200 x 200 elements. They define a unit of time as one 
MC probability sweep through all 40,000 elements (a MC step in their terminology). They 
assign a stored energy of H to each element in the unrecrystallized fields, and they impose a 
dimensionless grain-boundary energy, J, between two adjacent elements when the elements are 
in different grains. The probabilities of both nucleation and growth are proportional to H/J 
(dimensionless units) in their simulations. An important aspect of the MC technique is that it can 
model reerystallization in nonuniformly deformed materials by assigning a distribution of 
energies to H.

ffingtic Simplatipni?
IhfiiQMARgMgfl

SCS Model. Simulated KJMA kinetic plots are presented in Fig. 1 for a sphere growing 
in a cubic impingement cell, which conforms to the axial symmetry constraint described 
elsewhere in these proceedings.[15] The SCS data (indicated by + in Fig. 1) are initially linear. 
The dotted line through these points has a slope of 3.0, which agrees with three-dimensional 
KJMA behavior for site-saturated nucleation. Beyond the linear region, which extends to 
roughly f= 0.1, the upper portion of the SCS kinetic curve shows slight upward curvature. In 
comparison to the scatter of experimental data, however, the SCS simulations are reasonable and 
indicate that the extended-volume concept does provide reasonable impingement compensation.

To analyze the contribution of the 
extended volume to the upward curvature of the 
SCS data in Fig. 1, extended volumes were 
calculated as the volume of the spherical grain 
with no corrections for impingement (termed 
fj ex following notation of Avrami[4]) and 
from Eq. 3 to obtain fex from the SCS values 
of f.[19] As shown in [19], fex > fi ex- 
Equation 3 should apply only to randomly 
distributed grains and not the ordered array of 
the SCS malel. However, fex in Eq. 3 
formally governs the KJMA kinetic relation 
and, hence, behavior of the SCS data in KJMA 
plots, and the difference between fex and f j ex 
measures the amount of overcompensation of 
fex that causes the upward deviation.

Figure 1 also includes a plot of fj ex 
(dots) (fj ex is limited tof < 1 because of the 
logarithmic term). When f is regenerated from 
fj ex using equation (2) (as in [14]), the plot

Figure 1 - Simulated KJMA plot of the SCS 
data for a sphere in a cubic cell.

falls along the straight line with n = 3 to within plotting accuracy. Similar results also are 
obtained for a bipyramid with [111] faces as shown in [14] and [15]. Therefore, the difference 
between fex and fj ex is a measure of the overcompensation of fex in equation (2) for each SCS 
model, and this overcompensation correlates directly with the upward deviation of the simulated 
plots. As discussed in [14] for a sphere growing in a cubic impingement cell, the 
overcompensation reaches a maximum of about 26% at f = 0.7 but is only about 7% at f = 1.
The deviation is somewhat less for the {111} bipyramid. The extent to which the 
overcompensation is related to the ordered distribution geometry of the SCS model as opposed to 
the random distribution that is assumed in the KJMA model remains to be isolated.

MC Model. Srolovitz et al.[16,17] simulated KJMA behavior in uniformly deformed 
metals by using constant values of H/J. KJMA plots of their simulated data had a slope of n ~ 2 
for site-saturated simulations and n * 3 for simulations with a constant rate of nucleation; these 
values agree with two-dimensional KJMA behavior. Their simulations yield homogeneous 
nucleation for H/J > 2 and heterogeneous nucleation adjacent to grain boundaries for H/J < 2.



Rollett et al.[10] simulated reerystallization in non-uniformly deformed metals by 
allowing H/J to vary from 0.1 to 5.01. Site-saturated nucleation was modeled by randomly 
positioning a fixed number of nuclei in die finite-element network prior to the simulation, and 
continuous nucleation was modeled by adding a fixed number of nuclei at each MC step. Since 
nuclei positioned in recrystallized regions or low-energy regions were subcritical and decayed 
away, the nucleation rate decreased with time. An important result from these simulations is that 
nonuniform deformation can cause negative deviation from KJMA behavior, although the 
nonuniform energy distributions used in the MC simulations also could correlate with the 
occurrence of simultaneous recovery.[8]

RSDA simulated fj ex by allowing only one grain to grow in the finite-element network. 
Only site-saturated nucleation was simulated for the extended-volume study; one set of 
simulations was performed for homogeneous stored energy of H/J = 3 with 500 nuclei and one 
set for the nonuniform stored-energy distribution with 0.1 < H/J < 5.01 with 3500 nuclei. 
Following the extended-volume concept, they assumed the relation

fex = m Vjex (6)
where m is the number of simulated recrystallized grains at t = x adjusted to unit volume. They 
calculated df/dt and dfex/dt from their MC simulations to obtain df/dfCx in equation (1) adjusted to 
unit volume, and conformance to equation (1) was tested in plots of log(df/dfex) vs. log(l - f). 
Their results for homogeneous stored energy showed reasonably good correlation with Eq. 1. 
This agreement implies that the extended-volume concept also does not introduce serious errors 
in the MC simulation for site-saturated reerystallization in a matrix with a homogeneous 
distribution of stored energy.

For the case of the nonuniform stored energy, serious deviation occurred from the linear 
plot of Eq. 1. RSDA suggest that this apparently catastrophic decrease results from serious 
underestimation of the impingement correction in equation (1) and this suggestion presents an 
intriguing possibility that should not be ignored. However, fex must be calculated from the sum 
of all ft ex that correspond to the specific time frames and growth rates for each individual grain, 
and Eq. 6 applies only to the case of a constant growth rate for homogeneous stored energy and 
not to the case of non-uniform stored energy. Nonetheless, these simulations demonstrate the 
important possibility that nonuniform energy distributions can cause negative deviation from 
KJMA behavior and also abnormally low values of n.

Use of the SCS model to simulate SF kinetics is demonstrated elsewhere[8,14,15] The 
SCS model shows reasonable agreement with both Eq. 5 and experimental measurements of A 
and f[8]; simulated SF plots using the SCS model also show excellent agreement with the SF 
date for Fe-3 1/4 Si[7] and date for vanadium[20].

Limits off = 0.02 tof = 0.95 were specified by Speich and Fisher for their relation, and 
SCS simulations indicate that the limits can be extended to f=0.01 to f = 0.99. These limits are 
imposed by the breakdown of Eq. 4 at the extremes of f = 0 and f = 1, as first emphasized by 
Cahn[21]. A and f in Eq. 4 are not geometrically related, and the SCS model has demonstrated 
that this breakdown occurs because Eq. 4 has finite slopes at the extremes whereas the slopes of 
geometric growth curves far regular geometric grains become infinite at the extremes.[14] This 
breakdown causes the SCS date to become asymptotic to the ordinate at each extreme in SF 
plots.[22]

fiscssas

Models for impingement correction can only approximate actual impingement geometry, 
but they should be relatively simple so that kinetic relations derived from them will be 
reasonably tractable. Both the KJMA extended-volume concept and the SF parabolic relation 
conform to this viewpoint This work demonstrates that computer simulations can define the 
limitations of the impingement models and increase our understanding of them Both the SCS 
and the MC models have isolated the effect of the KJMA extended-volume concept to kinetic 
behavior, and the SCS model also has isolated the effect of the SF parabolic relation. The 
simulations reveal that both impingement models provide reasonable impingement compensation. 
In addition, when the proper time dependence is used in computer simulations, both computer



models yield simulated kinetic data that compare favorably to the KJMA and SF kinetic relations,
particularly when compared to the statistical scatter of experimental data on logarithmic plots. 
Computer simulations ala) provide information on the applicable ranges of the resulting kinetic 
relations.

Simulations with the SCS model also reveal the following: (a) conformance to the axial 
symmetry constraint yields simulated geometric growth curves (plots of A against ft 14]) that 
conform reasonably well to both Eq. 4 and experimental measurements of A and f reported by 
Speich and Fisher[7]; (b) when the size parameter of a simulated grain is scaled to an appropriate 
growth rate, simulated kinetic plots conform surprisingly well to either the KJMA or the SF 
kinetic relations, depending on the modeled growth rate.

The SCS model formally isolates impingement geometry, and it is useful for cursory tests 
of various time dependences that may control kinetic behavior, however, it effectively is confined 
to site-saturated nucleation and ordered distribution geometry. In comparison, impingement 
geometry is only implicitly treated in the MC model (and similar computer simulation models! 11- 
13]), and the MC model suffers some limitations from the minimum finite-element size that is 
convenient for computer simulations. However, the MC model clearly provides an excellent 
technique to model the effects of many factors such as incubation periods, nonlinear nucleation 
rates, non-uniform deformation, and stored-energy decay (simultaneous recovery), and it also 
models random distributions. It also can simulate the formation of realistic grain structures.

The computer simulations indicate that apparent failures of the kinetic relations can be 
related to limitations imposed by the time-dependent relations that were used to derive the kinetic 
relations. This fact often is ignored and leads to improper use of the kinetic relations. In 
essence, transformations that occur with linear growth should yield linear KJMA plots; examples 
of such transformations are reerystallization in materials with Umited or no recovery, 
reerystallization in materials with an effectively constant state of recovery (e.g., dynamic 
reerystallization), and crystallization in glassy metals that have achieved an effectively constant 
state of disorder[23]. In contrast, when reerystallization in metals is retarded by reactions such 
as simultaneous recovery, the growth kinetics become nonlinear and do not necessarily yield 
linear KJMA plots. In this case, the SF relation can yield useful results within the range that is 
stipulated by the limitations of the impingement model[8,14].

Doherty et al. [9] reviewed evidence of nearly linear KJMA behavior in several metals. A 
recent review of other evidence of linear KJMA kinetic behavior includes static reerystallization 
and dynamic reerystallization during hot working of metals and crystallization of metallic 
glasses.[23] Rationale based on these examples suggests that that conformance to linear KJMA 
kinetics in metals depends on the kinetics of competitive reactions such as recovery and various 
recovery-like reactions (including the stored-energy distribution that results from nonuniform 
deformation), and conformance in metallic glasses depends on the state of disorder in the 
amorphous matrix. When these reactions approach an essentially steady state, linear KJMA 
behavior can be approached, and the slopes of KJMA plots should approach the theoretical 
values of n = 3 for site-saturated nucleation or n = 4 for a constant nucleation rate. However, if 
the primary contribution to linear KJMA behavior arises from the constant decay of both 
nucleation and growth rates, then the KJMA slope will be less than the theoretical value. Many 
materials exhibit low values of n when they conform to linear KJMA behavior, but Doherty et 
al.[9] emphasized that few materials can meet the precise conditions that yield linear KJMA 
behavior.

Variations of n in KJMA plots from the values predicted for linear growth, particularly 
low values of n for dynamic and static reerystallization in metals, may be misconstrued as a 
failure of the KJMA model, and nonlinear KJMA behavior does constitute a failure of Eq. 3 to 
provide an analytical representation of the data. However,Vandermeer[24] emphasizes that these 
deviations merely signify that the proper growth-rate dependence must be coupled with the 
KJMA extended-volume model to derive the proper kinetic relation. In fact, the KJMA relation 
appears to have been misused extensively because the limitations of the relation have either been 
ignored or not properly understood.

Sssmm.

Computer simulations can be highly effective for analyzing the limitations of kinetic 
models. The simulations reveal that both the KJMA and the SF geometric models provide



reasonable impingement compensation, but their limitations must be carefully definal. Although
failures of the kinetic relations have been attributed to approximations introduced by the 
impingement models, the computer simulations reveal that major problems arise from limitations 
imposed by the time dependence that is coupled to the impingement model to derive the kinetic 
relation. The time dependence often is ignored and can be a major source of confusion.

The KJMA relation does not compensate for retarding effects on reerystallization such as 
simultaneous recovery or nonuniform deformation, and KJMA plots for reerystallization in cold- 
worked metals frequently show severe negative curvature. However, reasonably linear KJMA 
behavior does occur in reerystallization of some metals and in crystallization of metallic glasses, 
but considerable variation occurs in the slopes of KJMA plots. This evidence suggests that linear 
KJMA behavior may occur during reerystallization in metals when either a deformed matrix 
decays to an effectively constant state of recovery, the recovery rate decreases at a constant rate, 
or nonuniform deformation yields a critical stored-energy distribution. Linear behavior also may 
occur during crystallization when the amorphous matrix remains in an essentially constant state 
of disorder or disorder reactions occur at a constant rate. The SF relation appears to be effective 
for many materials that exhibit nonlinear KJMA behavior.
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