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Abstract

Only two kinetic models appear to be appropriate for recrystallization of metals and
crystallization of metallic glasses: Kolmogorov-Johnson-Mehl-Avrami (KYMA) and Speich-
Fisher (SF). However, much confusion prevails on the proper use of these models because their
limitations are not well understood. Fortunately, computer simulations are proving to be
effective for simulating kinetic behavior. In particular, a simplified computer model, which
simulates a regular geometric grain growing in an impingement cell, provides kinetic simulations
that agree with experimental data. The computer model isolates specific concepts that the kinetic
models were formulated on, and it also simulates different time-dependent growth relations.

The KIMA model is based on linear interfacial growth and uses an extended-volume
concept to compensate for impingement. The computer model isolated the effect of the extended-
volume concept, and it also was used to determine why some experimental data conform to
KIMA kinetics while others do not. The analyses indicated that essentially linear KIMA
behavior can occur in recrystallization of metals that have reached an effectively constant state of
recovery or in crystallization of amorphous metals that have reached a constant state of disorder.

The SF relation is based on inverse-time-dependent growth, and it is effective for
recrystallization that is retarded from an initial linear rate by factors such as the simultaneous
occurrence of recovery. The computer model clearly defines the limitations of the SF model.

This work demonstrates that computer simulations can define the limitations of the
existing kinetic models and increase our understanding of them.

Introduction

Much uncertainty exists on the proper use of kinetic relations for recrystallization,
primarily because of an incomplete understanding of the limitations of the kinetic relations and
the extent to which these limitations affect the predictive capability of the kinetic relations. Many
recrystallization studies have relied on the popular model developed independently by
Kolmogorov,[1] Johnson and Mehl,[2] and Avrami[3-5] (KJIMA). The KJMA kinetic relation
has been used extensively to model recrystallization kinetics and is suitable for many materials.
A major problem in the use of the KIMA relation, however, is that the later stages of
recrystallization in many metals show severe negative deviation from linear KIMA behavior.
This deviation has been attributed to factors such as simultaneous recovery and nonuniform
deformation.[6-10] Speich and Fisher{7] (SF) developed a kinetic relation that appears to
overcome this limitation to some extent and is effective for many materials, but again, confusion
seems to prevail on the limitations and the extent to which they restrict the use of the SF relation.

Both kinetic relations are composed of two independent parts: a geometric model and a
time-dependent term that models the growth rate. Compensation for grain impingement is QA/
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essential in the geometric models; however, impingement geometry is sufficiently complex that
impingement compensation can only be approximated. In fact, much of the confusion on the use
of the kinetic relations has stemmed from uncertainty about the limitations of the geometric
models and the accuracy of their impingement compensation. Fortunately, the limitations of
these models and their accuracy can now be analyzed with computer simulations.

Several workers have used computer models to simulate various aspects of
recrystallization.[11-13] This paper will concentrate on results generated with a simplified
computer simulation (SCS) model{14,15]. The model rigorously compensates for grain
impingement and has demonstrated that both impingement models do predict reasonable
impingement compensation with respect to the scatter of experimental data. Effective simulations
of recrystallization and recrystallization kinetics also have been performed by Srolovitz and co-
workers[16,17] using Monte Carlo (MC) simulations, and their work also will be reviewed.

The Kinetic Relation

The geometric model used in the KIMA kinetic relation is the well-known extended-
volume concept — an explicit impingement model. This model assumes a random distribution of
spherical phases, and the extended volume is defined as the total volume that would be obtained
if the spheres grew through each other for the appropriate time, t , with no impingement. The
actual volume transformed, V, is related to the extended volume, Ve, by the relation,

dV/dVex = (1 - V) N (1)
Integration and normalization to unit volume yields
fex = In[l/1 - D] @

where f and fex are the respective volume fractions. Assuming linear time-dependent growth,
which Christian[18] states is appropriate for interface-controlled reactions, Eq. 2 yields the
commonly accepted form of the KIMA relation,

f=1-exp(- Bt") 3)
where f is now the volume fraction and f is an effective reaction-rate constant that includes
geometric, nucleation, and growth terms. For three-dimensional growth (which applies to the
SCS model), n = 3 for site-saturated (instantaneous) nucleation, and n = 4 for a linear nucleation
rate; for two-dimensional growth (which applies to the MC model), n = 2 and 3, respectively.

The geometric model used in the SF kinetic relation — an implicit impingement model — is
the empirical parabolic relation,

A =Kif(- ) @

where A is the interfacial area between recrystallized and unrecrystallized material and K is a
constant. Experimental data obtained from Fe-3.25 Si by SF agreed remarkably well with Eq.
(4). The SF kinetic relation uses I/t growth in conjunction with Eq. 4 to obtain

£/ - ) = Kg 1" ®)

where Kg and n are constants. The SF kinetic relation for recrystallization agrees reasonably
well w1tl% data from materials that show strong negative deviation from KMJA behavior.

The Computer Model.

The SCS model is based on the growth of geometric grains distributed on a regular,
infinite lattice.[10] This simplified geometry permits simulations with a single grain growing in
an impingement cell that conforms to a Wigner-Seitz construct on the distribution lattice. Grain
growth is monitored by V and A of the portion of the grain that remains within the impingement
cell; V is normalized to f by using a cell size of unit volume. A distinct advantage of this
simplified model is that rigorous compensation for grain impingement is executed, and one form
of the KIMA extended volume can be defined as the total volume of the SCS grain with no
impingement compensation. Disadvantages of the model are that it is highly ordered and it
applies rigorously only to site-saturated or instantaneous nucleation, but these conditions appear
to correlate better with experimental behavior than random nucleation and growth. The technique



for generating kinetic plots from the SCS data was discussed previously[14] and is demonstrated
elsewhere in these proceedings.[15]

The MC technique developed by Doherty and co-workers[9,10,16,17] also yields
effective simulations of both recrystallization and various aspects of grain growth. Most of their
simulations are two-dimensional and use a finite-element network composed of triangular
elements; their typical simulated field is 200 x 200 elements. They define a unit of time as one
MC probability sweep through all 40,000 elements (a MC step in their terminology). They
assign a stored energy of H to each element in the unrecrystallized fields, and they impose a
dimensionless grain-boundary energy, J, between two adjacent elements when the elements are
in different grains. The probabilities of both nucleation and growth are proportional to H/J
(dimensionless units) in their simulations. An important aspect of the MC technique is that it can
model recrystallization in nonuniformly deformed materials by assigning a distribution of
energies to H.

Kinetic Simulations

The KIMA Relation

SCS Model. Simulated KJIMA kinetic plots are presented in Fig. 1 for a sphere growing
in a cubic impingement cell, which conforms to the axial symmétry constraint described
elsewhere in these proceedings.[15] The SCS data (indicated by + in Fig. 1) are initially linear.
The dotted line through these points has a slope of 3.0, which agrees with three-dimensional
KJMA behavior for site-saturated nucleation. Beyond the linear region, which extends to
roughly f = 0.1, the upper portion of the SCS kinetic curve shows slight upward curvature. In
comparison to the scatter of experimental data, however, the SCS simulations are reasonable and
indicate that the extended-volume concept does provide reasonable impingement compensation.

To analyze the contribution of the
extended volume to the upward curvature of the L
SCS data in Fig. 1, extended volumes were tr N
calculated as the volume of the spherical grain o
with no corrections for impingement (termed
f1 ex following notation of Avrami[4]) and
from Eq. 3 to obtain fex from the SCS values
of £.[19] As shown in [19], fex > f} ex.
Equation 3 should apply only to randomly
distributed grains and not the ordered array of
the SCS model. However, fex in Eq. 3
formally governs the KIMA kinetic relation
and, hence, behavior of the SCS data in KIMA -8 e
plots, and the difference between fax and f} ex /
measures the amount of overcompensation of I T £ \ ! s
fox that causes the upward deviation. 182 102 0

Figure 1 also includes a plot of f} e Time (sec)
(dots) (fj ex is limited to f < 1 because of the Figure 1 - Simulated KJMA plot of the SCS
logarithmic term). When f is regenerated from data for a sphere in a cubic cell.
fi ex using equation (2) (as in [14]), the plot
falls along the straight line with n = 3 to within plotting accuracy. Similar results also are
obtained for a bipyramid with {111} faces as shown in {14] and [15]. Therefore, the difference
between fox and fj ¢« is a measure of the overcompensation of fex in equation (2) for each SCS
model, and this overcompensation correlates directly with the upward deviation of the simulated
plots. As discussed in [14] for a sphere growing in a cubic impingement cell, the
overcompensation reaches a maximum of about 26% at f = 0.7 but is only about 7% at f = 1.
The deviation is somewhat less for the {111} bipyramid. The extent to which the
overcompensation is related to the ordered distribution geometry of the SCS model as opposed to
the random distribution that is assumed in the KJMA model remains to be isolated.

MC Model. Srolovitz et al.[16,17] simulated KIMA behavior in uniformly deformed
metals by using constant values of H/J. KIMA plots of their simulated data had a slope of n = 2
for site-saturated simulations and n = 3 for simulations with a constant rate of nucleation; these
values agree with two-dimensional KJMA behavior. Their simulations yield homogeneous
nucleation for H/¥ > 2 and heterogeneous nucleation adjacent to grain boundaries for HJ < 2.
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Rollett et al.[10] simulated recrystallization in non-uniformly deformed metals by
allowing H/J to vary from 0.1 to 5.01. Site-saturated nucleation was modeled by randomly
positioning a fixed number of nuclei in the finite-element network prior to the simulation, and
continuous nucleation was modeled by adding a fixed number of nuclei at each MC step. Since
nuclei positioned in recrystallized regions or low-energy regions were subcritical and decayed
away, the nucleation rate decreased with time. An important result from these simulations is that
nonuniform deformation can cause negative deviation from KIMA behavior, although the
nonuniform energy distributions used in the MC simulations also could correlate with the
occurrence of simultaneous recovery.[8]

RSDA simulated fj ¢x by allowing only one grain to grow in the finite-element network.
Only site-saturated nucleation was simulated for the extended-volume study; one set of
simulations was performed for homogeneous stored energy of H/J = 3 with 500 nuclei and one
set for the nonuniform stored-energy distribution with 0.1 < H/J < 5.01 with 3500 nuclei.
Following the extended-volume concept, they assumed the relation

fex =m Viex 6)

where m is the number of simulated recrystallized grains at ¢ = © adjusted to unit volume. They
calculated df/dt and dfex/dt from their MC simulations to obtain df/df., in equation (1) adjusted to
unit volume, and conformance to equation (1) was tested in plots of log(df/dfex) vs. log(l - f).
Their results for homogeneous stored energy showed reasonably good correlation with Eq. 1.
This agreement implies that the extended-volume concept also does not introduce serious errors
in the MC simulation for site-saturated recrystallization in a matrix with a homogeneous
distribution of stored energy.

For the case of the nonuniform stored energy, serious deviation occurred from the linear
plot of Eq. 1. RSDA suggest that this apparently catastrophic decrease results from serious
underestimation of the impingement correction in equation (1) and this suggestion presents an
intriguing possibility that should not be ignored. However, fox must be calculated from the sum
of all f} ¢ that correspond to the specific time frames and growth rates for each individual grain,
and Eq. 6 applies only to the case of a constant growth rate for homogeneous stored energy and
not to the case of non-uniform stored energy. Nonetheless, these simulations demonstrate the
important possibility that nonuniform energy distributions can cause negative deviation from
KIMA behavior and also abnormally low values of n.

The SF Relation

Use of the SCS model to simulate SF kinetics is demonstrated elsewhere[8,14,15] The
SCS model shows reasonable agreement with both Eq. 5 and experimental measurements of A
and f[8]; simulated SF plots using the SCS model also show excellent agreement with the SF
data for Fe-3 1/4 Si[7] and data for vanadium[20].

Limits of f = 0.02 to f = 0.95 were specified by Speich and Fisher for their relation, and
SCS simulations indicate that the limits can be extended to £ =0.01 to f = 0.99. These limits are
imposed by the breakdown of Eq. 4 at the extremes of f = 0 and f = 1, as first emphasized by
Cahn[21]. A and fin Eq. 4 are not geometrically related, and the SCS model has demonstrated
that this breakdown occurs because Eq. 4 has finite slopes at the extremes whereas the slopes of
geometric growth curves for regular geometric grains become infinite at the extremes.[14] This
b{eakctlggn causes the SCS data to become asymptotic to the ordinate at each extreme in SF
plots.

Discussion

Models for impingement correction can only approximate actual impingement geometry,
but they should be relatively simple so that kinetic relations derived from them will be
reasonably tractable. Both the KIMA extended-volume concept and the SF parabolic relation
conform to this viewpoint. This work demonstrates that computer simulations can define the
limitations of the impingement models and increase our understanding of them. Both the SCS
and the MC models have isolated the effect of the KIMA extended-volume concept to kinetic
behavior, and the SCS model also has isolated the effect of the SF parabolic relation. The
simulations reveal that both impingement models provide reasonable impingement compensation.
In addition, when the proper time dependence is used in computer simulations, both computer



models yield simulated kinetic data that compare favorably to the KJMA and SF kinetic relations,
particularly when compared to the statistical scatter of experimental data on logarithmic plots.
Computer simulations also provide information on the applicable ranges of the resulting kinetic
relations.

Simulations with the SCS model also reveal the following: (a) conformance to the axial
symmetry constraint yields simulated geometric growth curves (plots of A against f{14]) that
conform reasonably well to both Eq. 4 and experimental measurements of A and f reported by
Speich and Fisher[7]; (b) when the size parameter of a simulated grain is scaled to an appropriate
growth rate, simulated kinetic plots conform surprisingly well to either the KIMA or the SF
kinetic relations, depending on the modeled growth rate.

The SCS model formally isolates impingement geometry, and it is useful for cursory tests
of various time dependences that may control kinetic behavior; however, it effectively is confined
to site-saturated nucleation and ordered distribution geometry. In comparison, impingement
geometry is only implicitly treated in the MC model (and similar computer simulation models[11-
13]), and the MC model suffers some limitations from the minimum finite-element size that is
convenient for computer simulations. However, the MC model clearly provides an excellent
technique to model the effects of many factors such as incubation periods, nonlinear nucleation
rates, non-uniform deformation, and stored-energy decay (simultaneous recovery), and it also
models random distributions. It also can simulate the formation of realistic grain structures.

The computer simulations indicate that apparent failures of the kinetic relations can be
related to limitations imposed by the time-dependent relations that were used to derive the kinetic
relations. This fact often is ignored and leads to improper use of the kinetic relations. In
essence, transformations that occur with linear growth should yield linear KJMA plots; examples
of such transformations are recrystallization in materials with limited or no recovery,
recrystallization in materials with an effectively constant state of recovery (e.g., dynamic
recrystallization), and crystallization in glassy metals that have achieved an effectively constant
state of disorder{23]. In contrast, when recrystallization in metals is retarded by reactions such
as simultaneous recovery, the growth kinetics become nonlinear and do not necessarily yield
linear KJIMA plots. In this case, the SF relation can yield useful results within the range that is
stipulated by the limitations of the impingement model(8,14].

Doherty et al. [9] reviewed evidence of nearly linear KIMA behavior in several metals. A
recent review of other evidence of linear KIMA kinetic behavior includes static recrystallization
and dynamic recrystallization during hot working of metals and crystallization of metallic
glasses.[23] Rationale based on these examples suggests that that conformance to linear KIMA
kinetics in metals depends on the kinetics of competitive reactions such as recovery and various
recovery-like reactions (including the stored-energy distribution that results from nonuniform
deformation), and conformance in metallic glasses depends on the state of disorder in the
amorphous matrix, When these reactions approach an essentially steady state, linear KIMA
behavior can be approached, and the slopes of KIMA plots should approach the theoretical
values of n = 3 for site-saturated nucleation or n = 4 for a constant nucleation rate. However, if
the primary contribution to linear KJMA behavior arises from the constant decay of both
nucleation and growth rates, then the KIMA slope will be less than the theoretical value. Many
materials exhibit low values of n when they conform to linear KIMA behavior, but Doherty et
al.[9] emphasized that few materials can meet the precise conditions that yield linear KIMA
behavior.

Variations of n in KIMA plots from the values predicted for linear growth, particularly
low values of n for dynamic and static recrystallization in metals, may be misconstrued as a
failure of the KJMA model, and nonlinear KIMA behavior does constitute a failure of Eq. 3 to
provide an analytical representation of the data. However,Vandermeer[24] emphasizes that these
deviations merely signify that the proper growth-rate dependence must be coupled with the
KIMA extended-volume model to derive the proper kinetic relation. In fact, the KIMA relation
appears to have been misused extensively because the limitations of the relation have either been
ignored or not properly understood.

§gmmggg

Computer simulations can be highly effective for analyzing the limitations of kinetic
models. The simulations reveal that both the KIMA and the SF geometric models provide



reasonable impingement compensation, but their imitations must be carefully defined. Although
failures of the kinetic relations have been attributed to approximations introduced by the
impingement models, the computer simulations reveal that major problems arise from limitations
imposed by the time dependence that is coupled to the impingement model to derive the kinetic
relation. The time dependence often is ignored and can be a major source of confusion.

The KIMA relation does not compensate for retarding effects on recrystallization such as
simultaneous recovery or nonuniform deformation, and KJIMA plots for recrystallization in cold-
worked metals frequently show severe negative curvature. However, reasonably linear KIMA
behavior does occur in recrystallization of some metals and in crystallization of metallic glasses,
but considerable variation occurs in the slopes of KIMA plots. This evidence suggests that linear
KIMA behavior may occur during recrystallization in metals when either a deformed matrix
decays to an effectively constant state of recovery, the recovery rate decreases at a constant rate,
or nonuniform deformation yields a critical stored-energy distribution. Linear behavior also may
occur during crystallization when the amorphous matrix remains in an essentially constant state
of disorder or disorder reactions occur at a constant rate. The SF relation appears to be effective
for many materials that exhibit nonlinear KJIMA behavior.
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