

PHASE RELATIONS IN THE $\text{LaNi}_{5-x}\text{Cu}_x$, $\text{LaNi}_{5-x}\text{Al}_x$ AND RELATED SYSTEMS

CONF-771039-7

A. E. Dwight

Prepared for

13th Rare Earth Research Conference
Oglebay Park, W. VA.
October 16-20, 1977

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

operated under contract W-31-109-Eng-38 for the
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

PHASE RELATIONS IN THE $\text{LaNi}_{5-x}\text{Cu}_x$, $\text{LaNi}_{5-x}\text{Al}_x$ AND RELATED SYSTEMS*

A.E. Dwight

Department of Physics, Northern Illinois University
DeKalb, Illinois 60115

ABSTRACT

The Ni in LaNi_5 can be partially replaced by other elements. Limits of solid solubility were determined in the $\text{La}(\text{Mn},\text{Ni})_5$, $\text{La}(\text{Fe},\text{Ni})_5$, $\text{La}(\text{Ni},\text{Al})_5$ and $\text{La}(\text{Ni},\text{Cu})_5$ systems. Sections of the quaternary $\text{La}(\text{Mn},\text{Ni},\text{Al})_5$, $\text{La}(\text{Ni},\text{Cu},\text{Al})_5$, $\text{La}(\text{Fe},\text{Ni},\text{Cu})_5$ and $\text{Y}(\text{Mn},\text{Ni},\text{Al})_5$ systems were also investigated. All solutes increase unit cell constants. YMnNi_4 has the MgCu_4Sn -type structure ($a_0 = 6.97\text{\AA}$).

INTRODUCTION

The binary compound LaNi_5 is of interest because of its capacity to absorb large amounts of hydrogen, and to discharge hydrogen at relatively low pressure. Research has shown that substitution of alloying elements into LaNi_5 causes modification of the hydrogen desorption pressure. This paper is concerned with the effect on the crystal structure and unit cell constants of Mn, Fe, Cu and Al substitutions.

EXPERIMENTAL METHODS

Alloys were prepared by arc melting on a water-cooled Cu hearth under Argon with metals of 99.9% purity or better. Specimens were homogenized in evacuated vycor capsules. Xray diffraction patterns were taken with Fe or Cu K_α radiation by the Debye-Scherrer method. Patterns were indexed with the aid of a Bunn

*A portion of this work was performed at Argonne National Laboratory under the auspices of the U.S. Energy Research and Development Administration.

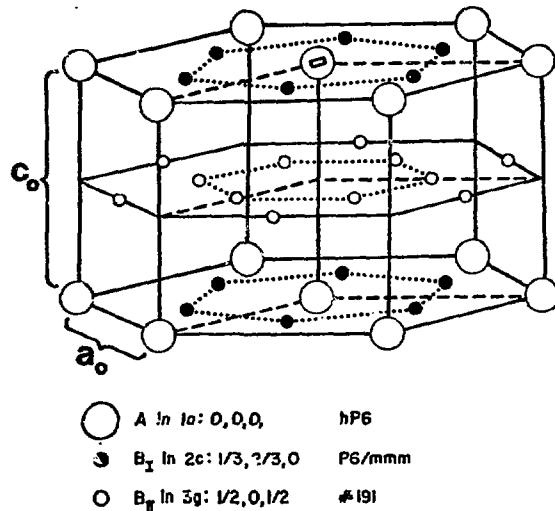


Fig. 1. CaCu_5 -type structure

chart, and unit cell constants were calculated from the two highest angle reflections. The assignment of elements to lattice sites was verified by comparison of calculated and observed intensities. The extent of the single phase field was estimated from the change of slope of unit cell constant curves and from the appearance of extra lines on the diffraction patterns.

THE COMPOUND LaNi_5

LaNi_5 has the hexagonal CaCu_5 -type structure shown in Figure 1. The a_0 is 5.016 \AA , c_0 is 3.982 and $V/M = 86.7 \text{ \AA}^3$. The $1a$ site at $0,0,0$, is always occupied by a large atom, in this paper by a rare earth or yttrium atom. The $2c$ and $3g$ sites are occupied by Ni atoms. The $2c$ and $3g$ sites are not equivalent, and the substitution of other elements into one or both of these sites is of major importance in modification of unit cell size and hydriding characteristics.

TERNARY SYSTEMS

Mn was substituted for part of the Ni in LaNi_5 by Lundin and Lynch⁽¹⁾ who reported beneficial changes in the hydriding characteristics. Fig. 2 shows our data for unit cell constants. Much less Fe than Mn could be substituted for Ni, but Fe also raises the unit cell constants (Fig. 3).

Al can be substituted up to approximately $\text{LaNi}_{3.5}\text{Al}_{1.5}$ (Fig. 4). The Al atoms show a preference for occupancy of the $3g$ sites over the $2c$ sites, as determined by comparison of calculated and

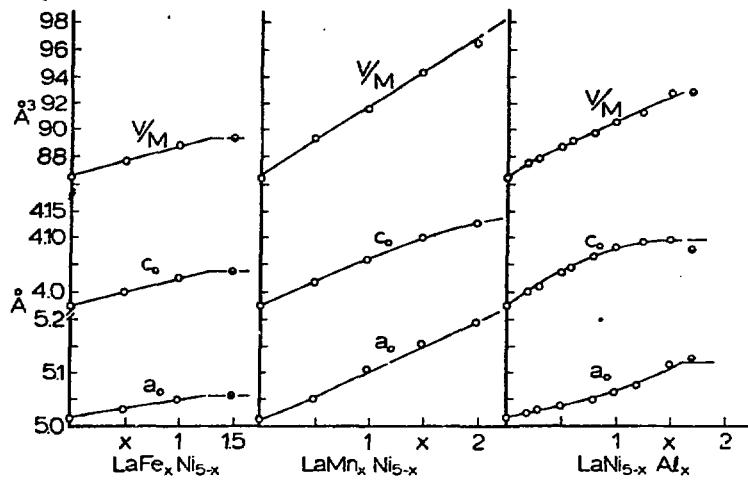


Fig. 2. Unit cell constants in $\text{LaMn}_x\text{Ni}_{5-x}$ alloys

Fig. 3. Unit cell constants in $\text{LaFe}_x\text{Ni}_{5-x}$ alloys

Fig. 4. Unit cell constants in $\text{LaNi}_{5-x}\text{Al}_x$ alloys

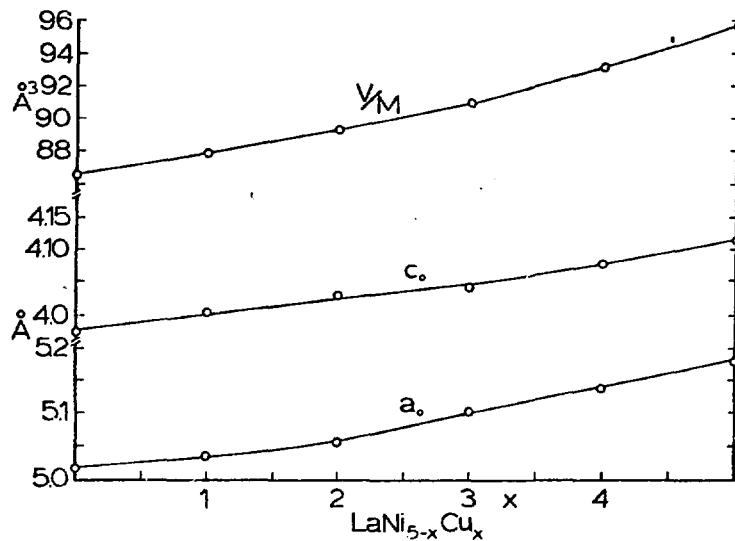


Fig. 5. Unit cell constants in $\text{LaNi}_{5-x}\text{Cu}_x$ alloys

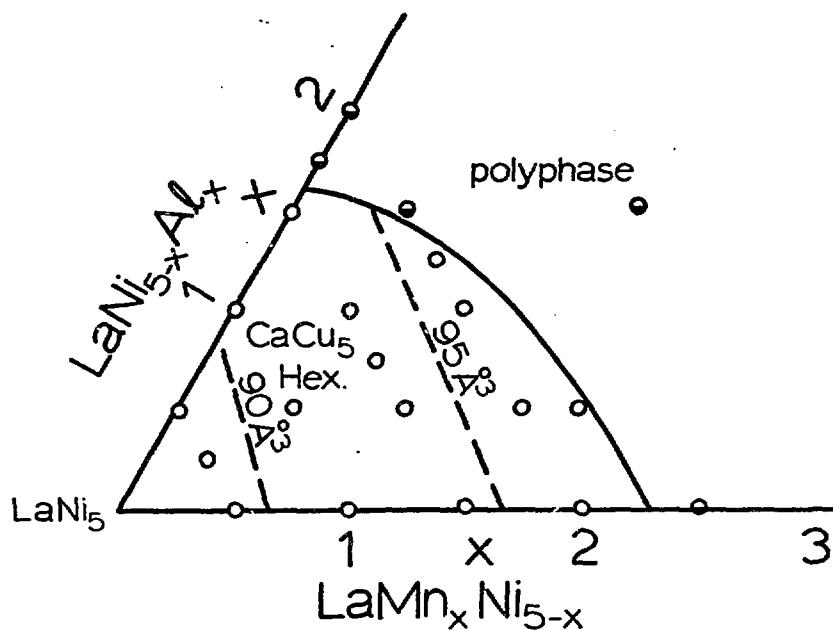


Fig. 6. Extent of CaCu_5 -type phase and V/M in $\text{La}(\text{Mn}, \text{Ni}, \text{Al})_5$ system.

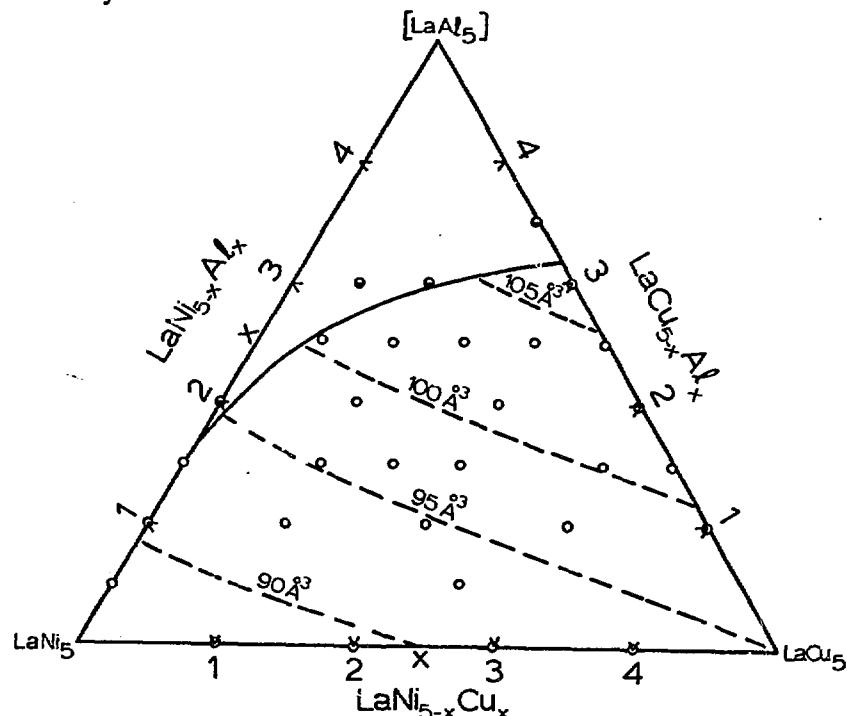


Fig. 7. Extent of CaCu_5 -type phase and V/M in $\text{La}(\text{Ni}, \text{Cu}, \text{Al})_5$ system.

Fig. 8. Extent of CaCu_5 -type phase and V/M in $\text{La}(\text{Fe},\text{Ni},\text{Cu})_5$ system.

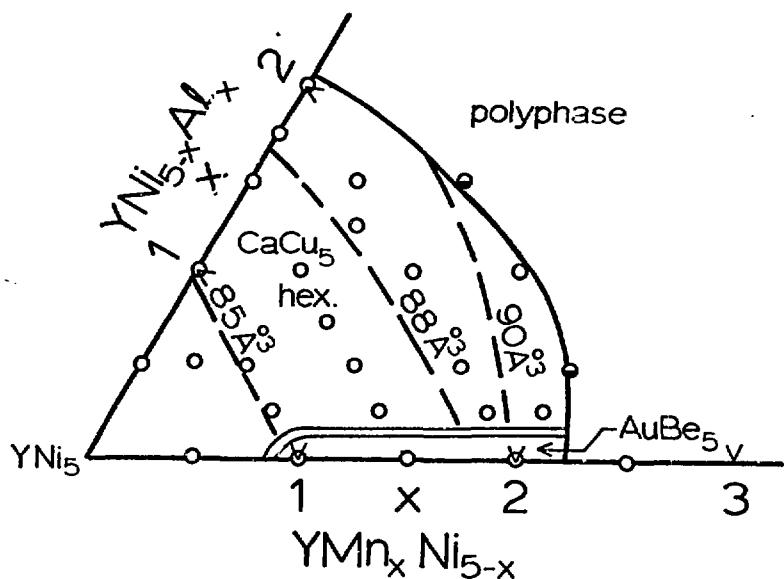


Fig. 9. Hexagonal and cubic phase composition ranges and V/M in $\text{Y}(\text{Mn},\text{Ni},\text{Al})_5$ system.

observed intensities. The other solutes, Mn, Fe and Cu are too close to Ni in atomic scattering factor to justify use of intensities in site assignments. Cu can be substituted for Ni completely, with continuous solid solubility between LaNi_5 and LaCu_5 (Fig. 5).

QUATERNARY SYSTEMS

The $\text{La}(\text{Mn, Ni, Al})_5$ system was investigated in the hope that the beneficial effects of Mn and Al might be retained in a complex alloy. The range of solid solution and the V/M (volume per formula weight) are given in Fig. 6. A similar plot for the $\text{La}(\text{Ni, Cu, Al})_5$ system is given in Fig. 7. In this system is found the largest increase in unit cell volume, from 86.7 to 105.9 \AA^3 . Fig. 8 shows limited solubility in the $\text{La}(\text{Fe, Ni, Cu})_5$ system.

The modifications of LaNi_5 described above exhibit only the hexagonal CaCu_5 -type structure, but this is not true for other rare earth systems. The ternary system Y-Mn-Ni contains a compound based upon YMnNi_4 but showing a range of solid solution, with the cubic AuBe_5 -type or MgCu_4Sn -type structure. The $\text{Y}(\text{Mn, Ni, Al})_5$ quaternary is shown in Fig. 9. The significant feature is that small amounts of Al suppress the cubic compound, or conversely stabilize the hexagonal CaCu_5 structure at high Mn content.

The cubic YMnNi_4 has $a_0 = 6.972 \text{ \AA}$. ErMnNi_4 also has the AuBe_5 structure ($a_0 = 6.96$) which indicates that the smaller rare earths can be expected to form this compound. The existence of CeMnNi_4 ($a_0 = 6.957-7.07$)⁽²⁾ indicates that Ce is quadrivalent in this compound.

REFERENCES

1. Lundin, C.E. and Lynch, F.E. to Gruen, D., La-Ni-Mn Systems, private Denver Research Institute Report, February 15, 1977.
2. Kalychak, Ya. M., Bodak, O.I., and Gladyshevskii, E.I., Neorg. Mat. 12, No. 7, pp. 1149-54, July 1976.