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ABSTRACT 

Studies of basic binary geothermal cycles u t i l i z ing  mixtures of hydrocarbons 
have shown bet ter  performance than for  pure f luids  for  a moderate temperature 
(360°F) resource. 
net plant output/lbm geofluid) resul ts  when the geofluid out le t  temperature i s  
limited to  temperatures i n  excess o f  160°F to  a l lev ia te  a s i l i c a  precipitation 
problem. 

However, a loss i n  net geofluid effectiveness (watt-hours 

This study examined three working f luids  consisting of binary mixtures of 
hydrocarbons t o  see i f  use of regenerative preheating techniques such as turbine 
exhaust recuperation and/or turbine bleed could recover the loss in geofluid 
effectiveness for  a 160°F geofluid out le t  temperature. Results showed t h a t  with 
the most promising of the three working f luids  a turbine exhaust recuperator 
alone i s  suff ic ient  t o  recover a l l  the lo s t  effectiveness while maintaining the 
geofluid out le t  temperature a t  160°F. 
operation with t h a t  working f lu id ,  and u s i n g  the recuperator, showed no major 
detrimental response of the system; however, s i l i c a  precipitation may present a 
problem in extremely cold weather, as the geofluid out le t  temperature dropped 
below 160°F for  the lowest wet bulb temperatures studied. 

A brief study t o  investigate cold weather 
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SUMMARY 

A number of binary geothermal cycles u t i l i z ing  three mixed hydrocarbon 
working f lu ids  were analyzed for  a moderate temperature (360°F) geothermal 
resource t o  evaluate the performance augmentation of regenerative preheating 
techniques such as turbine bleed and turbine exhaust recuperation. 
f luids  considered include (by mass) 88% isobutane/l2% isopentane, 96% isobutane/ 
4% heptane, and 95% propane/5% hexane. 
be the bet ter  performing working f luids  for  the 360°F resource temperature. 

Working 

Previous studies have shown these to  

Studies of the basic cycles without regenerative preheating show a loss 
i n  geofluid effectiveness (net plant power, watt-hr/lbm geofluid) of 7-14% 
when a geofluid out le t  temperature of 160°F was maintained to  prevent s i l i c a  
precipitation. 
bleed regenerative preheating of the work ing  f l u i d  shows t h a t  nearly a l l  o f  
the loss o f  performance can be regained by regeneration while maintaining the 
160°F geofluid out le t  temperature. 
o f  the three investigated, 96% isobutane/4% heptane, showed the same geofluid 
effectiveness for  the regenerated case w i t h  the 160°F geofluid out le t  temperature 
res t r ic t ion ,  as for  the non-restricted case without regeneration. An important 
added benefit of regeneration i s  the decrease in the amount of heat rejected in 
the cycle, thus decreasing the cooling tower s ize  and cooling water makeup 
requirements by as much as 14%. 

Examination of the same cycles w i t h  recuperator and/or turbine 

The mixture judged t o  be the most promising 

Comparing working f lu ids ,  the geofluid effectiveness for  96% isobutane/4% 
heptane with a recuperator alone was about 3% bet ter  t h a n  t h a t  for  the 88% 
isobutane/l2% isopentane mixture ( the l a t t e r  mixture was selected for  use in 
the Heber plant) .  
higher geofluid effectiveness b u t  required more t h a n  twice the turbine in l e t  
pressure re la t ive  to  the isobutane/heptane mixture for  a 160°F geofluid out le t  
temperature. 

The 95% propane/5% hexane working f luid exhibited abou t  1 %  

A brief probing study was made to  investigate the recuperator/plant 
behavior during winter operation using 96% isobutane/4% heptane and assuming 
the same plant components as defined for  summer operation a t  600 psia turbine 
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i n l e t  pressure (peak performance conditions). 
whether any unforeseen and/or detrimental operational character is i t ics  would be 
discovered for  cold weather operation. 
geofluid effectiveness increased by 28% as the ambient wet bulb temperature was 
decreased from 60°F to  about 12°F while holding the working f lu id  flow constant. 
Whereas the geofluid flowrate changed insignificantly,  the geofluid out le t  
temperature dropped from 160°F t o  144°F. Therefore, a t  specific s i t e s  for  which 
wet bulb temperatures reach suff ic ient ly  low values, s i l i c a  precipitation may 
present a problem and a change in operating procedure (such as changing the 
working f lu id  flowrate or  turbine i n l e t  conditions) would be necessary a t  the 
coldest ambient temperatures. 

The study was intended to  determine 

No major problems were foreseen. The 

i i i  
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1.  INTRODUCTION 

A dua -boiling isobutane cycle was selected for  the present 5-megawatt (5MW 
Raft River P i lo t  Power Plant t o  u t i l i z e  the lower temperature (near 300°F) 
geothermal resources. This study represents a continuation o f  ea r l i e r  e f for t s  
directed toward the design of an improved binary geothermal e l ec t r i c  plant 
suitable for  u t i l i za t ion  of both moderate and lower temperature resources. 
Earlier studies (Reference 1 )  have considered cycle improvements by way of 
introducing mu1 t iple-boil  ing and condensing, and employment of direct-contact 
heat exchangers. A small e f fo r t  in Reference 1 ,  directed toward the use of 
hydrocarbon mixtures as working f lu ids ,  showed that  the mixtures showed promise. 
Reference 2 continued the study o f  hydrocarbon mixtures for  280°F and 360°F 
resource temperatures, and found that  the highest geothermal effectiveness for 
the mixtures studied occurred for  supercrit ical  cycles. 

+ 

* 

The objectives of the present e f fo r t  were to:  ( 1 )  investigate the e f fec t  
of turbine exhaust bleed and recuperation on geofluid effectiveness f o r  three 
of the better performing binary mixtures with a geothermal resource temperature 
of 360"F, and ( 2 )  perform a short scoping study of the e f fec t  of off-nominal 
ambient wet bulb temperature on the performance of a recuperated system with 
the mixture judged t o  be best, overall .  

This work was supported by the U. S.  Department of Energy, Assistant 
Secretary for  DOE Department of Geothermal Energy, under DOE Contract No. 
DE-AM07-76ID01570. 

2.  B I N A R Y  GEOTHERMAL CYCLE DESCRIPTIONS 

The working f luid in a binary geothermal e l ec t r i c  plant undergoes the 
processes of a Rankine thermodynamic cycle. Figure 1 ,  which i s  a schematic 
diagram of a simple binary geothermal cycle, i l l u s t r a t e s  these processes as  
well a s  the major components of the binary plant. 
storage tank, working f luid i s  pumped from the condenser t o  the heater pressure 
a t  nearly constant entropy. 

B 

Starting a t  the condensate 

4 
The working f luid i s  then heated and vaporized a t  

1 



Geofluid 
-c---. 

Turbine 

'6 
Generator 

Heater 

Condenser 
t t  / V I  I I I  Air 

Feed pump 
I N EL-J-1761 

r 

iondensate Cooling 
water 

Working fluid '7' Pump 

Figure 1 :  Simple Binary Geothermal Cycle 

2 



constant pressure i n  the heater as heat i s  transferred from the geothermal 
f luid.  
entropy, producing work on the turbine wheel. The turbine exhaust vapor i s  
then condensed (following desuperheating i f  necessary) by rejecting heat t o  
the cooling water i n  the condenser. This rejected heat, in t u r n ,  i s  transferred 
t o  the atmosphere in the cooling tower. 
passes into the condensate storage tank, and the cycle i s  repeated. 

The working-fluid vapor expands t h r o u g h  the turbine a t  nearly constant 

The condensed working f luid f ina l ly  
9 

For a cycle which u t i l i ze s  energy from a geothermal f luid a t  a given 
i n i t i a l  temperature and re jects  heat t o  a given sink temperature, a theoretical 
maximum exis t s  for  the amount of work that  can be produced by the cycle per unit 
mass of geofluid. 
ava i lab i l i ty  (exergy) of the geothermal f luid between i t s  i n i t i a l  s t a t e  and i t s  
s t a t e  corresponding to  the heat sink temperature. Actual net work i s  less by the 
amount of the thermodynamic i r r eve r s ib i l i t i e s  generated d u r i n g  each of the real 
processes in the cycle. Reference 1 investigated improvements to  the simple cycle 
t h r o u g h  use of multiple-boiling and condensing processes ( r e fe r  t o  Figures 1 and 
2 of Reference 1 )  t o  reduce the heat-addition and rejection i r r eve r s ib i l i t i e s .  
Reference 2 accomplishes much the same purpose through the use of mixtures of 
pure hydrocarbon work ing  f luids .  
thermodynamic efficiency increase resulting from optimum use of mixtures of 
pure hydrocarbon f luids  by u s i n g  turbine bleed and/or recuperators t o  reduce 
thermodynamic i r r eve r s ib i l i t i e s  in the heat addition and rejection portions of 
the cycle, t o  reduce the amount o f  hea t  added and rejected,  and t o  increase the 
geofluid out le t  temperature. Figure 2 shows a schematic diagram of  the cycle 
when a recuperator i s  added. I n  simple terms the recuperator i s  used t o  preheat 
the working fluid with energy that  would normally be provided by the geofluid 
and rejected t o  the cooling water. 

T h i s  maximum corresponds t o  the change in thermodynamic 

The approaches taken in th i s  study extend the 

Figure 3 shows a schematic diagram o f  the cycle'with turbine bleed. 
turbine bleed preheats the working f lu id  w i t h  low-pressure turbine bleed vapor 
which has l i t t l e  remaining useful work capabili ty.  

The 

B 

0 
Figure 4 shows 

and the recuperator 
a schematic diagram of the cycle when both  the turbine bleed 
are considered. In  t h i s  mode of operation the recuperator 

3 
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i s  used t o  recover as much energy as possible w i t h i n  the constraints imposed 
by the turbine out le t  and condensate bubble-point temperatures; the turbine 
bleed flow is sized t o  add just enough energy to  maintain a 160°F geofluid 
out le t  temperature while holding a specified pinch point temperature difference 
in the main working f lu id  heater. * 

* Thermodynamically, one can recognize that  the i r r eve r s ib i l i t y  generated 
in a heat exchange process i s  direct ly  related t o  the total  increase i n  entropy 
of the two f luids  involved; i t  can be shown that  the average difference i n  
temperature between the two f luids  d u r i n g  a heat exchange process i s  a 
measure of the thermodynamic i r r eve r s ib i l i t y  introduced. Counterflow heat 
exchangers help minimize th i s  difference a s  does the u t i l i za t ion  of the mixed 
hydrocarbon boiling and condensing character is t ics  as described in Reference 2 .  
The non-isothermal boil ing and condensing curves (temperature versus heat 
transferred) of a properly selected mixed working f lu id  follow the heating/cool ing 
geofluid temperatures much more closely than the isothermal boiling and condensing 
curves of a pure f lu id ,  thus also reducing the thermodynamic i r revers ib i l i ty .  The 
recuperator and turbine bleed take some of the heat load from the heater working 
f luid i n l e t  where the temperature difference i s  greatest ,  subsequently reducing 
the heat rejected to  the cooling water (condenser). 
efficiency i s  increased, while the heater, condenser, and cooling tower sizes are 
reduced. 

As a resul t  the thermodynamic 

Quantitative estimates of the cycle efficiency increase, and of the resulting 
increase i n  geofluid effectiveness (while maintaining the 160°F geofluid o u t l e t  
temperature), due to  each of these changes are the primary considerations of t h i s  
report. 

3 .  CYCLE ANALYSIS METHODS 

3.1 General 

A number of single heating cycles were investigated w i t h  three mixed-hydro- 
carbon working f luids  for  a geothermal resource temperature of 360°F. 
f luids  considered were 88% isobutane/l2% isopentane (representative of the 
working f luid selected for  the Heber plant) , 96% isobutane/4% heptane (judged 

Working 
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the most promising candidate from Reference 2) ,  and 95% propane/5% hexane ( the  
highest geofluid effectiveness from Reference 2 ,  although a t  a very h i g h  turbine 
i n l e t  pressure o f  1,400 psia) .  
report are given in mass percents. 

Note t h a t  a l l  compositions presented in this 

The general approach taken from each working f lu id  and system configuration 
investigated was t o  conduct cycle calculations which included determination of 
turbine power, working f l u i d  pumping parasi t ic  loss ,  and an estimate of the 
paras i t ic  loss introduced by a wet cooling tower. 
repeated for  a number o f  turbine i n l e t  (heater)  pressures u n t i l  a maximum net 
plant power was found. 
established for  a nominal summer wet b u l b  temperature of 60°F during this process. 
The process was repeated for  each working f lu id ,  b o t h  with and without turbine 
bleed and/or recuperator. Cycle calculations were then conducted for  off-design 
conditions a t  lower wet b u l b  temperatures. 
system configuration established i n  the design case was evaluated for  changes 
i n  thermodynamic performance result ing from changes i n  ambient wet b u l b  temperature. 

The calculations were 

Optimum p l a n t  component s izes  and s t a t e  points were 

In these cases, the nominal, fixed, 

. 3.2 Assumptions 

1.  Shell-and-tube heaters, condensers, and recuperators were assumed. 
Turbine bleed cycles also used an auxiliary d i rec t  contact heat 
exchanger ( D C H X )  . 

2 .  Design pinch points (min imum approach temperature differences) i n  
the heaters were 10°F for the nominal summer (60°F wet b u l b )  
ambient condition. 

3 .  Wet cooling towers were assumed which provide counterflow cooling 
water t o  the condenser a t  70°F for  the design case. 
i n l e t  temperatures were lower for the off-design cases. ) 
current cooling water flow was selected to  maintain condensing 
approach temperature differences of 10°F for the nominal (60°F 
wet b u l b )  ambient conditions. 

(Cooling water 
Counter- 

4. Pinch point temperature differences were kept a t  or above 9°F when 
establishing recuperator nominal designs. 

8 
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5. 

6. 

7. 

8. 

9. 

10. 

11. 

Geofluid pumping requirements ( a t  a given geofluid flowrate) were 
assumed the same for  a l l  cases, and those parasi t ic  losses were n o t  
included. 

Component and pi p i n g  f r ic t ional  pressure drops were neglected. 

.Pump and turbine e f f  ciencies were assumed t o  be 80 and 85%, 

respectively, and electr ical  losses were not included. 

Heater ou t le t  s t a t e  points were selected t o  avoid two-phase equilibrium 
conditions throughout the turbine expansion process and to  minimize 
desuperheating of the turbine exhaust. 

As i n  References 1 and 2 total  cooling tower parasi t ic  losses in 
in watts were estimated from e a r l i e r  work as 0.077 times the cooling 
water flow in lbm/hr for  a cooling water temperature r i s e    AT^^) = 20°F. 
For ATCM # 20°F small adjustments i n  t h i s  factor were made t o  account 
for  changes in pumping power required for  the modified cooling water 
flow. 

Water properties were taken from the ASME steam tables (Reference 2 ) .  
The mixed hydrocarbon f luid properties were obtained using computer 
program THERPP (Reference 4 ) ,  which u t i l i ze s  S tar l ing ' s  modified 
Benedict-Webb-Rubin equation of s t a t e .  

For the turbine bleed study the working:,.fluid exiting the DCHX i s  
assumed to  be a t  saturated liquid condi.tions, and the bleed flowrate 
adjusted t o  provide this. 

An additional consideration resulted .from the study of the 360°F geothermal 
resource. 
in the geofluid that  precipitation (possibiy causing wellbore damage) may occur 
i f  untreated plant discharge geofluid i s  allowed t o  reach temperatures much less  
t h a n  160°F. To incorporate th i s  consideration , cycle performance was calculated 
for cases having plant geofluid out le t  temperatures of 160°F as  well as those 
which maintained 10°F pinch points in the heaters. 

A t  t h i s  resource temperature suff ic ient  s i l i c a  i s  assumed t o  be dissolved 
P 

0 

For the off-design cases 
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studied u s i n g  96% isobutane/4% heptane, normal plant operational strategy ( i  .e. , 
choice of working f luid flow, heater pressure, geofluid flow, e t c . )  was predicted 
to  result i n  the heater geofluid exit ing a t  temperature somewhat lower t h a n  
160OF; different  strategy could raise  this ternperatu’re, b u t  would impact plant 
performance to  some extent du r ing  the coldest ambient conditions. 

3 . 3  Summary of Analytical Procedure 

I n  general , hand calculations,  supplemented by a simplified computer code 
to  aid in the i t e r a t ive  calculations of the heat exchanger performance, were 
used t o  generate the s t a t e  points throughout the system. 
each of the many cycle calculations,  a brief summary o f  the calculational 
procedure will be given for two representative types of cycles from which 
calculation procedures for  the other types can be derived. The two types 
presented below include: 
cycl e. 

Without detail ing 

( 1 )  the recuperator cycle, and ( 2 )  the turbine bleed 

3.3.1 Recuperator Cycle 

Reference will be made to  the calculations for  the 96% isobutane/4% heptane 
cycle a t  600 psia turbine i n l e t  pressure because this cycle was studied for bo th  
design and off-design ambient wet b u l b  conditions. 
through 11 show flow diagrams of this cycle. 

Figure 2 and Figures 9 

-. 
The f i r s t  step i n  any of the calculations i s  t o  obtain f l u i d  properties 

(References 3 and 4) over the temperature and pressure range of in te res t .  The 
cycle calculations are begun by selecting a turbine i n l e t  pressure, thus establishing 
the working f luid pressure level in the h i g h  pressure side of the loop. 
turbine in l e t  entropy is  then selected so that  the turbine expansion process does 
not go through the two-phase region. Now, from these two properties (pressure and 
entropy), a l l  other properties a t  the turbine i n l e t  can be obtained. 
bubble-point temperature i s  specified; t h u s  the pressure on the low pressure side 

The 

I The condenser 

of the loop i s  known. 
the ex i t  pressure and turbine efficiency are known.  

The remaining e x i t  properties can then be obtained since 

I 
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4 

4 

Now, the recuperator can be isolated.  The pump i n l e t  conditions are those 
a t  the condenser ou t le t  (bubble point) .  
equal the heater pressure) i s  known, together with i t s  efficiency, so that  the' 
s t a t e  points on bo th  sides of the pump can be obtained. 
cold side i n l e t  conditions are thus defined. 
h i g h ,  the temperature increase across the pump may resu l t  in recuperator cold side 
temperatures being too high for  sat isfactory recuperator performance. In  t h i s  
case a dual-stage pumping procedure i s  used i n  which the f i r s t  pump raises the 
recuperator i n l e t  pressure only high enough t o  keep the working f luid saturated 
as i t  i s  heated in the recuperator, and then a second pump downstream of the 
recuperator ra ises  the pressure to  the turbine i n l e t  pressure.) 
recuperator i n l e t  temperatures are known, an i t e r a t ive  procedure can be implemented 
t o  solve for  the two out le t  temperatures with the constraint t h a t  the minimum 
temperature approach (pinch point) be a selected value (9°F in these cases) .  
For the 96% isobutane/4% heptane cycle, i t  was found t h a t  desuperheating and 
some condensing took place i n  the recuperator; these conditions resulted in the 
pinch point occurring a t  the working f luid dew point. 
d is t r ibut ions can now be calculated, together with an overall heat exchanger UA 

(product of heat t ransfer  surface area and coeff ic ient)  for  sizing the recuperator. 
(This UA was used in the off-design s tudies . )  

The pump ou t le t  pressure (assumed t o  

The recuperator 
(Note t h a t  i f  the pump A P  i s  extremely 

Since the two 

Recuperator temperature 

The condenser working f luid in l e t  and ou t le t  s t a t e  points are now known. 
For the summer design case, a cooling water i n l e t  temperature was spec fied 
t o  represent a dew point of 60°F. This allowed calculation (again i te ra t ive ly)  
of the condenser flow ra te  r a t i o  t o  resul t  i n  a pinch p o i n t  of  10°F, and o b t a i n  

an overall UA for  the condenser. Inlet  and ou t le t  conditions on b o t h  sides o f  

the condenser are thus known. 
ou t le t  bubble point temperature was selected,  and then the cooling water i n l e t  

For the study of a winter cycle, a lower condenser 

temperature and pinch point were allowed t o  f l oa t  while constraining the cooling- 
water-to-working-fluid flow ra t io  and overall UA t o  the design values. 

The remaining unit  t o  be studied i s  the heater. The working f luid in l e t  and 
ou t le t  temperatures are known, as i s  the geofluid i n l e t  temperature. For the 
design case the heater was sized so as t o  give approximately a 160°F geofluid 
out e t  temperature. 
and an overall UA for  a 10°F pinch point. 

This resulted in a r a t io  of working f luid to  geofluid flow , 
For the study of the off-design case, 
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the flow ra t io ,  pinch point, and geofluid out le t  temperature were allowed to  
f l o a t  while the overall UA and working f lu id  out le t  conditions were kept the 
same as for  the design cycle. The resu l t  of t h i s  approach i s  t h a t  the geofluid 
out le t  temperature decreases somewhat as the wet bulb temperature i s  decreased. 

3 . 3 . 2  Turbine Bleed Cycle 

Most of the cycle calculations for  the turbine bleed operation are the same 
as those discussed i n  3 . 3 . 1  above, 
Figures 3 and 4 show the schematic diagrams of the turbine bleed options. 

Only the differences are presented below. 

The f i r s t  difference i s  tha t  an additional pump i s  required, with a 
different  system pressure to  be calculated between the pumps. 
pressure i s  specified by the assumption tha t  saturated l iquid ex i t s  the d i rec t  
contact heat exchanger. 

The intermediate - 

The heater i s  studied f i r s t  t o  obtain the working f lu id  i n l e t  conditions in 
the same manner as previously discussed ( f i x  working f lu id  out le t ,  pinch point, 
geofluid i n l e t  and out le t  conditions t o  obtain working f luid i n l e t ,  flow ra t io ,  
and overall UA). Then calculate the enthalpy change ( A h )  across the feed pump 
t o  obtain properties (saturated l iquid)  a t  DCHX outlet .  Once the intermediate 
pressure i s  known, the condenser pump conditions can be evaluated as before. 
Caculation of the recuperator performance follows ( i f  there i s  one), and the 
s t a t e  points and flows for  the condenser are determined as previously described. 

The l a s t  calculation i s  t o  define the amount of turbine bleed that  will 
combine with the condenser flow and produce saturated liquid out of the DCHX. 

The bleed flow i s  obtained by a simple enthalpy balance on the DCHX since a l l  
s t a t e  points are known. 
power calculations since some working f lu id  bypasses p a r t  of the turbine as 
well as the condenser and condenser pump. 

Note t h a t  the bleed flow must be accounted for  in the 
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4. RESULTS 

4.1 Basel ine Cycles 

Resul ts  o f  c y c l e  analyses f o r  a 360°F geothermal resource temperature, and a 

This  f i g u r e  shows values of n e t  
60°F wet b u l b  temperature, w i t h o u t  a recuperator  o r  t u r b i n e  bleed, are shown i n  
F igure 5 t o  p rov ide  base l i ne  performance values. 

p l a n t  power ( g e o f l u i d  e f f e c t i v e n e s s )  versus the  t u r b i n e  i n l e t  temperature f o r  

each o f  t h e  th ree  m ix tu res  s tud ied.  

isobutane, i s  shown f o r  comparison. 

which the heater  o u t l e t  geo f lu id  temperature was h e l d  a t  160°F ( t o  prevent  s i l i c a  

p r e c i p i t a t i o n ) ,  and the  dashed l i n e s  represent  cases i n  which the  g e o f l u i d  o u t l e t  

temperature was al lowed t o  f a l l  below 160°F w h i l e  ma in ta in ing  a 10°F p inch p o i n t  

i n  the  heater.  The two d i f f e r e n t  c o n s t r a i n t s  r e s u l t  i n  d i f f e r e n t  values o f  

maximum performance which occur, i n  general,  a t  d i f f e r e n t  values o f  t u r b i n e  i n l e t  
temperature f o r  a g iven working f l u i d  system. 

8 

The R a f t  R ive r  5MW p l a n t  working f l u i d ,  

The s o l i d  l i n e s  correspond t o  cases i n  

Basel ine performance comparisons (F igu re  5)  i n d i c a t e  the f o l l o w i n g :  

1. 

2. 

3. 

A l l  t h ree  candidate b i n a r y  working f l u i d s  show performances 6-14% 

g rea te r  than f o r  pure isobutane. 

o f  t he  reduced i r r e v e r s i b i l i t i e s  produced by a p r o p e r l y  se lected 

m i x t u r e  i n  the  hea t ing  and condensing processes. 

This improvement i s  an i n d i c a t i o n  

Most s i g n i f i c a n t  i n  the  f i g u r e  i s  t he  l a r g e  loss i n  performance of 

each f l u i d  when the g e o f l u i d  e x i t  temperature i s  r e s t r i c t e d  t o  160°F 

by s i l i c a  p r e c i p i t a t i o n  considerat ions.  

by t h i s  r e s t r i c t i o n  cou ld  be recovered, t he  g e o f l u i d  e f fec t i veness  
cou ld  be increase by as much as 7% f o r  t he  96% isobutane/4% heptane 

m i x t u r e  and 14% f o r  t he  95% propane/5% hexane mixture.  

p o s s i b i l i t y  i s  pursued i n  the  nex t  sec t i on .  

I f  the performance l o s t  

This  

I n  general,  the 95% propane/5% hexane m i x t u r e  d isp layed the  h ighes t  
g e o f l u i d  e f fec t i veness  b u t  a t  t he  pena l t y  o f  an extremely h igh  t u r b i n e  

i n l e t  (hea te r )  pressure o f  1,400-1,800 p s i a  versus 600 p s i a  f o r  t he  

96% isobutane/4% heptane m ix tu re .  
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. . . . . . . . . . . . . . . . . . 

4.2 Regenerated Cycles, Summer Design Points 

The next phase of this study was t o  investigate methods of recovering 
p a r t  or a l l  of the cycle performance lo s t  by introducing the 160°F geofluid 
out le t  constraint .  
bleed and/or recuperation for  the same 360°F geothermal resource w i t h  a 60°F 
wet bulb temperature. 
resul ts  are presented in Figures 6 through 8. 
be discussed bel ow. 

This recovery was accomplished through use of turbine 

Cases were r u n  for  each of the three mixtures; the 

0 

The resul ts  for  each f luid will 

4 .2 .1  88% Isobutane/l2% Isopentane (Heber Fluid) 

Figure 6 shows the resul ts  of the study of the Heber plant w o r k i n g  f luid 
u t i l i z ing  a recuperator and a recuperator plus turbine bleed t o  reduce the 
thermodynamic i r r eve r s ib i l i t i e s .  
even with the geofluid e x i t  temperature res t r ic t ion of 160"F, the performance 
i s  comparable t o  the non-recuperated case without a geofluid out le t  temperature 
res t r ic t ion.  
a1 one. 

I t  i s  seen t h a t  i f  a recuperator i s  used, 

Adding turbine bleed does very l i t t l e  t o  the recuperated cycle 

4 .2 .2  96% Isobutane/4% Heptane 

Figure 7 shows the resul ts  of the study for  the isobutane/heptane mixture, 
the most promising of the three working f lu ids ,  u t i l i z ing  a recuperator and a 
recuperator plus turbine bleed for  energy recovery. 
alone can maintain the 160°F geofluid out le t  temperature and enhance the cycle 
performance to  the level of an unrecuperated cycle without the 160°F geofluid 
ex i t  temperature l imit .  Adding turbine bleed did n o t  improve the geofluid 
effectiveness. The recuperated cycle a t  600 psia turbine i n l e t  pressure shows 
the most promising performance of those investigated. 
net plant power of 9.28 watt-hr/lbm gdofluid is  derived from the components of 
11.53 watt-hrjlbm geofluid power o u t p u t  from the turbine, 1.29 watt-hr/lbm 
geofluid parasi t ic  loss for the pump, and 0.96 watt-hr/lbm geofluid parasi t ic  
loss for the wet cooling tower. 

Here, again, the recuperator 

A t  these conditions, the 

.J 

/ 
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4.2.3 95% Propane/5% Hexane 

Figure 8 shows the resu l t s  of the study for  this f luid u t i l i z ing  turbine 
bleed and recuperator. 
the others i f  the geofluid out le t  temperature i s  allowed t o  go below 160°F. 

This working f luid performs considerably bet ter  than 

I f ,  however, the out le t  temperature i s  held a t  160"F, the performance with 
turbine bleed and recuperator i s  very close to  tha t  for  96% isobutane/4% 
heptane, b u t  a t  a much higher heater pressure. The recuperator i s  n o t  nearly 
as effect ive for  t h i s  working f lu id  as for  the other two mixtures because the 
working f luid exhausts. from the the turbine in a saturated vapor s t a t e .  

4.2.4 Comparison of Fluids 

This study suggests tha t  the most promising working  f luid of those studied 
i s  the 96% isobutane/4% heptane mixture ut i l ized i n  a cycle with a turbine 
exhaust recuperator. The optimum turbine i n l e t  pressure i s  found to  be 600 psia. 
This cycle, operated with a 160°F lower l imit  on the geofluid out le t  temperature, 
will produce as high a geofluid effectiveness as the unrecuperated 96% isobutane/ 
4% heptane cycle without the temperature res t r ic t ion ;  i t s  geofluid effectiveness 
i s  about the same as for  the recuperated 95% propane/5% hexane mixture b u t  without 
the high pressure requirements. 

4.3 Off-Design Operation 

4.3.1 Assumptions 

This portion of the study was performed to  investigate the performance of 
the most promising cycle in off-design or winter ambient conditions. 
the system configuration selected included: 

Basically, 

1 .  Working f luid i s  96% isobutane/4% heptane. 

2 .  Heater pressure = 600 psia. 

3. Recuperator operation with 9°F pinch point. 
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4. Heater and condenser w i t h  10°F pinch p o i n t s .  

Heat exchanger sizing was same as for the summer design case. 5. 

I n  addition, an operation strategy had to  be selected to  be able t o  o b t a i n  
a solution since many ways of operating the plant could be considered. 
i t  was decided to  maintain the turbine i n l e t  conditions fixed a t  the design 
values, including temperature, pressure, entropy and flowrate. This allowed 
the use of the same fixed geometry turbine. 
res t r ic t ion ,  the geofluid out le t  temperature and f luid flowrate r a t io  i n  the 
heater were required t o  f loa t .  

F i r s t ,  

However, as a resul t  of t h i s  

The UA of the heater was kept the same. 

I n  the condenser, both the UA and the f lu id  flowrate r a t io  were maintained 
a t  the design values. 
bubb le  po in t s  of 85°F (design v a l u e ) ,  70°F and 55°F; these bubble point temperatures 
then fixed the working f luid pressure on the low pressure side o f  the system. 
From typical Marley wet cooling tower performance data, an ambient wet bulb 
temperature was estimated which would provide the cooling water flowrate and 
i n l e t  temperature required. T h i s  approach, rather t h a n  specifying a wet b u l b  
temperature beforehand, simplified the calculations and s t i l l  produced the 
desired relationship o f  performance versus ambient wet bulb temperature. 

Working f lu id  out le t  temperatures were selected a t  

For the recuperator the UA was maintained a t  the design value. 

4 . 3 . 2  Results (Off Design Ambient Conditions) 

Calculations were performed for wet bulb temperatures of 60°F (summer design) , 
37.6"F, and 11.7"F. 
bulb temperature as shown in Table 1 below. 
i n  terms of s t a t e  points, flows, and power balances for  the three wet b u l b  
temperatures are shown i n  Figures 9 t h r o u g h  11 .  

The performance was found t o  increase w i t h  a decrease i n  wet 
Results o f  this por t ion  of the study 

I 
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. . . . . . . . . . . . . . . . . . . .. .- . - . - - - - . - - - . 

TABLE 1 .  RESULTS OF OFF-DESIGN PERFORMANCE STUDY, 
360°F RESOURCE, 96% ISOBUTANE/4% HEPTANE, 

600 PSIA TURBINE INLET, RECUPERATOR 

Wet-Bul b Net Plant Condenser Condenser Geofluid 
Temperature Power Bubble Point Coolant In le t  Outlet .1 

( O F )  (watt-hr/l bm GF,) ( O F )  ( O F )  ( O F )  

B 

t 

60.0 9.28 85 

37.6 10.55 (+13%) 70 

11.7 11.86 (+28%) 55 

70.0 159.2 

54.3 151.4 

38.8 143.8 

I n  general, no problems with the cycles were encountered in operating th i s  
fixed system a t  the lower wet bulb temperatures. 
the heater changed negligibly so differences in well pump parasi t ics  could be 
ignored. 
considerably a t  the lowest wet bulb temperatures. The extent of operational 
problems resulting from the relationship between wet bulb and geofluid out le t  
temperature (Table 1 above) i s  clearly s i t e  specific.  I t  has been estimated 
t h a t  for  the 360°F resource temperature, actual precipitation will not occur 
above a geofluid temperature of a b o u t  145°F. If plant ou t le t  piping were well 
insulated, for  example, wet bulb temperatures above, say 2O"F, may n o t  resu l t  
in s i l i c a  precipitation; therefore, precipitation may not be a problem for  many 
sites. At sites for which silica precipitation would be expected during the co lde r  

periods, plant operational strategy could be modified, perhaps by running less 
working f lu id  through the cycle a t  a reduced turbine in l e t  pressure w i t h  a 
result ing performance penalty incurred during a small part of the year. 
of a modified operation and prediction of the result ing performance was n o t  
undertaken in t h i s  preliminary investigation. 

The geofluid flow ra te  in 

Note, however, tha t  the geofluid out le t  temperature decreased 

Selection 

Table 1 shows t h a t  performance gains of up  t o  28% could be obtained during 
cold weather operation in the mode selected. 
obtained from wet bulb d a t a  for  a specific s i t e  by integrating the short 
term performance data shown. 

A year-round average can be 

J 
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ATpinch = 10.47 "F I 

I 
Heater I 

I 

I '  = 1.1755 
Whot 
C UA= 9.79Btul"F lbm GF 

I 
I 
I 

P = 600 psia I 
= 100.15"F I 

h = -778.22 Btullbm I 
P = 300 psia 
T = 143.75"F 

I I 

CUA = 1.69Btul"F Ibm GF 

I P = 32.558 psia 
t T = 78.76"F 
I h = -654.54 Btullbm 

I 

h = -800.92 Btullbm 
T = 59.32 "F  

T = 52.11"F 

P = 600 psia 

CUA = 11.54 
. BtulOF Ibm GF 

I I 
L--*--a 

Cycle Power p = 32.558 psia 
T = 55.0 " F  (B.P.) 

Turbine 14.10 h = -804.67 Btullbm 
PumD 1.29 
Cooling Tower 0.95 
Net 11.86 Whrllbm GF IN EL-J-1762 

Figure 1 1 :  State Point Diagram, 96% Isobutane/4% Heptane, 600 psia 
Turbine Inlet, TGF = 360"F, TWet B u l b  = 11.7"F 
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Resul ts  and conclus 

5. CONCLUSIONS 

ons o f  t h e  severa l  p o r t  ons o f  t h e  s tudy  a re  summarized 

e 

below: 

1. 

2. 

3. 

4. 

5. 

For t h e  360°F geothermal resource s tud ied  here in,  t h e  maximum 

unregenerated g e o f l u i d  e f fec t i veness  occurred f o r  a 95% propane/5% 

hexane work ing f l u i d  a t  a heater  pressure o f  1,400 p s i a .  I n  t h i s  

case t h e  g e o f l u i d  o u t l e t  temperature f e l l  below 160°F ( i n d i c a t i n g  
p o t e n t i a l  s i l i c a  p r e c i p i t a t i o n  problems). 

For a g e o f l u i d  o u t l e t  temperature mainta ined a t  160"F, the  same 
working f l u i d  a t  1,600 p s i a  heater  pressure prov ided t h e  h ighes t  

g e o f l u i d  e f fec t i veness  o f  t h e  th ree  i nves t i ga ted .  

recuperated 96% isobutane/4% heptane working f l u i d  had an e f f e c t i v e -  

ness o n l y  about 1% lower a t  a heater  pressure of 600 ps ia ,  a more 
convent ional  pressure l e v e l .  The l a t t e r  cyc le  was judged t o  be 

t h e  b e t t e r ,  o v e r a l l .  

However, the  

For t h e  96% isobutane/4% heptane cyc le ,  imposing a lower  l i m i t  o f  

160°F on t h e  g e o f l u i d  o u t l e t  temperature penal ized t h e  n e t  g e o f l u i d  

e f fec t i veness  by about 7%. 

For t h a t  m ix tu re  a recupera tor  a lone can recover  the  e n t i r e  increment 

o f  geo f lu id  e f fec t i veness  l o s t  by  imposing t h e  160°F lower  l i m i t  on 
t h e  g e o f l u i d  o u t l e t  temperature, and a t  t h e  same t ime reduce the  

c o o l i n g  tower s i z e  and makeup water  by about 14%. 

Recuperated w i n t e r  opera t ion  shows no general  opera t iona l  d i f f i c u l t y ,  

and r e s u l t s  i n  a considerable increase i n  g e o f l u i d  e f fec t i veness .  The 

lowest  wet bu lb  temperature considered, 11.7"F, showed an e f fec t i veness  
increase o f  28%. The g e o f l u i d  o u t l e t  temperature f e l l  below 160°F 

f o r  t h e  lowest  wet bu lb  temperature. The p o s s i b i l i t y  o f  r e s u l t i n g  

s i l i c a  p r e c i p i t a t i o n  must be examined on a s i t e  s p e c i f i c  bas is .  

. .. I ,  '. 



6. Mixed hydrocarbon working f l u i d s  u t i l i z i n g  turbine exhaust recuperation 
appear promising, and warrant experimental eva lua t ion .  
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