

DOE/ET/27256--T31

DE82 015104

GEOOTHERMAL GREENHOUSE-HEATING FACILITIES
FOR THE KLAMATH COUNTY NURSING HOME,
Klamath Falls, Oregon

February 1982

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE.
**It has been reproduced from the best
available copy to permit the broadest
possible availability.**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

fig

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

GEOTHERMAL GREENHOUSE-HEATING FACILITIES

FOR THE KLAMATH COUNTY NURSING HOME

Klamath Falls, Oregon

The following is the result of a request for Technical Assistance.

INTRODUCTION

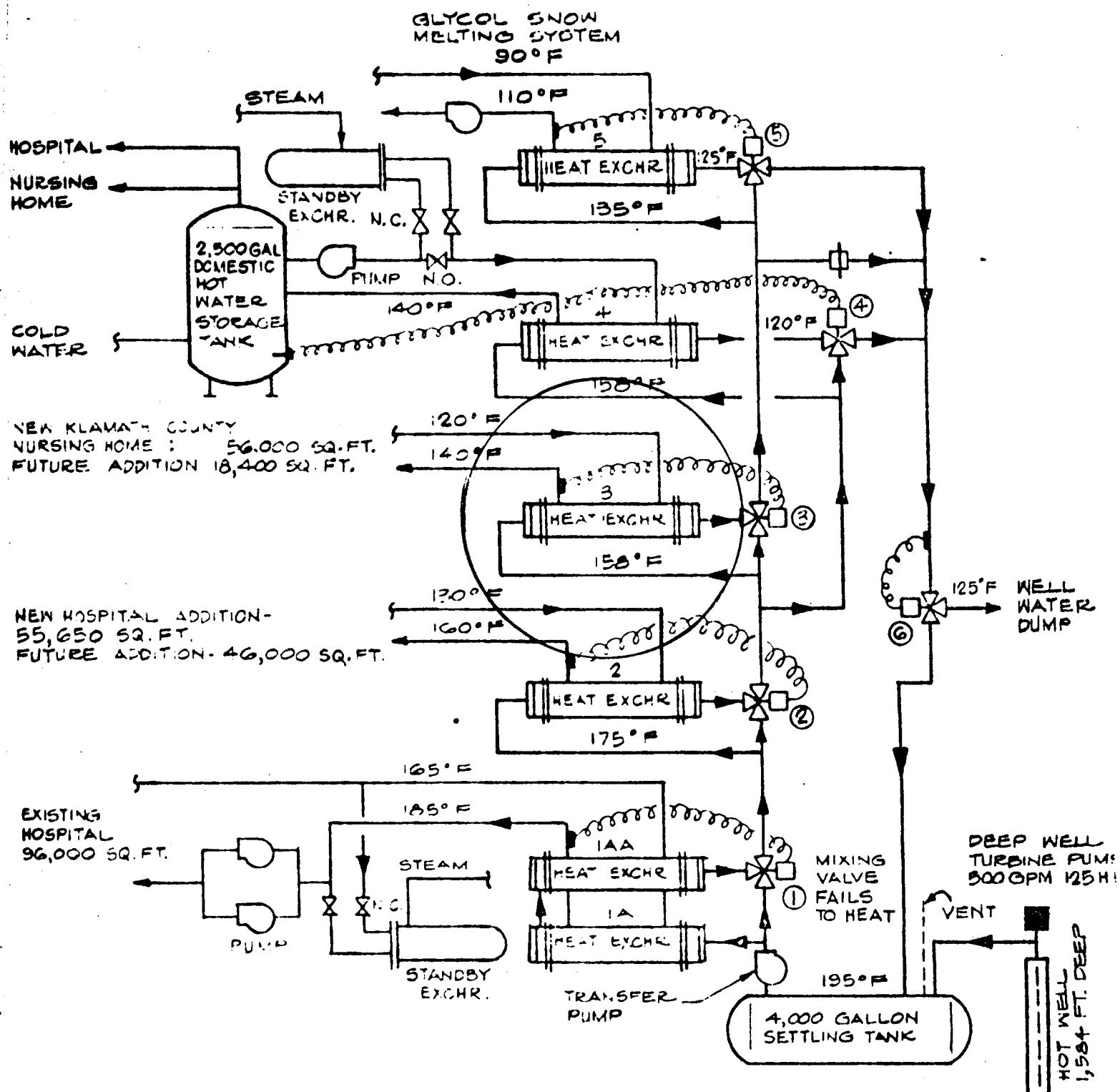
The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource ($\sim 190^{\circ}\text{F}$) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology.

This report explores the feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

SUMMARY OF CONCLUSIONS

Based on the assumptions as to size and location contained in this report, it appears that a greenhouse heating system could be tied into the existing Nursing Home heating system with minimal impact. An increase in total heating water flow requirements of 4.5% would result. The cost of attaching the greenhouse heating system to the existing building would amount to approximately \$8,200. This figure assumes that all items relating to greenhouse heat distribution except the finned

coil heat exchanger would be supplied as part of the greenhouse package.


AVAILABILITY OF GEOTHERMAL

As mentioned earlier, the Nursing Home is currently heated with geothermal. As a result, ready access to the resource is provided. Figure 1 shows the layout of the primary geothermal system. The equipment is located in the mechanical room of the Merle West Medical Center. Piping from the hospital's heat exchanger (circled) is routed, through a buried tunnel, to the Nursing Home mechanical room. Design supply water temperature for the Nursing Home system is approximately 140°F. This water temperature was used for determining the characteristics of the greenhouse terminal equipment.

EXISTING MECHANICAL SYSTEM

The Nursing Homes' mechanical system is tied to that of the Merle West Medical Center (MWWC), indicated by Figure 1. A heat exchanger in the MWWC generates 140°F hot water which is supplied to the Nursing Home. The system was designed for a 20 Δt and as a result 120°F return water flows back to the heat exchanger at the hospital. The main circulating pump is located at the hospital.

The basic system at the Nursing Home is composed of central air handlers delivering air to terminal reheat coils. Based on the original construction plans supplied by Nursing Home personnel, the design flow rate for the system is 244 gpm. This water is supplied to the various reheat coils through insulated piping installed in the space between

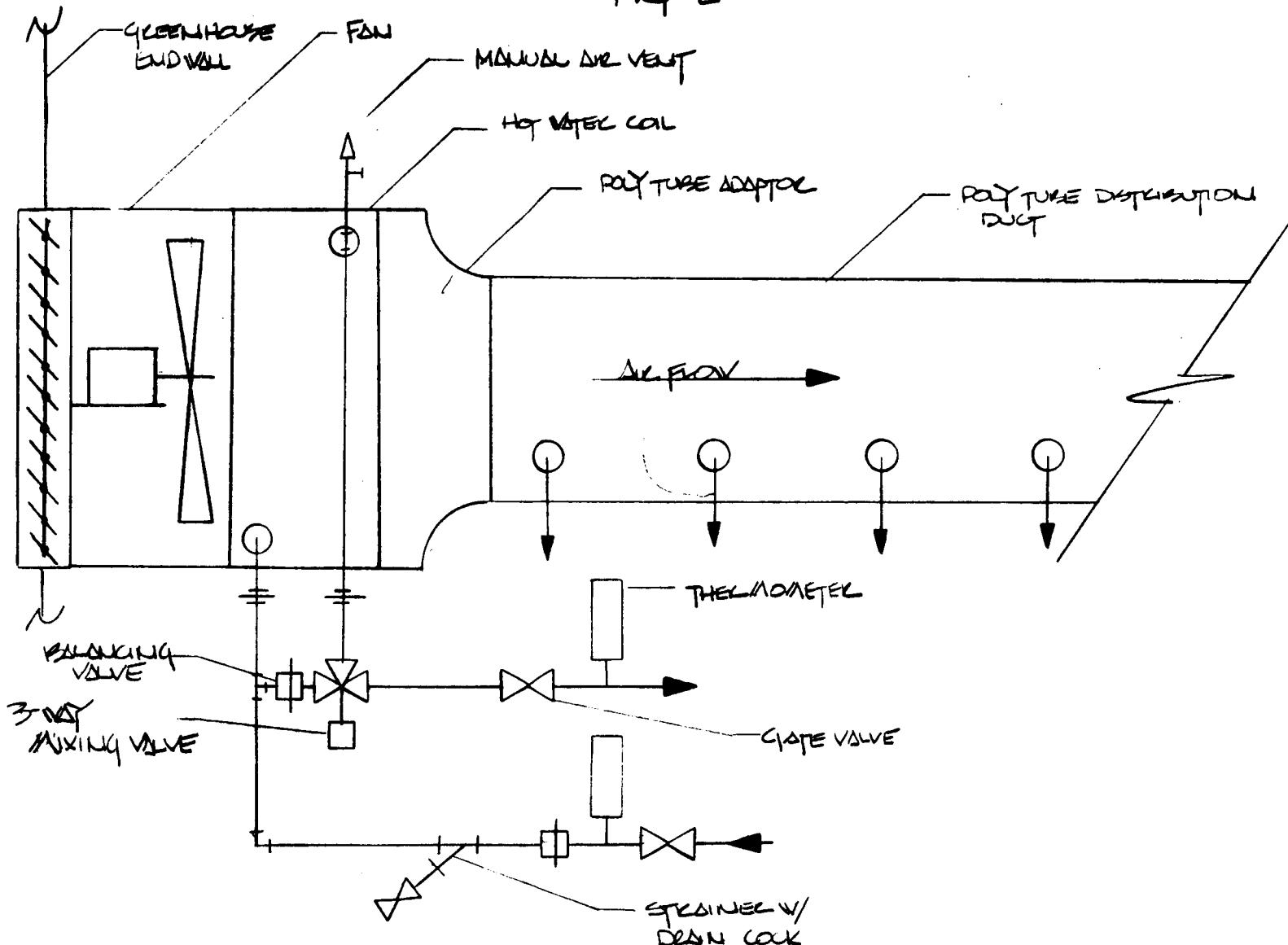
NOTE: STANDBY PUMPS AND STANDBY STEAM HEAT EXCHANGER
WERE ALSO PROVIDED FOR THE NURSING HOME AND NEW
HOSPITALISING.

OTHER MATERIAL HEATING

PRESBYTERIAN INTERCOMMUNITY HOSPITAL

BALZHISER & COLVIN ENGINEERING
EUGENE, OREGON
DATE: 1976

the interior ceiling and the roof.


PROPOSED GREENHOUSE HEATING SYSTEM

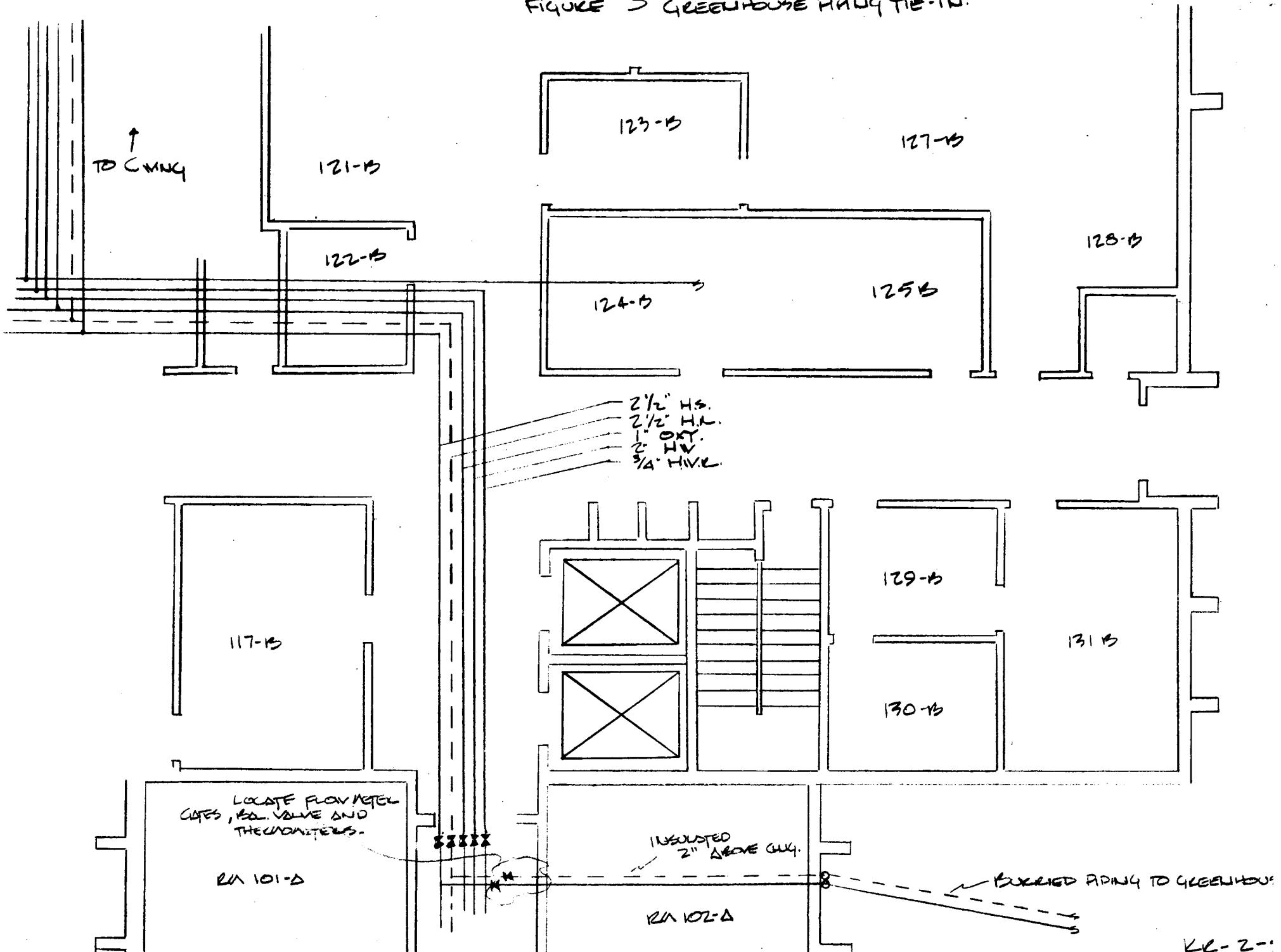
For purposes of this study, a 30' X 96' double poly type greenhouse was considered for heat loss purposes. This type of structure is characterized by much lower heating requirements per square foot of area than single glazed greenhouses. In addition, heat losses for the double layer structure are much less influenced by wind velocity than that for single glazing. The location considered is characterized by 10+ mph winds a large portion of the time. Peak heat loss for this structure was calculated to be 228,700 Btu/hr. A plot of heat loss per square foot for various types of greenhouse structures is included in the appendix. Details of the calculation are also to be found in the appendix.

A "fan jet" finned hot water coil, poly tube type heating system was chosen for the greenhouse. This type of heating system was chosen for several reasons. In view of the relatively low temperatures involved, an excessive amount of surface area would be required for a radiant type system. In addition, since a number of the people working in the greenhouse will be confined to wheel chairs the overhead system will minimize the amount of interference to their mobility. Finally, this type of system provides for a lower first cost.

Based on the available temperature of 140°F and a 40 Δt , a three row 9 square foot coil is required. This size coil corresponds well to the available greenhouse heating equipment (poly tube, mixing dampers, etc). Figure 2 shows a detail of the heating coil installation. De-

COUNTY NURSING HOME - GREENHOUSE
FOCUSED AIR COIL DETAIL
FIG 2

KL 1-182


tails of the coil configuration are shown in the appendix.

As mentioned earlier, hot water for the greenhouse would be supplied for the existing building heating system. Several points were considered as options for piping tie ins. However, the final choice was made, based on access to existing piping, room for new pipe routing, and minimum impact on the existing system. Figure 3 shows the tie in points and associated piping. This point, in Building section C, is close to the main distribution point of the hot water system. In addition, the mechanical space is relatively free of ductwork and other obstructions.

From the tie in point, the piping would proceed to the edge of the building (insulated) and down the outside wall (see Figure 3). From the edge of the building, the piping (2") would proceed, buried, to the greenhouse. The 2 inch line sizes were assumed in view of the plans for future expansion of the greenhouse area. At the terminal point (at the new greenhouse), a concrete valve box would be provided with supply and return lines capped off for future expansion. One inch line would then enter the greenhouse. If the supply and return lines are buried in a three foot trench, it is possible to use uninsulated steel piping. Under worst conditions (wet heavy soil, 140° water temp, 10° air temp), heat loss from the piping would amount to only about 3°F based on 200 feet (length). This temperature loss should not effect the performance of the heating system to any great extent.

The design flow rate for the greenhouse, 11.5 gpm, should not pose a great balancing problem when brought on line. The increase in flow

FIGURE 3 GREENHOUSE RANG TIE-IN.

compared to existing design amounts to only 4.5%. A flow meter would be provided at the tie in to the existing system to insure accurate flow balancing.

GREENHOUSE LOCATION

The greenhouse location, for this report, was assumed to be approximately 40 feet from the north entrance at Building section C (see Figure 4). The 40 foot figure results from the building orientation and local solar characteristics. In order to assume full solar exposure from 10 am to 3 pm, on the north side of the building, a 40 foot shadow buffer was required.

The north side of the building was chosen to insure access to the greenhouse for residents confined to wheelchairs.

CAPITAL COSTS

Table 1 outlines the capital costs necessary for the heating system proposed. Also included are budget type estimates of the major items necessary for the construction of the 30' X 96' double poly type greenhouse. The estimated figures are from IBG International for a Minute Man II type structure.

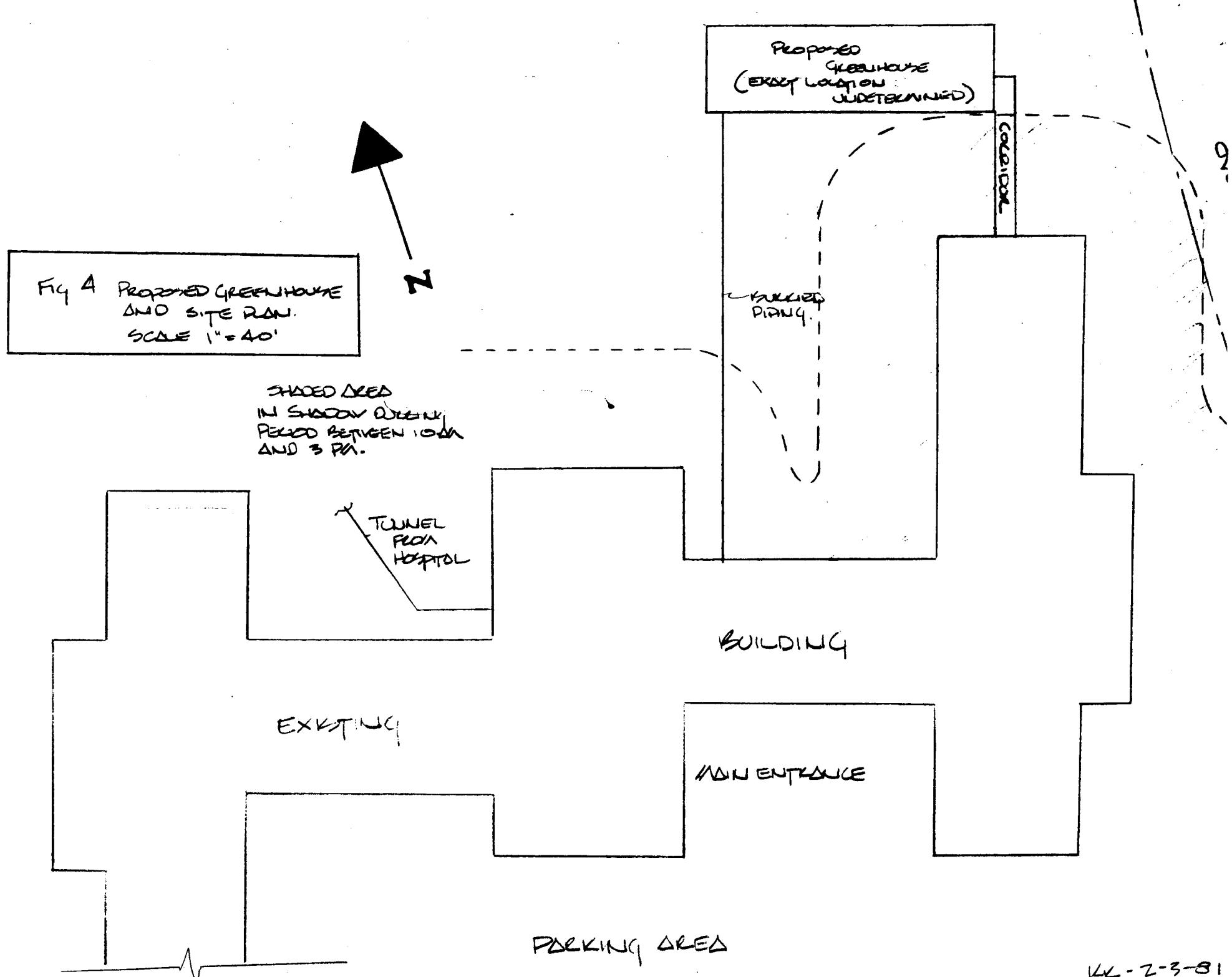


TABLE 1

Capital Costs:

Greenhouse -

Steel super structure	2,720
Roof covering	2,160
Ends (fiberglass and frame)	1,394
Sides (fiberglass and frame)	1,224
Celdek Cooling System	1,056
Exhaust fans (2)	1,340
Circulating pump (for cooling system)	380
Fan for heating	350
Freight	800
Labor (IBG Portland crew)	4,300
Concrete	<u>100</u>
TOTAL	15,824

Heating System -

Piping tie in (to outside wall)	1,820
Buried piping (to greenhouse)	2,700
Finned Coil	1,100
Piping in greenhouse	<u>1,500</u>
Subtotal	7,120
15% engineering & contingency	<u>1,070</u>
TOTAL	8,190

APPENDIX

SHADOW FROM BUILDING:

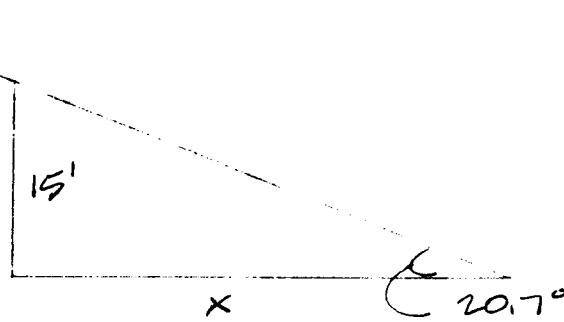
BUILDING FACES 10° WEST OF SOUTH
DEC 21 10 AM / 3 PM
FOR 42° N. LAT.

$$\sin \beta = \cos L \cos \delta \cos H + \sin L \sin \delta$$

$$\sin \phi = \cos \delta \sin H / \cos \beta$$

L - LOCAL LATITUDE - $42^\circ 12'$ (say 42°)

δ - SOLAR DECLINATION


H - HOUR ANGLE

USE TABLE DATA FOR 40° N.

$$\beta = 20.7^\circ$$

$$\phi = 29.4^\circ$$

BUILDING HEIGHT

$$\tan 20.7^\circ = 15/x$$

$$\tan 20.7^\circ = .3779$$

$$15 / .3779 = 39.69' \text{ (say } 40')$$

GREENHOUSE MUST BE A MINIMUM OF 40' FROM NORTH
SIDE OF BUILDING.

WALL/FLOOR OF 1.5/1

PEAK HEAT REQUIRED PER FLOOR AREA (BTU/HR FT²)

160
140
120
100
80
60
40
20
0

INSIDE MINUS OUTSIDE TEMPERATURE (°F)

0 20 40 60 80 100

CURVE	MAT.	GLAZE	CHANGE HR.	WIND (MPH)
1	G		7	0
2	P		1	0
3	P		2	0
4	P	G	2	0
5	G	P	1	0
6	P	G	1	0
7	P	G	1	0
8	G	G	1	0
9	G	G	1	0
10	G	G	1	0
11	G	G	1	0
12	G	G	1	0
13	G	G	1	0
14	P	P	2	1
15	P	P	2	1
16	P	P	2	1

ASPHAL.
ASPHAL.

MRK 3/20/81

COUNTY NURSING HOME

ASSUMPTIONS


30 x 96 DOUBLE POLY GREENHOUSE

65° INSIDE

0° OUTSIDE

0° AIR CHANGE/HOUR

MINUTE MAN TYPE SPONGE

HEAT LOSS:

$$\begin{aligned} \text{SURFACE AREA} &= \\ (2\pi \cdot 15) \div 2 &= \text{ARC LENGTH} = 47.1 \text{ FT}^2 \\ \text{ROOF AREA} &= 47.1 \cdot 96 = 4523 \text{ FT}^2 \\ \text{SIDES AREA} &= 4.96 \cdot 2 = 168 \text{ FT}^2 \\ \pi(15)^2 + 4 \cdot 30 \cdot 2 &= \text{END AREA} = 946 \text{ FT}^2 \end{aligned}$$

PIR AREA 6237

$$\text{FLOOR AREA} = 30 \cdot 96 = 2880 \text{ FT}^2$$

$$\begin{aligned} \text{SURFACE AREA : FLOOR AREA RATIO} &: \\ 6237 \div 2880 &= 2.166 \end{aligned}$$

GREENHOUSE HEAT LOSS COEFFICIENTS BASED ON 1.5:1

$$2.166 \div 1.5 = 1.444$$

FRON COEFFICIENT FOR DOUBLE POLY 0° AIR CH/HOUR
10 MPH WIND VELOCITY

$$\begin{aligned} 55 \text{ BTU/HK} \cdot \text{FT}^2 &(\text{FLOOR AREA}) \\ 55 \cdot 1.444 &= 79.4 \text{ BTU/HK} \cdot \text{FT}^2 \end{aligned}$$

$$\text{HEAT LOSS} = 79.4 \cdot 2880 = \underline{\underline{228721 \text{ BTU/HK}}}$$

RECORDED FLOW @ 40° ST

$$228721 \div 493 \div 40 = 11.48 - 11.5 \text{ lpm}$$

COIL CONFIGURATION:

ED	-	65
LA	-	108
EV	-	140
LIV	-	100
CFA	-	5270
FD	-	375-36 (9.375)
FEED	-	3
CODE	-	1
EL	-	4500
EV	-	3
FPI	-	1057 (11)
AIR SP	-	.37
PASSES	-	24
WTR SP	-	15.87'

WILL REQUIRE $\frac{1}{2}$ IP AND RATHER THAN SPANDED
 $\frac{1}{3}$ IP

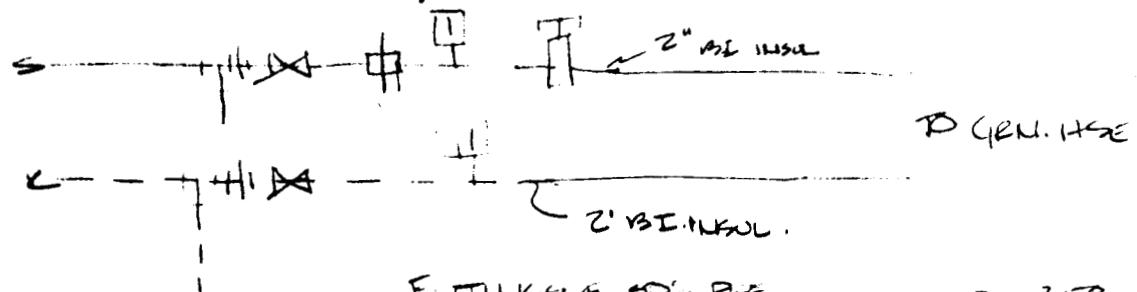
PIPING HEAD LOSS FOR 2" LINES UNINSUL. (ALLOWS FOR EXPANSION)

01	1D	-	2.067		
02	0C	-	2.375		
03	1D JKT	-	2.375		
04	0C JKT	-	2.375		
05	DEEP	-	5'		
06	JK PPE	-	300		
07	JK INSUL	-	9	6	2.4
08	h GRND.	-	9	5	9
13	jk JKT	-	9	6	2.4
10	jk SOL	-	9	6	2.4
11	tw	-	140		
12	ta	-	10		
	LOSS/FT	82.3	56.9	75.4	23.9
		($\frac{1}{2}$ IP)	($\frac{1}{3}$ IP)	($\frac{1}{2}$ IP)	($\frac{1}{3}$ IP)

FOR PIPING OUT END OF BUILDING

$$170' \times 82.3 = 12345 \text{ BTU/HR}$$

$$12345 \div 500 \cdot 11.5 = 2.15^{\circ}\text{F Loss}$$


FOR PIPING OUT SIDE OF BUILDING

$$200' \times 82.3 = 16460 \text{ BTU/HR}$$

$$16460 \div 500 \cdot 11.5 = 2.06^{\circ}\text{F Loss}$$

Actual Loss will probably be less due to both
return and supply in same trench. Also heat
loss calculated for Hwy. damp soil, rough ground
surf and 15 mph wind

PIPING REQUIREMENTS :

1	F. MILKING & 50% PINE	=	358
	2-2" UNION (INSULATION)	C 33	66
	2-2" GATE VALV	C 64	128
	1-2" CIRC. SETTER	C 120	120
	1-2" FLOW SYSTEM	C 135	135
	2" THERMOMETERS	C 20	40
2	60 PIPING ON HANGERS	C 8.95	71.6
	80 INSULATION 2"	C 2.18	206
	TRU. VOL		50
			1819

150' SURFACE (3') 2" PBI SUPPLY AND RET.
VESSELED

ADVERTISING - C 3.89	4F	= 1167
VEOP - C 1.0	7F	150
TECH & EXP. FL E 5.00	4F	2450
INST - C 2.0	4F	800
		<u>24067</u>

UNI-HEATER HOOK-UP

FINNED COIL	9 FT ²	3000	-	1080
INSTALLATION			-	150
1/4 GATE VALVE	20	39	-	78
THECA. VALVE	20		-	40
1/4 CIRC. SETTER	20		.	85
1/4 FLAMMETER	20		-	135
1/4 SPANNER AND DRAIN COCK	20		-	65
3/4 UNION	20		-	
1/2 AIR VENT-ADJUST	20		-	20
CONTROL (T-STAT)	20		-	60
1/4 3 WAY AIR VALVE	20		-	320
50' 1/4 BI	20	6.15	-	308
50' 1/4 INSUL	20	236	-	118
FITTINGS & 50' PIPING			-	152
				2611