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EXECUTIVE SUMMARY

Since the Weibull distribution is not a physically acceptable distribu-
tion function for scalar wind speed and since even the wind speed data
itself is frequently bimodal, it is suggested that a mixture of two genera-
lized Rayleigh distributions (a thoroughly acceptable distribution) be used
to describe the distribution of scalar wind speed.

A reasonably extensive analysis of scalar wind speed data of several
kinds is reported. Data from meteorological towers at Patrick AFB, FL, the
Hanford Meteorological Station, Cape Kennedy (NASA), FL, and White Sands
Missile Range, NM, were analyzed in some detail and the variation of param-
eters as a function of anemometer height was determined. Data from meteor-
ological towers at nuclear power plant sites was analyzed for those cases
where anemometers were located at two or more levels. Data was provided
by Pacific Northwest Laboratory from locations in the northwestern U.S. where
the anemometer had been located at two different elevations and the wind speed
frequency tabulated separately at the different levels. 1In all of these cases
the variation of the parameters entering the distribution function was determined
as a function of height. It was found that insofar as the empirical distribution
function remained of the same type from level to level, the parameter variation
was reasonably well described by the frequently applied power law with the excep-
tion of the mixing proportion of the two components of the mixture of the two
generalized Rayleigh distributions used.

The effect of the site exposure on the parameters of the empirical distri-
bution function is reported for locations near Boston, MA, Washington, DC,
Bridgeport and New Haven, CT, and Tucson, AZ. It was found, as expected, that
site exposure was important in determing the parameters of the mixture.

Diurnal changes in the empirical distribution function parameters at
Washington, DC, Montgomery, AL, and Mobile, AL, are also reported.



The two components of the mixture, each a generalized Rayleigh distri-
bution, may be described as one that dominates the distribution of the lower
scalar wind speeds and one that dominates the higher speeds, called herein
the low speed and high speed components of the mixture. In any particular
case, one of these mixture components may be absent. Also one or both of
these components may reduce to an ordinary Rayleigh distribution or even
to a degenerate (spike) distribution.

In the case of the tower data it was found that the low speed compo-
nent of the mixture was dominant at the lower anemometer elevations while
at the higher elevations the high speed component became dominant.

With regard to the type of distribution that appeared in the two mix-
ture components, it may be said that the more varied the conditions included
in the data collection the simpler the two mixture components. Thus, yearly
data (which is affected by the annual and diurnal variation) tends frequently
to be an ordinary Rayleigh distribution.

In the case of tower scalar wind speed, the high speed mixture compo-
nent at the upper levels is usually a generalized Rayleigh while that at
the lower levels tends to be an ordinary Rayleigh.

At "sheltered" locations, i.e., those located on terrain noticeably
lower than the surrounding hilltops, the low épeed mixture component is
strongly dominant and tends to be an ordinary Rayleigh distribution or even
degenerate. At "exposed" locations, i.e., those located at roughly the
general hilltop level, the high speed component is dominant and tends to
be a generalized Rayleigh distribution.

As far as the annual variation of the parameters and the type of dis-
tribution appearing in the mixture components is concerned, the low speed
component is more frequent in summer and the high speed component more
frequent in winter. The type of distribution function for these mixture
components seems to be more or less consistent as far as seasonal variation
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is concerned. A notable feature of the monthly distribution function is
that the generalized Rayleigh distribution function appears more frequently
than in the annual data. ‘

The diurnal variation of parameters and the distribution types is
more extreme than for the annual variation. As expected, the early morning
scalar wind speed distribution is dominated by the low speed component
which tends to be an ordinary Rayleigh distribution and very frequently
can be described as degenerate (a "spike" at zero wind speed, calm). The
afternoon winds are dominated by the high speed component which is most
frequently a generalized Rayleigh distribution.
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INTRODUCTION

PREVIOUS RESEARCH

The problem of describing the probability density function for the
scalar wind speed is of long standing. Hesselberg and Bjorkdal (1929) consider
wind speeds as an aspect of turbulence (speeds measured almost instantaneously
and sampled frequently over a short period of record, several minutes) while
Wagner (1929) considers the case of wind speeds sampled daily over a long
period of record (several years). Turbulence theory considerations lead
Hesselberg and Bjorkdal to conclude that the scalar wind speed probability
density function should be that of a generalized Rayleigh distribution.
Wagner starts with the assumption that the wind vector is distributed as a
bivariate normal distribution (general) and derives the corresponding dis-
tribution for the scalar wind speed (and direction, also). Both conclude
that their results do not satisfactorily describe the observed data and
suggest that the data requires that the probability density function should
be that of a mixture of two or more distributions with different parameters.

The work of Hesselberg and Bjorkdal and of Wagner was essentially
neglected. There was a revival of interest in the subject in the 1950s
(Brooks et al. (1950), Davies (1958), Dinkelacker (1949) Essenwanger
(1959), Gloyne (1959), Guterman (1961), to mention some) but attention
was confined to either the circularly normal case for the wind velocity
vector or to probability density functions of special form in the case
of the scalar wind speed.

Current interest in the scalar wind speed distribution for power (and
other) applications has lead to many proposed probability density functions
(p.d.f.). Luna and Church (1974) suggest a log-normal p.d.f. (see also
Buell, 1976); Widger (1976 and 1977) a square-root-normal; Boehm (1976)
approximates an observed wind speed p.d.f. with seven different functions;
Beardsley (1980) suggests the inverse Gaussian p.d.f. The greatest current
interest is centered on the Weibull p.d.f. [see Justus, Hargraves, and
Yalcin (1976), Justus, Hargraves, Mikhail, and Garber (1978), Justus (1978),



Hennessey (1977)]. Extensions or generalizations of the Weibull p.d.f. by
introduction of an additional parameter have been made by Stewart and
Essenwanger (1978) and by Van der Auwera, de Meyer, and Malet (1980) while
Takle and Brown (1977) introduce a parameter to account for the occurrence
of calms. There are serious objections to nearly all of these p.d.f.'s as
applied to the scalar wind speed. First, except for some special values of
the parameters, they are physically impossible (see Appendix A for details).
Second, they are all unimodal (one maximum) while there are many cases in
which the observed scalar wind speed p.d.f. is bimodal (two distinct maxima)
(see Appendix B).

PRESENT PROBLEM

The objective of this report is to reconsider the suggestions of
Hesselberg and Bjorkdal (1929) and Wagner (1929) (namely to use as the
probability density function for wind speed a mixture of two generalized

Rayleigh distributions) and to investigate the behavior of the parameters
that are involved under various conditions, particularly as a function of
anemometer height above the ground.

ORGANIZATION OF THIS REPORT

The remaining sections of this introduction are devoted to a brief
explanation of details regarding the empirical probability density function
being used including the physical significance of the parameters involved
and several items regarding the behavior of the probability density functions
of the mixture components as functions of these parameters.

Several chapters are devoted to the investigation of the behavior of the
parameters as a function of anemometer height using data from instrumented
towers; in particular at White Sands, NM, Hanford, WA, Cape Kennedy, FL,
Patrick AFB, FL, several nuclear power plant sites, and from locations in
the northwestern states for which wind speed data pertaining to different
anemometer levels has been summarized. A chapter is devoted to the behavior
of the parameters at station anemometer elevation as a function of the
nature of the surrounding terrain, month of the year, and hour of the day.



THE EMPIRICAL FORMULA

The Wall Street Journal occasionally remarks "There is no such thing
as a free lunch." Also, there is no such thing as a simple universal proba-
bility density function for wind speed in the atmosphere. An adequate empirical
formula for the probability density function for wind speed should not only
be simple (or at least as simple as possible to describe the data) but it
should also be strictly compatible with the fact that wind speed is only a
partial aspect of the two-dimensional wind velocity vector and in addition
it should be derivable from bivariate distributions that are approximations
which reasonably reproduce the characteristics of such a bivariate vector
distribution. Some of these requirements are discussed in more detail in
Appendix A and Appendix B. In particular, it is shown in Appendix B that
one must be prepared to accept as a reasonable approximation to the real
world a speed probability density function that can represent a mixture
of two probability density functions each of which is of the simplest type
that can be derived from the simplest possible bivariate probability
density for a wind velocity vector. This probability density function is
of the form

p(w) = kpy(w;oy,wp) + (1-k)p, (w30,,u,) (1)

where p(w) = the probability density function (p.d.f. hereafter) of the
mixture

pl(w;ol,wl) = the generé]ized Rayleigh p.d.f. for the first compo-
nent of the mixture with parameters 9%

p2(w;02,w2) = the generalized Rayleigh p.d.f. for the second compo-
nent of the mixture with parameters 0¥y

G109y = the wind vector component standard deviation of a circularly
normal bivariate p.d.f.

WisWy = the resultant mean wind speed of a circularly normal bivariate
p.d.f.



k = the mixing fraction (k=1 implies that the mixture is entirely from
the component with parameters OpsWys k=0 that it is entirely from the compo-
nent with parameters °2’w2)‘ For a true mixture O<k<1.

The functions on the right of (1) differ only in the values that are
assigned to the parameters and may be written in common form

p(w;o,wR) = (w/oz)exp {-(w2+wR2)/&32} Io(wwR/oz) (2)

where Io(-) is the modified Bessel function of zero order. (Tabulated
extensively; see Abramowitz and Stegun (1964), Jahnke and Emde (1960);
etc.) The infinite series for Io(-) is

L) =1+ w2%700% + )Y (2n? + -+ w2)™ /@) + - (3)
It is readily seen that if wR=O, one has the p.d.f. for the ordinary Rayleigh
distribution

p(w.0,0) = (W/oz)exp{-wz/Zoz} (4)

(Note: The Rayleigh distribution is sometimes written in the
form

) = 5 % e { - HO8

where W is a mean wind speed (see C]iff; 1977). Comparing this with (4)
indicates that W=o”V§7§, which is the mean wind speed resulting from a
bivariate circularly normal p.d.f. for the wind vector with resultant mean
speed (wR) of zero and a standard deviation of o. There is a considerable
difference between the mean wind speed and the resultant mean wind speed (or
mean resultant wind speed). The first is the mean of the individual speeds,
the second is the mean of the resultant vector. For example consider the

three wind vectors with components (1,0), (0,1), (-1,-1). The three wind speed
are 1, 1,V2 [w = (u2+v2)%] so that the mean wind speed is (1+1+1.414)/3 = 1.13



The resultant of the three vectors concerned has components uR=1+0-]=0

and vR—0-1+1—0 and thence the mgag components u=0, V=0 so that the resultant
mean speed is given by wp= (u +V")*=0. The resultant mean speed is a vector
and thence has a direction (except when its value is zero). The expressions
mean resultant speed and resultant mean speed are exactly equivalent. If
one has vectors with components (u 2V ), i=1,---,n, then the resultant
vector hgs components up= :E:u], VR® :E:v so that the mean resultant speed

is Wp= (uR+vR)2/n, the mean vector has conponents u= (:E:u )/n, V :E:v }/n

so that the resultant mean speed is Wp= (u + )2 which is exactly the same

as before.)

The p.d.f. (2) has the property of becoming a "Dirac function." As
for p.d.f.'s generally, f p(w,c wR)dw =1, i.e., the area under the curve
is 1 regardless of the parameter values. If the parameter o approaches
zero this property is preserved. This means that for >0 the "graph" of
the p.d.f. becomes an infinitely tall spike of zero width but with unit
area. This will be called a degenerate case, but will be useful.

The empirical formula (1) for the wind speed p.d.f. contains five
parameters which will be tabulated as the pentad (01’w1’°2’w2’k)‘ Due
to the fact that the p.d.f.'s for the two components of the mixture have
identical functional form there is some redundancy. For exarple, if we
replace k by 1-k and exchange 0¥y with OgsW s the mixture described
is the same as the original. Thus,

(1.43, 0.00, 2.78, 3.14, 33.47) and (2.78, 3.14, 1.43, 0.00, 66.53)

are one and the same mixtures. In the above and throughout this report,
the units for OysW sTps and W, are meters per second. The mixing ratio,
k, may be expressed in percent (0<k<100) or in fraction form (O<k<1).

Usually, but not always, one pair of (o,wR) describes the p.d.f. of the
mixture at low wind speed and while the other pair is predominant at high
wind speed (see illustrations in Appendix C). To simplify the situation



the following convention will be used frequently: the first pair, (ol,wl)
will be used for the component of the mixture that describes the Tow wind

speed range of the p.d.f. and (Oz,wz) for the component effective in des-

cribing the high wind speed range.

CLASSIFICATION OF CASES

It is useful to classify the various special cases that occur for
special values of the parameters ol,wl,o2,w2,k. These are listed in the
order of increasing number of non-zero parameter values. The first five
cases are concerned with the situations in which neither of the two com-
ponents of the mixture is degenerate, i.e., the p.d.f.'s concerned are
either Rayleigh or generalized Rayleigh types. In the remaining cases
one of the p.d.f.'s is degenerate. The degenerate cases are more than a
mathematical curiosity. They apparently occur with reasonable frequency
and represent situations of considerable engineering importance.

When only one component of the mixture is present, then k=0 or k=1.
There are two cases of this kind:

I. (0,0,02,0,0), (01,0,0,0,1) when the p.d.f. corresponds to the
ordinary Rayleigh distribution, and the special case

II. (0,0,02,w2,0), (ol,wl,0,0,l) when the p.d.f. is that of the
generalized Rayleigh distribution.

In other cases 0<k<l. The simplest case is

ITI. (01,0,02,0,k) when two ordinary Rayleigh distributions are
present. And progressively

Iv. (ol,wl,oz,o,k), (01,0,02,w2,k) when one is an ordinary Rayleigh
and the other is a generalized Rayleigh, and finally

V. (cl,wl,cz,wz,k) when both are generalized Rayleigh distribution.



The remaining cases are all degenerate in that one component of the
mixture reduces to an infinite spike of weight k at W, or weight 1-k at W,
in the p.d.f. (or a jump of height k at wy or of height 1-k at w, in the
distribution function (D.F.)).

When the regular component is an ordinary Rayleigh distribution the
cases are

VI' (0,0,02’0’k)’ (Ol’o’o’o’k)’ (0’w1’02’0’k)’ (olio’o’wz’k)

and when the regular component is a generalized Rayleigh distribution the
cases are

VII. (0,0,02,w2,k), (ol,w],0,0,k), (0,w1,02,w2,k), (°1’w1’0’w2’k)

The impractical degenerate cases consist entirely of spikes; one of weight
k at w; and one of weight (1-k) at w, in the p.d.f. (jump of height k at Wy
and one of height (1-k) at W, in the D.F.)

viri.  (0,0,0,0,k), (0,w;,0,0,k), (0,0,0,w,,k), (0,w;,0,w,,k).
1 2 1 2

The number of occurrences for the pentad (cl,wl,oz,wz,k) classified
as in the preceding paragraphs have been extracted from the various tables
that follow and are tabulated in Table 0. The columns are headed I through
VII, which correspond to the preceding cases, and one of the pentads con-
cerned is shown. These are three types of records concerned which charac-
terize the frequency function for scalar wind speed from which the parameters
of the empirical formula were derived,; annually, monthly, and hourly. The
fourth row gives the total of these three. The top half is simply a numbers
count while the bottom half gives the occurrence of the cases in percent.
(The data for White Sands Missile Range Tower has been omitted since it is
a very special situation. If included it would add 108 cases to the monthly
record type, all in case VI.)



Type of
Record

Annual
Monthly
Hourly
Total

Annual
Monthly
Hourly
Total

TABLE 0.

(0,0,0,,0,0)

w O O w

1.9
0.0
0.0
0.5

N W

1.9
2.7
3.2

FOR THE PENTAD (ol,w
II1 IV v
—— :
—~ Y4 «
S L] N
- N =
o = -
" » [aN ]
N N O
© o .
s S '
o o o
Number of Cases
64 64 18
54 81 67
36 96 59
154 241 144
Percent of Cases
39.8 39.8 11.2
24.1 36.2 29.9
16.5 44.0 27.1
25.5 40.0 23.9

2.7

1’ 02’w2’

k)

3.7
4.0
0.5
2.7

FREQUENCY OF OCCURRENCE OF THE CASES

VII

(O:Osozswzsk)

w

29

1.9
3.1
8.7
4.8

Total

161
224
218
603



The largest fraction of occurrences from annual data are in cases III
and IV with only 11.2% in case V. As the scalar wind speed record becomes
more specialized (monthly. and hourly) the largest fraction of occurrences
shifts from cases III and IV to IV and V. In fact, the fraction of occur-
rences in case III decreases steadily, the more detailed the scalar wind
speed record.

The "pure" cases of the ordinary Rayleigh (case I) or the generalized
Rayleigh (case II) combined only account for almost 3% of the occurrences,
thus emphasizing the importance of considering the p.d.f. for scalar wind
speed as a mixture.

The frequency of occurrence of the degenerate cases VI and VII is in

the range from 5% to 10%. These could have been eliminated and classified
under cases III and IV respectively with small values of oqe On the other

hand, the scalar wind speed frequency function data analyzed in this report

is largely from meteorological towers where cases VI and VII are not expected.
These cases occur frequently in the surface wind records over the southeastern
states, especially during the early morning hours of the summer months.

DATA REDUCTION AND THE EMPIRICAL FORMULA

Adequate interpretation of the parameters Ol’wl’OZ’WZ’k in physical
terms requires some insight into the details of the data reduction tech-
nique, the behavior of the empirical formula under certain conditions, and
the interaction of the two.

The parameters were obtained by a least squares fit of the distribu-
tion function to the wind speed frequency table data. If (P(w) is the
distribution function corresponding to the probability density function p{w),
then P(w) = fgp(x)dx and it represents the probability that the wind speed
is less than or at most equal to the speed indicated by the argument w.

In terms of the distribution functions (1) becomes



P(w) = kpl(W;ol'wl) + (]'k)Pz(W;OZawz) (5)

where Pl(w;ol,wl) and Pz(w;oz,wz) are distribution functions corresponding
to the probability density functions p](w;ol,wl) and pz(w;oz,wz) of (1).

First, one needs to consider the behavior of the least squares
technique for determining the parameters. In geometrical terms, the least
squares technique may be thought of as finding the bottom of the deepest
depression in an m-dimensional hyper-surface. In the case at hand, m=5.
The first step in this process is to make a rough guess as to where this is
(i.e., estimate roughly the parameter values); and then to adjust these
estimates until there is little or no reduction in the sum of the squares
of the errors. This is straight forward enough if there is only one such
minimum. It is, however, characteristic of multidimensional least squares
problems of this kind that there are several relative minima; i.e., the
surface displays an assembly of pot-holes not all of the same depth. To
handle this kind of situation it is necessary to make several initial
estimates of the parameter values and determine the minimum to which each
may lead. If all initial estimates lead to the same minimum the situation
is simple. If they lead to two or more distinct minima one must be pre-
pared to make a selection. If of these several one is by far the deepest
(smallest sum of squares of the errors) the choice is obvious. On the other
hand, it frequently occurs that there are two (or more) minima for which
the sum of the squares of the errors are not significantly different from
each other. In this case the situation is ambiguous and the choice may
depend on other considerations such as the simplicity of the parameter set
obtained and on its physical interpretation.

Second, the empirical formula being used has some characteristics
that must be considered and which are used in the location of the minimum,
particularly to introduce zero values for some parameters (which greatly
facilitates physical interpretation) and to introduce certain degenerate
cases. Two characteristics of this kind are: (a) the fact that for small
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values of wp (compared with the associated o) the p.d.f. changes very
little from that of wp=0 (see Appendix B for details) and (b) the fact
that when o>0 (regardless of the associated Wp though most frequently
occurring at wR=0) one gets "spike formation" in the p.d.f., a degenerate
case (see also Appendix B). The procedure for estimating the parameters
incorporates these items. Thus, a step is provided which permits immediate
recognition of a case for which the parameters (0,0,02,w2,k), O<k<1l, is a
possibility and the minimization and corresponding root mean square errors
(RMSE) are computed accordingly. For the general case, (Ol’wl’OZ’WZ’k)’
all of the initial parameter estimates are usually non-zero. After conver-
gence to the minimum it is possible that Wy Or W, may have converged to
zero in which case nothing further is required. When Wy or w, converge to
non-zero values these are tested against the corresponding values of gq or
02. If w1$0j or W,<0, the values w1=0 or w2=0 are inserted and further
iterations are performed to adjust the remaining parameters and compute
the new minimum mean square error. Thus, if the iteration procedure

leads to (Oi’wl’OZ’WZ’k) and Wi<0gs then w1=0 and further iterations

find new values of the non-zero parameters in (01,0,02,w2,k) and a new
RMSE. If W,<0, at this stage, then w2=0 and further iterations are used
to adjust the non-zero parameters in (01,0,02,0,k) and a new RMSE. When

a zero is introduced in this way for Wy oorw, it is usually found that

the adjustments of the non-zero parameters are quite small (or zero) and
the increase in the RMSE is also small (or zero).

Third, it will be noted that the data tables occasionally exhibit
RMSE values that are 0 or which are very close to 0. These are not to
be interpreted to mean that the model being used is unusually well chosen.
The computation procedure assumes that there are more data points than
there are parameters to be determined, i.e., that the scalar wind speed
frequency table contains more than 5 speed class intervals. If the func-
tion being fitted is reasonably well behaved and contains the same number
of parameters as data points an exact solution is theoretically possible
and the RMSE would be zero. The frequency tables for scalar wind speed
contain a wide variety of speed class intervals, the number usually

1



increasing with the height of the anemometer level, and the class
intervals being uniform with height. For summer data it frequently
happens that at the lowest levels there are barely a sufficient number

of class intervals to provide a solution. Thus, unusually small or

zero RMSE values should be interpreted as a sign of insufficient input
data rather than in terms of an unusually appropriate model. (As a
matter of fact, the computation technique used involves a variable augmen-
tation of the diagonal elements of the coefficient matrix which prevents
it from becoming singular so that it will produce a solution even when
there are fewer data points than parameters.)

IDENTIFICATION OF COMPONENTS OF THE MIXTURE

In the discussions that follow the idea of a reasonably identifiable
component of the mixture defined by the parameters of the empirical formula
for the p.d.f. for scalar wind speed is used.

One way of identifying the mixture components is through the value of
the mixing parameter, k. Throughout, the pentad (cl,wl,oz,wz,k) is always
arranged so that the parameters 0¥y refer to the mixture component that
occurs with frequency k and OpsWy refers to the mixture component that
occurs with frequency 1-k. If k<0.5 then the mixture component with para-
meters o,,w, may be called the minor or recessive component while that with
parameters TysWy could be called the major or dominant component. If
0.5<k the situation is reversed. This is an adequate identification termi-
nology if one is dealing with only one such pentad.

We will have occasion to deal with sequences of such pentads in con-
nection with the annual or diurnal variation of the p.d.f. of scalar wind
speed and particularly in connection with the scaling of parameters as
a function of the anemometer height. In these connections the idea of the
major or minor mixture component is useful but inadequate to completely
describe the situation. A1l of these situations involve a sequence of
parameter pentads of such nature that at least some of the parameters
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change progressively from one member of the sequence to the next. We
will say that a component of the mixture is reasonably identifiable if
such a progressive change in one or more parameters is clearly recog-
nizable. The idea involves degree of identifiability. It is best
described by some examples.

The sequence of pentads relating to the p.d.f. for scalar wind speed
on the tower at the Montaque, MA, nuclear power plant site (Table 23) is

Height o Wy g, W, k(%)
10 0.87 0.00 2.13 0.00 72.14
46 1.15 0.00 2.88 0.00 18.33
99 1.22 0.00 3.75 0.00 16.30

151 1.63 0.00 4,27 0.00 9.99

Both the components with parameters 0qsWg and Oy sW, are already identifiable
in that they show a clear progression of parameter values as a function of
height. At the 10m height, the pair (ol,wl) is the major component while
(oz,wz) is minor, but at all other levels the reverse is the case. If

one were to change the k at 10m to 27.86 and interchange (01’"1) and (oz,wz)
at that level the sequence for % would be 2.13, 1.15, 1.22, 1.63 and

for 9% 0.87, 2.88, 3.75, 4.27 and one could maintain that the 10m mixture
components were incorrectly identified since the sequence of values is

not as regular as in the tabulated order.

A more complex situation is illustrated by the diurnal variation
of the parameters at the Washington National Airport during January (Table 33)

13



Hour 0y Wy gy W, k(%)

00 0.00 0.00 3.1 0.00 11.31
03 0.76 0.00 3.74 0.00 10.85
06 1.19 0.00 3.92 0.00 20.36
09 0.53 10.95 2.62 3.31 9.74
12 3.64 0.00 2.88 5.74 32.88
15 0.00 0.00 2.77 5.02 1.89
18 0.00 0.00 2.93 3.43 2.95
21 0.00 0.00 3.74 0.00 4,55

The values of k indicate that (°2’w2) represent the parameters of the major
mixture component. This mixture component is also well identified even
though it displays a change of structure during the daytime hours. The
minor mixture component is only fairly well identified. From 15 hours
through 00 hours it is a “"spike" at zero speed which occurs with increasing,
but small, frequency with time. At 03 and 06 hours the "spike" broadens
into a peak of finite width and eventually amounts for 20.36% of occurrences.
At 09 hrs. the minor mixture component changes character completely from a
Tow speed peak to a narrow high speed peak that accounts for a small frac-
tion of occurrences. At 12 hrs. the minor mixture component has returned
to a low speed peak, but much broader and of higher most probable speed
than at any other hour. The case at 09 hrs. does not belong to the same
minor mixture component represented by the other hours and there is some
doubt about the case at 12 hrs. One would not consider the minor mixture
component well identified.

14



WHITE SANDS MISSILE RANGE, NM

The fundamental data on the distribution function of scalar wind speed
at the White Sands Missile Range, NM, (WSMR) is taken from Hansen and Neil
(1964). The observations were made during a two year period from 14 April 1958
to 29 April 1960 for five days per week in alternate weeks. Data consisted
of ten-minute means observed at eight three-hour intervals throughout the
day. The summaries are by month so that each monthly summary consists of
from 152 to 247 observations (except for December for which only 48 obser-
vations are recorded at each level). The instrument heights above ground
level are at 4.6, 11.9, 19.3, 26.6, 33.9, 41.2, 48.5 55.8, and 62.0 m.

The form of the summaries is one not commonly used, namely the wind speed
that was not exceeded by a specified fraction of the observations.

Figure 1 illustrates the data from Hansen and Neil (1964) for the
month of April. The ordinate is scalar wind speed (m/sec); the abscissd
is a probability scale derived from the ordinary Rayleigh distribution
function (see Appendix D). If one applies a straight-edge through (0,0)
to these curves, it is evident that they are all approximately asymptotic
to a line so-drawn, i.e., the data points lie approximately on hyperbolas
in standard position. As pointed out in Appendix D, this would imply that
the parameter pentad (0,0,02,o,k) is an appropriate representation for the
data at each level. The data for the other months is remarkably like that
for April. Consequently, this parameter pentad was used for each month and
each level.

The computed values of Oy and k for each month and level are tabulated
in Tables 1 and 2. Figure 2 shows the annual variation of o, at the various
levels (same data as appears in Table 1). The zig-zag behavior of the data
points from month to month is assumed to be due to the small data sample.
This is confirmed by the December data which differs considerably from that
for November and January and for which the sample size was only 48 compared
to 152 for each of the adjacent months.
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Figure 1. Probability of Wind Speed Less Than the Value
Show at Levels on the WSMR Tower During April
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L

Month

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
ocT
NOV
DEC

2.07
2.91
3.47
2.50

2.13

2.61
2.03
2.50
1.56
2.00
2.09
1.28

TABLE 1. VALUES OF 9, FOR EACH MONTH AND LEVEL AT WSMR

11.9

2.66
3.67
4.39
3.13
2.95
2.96
2.13
2.75
2.10
2.52
2.60
1.86

19.3

2.91
4.09
4.77
3.54
3.25

3.30

2.47
2.92
2.34
2.75
3.12
2.25

Height (m)
26.6 33.9
3.17 3.33
4.37 4,65
5.16 5.42
3.72 3.92
3.52 3.72
3.50 3.72
2.66 2.92
3.13 3.23
2.59 2.71
2.89 3.03
3.15 3.39
2.42 2,52

41.2

3.37
4.65
5.44
3.94
3.78
3.94
2.96
3.27
2.83
3.09
3.46
2.61

48.5

3.53
4.86
5.62
4.12
3.88
3.88
3.08
3.40
2.98
3.25
3.67
2.63

55.8

3.68
4.93
5.86
4.29
4.04
4.02
3.15
3.47
3.05
3.33
3.83
2.67

62.0

3.77
4.98
5.83
4.29
4.17
4.15
3.27
3.49
3.12
3.42
3.89
2.68
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TABLE 2. VALUES OF k FOR EACH MONTH AND LEVEL AT WSMR

Height (m)

Honth 4.6 11.9 19.3 26.6 33.2 48.2 48.5 55.8 62.0
JAN 0.3735 0.3001 0.3220 0.3180 0.3091 0.2967 0.2818 0.2904 0.3008
FEB 0.1706 0.1598 0.1552 0.1590 0.1568 0.1590 0.1573 0.1568 0.1534
MAR 0.1504 0.1361 0.1241 0.1275 0.1256 0.1231 0.1254 0.1251 0.1108
APR 0.1423 0.1106 0.1034 0.1002 0.0991 0.1005 0.1041 0.1018 0.1110
MAY 0.1610 0.1438 0.1336 0.1348 0.1282 0.1274 0.1287 0.1197 0.1032
JUN 0.1385 0.1059 0.0926 0.0917 0.0790 0.0891 0.0878 0.0830 0.0867
JUL (0.1181) 0.0934 0.0786 0.0881 0.0873 0.1059 0.0966 0.0902 0.0947
AUG 0.1416 0.1422 0.1432 0.1363 0.1380 0.1396 0.1476 0.1464 0.1448
SEP 0.1625 0.1259 0.1171 0.1147 0.1046 0.1217 0.1168 0.1286 0.1202
ocT 0.2765 0.1424 0.1422 0.1404 0.1393 0.1379 0.1382 0.1435 0.1423
NOV 0.3043 0.1680 0.2361 0.1698 0.1632 0.1621 0.1623 0.1608 0.1630

DEC 0.3339 0.3798 0.3105 0.2665 0.2985 0.2632 0.2605 0.2473 0.2470
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Figure 2. Values of 0, at WSMR Tower Levels as a Function of Month.
The Value 9%, (at z=10m) from the Scaling Formula is also

Shown.
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The values of o, were approximately by a scaling formula o=o-o(z/10)b
where o is the value at z=10m and b is the scaling exponent. (The values
of % and b were determined by a least squares fit to the logarithm of the
scaling formula log o=(log oo)+b log (z/10) which is linear in the para-
meters log % and b.) The results are tabulated in Table 3. Values of 9%,
are shown in Figure 2. The monthly values of the scaling exponent, b, are
shown in Figure 3 together with a curve for smoothed values and a horizontal
line representing the average value of 0.214. Though the smoothed values
seem to indicate annual and semi-annual oscillations, the violent zig-

zags from May to October cast considerable doubt on its reality.

The values of the parameter k (the fraction of calms) from Table 2
for the months of September through March are shown in Figure 4 as a
function of altitude. The outstanding features illustrated are (1) the
fact that the variations of k with altitude are generally small and (2)
the fact that k has a definite maximum in December and January (October
and November have large k values at the 4.5m level). The curves for the
months of April through August are not shown. Inspection of Table 2
indicates that they all lie rather uniformly clustered about the value
k=0.1 (10%). There seems to be tendency for k to decrease slightly with
increasing altitude. The general behavior of k as a function of altitude
would indicate that a scaling relation similar to that used for 0 is not
appropriate.

The annual variation of the parameter 9, (at z=10m) derived from the
scaling formula is shown in Figure 5 together with corresponding smoothed
values. The points of the zig-zag curve are the same as also shown in
Figure 2 as a special insert. The rather sharp maximum in February, March,
and April is the outstanding feature here. This is to be contrasted with
the fact that, as shown in Figure 4, the fraction of calms (indicated by
the parameter k) reached a pronounced maximum in the months just preceding

(December and January). One may summarize the situation as follows: (a)
Fall and early winter characterized by high frequency of calms and Tow wind

speeds; (b) late winter and early spring by infrequent calms and high wind
speeds; (c) late spring and summer by infrequent calms and low wind speeds.
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TABLE 3. THE PARAMETER % AT 10m AND THE SCALING EXPONENT, b,
AND ITS STANDARD DEVIATION,CTb, FROM VALUES OF %,
COMPUTED AT LEVELS FROM 4.6 TO 62.0m (TABLE 1) AT WSMR

Month O (10m) b o

b
JAN 2.51 0.224 0.006
FEB 3.50 0.207 0.009
MAR 4.15 0.199 0.009
APR 3.00 0.206 0.008
MAY 2.70 0.245 0.013
JUN 2.97 0.178 0.014
JUL 2.23 0.199 0.018
AUG 2,73 0.134 0.006
SEP 1.96 0.261 0.008
oCT 2.38 0.198 0.006
NOV 2.35 0.237 0.010
DEC 1.73 0.281 0.026

2
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Figure 3.

Month

The Annual Variation of the Scaling Exponent, b,
Evaluated at Levels from 4.6 to 62.0m on the WSMR

Tower. Smoothed Values and the Mean Value are also

Shown.
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Figure 4. The Variation of the Parameter k as a Function of Altitude
by Months from September Through March at the WSMR Tower

23



% (mps)

5.0 ~

4.0

3.0 A

2.0 -

1.0 1 T | T I T T | | 1 I | |

Figure 5. The Annual Variation of % at 10m Evaluated at
Levels from 4.6 to 62.0m on the WSMR Tower
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HANFORD METEOROLOGICAL STATION

The data used to compute the parameters of the empirical wind speed
p.d.f. for the Hanford Tower were extracted from the scalar wind speed fre-
quency function tables published in Stone, Jenne, and Thorp (1972). These
data are by far the most satisfactory used in that they cover a period of
15 years. Unfortunately, only three levels are summarized, 15, 60, and 121m.

The parametric representation of the p.d.f. for scalar wind speed at the
WSMR Tower was exceptionally simple. The pentad required to represent the
data from the Hanford Tower requires three and occasionally four parameters
on a monthly basis and occasionally all five when considered on an hourly
basis within months.

THE ANNUAL VARIATION

The basic pentads by month and level are tabulated in Table 4.

The columns headed Month and Level need no particular comment. The
columns headed Oys Wy and Tos Wy refer to the parameters of the assumed
mixture of circularly normal wind component bivariate distributions from
which the scalar wind speed frequency function might have been derived.
oy and o, are the vector wind component standard deviations and Wis W, are
the corresponding mean resultant wind speeds. (See Appendices A and B.)

The value of k is the mixing ratio of these two distributions in the sense
that k is the fraction attributed to the part with parameters o1s W and 1-k
the fraction due to the part described by Tos Woe The column headed RMSE is
the root mean square error of the empirical fit to the observed distribution
function expressed in percent. The units fordl,wl,cz,w2 are meters per
second while k is a pure number.

25



TABLE 4,

Mo.

10

11

12

13

VALUES OF O1sW1s02sWp, AND k FOR THE HANFORD TOWER
FOR EACH MONTH AND LEVEL AND FOR THE YEAR BY LEVELS.

SEE TEXT FOR EXPLANATION OF THE COLUMN HEADINGS.

Lvi.

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121

15
60
121
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1.65

1.90
1.64
1.7

1.13
0.99
1.18

1.26
1.06
1.21

1.57
1.17
1.36

1.59
1.47
1.60

1.21
1.17
1.17

1.17
1.06
1.09

1.00
1.01
0.99

1.37
1.32
1.35

[}
o

G2
3.35

4.24
4.62

3.37
4.37
4.87

4.14
4.80
5.38

4.18
4.91
5.63

3.99
4.7
5.40

4.02
4.95
5.68

4.04
4.91
5.68

3.90
4,62
5.33

3.73
4.46
5.09

3.39
4.31
4.78

4.07*
4,22
4.72

3.31
4,22
4,62

3.71
4.57
5.18

Wo
0.00

k

0.4981
0.3678
0.3889

0.3878
0.2925
0.3188

0.4487
0.2594
0.2595

0.3884
0.2140
0.2236

0.4147
0.2228
0.2380

0.325]
0.2128
0.2326

0.4540
0.2795
0.3011
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0.2936
0.2998

0.4934
0.3028
0.3115

0.4691
0.3521
0.3278
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0.4017
0.4035
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0.4016
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0.2952
0.3042
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Table 4 is so arranged that OosWy refer to the part of the mixture
with the higher wind speeds while 01s¥Wq represents the part due to lower
wind speeds. When Wy or Wy is zero the value of 0, Or oy is that of the
most probable wind speed for that part of the mixture. When Wy is listed
then Oi<w]. This is due to the fact that whenever WiS0 it is found that
an equally satisfactory fit is obtained with w]=0 (and occasionally a
small change in ol). It is the outstanding feature of Table 4 that w2=0
throughout. Also the general case is that the more important part of the
mixture is in the higher wind speed part (i.e., k<0.5 as a general rule,

the exceptions being confined to a few cases at the 15m level).

(The value of 0y for 15m in November is marked by an asterisk. It
is assumed that this is an error, but its source could not be found.)

The data for 0y is shown in Figure 6 as a function of the month.
The reasonab]y smooth annual variation is evident, the maximum being in
spring and early summer, the minimum being in the fall and early winter.

The parameter 0, scales readily as seen from Table 5 where ob(z=10m)
and the exponent b are tabulated (and also the standard deviation of the
estimate of b, ob). The values of g, are plotted as the bottom curve in
Figure 6. It shares the same annual variation as the values of Oy at the
observation levels. Figure 7 shows the annual variation of the scaling
exponent, b. The horizontal line is drawn at the average value of b
(November value omitted) of 0.153. The annual variation of b does not
seem to be significant. The average value of b by month (0.153) and the

value computed for the annual data (0.159) agree reasonably well.

The annual variation of the parameter k, the fraction of cases in the
low speed component of the mixture, is illustrated in Figure 8. In the
first place, note that the value of k at 15m is much larger than at 60 and
121m throughout the year and that the values at 60 and 121lm are very nearly
the same. This is an effect that would influence the scaling of the
average scalar wind speed and which has been removed from the scaling of
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Figure 6. Annual Variation of d, (w2=0 all months) from the
Hanford Tower Data. Lower Curve is for Scaled
Values %, at 10m
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TABLE 5., SCALING PARAMETERS FOR Ops MONTHLY AND
ANNUAL DATA, HANFORD TOWER

Mo. % b S

JAN 3.16 0.156 0.012
FEB 3.13 0.176 0.004
MAR 3.92 0.123 0.014
APR 3.92 0.139 0.020
MAY 3.74 0.141 0.019
JUN 3.74 0.163 0.0N
JuL 3.74 0.163 0.016
AUG 3.65 0.146 0.020
SEP 3.49 0.146 0.015
OCT 3.18 0.166  0.006
NOV 3.9 0.065 0.033
DEC 3.1 0.162 0.012
ALL 3.47 0.159 0.007
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Figure 7. Annual Variation of the Scaling Parameter, b, for the

Parameter Oy at the Hanford Tower.
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Annual Variation of k, the Fraction of Cases in the Low
Speed Mixture Component, Hanford Tower Data



o, discussed above. In the second place, note that the annual variation
of k (Figure 8) is just the opposite of that of Oy (Figure 6). Thus,

the lTow speed mixture component is less frequent when the high speed
mixture component has its highest most probable values. Since 1-k repre-
sents the relative frequency of the high speed mixture component, one
would then say that the high speed mixture component is more frequent
when it has the largest most probable value.

The behavior of k with height appears to be rather uniform throughout
the year. It is, however, a behavior which, on the basis of the data at
only 15, 60, and 121m, does not fit an exponential scaling law. One is
tempted to conjecture that, if more data were available from below 60m, a
scaling law for k might be possible in these lower levels (not necessarily
an exponential one) and melding into a region for which k=constant for
2>z, where z,<60m.

The annual variation of the parameters 9 and Wy for the low speed
mixture component is shown in Figure 9. At all three levels one has
w,=0 except for the summer months. In June, July, and August (except
at 15m (two branches of the curves are shown: the upper for W and the
Tower for oy - If one follows the upper branch (w]) for summer, the
annual variation of the low speed mixture component resembles that of the
high speed mixture component shown in Figure 6. The main distinction lies
in the fact that during the summer months (w]fO) the value of 0y shows a
marked decrease. This indicates that (1) the low speed mixture component
becomes directionally dependent (not necessarily in a simple way) and (2)
the speed p.d.f. for this mixture component has a narrow spike near the
value of w,.

It is evident from Figure 9 (or Table 4) that neither oy or Wy varies
in altitude in such a way as to permit an exponential scaling law. In fact

one would be tempted to simply average the values and consider oy and w;
independent of altitude (an exponential scaling law with b=0).
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[Note: In Figure 9 and in subsequent figures in which Ops¥Wq (or °2’"2)
are plotted together as a function of month or hour, the following conven-
tion has been adopted. When wlfo the minimization computations always result
in w1>01 so there are two "branches" of the curve, one for Wy and one for
01. If the computations lead to w1<01, then they proceed at once to w1=0
since there is only an insignificant difference in the values of gy (and
the remaining parameters). Rather than plot these values of w1=0, the
single value of % is plotted. In the interval between successive points
wl(ti)=0 and wl(ti+])>°1(ti+]) (or wl(ti)>01(ti) and wl(ti+1)=0) the zero
value of w](ti) (or wl(ti+1)) is treated as though w](ti)=°1(ti) (or
w](ti+])=d](ti+])). Thus, the dashed line for w](t) joins the points cl(ti)
and w](ti+]) (or w](ti) and 01(t1+])).]

THE DIURNAL VARIATION, JANUARY

The values of the parameter O1sWps005Wos and k by level and hour of
day at the Hanford Tower during January are listed in Table 6. One sees
immediately that w1=0 and w2=0 at all levels and all hours.

The hourly values of o, at each level are illustrated in Figure 10.
The diurnal variation at all three levels are similar to each other with
some minor differences. A minimum occurs at all Tevels in early morning
(05 to 08 hours) and increases rapidly thereafter toward a mid-day
maximum. At 15 meters the maximum is narrow while at 60m it is widened
on the afternoon side while at 121m it is shifted toward afternoon and
also widened.

It is also evident that 0y is readily scaled. The scaling parameters
by hour are tabulated in Table 7. The scaled value of W, (z=10m) is shown
in Figure 10 and, of course, closely follows the value of Ty at 15m. The
scaling parameter, b, by hour of the day is shown in Figure 11. The
diurnal variation of b is evident, being at a minimum around noon and a
maximum in the late afternoon. This behavior, of course, is induced by
the differences in the diurnal variation of o, at the levels concerned.
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Hr.

N

14

17

20

23

TABLE 6.

Lvl.
15
121
15
121
15
60
121
15
121
15
60
121
15
60
121
15
121
15

121

VALUES OF THE PARAMETERS 01sW1»09,Wp,k AT THE

HANFORD TOWER BY HOUR OF THE DAY AND LEVEL DURING

THE MONTH OF JANUARY. THE HOUR IS LOCAL STANDARD TIME.
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W)
0.00

0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

k

0.5048
0.3084
0.3462

0.5488
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0.3129

0.5345
0.3377
0.3429

0.5361
0.5053
0.5120

0.5431
0.5058
0.5027

0.4370
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0.4488
0.2944
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RMSE
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Figure 10. Diurnal Variation of Oy January, Hanford Tower
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TABLE 7.

SCALING PARAMETERS BY HOUR OF THE DAY FOR o

HANFORD TOWER, JANUARY

02
05
08
11
14
17
20
23

3.01
3.01
2.90
3.57
3.70
2.98
3.14
2.86

0.777
0.140
0.158
0.136
0.127
0.216
0.184
0.203
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0.003
0.003
0.01
0.006
0.010
0.004
0.000
0.008
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Figure 11. Diurnal Variation of the Scaling Exponent,
Hanford Tower, January
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The minimum of b occurs where the value of 0y at 15m is largest and the
maximum occurs as a result of the rapid decrease of 0y at 15m, the less
rapid decrease at 60m, and the slow decrease at 121lm during the afternoon
hours.

The diurnal variation of oy at the three levels is shown in Figure 12.
The diurnal variation at 15m is very small, and at 60 and 121m is only
slightly larger. One is tempted to consider o, as constant throughout the
day and at all levels (scaling exponent of zero).

The diurnal variation of the mixing parameter, k, is shown in Figure 13.
As was the case for the annual variation (Figure 8) the value at 15m is
larger than at 60 or 121m and the values at 60 and 121m are nearly the same.
In this case also one is inclined to conjecture a scaling of some kind which
smoothes into a nearly constant value somewhere below the 60m level.

A good deal of the diurnal variation of the average scalar wind speed
is wound up in the interaction of the variations of k and Ogpe At the 60
and 121m levels the fact that the low speed mixture component is most
important around noon when also the most probable speed (02) of the high
speed mixture component shows a maximum tends to push the occurrence of
the maximum mean wind speed at these levels into the late afternoon hours.
At the 15m level the fact that the value of k is nearly constant from mid-
night to 14 hours allows the realization of Tow mean scalar wind speeds in
early morning but also allows the increase in the high speed mixture compo-
nent from 08 to 14 hours to be realized in the mean scalar wind speed.

THE DIURNAL VARIATION, JULY

The values of parameters 01sW1s0 W05 k by hour of the day and level
at the Hanford Tower during July are shown in Table 8. Since w]=w2=0 for
January (Table 4) and wlfO, w2=0 for July, one would expect some appre-
ciable differences between these months. In fact, the differences turn
out to be much more than is expected.
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TABLE 8.

Hr.
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11

14
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VALUES OF THE PARAMETERS ol’wl’OZ’WZ’k AT THE
HANFORD TOWER BY HOUR OF THE DAY AND LEVEL DURING JULY
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Although from the monthly data (Table 4) one has W,=0 for July, the
hourly data of Table 8 indicates that W, is uniformly zero only during
mid-day. Details of the diurnal variation of 0y and W, are shown in
Figure 14, It is immediately evident that since the curves for these para-
meters do not show a uniform increase in value with increasing height
the scaling formula is only marginally valid. Since the curves for 60m
and 121m are reasonably coincident while that for 15m is somewhat lower,
it might be possible to scale over a range of levels below 60m and with
b~0 above that level. The scaling parameters from the data in Table 8 are
given in Table 9. The hour to hour variations of the scaling exponent, b,
is. so large and irregular that a detailed discussion of diurnal variation
is futile.

The diurnal variation of the parameters o4 and Wy is illustrated in
Figure 15. To avoid confusion, these are plotted in separate strips for
each level. When put in a single diagram the curves overlap. Obviously,
no form of scaling is possible. A diurnal change from lower values in the
morning and higher values in the afternoon is evident. The maximum also
shifts to later times in the evening as the altitude increases while the
minimum shifts to later times in the morning.

The diurnal variation of the mixing fraction, 'k, is shown in Figure 16.
This differs from the annual variation (Figure 8) and the diurnal variation
in January (Figure 13) in that the values at all three levels are inter-
twined. Thus, k is essentially independent of elevation. The diurnal
variation in July is quite different from that of January, especially at
the upper levels. The abrupt morning rise is common to both (but 3 hours
earlier in July since it is expected to occur on "sun time" rather than
standard time). Instead of a rapid decrease after the maximum, the July
curves fall off rather linearly to the morning minimum. The range of
values of k is also much larger in July than in January (10% to 70% rather
than 30% to 60%). As a consequence, the diurnal variation of the mean wind
speed in July is essentially the shift (indicated by the variation of k)
from emphasis on the low speed to the high speed mixture component. It
is also coupled with the fact that when the Tow speed mixture component
dominates the speed of this mixture component is also low and when the

high speed mixture component dominates its speed is also high.
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TABLE 9.

FOR oz,w

2
%2
b 9

0.122 0.028
0.098 0.027
0.099 0.024
0.140 0.066
0.058 0.013
0.432 0.141
0.060 0.001
0.297 0.053

2.76

1.92

7.54
6.50

5.98
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SCALING PARAMETERS BY HOUR OF THE DAY
HANFORD TOWER, JULY
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CAPE KENNEDY TOMER

The frequency function tables from which the parameters of the empir-
ical distribution function were computed are contained in Anon., 1971. The
data covers the year 1968 and are 10 minute mean values obtained every 10
minutes throughout the day. There were actually two towers, one of 150m
and another of 18m located 18m from the taller tower. The values hereafter
tabulated at heights designated as 3, 10, and -18m pertain to the shorter
tower; all others to the 150m tower.

The values of the parameters 01sW1s0,,W, and k for each level for all
months combined are tabulated in Table 10 and for each level by individual
months in Table 11.

A comparison of the parameter values 0, and w, at the 18m level is
shown in Figure 17. The values of o, seem to agree fairly well except for
May and January. The values of W, do not agree as well. Values of JE
Wis and k do not agree well.

The annual variation of 0y and W, at the 60m and 120m levels are shown
in Figure 18. It will be noted that (in Figure 17) the annual variation of
O, and w, is quite small (if present at all). On the other hand at both
60m and 120m both Oy and W, show some annual variation (summer minimum,

winter maximum).

The values of the scaling parameters for % and W, at the Cape Kennedy
Tower are given in Table 12. The values obtained for the annual data are
indicated by ANN-A and ANN-B on the bottom line of the table. Two sets of
scaling parameters were used to reflect the two different “models" appearing
in Table 10; the one consisting of levels marked # for which w2=0 and the
other of levels marked * for which w2#0. In the case A for 0y and B for
Wy the scaling appears to be rather reasonable. In case A for W, scaling
is not appropriate unless b=0 is considered an acceptable parameter value.
For case B for o, the parameter value, b, is too large and its error, Oy s
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TABLE 10. VALUES OF PARAMETERS G)sW1s0ssWys AND k
BY ELEVATION AT CAPE KENNEDY TOWER,
ANNUAL DATA

Ht. % Wy 9y W, k RMSE
3 0.00 0.00 2.694 0.00 0.1275 0.08
10 0.49 2.49 3.09# 0.00 0.1370 0.13
-18 1.00 2.95 3.36# 0.00 0.2721 0.05
18 0.40 4,21 3.51# 0.00 0.1890 0.16
30 2.80 5.15 1.66* 3.87 0.3961 0.08
60 1.60 4.83 3.34* 4.83 0.3690 0.15
90 0.42 4.61 3.44* 5,11 0.1158 0.19
120 0.42 4.54 3.52* 5,38 0.0836 0.08
150 2.27 3.86 3.03 8.04 0.5268 0.23
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TABLE 11. VALUES OF PARAMETERS O1sW1s00sWos AND k BY
ELEVATION AND MONTH AT CAPE KENNEDY TOWER

Ht. o) W o, W, k RMSE
JANUARY
3 0.79 5.83 1.82  0.00  0.2184  0.01
10 -- -- -- - -- --
-18 0.43 7.91  2.31* 2.38  0.0804 0.02
18 1.67 6.25 1.12* 2.95  0.4145  0.00
30 1.27 8.04 1.52% 4,05  0.2647 0.00
60 1.78  8.52  1.42* 4.03  0.5613 0.05
90 0.99 3.54  2.55% 7.29  0.2573 0.09
120 0.00  0.00 3.32* 6.49  0.0271 0.75
150 1.87 0.00 2.73* 7.46  0.1765 0.33
FEBRUARY
3 1.51 6.19 2.08 0.00 0.1936 0.02
10 -- -- -- -- -- --
-18 2.05 7.12  1.41%  2.79  0.2892 0.01
18 1.63 8.45 1.61* 3.59  0.1352  0.19
30 1.70  10.91 1.68* 5.16  0.0956 0.87
60 1.82  14.02 2.35%* 5.50  0.0490  0.30
90 7.50 0.00 2.59* 6.84  0.2416 0.57
120 1.74 17.42  3.31* 6.43  0.0103  0.43
150 1.88 10.43 5.81  0.00  0.0700 0.33
MARCH
3 0.00 0.00 1.94* 3.8  0.2146  0.09
10 -- -- -- -- -- --
-18 1.16 8.12 1.84* 3.26 0.1277 0.00
18 1.95 6.06 1.17* 3.00 0.5728  0.02
30 2.52 7.00 1.81* 4.47  0.2828  0.14
60 5.33 0.00 1.36* 6.47 0.5026  0.63
90 0.00 0.00 4.21* 6.50  0.0000 1.52
120 2.26 0.00  3.43* 6.59  0.0165  0.80
150 2.98 9.71 4.12 0.00 0.4865  0.36
APRIL
3 1.03 6.25 2.28  0.00. 0.1259 0.00
10 0.53 8.25 1.73* 2.67 0.0464  0.00
-18 2.13 5.00 1.41* 2.60  0.4014  0.00
18 1.75 6.46  1.37* 3.27  0.2976  0.03
30 0.74 9.59  1.90* 4.45  0.0340  0.04
60 0.00 0.00 2.35* 5.43  0.0000  0.51
90 0.00 0.00 2.60* 5.90  0.0000  0.69
120 0.00 0.00 2.98% 6.00 0.0000  0.84
150 3.83 0.00  2.83* 6.55  0.3953 0.69
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TABLE 11

(continued)

Ht. 01 Wy 02 W, k RMSE

MAY
3 0.00 0.00 1.62* 3,73 0.2745 0.04
10 0.00 0.00 2.78*  2.46 0.0000 0.53
~-18 0.00 0.00 3.19 0.00 0.0000 0.97
18 2.13 4.85 1.95*% 3,57 0.43855 0.02
30 1.83 7.22 1.61* 4,09 0.2154 0.02
60 0.36 10.31 1.95* 4,99 0.0775 0.24
g0 0.00 0.00 2.61* 5,74 0.0054 0.36
120 0.00 0.00 2.93* 5,47 0.0000 0.48
150 0.00 0.00 3.10*  5.4] 0.0239 0.43

JUNE
3 1.73 11.29 2.47 0.00 0.0267 0.46
10 5.50 0.00 1.73* 2.73 0.1338 0.23
~18 6.42 0.00 1.76* 2,55 0.1609 0.42
18 5.64 0.00 1.39* 3.52 0.2803 0.59
30 6.41 0.00 1.45% 3.96 0.2359 0.91
60 7.34 0.00 1.53* 4.80 0.2281 0.54
90 7.69 0.00 1.70 4,78 0.2761 0.63
120 7.62 0.00 1.50% 5,22 0.3655 1.08
150 7.84 0.00 1.98* 4,81 0.3226 0.88

JULY
3 0.00 0.00 1.36 2,87 0.3313 0.00
10 0.00 0.00 1.33* 3.42 0.3202 0.04
-18 0.00 0.00 1.38% 3.66 0.2154 0.03
18 0.00 0.00 1.44* 3,61 0.1981 0.12
30 0.00 0.00 1.80* 3,37 0.0631 0.24
60 0.00 0.00 1.61*  4.46 0.1636 0.16
90 0.00 0.00 1.94* 4,44 0.1056 0.12
120 0.00 0.00 2.21*  4.33 0.0485 0.13
150 0.00 0.00 2.46* 3.71 0.0000 1.22

AUGUST

3 0.00 0.00 1.34 2.79 0.3134 0.00
10 0.00 0.00 1.05*% 3,80 0.4162 0.00
-18 2.72 0.00 1.38* 3.26 0.5236 0.05
18 0.83 0.00 1.52 3.27 0.0444 0.02
30 0.16 0.22 1.59* 3.63 0.0214 0.25
60 0.40 8.51 1.55% 4,28 0.0197 0.00
90 0.35 5.99 1.63* 4,16 0.1387 0.04
120 0.88 4,06 2.29* 4.62 0.1951 0.26
150 1.70 8.41 1.77* 4.24 0.0673 0.03
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TABLE 11

(continued)

Ht. 01 Wy 9, W, k RMSE

SEPTEMBER
3 0.00 0.00 0.95* 3.80 0.3654 0.00
10 0.00 0.00 2.24* 3,35 0.0161 0.35
-18 0.00 0.00 2.15* 2.91 0.0154 0.26
18 0.00 0.00 2.04* 3,23 0.0000 0.28
30 0.00 0.00 2.06* 3.74 0.0000 0.84
60 0.94 8.77 1.90* 4,36 0.0826 0.04
90 0.36 10.31 2.17% 4,42 0.1114 0.70
120 0.38 4.71 3.82* 3,22 0.1835 0.39
150 0.00 0.00 3.24* 4,90 0.0000 1.62

OCTOBER
3 0.00 0.00 2.94 0.00 0.0000 0.73
10 0.00 0.00 3.43 0.00 0.0000 1.73
-18 2.57 5.00 1.26* 2.83 0.6625 0.04
18 1.63 7.59 1.52* 3.58 0.2885 0.02
30 1.56 8.49 1.75* 4.18 0.2302 0.10
60 0.46 4.38 3.25* 5,99 0.1226 0.17
90 1.39 3.79 3.22* 7.19 0.1939 0.51
120 1.93 4,51 3.21* 8.14 0.3208 0.70
150 0.00 0.00 4.11* 5,78 0.0000 0.54

NOVEMBER
3 1.74 4,42 1.61 0.00 0.2559 0.00
10 1.72 4.78 0.95* 2.29 0.3826 0.03
-18 1.36 7.30 1.84* 2.78 0.0871 0.00
18 0.55 2.64 2.11* 4.15 0.3665 0.11
30 1.66 7.77 1.79* 3.93 0.1326 0.02
60 1.32 4.94 3.53* 4.7 0.2869 0.17
90 1.44 9.76 2.16* 4,74 0.2464 0.68
120 0.00 0.00 3.46* 5.19 0.0000 1.07
150 2.56 9.75 2.07* 4.33 0.3964 0.57

DECEMBER
3 1.08 5.70 1.89 0.00 0.1706 0.00
10 0.20 7.64 2.98 0.00 0.0297 0.98
-18 1.07 7.77 1.55*% 3.35 0.1695 0.00
18 1.58 5.79 1.05* 2.97 0.3445 0.01
30 1.59 7.31 1.47* 3.87 0.2896 0.03
60 3.48 0.00 2.64* 5,76 0.2136 0.29
90 2.49 7.49 4,07 0.00 0.3545 0.90
120 0.00 0.00 3.77* 6.21 0.0000 1.39
150 2.06 9.40 5.19 0.00 0.38
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TABLE 12.

CAPE KENNEDY TOWER

0.309
0.393
0.179
0.279
0.120
0.026
0.148
0.124
0.224
0.502
0.286
0.590
0.136
0.565

SCALING PARAMETERS FOR O AND Wos

0.148
0.042
0.145
0.051
0.064
0.047
0.029
0.047
0.066
0.062
0.121
0.109
0.018
0.172

36

2.06
2.73
3.73
2.59
3.50
2.74
3.35
3.33
3.47
2.66
2.78
2.56

3.04

W2

b
0.484
0.389
0.203
0.361
0.168
0.249
0.094
0.110
0.061
0.393
0.234
0.386

0.237

0.074
0.088
0.081
0.044
0.054
0.047
0.025
0.019
0.046
0.083
0.066
0.058

0.032



is also large. This is due to the value 02=1.66 at 30m in Table 10. The
situation at this level illustrates one of the ambiguities in the interpre-
tation of the parameters of the d.f.; there is no difference in the fit of
the empirical formula to the data between the pentad (2.80, 5.15, 1.66,
3.87, 0.3961) and the pentad (1.66, 3.87, 2.80, 5.15, 0.6039). That is,

we may exchange the parameter pairs 01s¥q and OpsWy provided that at

the same time we replace k by 1-k, this convention guaranteeing that the

k shown is the mixing fraction referring to the first mentioned pair.

(Also we have generally tabulated values of k less than 0.5 so that the
first parameter pair occurs less frequently in the mixture than the second,
but this is not absolutely necessary, the previous convention is.) As
tabulated, w2=3.87, k=0.3961 fit into the trend of other values rather
well while 01=2.80, w1=5.15 are not very satisfactory and 02=1.66 is
definitely out of line. On the other hand the alternate choice does not
improve the situation; a 02=2.80 is better than 1.66 but not satisfactory,
w2=5.15 is far worse than 3.87, k=0.6039 is worse than the original value,
01=].66 is an improvement over 2.80 and w1=3.87 seems no better or worse
than 5.15. In other words the exploitation of this ambiguity in the para-
meters leaves the situation as unsatisfactory as it was originally.

In the computation of the scaling parameters it is important that only
those levels be used where the p.d.f. model indicates a common parameter
usage. As pointed out above, this resulted in two different sets of scaling
parameters for the annual data at Cape Kennedy. The common model cases for
the computation of scaling parameters are indicated in the monthly data of
Table 11 by the asterisks following the value of Tye Inspection of these
columns indicates that all rows are marked for which w2f0. In other words,
there were only isolated cases of w2=0 or occasionally two adjacent levels
so that scaling parameters for these monthly cases could not be reasonably
computed.

The annual variation of the scaling parameters b and Y, for the d.f.
parameters o, and W, is shown in Figure 19 and 20 respectively. The scaling
parameter, b, Figure 19, shows a strong annual variation in both cases with
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a pronounced minimum in summer and maximum in winter. The scaling para-
meter, W Figure 20, shows only a slight annual variation but in the
opposite phase, maximum in summer and minimum in the winter. Throughout,
the reference level in the scaling formula has been taken as 10m (o2 or
wzaswo(z/zo)b, zo=10). The combined annual variation of W, and b for both
P and Wos then indicates summer maximum of OosWy at low levels, a cross-
over level where there is little or no annual variation, and summer minima
of GosWy at the higher levels. This is, of course, brought about by the
large annual variation of b which roughly measures the rate of increase of
the parameter being scaled with height (strictly the logarithm of the para-
meter vs the logarithm of height).

It is not without interest to note that b (for 02) and b (for wé)
are somewhat out of phase, b (for 02) being less than b (for w2) from
January through June with the reverse from July through December (nearly the
same in February), and the minimum in b (for 02) occurring in June while
that for b (for wz) occurs in August or September. This accounts for the
somewhat out of phase variation of 9, and W, (at both 60 and 120m) shown
in Figure 18,

The curves for W, (for wz) and W, (for 02) in Figure 20 are well
separated, W,>0, throughout. This is, of course, expected since in the
data reduction procedure we have generally taken Wo=0 if it is found that
W,<0,, ji.e., the error in using w2=0 and a slightly adjusted 0, is seldom
larger than that for using w2f0 but <0,. In this respect the Cape Kennedy
data differs markedly from that at WSMR and Hanford where in both cases
w2=0 throughout for the monthly data.

The role of the minor mixture component (ol;wl) is quite different
from that played by this mixture component in the monthly data at both
WSMR and Hanford. In the WSMR case 01=w1=0, k#0 so that the minor mixture
component is a "spike" in the p.d.f. at w=0. In the case of the Hanford
monthly data the minor mixture component accounted for 20% to 50% and was
always one for which the most probable speed was less than that for the



major mixture component. (The most probable speed is 01 (or °2) where w,
(or wz) is zero. Otherwise see Appendix F.) Thus, monthly data at Hanford
is described by a major mixture component that is an ordinary Rayleigh p.d.f.
which is modified by a minor mixture component of considerable importance
over the low speed range of the distribution.

Inspection of the data in Table 11 indicates that the "minor" mixture
component may have either a larger or smaller most probable speed than
the "major" component and also need not be "minor" in the sense that k<0.5.
By far the larger number of cases consist of those for which the most
probable speed is larger than that of the major mixture component.
Thus, the overall p.d.f. consists of a generalized Rayleigh p.d.f. for
the major mixture component with the minor mixture component making
modifications on the high speed tail of the distribution. These are,
however, a number of cases where the minor component modifies the low
speed end of the distribution. An example appears at once in Table 11
for the January data. At levels up to and including 60m the minor mixture
component has a most probable speed much larger than that of the major
mixture component while for levels above 60m it is much smaller. At 60m
itself the value of k indicates that the "minor" mixture component has
become "major". On the other hand it does not seem reasonable to switch
the values of (cl,wl) and (02’w2) and change k to 1-k since the value
of Oy of 8.52 is too far out of line with values at higher and lower levels.

One is involved here with the limitations of the empirical formula that
is being used. This formula is confined to representing a mixture of only
two generalized Rayleigh distributions. The computing procedure then
operates to select the most important part as indicated by the data and
one other part to give the most significant modifications. Consider a
hypothetical situation in which the distribution involves a major mixture
component and two minor mixture components, one high speed and the other
low speed. An empirical formula that can account for only two components
of the mixture can then do one of two things; (1) select a minor high speed
mixture component and modify the major mixture component to account for
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part of the low speed mixture component it cannot explicitly represent,
or (2) select a minor Tow speed mixture component and modify the major
mixture component to account for part of the high speed mixture component
if cannot explicitly represent.

It may well be that part of the zig-zag character of the scaling
parameter shown in Figure 19 and Table 12 might have been smaller if this
aspect of a self-consistent model had been taken in account (i.e., a
value of b computed separately for those cases for which the minor
component was high or low speed). On the other hand it seems scarcely
worth the trouble because the small number of data values in each such
determination would itself introduce large variations of a different
kind.
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PATRICK TOWER 313

The wind speed frequency function tables used to compute the empirical
distribution function parameters are contained in Anon., 1976. The data
are from the years 1971, 1973, 1975, and 1976. The Patrick Tower 313 is
located about 45 km south of the Cape Kennedy Tower (NASA Launch Complex No.
39 on the Kennedy Space Center). The Kennedy Tower data are confined to the
year 1968. Thus, there is no overlap in the period of record at these
locations. Nonetheless their close approximity should lead to similarities
in the scalar wind speed distributions observed.

The data tabulations in Anon., 1976, contained several cases of
irregular occurrence of large isolated wind speeds. These were arbitrarily
eliminated and adjustments made to the remaining wind speed frequencies.

The results were not always satisfactory, but it was felt that the inclusion
of these cases outweighed the gaps that would be left had they been entirely
omitted. :

The annual data for the frequency function of scalar wind speed leads
to two different self-consistent sets of parameters °1’w1’°2’w2’k which
describes the data with very nearly the same accuracy. These are shown
in Table 13 and are there headed A and B. The parameters for 3m elevation
are the same for both cases, the remainder are different. In both cases
the parameters o and W, are very nearly the same. The differences occur
in the parameters OpsWys and k. In case A, w1=0 throughout; % is nearly
the same but somewhat smaller than W, but more than twice 003 k is in the
range 25% to 60%. Thus, the minor mixture component represents a p.d.f.
with most probable wind speed somewhat less than that of the major mixture
component but rather broadly distributed. It thus adjusts the wind speed
frequencies most on the low speed side of the most probable speed indicated
by TpsWoe In case B at 16 and 49m the minor mixture component is a p.d.f.
with a narrow spike located on the high speed side of the most probable
speed indicated by the major mixture component (OZ’WZ)‘ The corresponding
values of k are 21% and 12% so its effect is appreciable. For the higher
levels, 62 to 149m, ol=w1=0, and k is very small or zero so that the

major mixture component essentially stands alone.
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TABLE 13, TWO POSSIBLE ANNUAL PARAMETER DESCRIPTIONS OF
THE SCALAR WIND SPEED DISTRIBUTION AT LEVELS
ON THE PATRICK TOWER

Ht. 0y Wy 0y W, k RMSE
(A)

3 0.88 0.00 2.48 0.00 0.0903 0.03
16 4.29 0.00 1.59 4.08 0.2636 0.37
49 4.99 0.00 1.59 5.06 0.2816 0.52
62 4.93 0.00 1.94 6.02 0.4384 0.40
89 5.67 0.00 2,42 6.13 0.3376 0.25

120 5.78 0.00 2.52 6.40 0.4345 0.39
149 6.25 0.00 2.37 6.73 0. 6005 0.52
(B)

3 0.88 0.00 2.48 0.00 0.0903 0.03
16 1.98 6.55 1.54 3.76 0.2069 0.01
49 1.88 8.64 1.75 4.81 0.1166 0.05
62 0.00 0.00 2.54 5.68 0.0135 0.57
89 0.00 0.00 2.97 5.91 0. 0000 0.61

120 0.00 0.00 3.23 6.05 0.0004 0.67
149 0.00 0.00 3.70 6.23 0.0000 0.98

1}



The parameters for the mixture that describes the wind p.d.f. for the
mid-season months are listed in Table 14. The similarity of the situation
here and that at Cape Kennedy is quite evident. The major mixture component
is reasonably well defined (02’w2) and varies rather consistently with
elevation; the minor mixture component plays the role of an adjustment which
is effective on the high or on the low side of the most probable wind speed
described by the major mixture component.

Table 15 lists the scaling formula parameters for Oy and W, from the
data in Tables 13 and 14. The range of values pertaining to scaling 0y is
quite large and reflects the fact that the highly variable role being played
by the minor mixture component tends to affect the parameters of the major
mixture component appreciably. (When the minor mixture component is being
used to adjust the low speed range the major mixture component parameters
tend to increase while the opposite is the case when used to adjust the
high speed range. This roughens the values of OpsWy SO that the statistical
variation in fitting the scaling formula is increased.)

The parameters of the empirical formula for the p.d.f. for scalar wind
speed by hours of the day are given in Table 16 for January and in Table 17
for July. The same statement can be made for this hourly data as were made
for the monthly data here and at Cape Kennedy, namely: (1) The parameters
for the major mixture component (02,w2) are reasonably well identified and
have a well defined trend with altitude; (2) The parameters for the minor
mixture component (o1 and wl) indicate that it usually serves as an adjust-
ment to fit the formula better in either the high speed or low speed range;
(3) The parameter k is usually small, but not uniformly so with the result
that on occasion the majority of cases is sometimes switched into the minor
mixture component category (i.e., k>0.5).

The diurnal variation of the parameters g, and W, during January and
July at 16, 62, and 120m are shown in Figures 21 through 24. The point at
09 hrs. for the 120m level is marked A in all four figures to indicate that
it might be in error. If scaling were perfect, these curves would form a
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TABLE 14,

Ht.

16

62
89
120
149

16
49
62
89
120
149

16
49
62
89
120
149

PARAMETERS ol,wl,dz,wz,k FOR THE MID-SEASON

MONTHS AT LEVELS ON THE PATRICK TOWER,
MONTHLY AND ANNUAL DATA

%9

0.00
0.39
0.36
1.92
1.48
0.00
1.60

0.00
0.51
1.23
1.84
1.61
0.00
0.00

1.17
1.13
2.40
4.14
4.2]
0.00
0.00

OOO.—'—‘OO
L)

OOON WS
OO OONNY

"

0.00
3.57
3.47
9.09
3.94
0.00
12.18

OCOPONWO
- . L) L] L] L]
OO WNELOO
OO —-0ohOoOOoO

o o
OO~ WO

COOOOhWOoO
OCOOQOQOWPO

1.69
3.72
5.10
6.79
0.00
0.00
0.00

%2

(JAN)

2.00
2.30
2.34
2.17
2.53
3.69
3.85

(APR)

1.25
2.08
2.42
2.07
2.61
3.13
3.43

(JUL)

1.80
1.86
1.64
1.76
1.77
2.48
2.43

(0CT)

2.14
2.62
3.66
4.40
3.10
3.74
5.16
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W,

NGOG N
L] L] . L] L] .
WO N~ NN
—— oV ~Nw

NOO NN O
L] L] L] L] L] L]

NOOOT= OO N
WW—=~NPhpom

Tt N
. [ ] .

OO WU — =

WO O~V

¢ o
AN NO WO W
OO0 TIO —

AN OO N
L]

0.0981
0.3298
0.1074
0.3294
0.2219
0.0000
0.1057

0.5691
0.1729
0.3049
0.1805
0.1430
0.0000
0.0000

0.3161
0.3983
0.0318
0.1735
0.2697
0.0380
0.1061

0.1920
0.1867
0.6014
0.3205
0.0178
0.0192
0.0000

RMSE

OO0 O0OO0OOO0O
ONmd =~ OO
NWNOTI O

OO0.0000
NAPO—~OO0O
WOINOITNWO

L]

OO0.0000
NOTOOOOO
OOWOUI~MNN

0.13
0.31
0.37
0.16
1.80
2.16
3.02



Ho.
JAN
APR
JuL
oCcT
ALL-A
ALL-B

TABLE 15.

2.15
1.67
1.79
2.60
1.33
1.16

SCALING PARAMETERS FOR o, AND W, FOR THE MID-SEASON
MONTHS AND ANNUALLY ON THE PATRICK TOWER

92
b
0.138
0.229
0.057
0.189
0.227
0.410

0.058
0.035
0.047
0.050
0.067
0.075
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3.50
5.10
3.18
4.02
3.69
3.43

w2

b
0.301
0.124
0.247
0.212
0.228
0.235

0.044
0.022
0.028
0.032
0.025
0.028



TABLE 16.

Ht.

149

16
49
62
89
120
149

DIURNAL VARIATION OF 01’w1’°2’w2’k AT LEVELS
ON THE PATRICK TOWER DURING JANUARY

CoOoOOOOoOONNO
OO N—~O
— o0 OO0 UnOoO

CO—=0ON N,
CONOPLPO

.

COVOAON
L]

1.21

2.00 .

1.68
0.35
1.55
0.00
0.00

0.00
0.72
1.69
0.00
0.47
2.08
3.12

Wl 02
(00 hrs)
0.00 1.82
5.46 1.2]
0.00 2.04
0.00 2.85
0.00 3.19
0.00  3.69
0.00 4,05
(03 hrs)
0.00 1.28
8.18 1.39
0.00 1.69
0.00 2.72
0.00 1.88
0.00 3.17
0.00 3.62
(06 hrs)
0.00 1.76
5.41 1.19
6.61 1.61
0.00 2.37
10.45 2.3]
0.00 3.34
0.00 3.80
(09 hrs)
0.00 1.82
8.26 1.48
7.01 1.42
0.00 2.75
10.90 2.54
10.53 2.16
9.96 5.34
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3.74
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0.1676
0.4577
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0.0038
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0.0105
0.01M

0.5128
0.2290
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0.3297
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Ht.

16
49
62
89
120
149

16
49
62
89
120
149

16
49
62

120
149

16
49
62
89
120
149

0.00
0.00
0.00

0.00
0.00

10.09
3.73
3.42
0.00
0.00
0.00

TABLE 16
(continued)

02
(12 hrs)

1.93
2.06
2.03
2.73
3.00
3.20

(15 hrs)

1.37
1.14
1.16
3.01
3.05
2.52

(18 hrs)

1.33
2.19
1.77
3.45
3.63
3.79

(21 hrs)

1.83
2.19
2.50
3.13
3.55
3.67

Wa

4.56
5.17
6.12
7.25
7.74

2.81
3.81
3.76
4.09

0.1739
0.3155
0.0690
0.0898
0.0000
0.0121

0.2566
0.4026
0.5714
0.2014
0.4267
0.3269

0.2305
0.0027
0.3060
0.0525
0.0000
0.0000

0.0056
0.3924
0.1402
0.0517
0.0000
0.0016

RMSE

0.04
0.05

0.01

0.30

0.08
1.50
0.03
0.46
1.08
0.99

0.21
0.16
0.37
0.80
1.28
0.72



TABLE 17. DIURNAL VARIATION OF O1sW1 25Ws AND k AT LEVELS
ON THE PATRICK TOWER DURING JULY

Ht. 01 Wy 0, W, k RMSE
(00 hrs)

3 1.36 0.00 1.19 4.46 0.5967 0.00
16 0.00 0.00 1.77 4,33 0.0000 0.31
49 2.91 0.00 1.39 5.55 0.0784 0.33
62 1.00 0.00 1.58 6.08 0.0808 0.20
89 4.87 0.00 1.65 6.3] 0.1423 0.19

120 5.15 0.00 1.50 7.01 0.4687 0.81
149 5.05 0.00 1.77 7.01 0.1683 0.21
(03 hrs)

3 0.75 0.00 1.81 2.01 0.2237 0.01
16 1.45 5.12 1.17 3.30 0.3731 0.00
49 3.24 0.00 1.61 5.06 0.0603 0.02
62 0.00 0.00 1.81 5.74 0.0734 0.08
89 0.57 6.01 2.39 5.75 0.1694 0.11

120 0.38 1.57 2.55 6.78 0.0758 0.73
149 1.54 0.00 2.81 6.92 0.0526 0.09
(06 hrs)

3 0.00 0.00 1.13 2.12 0.2966 0.00
16 1.03 5.27 1.12 3.40 0.0667 0.00
49 0.00 0.00 1.55 4.45 0.0000 0.51
62 0.00 0.00 1.73 5.26 0.0843 0.62
89 0.70 7.74 1.90 5.25 0.0917 0.13

120 0.00 0.00 2.55 5.90 0.0268 0.50
149 3.55 0.00 2.40 6.60 0.1514 0.87
(09 hrs)

3 0.94 0.00 0.87 2.30 0.6186 0.00
16 1.35 5.31 1.14 3.16 0.0108 0.00
49 1.23 5.13 1.19 3.41 0.4860 0.00
62 0.00 0.00 1.90 4.77 0.0574 0.19
89 3.37 0.00 1.75 5.76 0.2844 0.28

120 4.02 0.00 1.41 6.89 0.6140 0.15
149 3.50 0.00 2.17 6.67 0.3136 0.23

10



TABLE 17

(continued)
Ht. 0y Wy oy W, k RMSE
(12 hrs)

3 2.14 0.00 1.06 1.41 0.3001 0.00
16 1.38 5.28 1.09 3.08 0.1568 0.00
49 1.24 5.27 1.10 3.29 0.3348 0.00
62 3.55 0.00 1.77 4.16 0.3345 0.12
89 1.09 7.46 1.52 3.74 0.2744 0.00

120 1.49 0.00 2.41 4,61 0.0396 0.08
149 1.29 2.83 2.22 5.81 0.2591 0.00
(15 hrs)

3 0.43 1.87 1.23 3.93 0.7425 0.00
16 0.79 7.88 1.36 3.49 0.0620 0.00
49 0.43 3.69 2.36 4,17 0.497 0.07
62 3.70 0.00 0.37 5.19 0.3057 0.97
89 1.21 4,55 1.21 4,13 0.3787 0.01

120 0.00 0.00 2.36 4,57 0.0107 0.79
149 4.45 0.00 1.60 5.26 0.4756 0.36
(18 hrs)

3 2.08 0.00 1.32 3.27 0.2966 0.01
16 0.48 5.15 2.22 4,01 0.3682 0.04
49 3.85 0.00 1.16 5.01 0.2896 0.03
62 4.01 0.00 0.47 5.62 0.5288 1.47
89 4,44 0.00 0.44 5.53 0.3929 0.23

120 4.7 0.00 0.43 5.56 0.5989 1.22
149 4,85 0.00 1.38 5.84 0.3788 0.91
(21 hrs)

3 1.94 0.00 1.08 4.14 0.4817 0.00
16 0.00 0.00 1.72 4.81 0.0260 0.21
49 0.00 0.00 1.68 5.26 0.0170 0.08
62 0.65 0.00 1.90 5.83 0.0755 0.46
89 4,85 0.00 1.59 5.88 0.2444 0.07

120 5.03 0.00 1.11 6.24 0.6069 0.52
149 5.04 0.00 1.70 6.26 0.3218 0.40

n
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Figure 21. Diurnal Variation of O during January
at 16, 62, 120m on the Patrick Tower
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Figure 23. Diurnal Variation of W, During January
at 16, 62, 120m on the Patrick Tower
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family such that for all times, t, if hy>hy (h2, h, are height values), then
y(t,h2)>y(t,h1); i.e., the curves would lie one above another in the order
of increasing anemometer height. This is only roughly the case; and for 9,
in July (Figure 23) the mix-up is extreme.

Comparing Figures 21 and 22, for 0,, One notes that the diurnal varia-
tion of 9, at 16m in January and July are similar, the minimum occurring in
early morning and the maximum in the evening. The diurnal variations of o,
at 62m and 120m are similar to each other in both January and July but the
diurnal variation in these months are opposite; in January o, at both 62m
and 120m is a minimum in the morning and a maximum in the evening (as is 9,
at 16m); in July 0o at both 62m and 120m is a maximum in the morning and
displays a minimum in the afternoon (the opposite of Ty at 16m in July).

Comparing Figures 23 and 24 for W, it is to be noted that the diurnal
variation of Wy at 16m for January and July are similar, both being a mini-
mum in-the morning and a maximum in the afternoon. This is also the same
diurnal variation displayed by o, at 16m noted above. Thus, both 9, and Wo
at 16m have the same diurnal behavior in January and July.

Figures 23 and 24 also indicate that for both January and July the
diurnal variation of W, at 62m and 120m are similar to each other. (The
points marked B at 15 hrs. in January, Figure 23, should be ignored since
the data at this hour for all levels is suspect.) On the other hand,
Figure 23 indicates that Wo at both 62m and 120m have near sunset minima
and near sunrise maxima, the opposite of the variation of w, at 16m for
this month (January); while Figure 24 indicates that W, at both 62m and
120m have mid-day minima and midnight maxima, roughly the same as the
variation of w, at 16m in this month (July).

In all cases there appears to be a shift in the exact time of minimum

or maximum as a function of height. There also appears to be a shift
between January and July due to the differences in the time of sunrise and
sunset. The data points are too irregular to discuss these items in detail.

16



The situation on diurnal variation of o, and W, may be summarized in
the following array. The comparison is with the diurnal variation of Ty
and W, at the 16m level both of which for both January and July have morn-
ing minima and evening maxima. The array describes the diurnal variation
at the 62m and 120m levels.

January July
9%, In phase Out of phase
W) Out of phase | In phase

Table 18 contains the scaling parameters LA (zo=10m), b, and the stan-
dard deviation of b, o/ for January and July. The diurnal variations of
the scaling parameter W, for Oy and W, during January and July are shown
in Figure 25 while the scaling exponent, b, for January and July are shown
in Figure 26 for the parameter op and in Figure 27 for the parameter W,.
The computed values are shown in Table 18 together with a column indicating
the standard deviation of the estimate of the parameter b, Oy - Values of
b for which Op is large are marked by A in Figures 26 and 27. (The scaling
formula is g, or wzaswo(z/zo)b, zo=10m.)

The scaling parameter W, should track with the observed values of the
parameter concerned at 16m since this is close to the reference level z°=10m.
That this is the case is seen in Figure 25 where the diurnal variation of
L is the same as that for.o2 or W, at 16m from Figures 21 through 24. The
exception is ", for 9, during July for which the diurnal variation is very
small. Even in this case w, for o, (July) has its minimum near that of the
other cases and differs in that its maximum is shifted a few hours later

into the night.

The diurnal variations of the scaling exponent shown in Figures 26 and
27 indicate that b (for 02) in July and b (for w2) during both January and
July are in phase with each other and show a sunset minimum/sunrise maximum
while b (for o,) in January has a midnight maximum and late morning minimum.

n



TABLE 18. DIURNAL VARIATION OF THE SCALING PARAMETERS FOR o,
AND Wy DURING JANUARY AND JULY ON THE PATRICK TOWER

9, Wo
Hr. v, b 9 w, b Oy
JANUARY
00 1.76 0.243 0.090 3.49 0.293 0.016
03 1.07 0.403 0.126 3.22 0.370 0.057
06 1.62 0.205 0.096 3.24 0.300 0.042
09 1.76 0.090 0.090 2.93 0.295 0.057
12 2.08 0.131 0.047 3.28 0.350 0.034
15 1.42 0.220 0.132 3.43 0.272 0.101
18 1.79 0.273 0.081 3.98 0.151 0.077
21 2,17 0.189 0.035 3.92 0.227 0.042
JULY
00 1.40 0.065 0.036 4,75 0.126 0.032
03 1.60 0.135 0.078 2.95 0.326 0.014
06 1.24 0.213 0.048 2.97 0.282 0.012
09 1.07 0.201 0.055 2.92 0.284 0.048
12 1.14 0.198 0.070 2.72 0.241 0.040
15 1.03 0.078 0.252 3.87 0.068 0.046
18 1.27 -0.253 0.186 3.91 0.156 0.013
21 1.38 0.064 0.067 4,65 0.110 0.009

18
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Figure 25. Diurnal Variation of the Scaling Parameter w,

for 0, and W, During January and July on the

Patrick Tower
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One would expect that the diurnal behavior of the parameters oo and w,
and that of the scaling parameters W,
terms of each other. This seems to be very nearly the case for w_ in terms

(]
of 0, and W, at 16m. The "explanation" of the diurnal behavior of a, and

and b would be easily interpreted in

vy in terms of that of the scaling exponent b apparently does not follow
easily. It is expected that when b is large 0, or W, at the higher levels
would also be large. The following breakdown is in terms of the common
diurnal behavior of Ops Wy in January and July at 16m (AM minimum, PM

max imum).

Case W, b result at 62/120m
Jan. w, in phase out of phase (ck) out of phase (ck)
July Wy in phase out of phase in phase
Jan. o, in phase in phase (ck) in phase (ck)
July Sy neutral out of phase (ck) out of phase (ck)

It is readily seen that the observed behavior of Wo and Ty at the 62 and 120m
levels checks that of the diurnal behavior of the scaling exponent in three
of the four cases. To check the odd-ball case, dJuly, Wo s refer to Figure 24
where the diurnal behavior of W) at 62 and 120m is shown. It is reasonably
evident that the problem lies in the looseness of the terminology being used.
The morning minimum of Wos July, at 62 and 120m is classed as "in phase"

with that at 16m and actually occurs in the range of 12 to 15 hours. The
term "out of phase" has been used for a minimum occuring in the range 18 to
21 hours. One is dealing with a situation in which "in" and "out" of phase
is not sufficiently precise and for which a 90° phase shift should be
included. As pointed out above, it is evident that the situation actually
involves shifts of maximum/minimum with altitude and with the time of sunrise/
sunset but for which the data shows large irregular variations which make

a refined analysis pointless.
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NUCLEAR POWER PLANT SITES

The data contained in Verholek (1977) for the annual scalar wind speed
frequency by class intervals may be divided into three categories depending
on whether there was an anemometer at one, two, or three (or more) levels.
The cases in which there is wind speed data at only one level do not provide
information on the variation of the parameters of the empirical formula for
the p.d.f. with height. Those sites from which wind data are available at
two levels provide the minimum amount of data required for this. Where data
is listed for three or more levels, the variation of the parameters with
height may be checked reasonably well. These last two cases are discussed
separately.

DATA LISTED AT TWO LEVELS

General Discussion

The parameter values at the levels concerned are divided into three
categories and are tabulated in Tables 19, 20 and 21. In the first instance
(Table 19) the cases include those for which reasonably identifiable mixture
components can be determined at each level. Table 20 contains the cases

for which only one component of the mixture can be identified at both levels.
The remaining cases are listed in Table 21.

The RMSE listed in these tables (and others) is the root mean square
error of the fit of the empirical formula for the D.F. with parameters shown
to the values of the D.F. that are observed. The D.F. may be expressed on
the range (0, 1) or on the range (0%, 100%). In listing the RMSE the percen-
tage range is used to avoid tabulating an excessive number of leading zeros.

The values of the parameter b of the scaling formula w/w0=(z/zo)b
are listed in Table 22 for each site concerned in cases A and B. These
are then summarized at the bottom of the table where the number of cases
(n), the mean value (b), and the standard deviation &Jb) are listed.
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TABLE 19.

Height

15

46

23
46

10
122

10
40

11
46

[

61

40

10
46

10
46

PARAMETERS FOR NUCLEAR POWER PLANT SITES WITH

ANEMOMETERS AT TWO LEVELS - CASES WITH REASONABLY

IDENTIFIABLE MIXTURE COMPONENTS AT EACH LEVEL

2.51
3.06

3.37
4.26

1.05
1.56

2.91
4.73

1.38
1.42

1.33
1.62

0.50
0.95

0.66
1.08

1.35
2.74

Beaver Valley, PA

0.00 0.88 0.00
0.00 1.03 0.00

Ed. Hatch, GA

0.00 1.32 2.20
0.00 1.64 3.06

Indian Point, NY

0.00 2.26 0.00
0.00 4.19 0.00

Wm. B. McGuire, NC

0.00 1.56 0.00
0.00 2.81 0.00

North Anna, VA

0.00 3.19 0.00
0.00 2.67 0.00

Palo Verde, AZ

0.00 3.27 0.00
0.00 4.03 0.00

Perkins, NC

1.02 1.94 0.00
2.16 2.89 0.00

Phipps Bend, TN

0.00 1.80 0.00
0.00 2.79 0.00

Shoreham, NY

5.74 1.25 2.42
6.11 1.86 3.91

84

k(%)

42.13

49.88

40.60
35.26

61.42
23.54

44.92
8.88

26.19
17.62

54.95
41.37

34.66
45,82

39.91
51.10

12.85
37.34

RMSE

0.38
0.76

0.06
0.07

0.01
0.35

0.26
1.47

0.63
0.75

0.41
0.38

0.25
0.13

1.33
0.42

0.00
0.45



Height

9]

10
40

10
91

10
60

(o]

0.95
1.26

2.13
2.48

0.83
1.91

0.00
0.00

TABLE

"1

19 (cont'd)

92 W2

Sasquehanna, PA

0.00
0.00
Watts
0.00
0.00
Watts
0.00
0.00
WPPSS
0.00
0.00

1.92 2.17
2.30 3.41
Bar, TN (1)

0.89 0.00
0.94 0.00
Bar, TN (2)

2.38 0.00
3.68 0.00
Satsop, WA

1.70 0.00
2.82 0.00

k(%)
61.48
31.01

31.28
54.25

45.02
44,32

9.50
3.82

RMSE

0.00

0.13

0.09
0.24

0.68
0.78

1.04
0.76



TABLE 20. PARAMETERS FOR NUCLEAR POWER PLANT SITES WITH
TWO ANEMOMETER LEVELS - CASES WITH POORLY
IDENTIFIABLE MIXTURE COMPONENTS AT EACH LEVEL

Height o Wy 0o Wo k(%) RMSE
Bellefonte, AL
10 0.82 0.00 2.45 0.00 48. 30 0.24
40 1.22 2.39 3.55 0.00 50.54 0.15
Brown's Ferry, AL
10 0.83 4,98 1.35 0.00 11.94 0.36
90 2.04 0.00 4,24 0.00 1.91 0.38
Brunswick, NC
10 0.89 0.00 2.22 2.76 17.68 0.22
107 0.00 0.00 2.78 5.03 0.00 0.56
Cherokee, SC
9 0.98 0.00 1.59 0.00 44,74 0.52
40 0.19 2.43 2.39 0.00 13.89 0.53
Greene, NY
10 1.12 0.00 2.46 0.00 14.08 0.04
60 2.26 0.00 2.01 6.13 59.22 0.24
Oconee, SC
10 1.08 6.15 1.74 0.00 5.31 1.25
46 0.86 2.00 3.11 0.00 51.72 0.50
H. B. Robinson, SC
11 0.00 0.00 1.83 0.00 2.16 0.49
61 1.38 3.28 3.46 0.00 33.10 0.18
San Onofre, CA
10 3.15 0.00 1.31 2.24 41.86 0.65
40 4.41 0.00 2.19 0.00 14.36 0.24
Skagit, WA
10 1.64 2.96 1.04 0.00 64.78 0.01
60 1.14 0.00 3.65 0.00 11.66 0.79
Surry, VA
10 1.65 0.00 2.79 0.00 49,42 1.14
46 3.24 0.00 1.03 2.66 49.48 0.24
Yellow Creek, MS
10 0.86 0.00 2.04 0.00 25.46 0.56
46 1.11 2.53 3.22 0.00 40.17 0.03
Zion, IL
11 1.79 7.73 2.66 0.00 9.77 0.71
76 3.35 8.65 2.75 4,95 26.53 0.02



TABLE 21. PARAMETERS FOR NUCLEAR POWER PLANT SITES WITH
TWO ANEMOMETER LEVELS - CASES WITHOUT
L1DENTIFIABLE MIXTURE COMPONENTS AT EACH LEVEL

Height o Wy gy W, k(%) RMSE

Blue Hills, TX

10 0.46 4,63 1.48 0.00 13.56 0.46

50 0.36 3.04 2.43 3.31 23.27 0.36
Koshkonong, WI

10 0.00 0.00 3.21 0.00 0.00 0.1

60 5.41 0.00 2.11 5.05 27.26 0.43

Perry, OH

11 1.77 0.00 2.64 3.81 50.12 0.16

61 6.73 0.00 2.91 3.36 19.73 0.1
River Bend, MS

9 1.04 0.00 1.87 0.00 41.93 0.00

46 1.88 4.46 1.25 2.38 16.73 0.04
South Texas, TX

10 2.70 7.28 3.41 0.00 14,04 0.87

60 0.00 0.00 3.06 6.04 0.00 0.98
Wolf Creek, KS

10 0.30 2.96 4.06 0.00 21.98 0.39

60 0.00 0.00 3.07 6.61 0.00 0.31

81



TABLE 22. THE COMPUTED VALUES OF THE EXPONENT (b) FROM THE
SCALING FORMULA COMPUTED FROM THE PARAMETER VALUES OF

TABLES 19 AND 20 FOR IDENTIFIABLE MIXTURE COMPONENTS

Recessive Dominant
o1 | 02 w2
(from Table 19)
Beaver Valley 0.1768 - 0.1405 -
Ed. Hatch 0.3381 - 0.3132 0.4760
Indian Point 0.1583 -- 0.2468 -
W. B. McGuire 0.3489 -- 0.4245 -
North Anna 0.0200 -- - 0.1244 -
Palo Verde 0.1151 -- + 0.1220 --
Perkins 0.4303 0.5030 0.2672 -
Phipps Bend 0.3227 - 0.2872 -
Shoreham 0.4638 0.0409 0.2604 0.3144
Sasquehanna, PA 0.1221 - 0.0781 0.1954
Watts Bar (1) 0.1094 - 0.0394 --
Watts Bar (2) 0.3774 - 0.1974 -
WPPSS Satsop -- - 0.0282 --
(from Table 20)
Bellefonte, AL - - 0.2675 -
Brown's Ferry, AL -- - 0.5209 --
Brunswick, NC - - 0.0949 0.2532
Cherokee, SC - -- 0.2732 -
Greene, NY 0.3918 -- -- -
Oconee, SC -- - 0. 3805 --
H. B. Robinson, SC -- - 0.3718 --
San Onofre, CA 0.2427 - - --
Skagit, WA -- - 0.7007 -
Surry, VA 0.4422 -- -- -
Yellow Creek, MS - -- 0.2991 --
Zion, IL 0.3243 0.0582 -- -
n 16 3 21 4
b 0.2734 0.2007 0.247 0.3098
Sy 0.1392 0.2619 0.1825 0.1210



In Tables 19 and 20 the values in the columns headed Ops Wi refer
to the recessive component of the mixture (k<0.5) while Oos Wy refer to
the dominant component (k>0.5) whenever such a distinction can be made at
both levels simultaneously. There are, however, several cases in which an
identifiable component is recessive at one level and dominant at the other,
The same situation carries over into Table 21.

As indicated at the bottom of Table 22, one may conclude that:

(1) There are too few cases in which the scaling exponent (b)
for the resultant wind speed (w1 or wz) was available to
form any real conclusions.

(2) There appears to be no significant difference between the
average values of the scaling exponent (b) for the dominant
and recessive mixture components as applied to the standard
deviations 94 and 0y Combining the dominant and recessive
cases gives a grand mean for the exponent of 0.2585 with a
standard deviation of 0.1657.

Detailed Analysis

An inspection of Tables 19, 20, and 21 reveals at once that these
tables are arranged in increasing order of complexity of the parameters
that they contain. Table 19 contains by far the most cases for which
w1=w2=0. Thus, simple wind speed structure is more readily identified at
different levels.

It must be kept in mind that the data used in all of these cases is
annual data. Thus, the distinction between the dominant and recessive
components of the scalar wind speed p.d.f. probably reflect to a large
extent an overall measure of the difference between the summer and winter
wind regimes. There is virtually no distinction between the frequency of

occurrence of the higher wind speed regime in the dominant or recessive
categories at either the upper or lower wind observation levels. There



are several cases in which, particularly at the higher anemometer level,
the two possible wind speed regimes that can be accounted for by the
expirical formula effectively fuse into one. This occurs when the most
probable wind speeds for the dominant and recessive regimes are close
together but one has a broad and the other a narrow peak (maximum).
Examples are at Bellefonte, AL, Yellow Creek, MS, Cherokee, SC, Blue Hills,
TX, H. B. Robinson, SC, Koshkonong, WI, and Surry, VA, in all cases at

the upper of the two levels.

DATA LISTED AT THREE OR MORE LEVELS

General Discussion

The parameter values and RMSE at the levels concerned are given in
Tables 23 and 24. The first table contains the cases for which the two
components of the mixture are identifiable at all three levels while the
second contains the cases for which only one component of the mixture is
identifiable at all three levels. On the other hand, in the second category
there are several cases for which the second component of the mixture is
identifiable at two adjacent levels (but not all).

In the Tables 23 and 24, the parameter values Oys Wps Ops W, are not
categorized as belonging to the recessive or dominant component of the
mixture identified. The reason for this is the fact that in too many
cases such a separation does not hold for all three levels concerned.

In Table 25 the parameter values b and wd of the scaling formula
w/w0=(z/zo)b, z°=]0m, are shown together with their standard errors Oy
and %, and the standard deviation of the estimate, o,. The column headed
"param" indicates which of the quantities Ops Wys Ops W, Were used.

The two cases marked by * in the last column are excluded since the
value of Og is much too large. In those cases in which only two levels
are used to identify a component of the mixture only b and W, are shown.
The values of 9 and Ow have no meaning and Og =0 since the fit is exact.

The numbers in parenthes1s in the column headed o, are the levels used to
o}



TABLE 23.

Height

1
46
91

53
82

10
46
99
151

10
43
100

11
38
91

10
75

15
61
122

PARAMETERS FOR NUCLEAR POWER PLANT SITES WITH
ANEMOMETERS AT THREE OR MORE LEVELS - CASES WITH
IDENTIFIABLE MIXTURE COMPONENTS AT EACH LEVEL

op W oy W, k(%) RMSE

Dresden, IL

0.76 2.86 3.84 0.00 31.08 0.07

1.68 4.13 4,93 0.00 45,51 0.73

2.53 5.12 5.82 0.00 64.58 0.67
Limerick, PA

3.13 0.00 1.07 0.00 49,37 0.24

4,14 0.00 2.29 0.00 47.77 0.50

10.13 0.00 3.45 0.00 5.09 0.32
Montaque, MA

0.87 0.00 2.13 0.00 72.14 0.03

1.15 0.00 2.88 0.00 18.33 0.59

1.22 0.00 3.75 0.00 16.30 0.43

1.63 0.00 4,27 0.00 9.99 0.21
Monticello, MN

0.24 3.21 3.27 0.00 8.76 0.38

2.14 5.08 5.52 0.00 77.39 0.02

1.39 8.33 4.90 0.00 27.58 0.25

Quad Cities, IL

1.00 2.69 3.45 - 0.00 31.89 0.34

1.49 3.54 3.96 0.00 40.03 0.92

1.25 7.57 4,86 0.00 9.13 0.t6

WPPSS Hanford, WA

3.02 0.00 1.15 0.00 45,08 0.24

4,03 0.00 1.79 0.00 38.59 0.21

5.08 0.00 2.27 0.00 54,08 0.62

WPPS Hanford (HMS), WA

1.36 0.00 3.70 0.00 41.83 0.74

1.31 0.00 4,57 0.00 29.48 0.53

1.35 0.00 5.18 0.00 30.36 0.73
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TABLE 24. PARAMETERS FOR NUCLEAR POWER PLANT SITES WITH
ANEMOMETERS AT THREE OR MORE LEVELS - CASES WITH
ONLY ONE IDENTIFIABLE MIXTURE COMPONENT AT ALL LEVELS

Height g W 2 W, k(%) RMSE
Jamesport, NY

10 3.91 0.00 0.92 2.73 87.53 0.19

61 6.61 0.00 2.68 5.41 36.30 0.58

122 2.14 4,00 3.95 7.23 16.32 0.41

Millstone Point, CT

10 5.74 0.00 2.95 0.00 17.24 0.38

43 0.00 0.00 4.29 0.00 0.00 0.96

114 2.55 5.77 5.75 0.00 47.16 0.36

136 3.32 5.75 5.99 0.00 62.50 0.42

Pebble Springs, OR

9 1.41 0.00 4,85 0.00 32.45 0.35

40 0.92 1.97 5.52 0.00 25.78 0.38

70 .02 1.9  6.22  0.00 23.1 0.48
Pilgrim, MA (A)

10 2.95 5.36 1.70 2.75 24,75 0.03

49 0.62 11.11 2.60 4.4] 6.69 0.05

67 4,59 9.53 3.14 5.29 8.22 0.39
Pilgrim, MA (B)

10 2.95 5.36 1.70 2.75 24.75 0.03

49 5.10 0.00 2.16 4,50 53.37 0.06

67 7.82 0.00 3.15 5.33 10.07 0.39
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TABLE 25. THE PARAMETERS OF THE SCALING FORMULA w/w0=(z/zo)b,

Location

Dresden, IL

Limerick, PA

Montaque, MA

Monticello, MN

Quad Cities, IL

WPPSS Hanford, WA

WPPSS Hanford
(HMS), WA

Jamesport, NY

Zo=10m, COMPUTED FROM THE INDICATED PARAMETERS OF

THE DISTRIBUTION FUNCTION FORMULA

Param.

0.1934
0.5736
0.2727

0.5008
0.4237

0.2036
0.2551

0.1879
0.8440

0.1588
0.1201
0.4717

0.1018
0.1055

0.0069
0.1591

0.2904
0.5843
0.3871

3.75
0.7
2.77

1.10
3.03

0.85
2.08

3.50
0.31

3.34
1.06
2.35

1.79
3.88

1.35
3.46

3.91

0.92
2.72

93

0.0166
0.0088
0.0141

0.0832
0.3087

0.0500
0.0250

0.1374
0.5261

0.0342
0.1449
0.1799

0.0842
0.0183

0.0173
0.0074

0.0069
0.0087

0.10
0.01
0.06

0.14
1.45

0.08
0.10

0.76
0.26

0.17
0.23
0.63

0.25
0.1

0.04
0.05

(10.61)
0.01
0.04

0.0254
0.0135
0.0215

0.1377
0.5109*

0.1035
0.0518

0.2263
0.8677*

0.0513
0.2176
0.2701

0.2678
0.0469

0.0261
0.0112

0.0125
0.0159



Location

Millstone Point, CT o

Pebble Springs, OR

Pilgrim, MA (A)

Pilgrim, MA (B)

Param.

2

Y]

TABLE 25

(continued)

b wo ob
0.2735 2.93 0.0071
1.4954 0.07 -—-
0.0197 6.05 -
0.1142 4,87 0.271
0.1844 0.71 -
0.0181 1.92 -
0.3046 1.69 0.0463
0.3287 2.73 0.0392
0.2324 2.95 --
0.3025 5.36 -~
1.3662 0.58 -
0.2679 1.65 0.1456
0.3355 2.73 0.0319

u

0.04
(114,136)
(114,136)

0.1823
(40,70)
(40,70)

0.11

0.15
(10,67)
(10,67)

(49,67)
0.35
0.12



compute the tabulated values of b and wo entered in the first two columns
for these cases. All of these two-level values of b are excluded from
further analysis.

The values of the exponent, b, of the scaling formula may be

summarized as:

(a) From the values 9y and o, combined, 17 cases with mean
value 0.2401 and standard deviation 0.1681.

(b) From the values of Wos 5 cases with mean value 0.3591
and standard deviation 0.0748.

Detailed Analysis

As was noted in the case of the two-level data, there are several
cases in which the most probable wind speed associated with the two compo-
nents of the mixture that are identified by the empirical formula used to
describe the p.d.f. are nearly coincident but of different shape. One is
characterized by a value of W, (or w2) of zero so that the most probable
speed is the value given for 9 (or 02). The other is characterized by a
value of W, (or w]) rather close to the value of o (or 02) of the former
but with a value of g, (or 01) that is much smaller than the associated
W, (or wl). In this case the most probable wind speed is somewhat larger
than W, (or wl) and is rather sharply peaked. Cases and levels that show
this are Dresden, IL (11,46,91); Monticello, MN (10,43); Quad Cities, IL
(11,38); Millstone Point, CT (114,136); and Pilgrim, MA (B) (49).

Two data analyses are given for Pilgrim, MA as indicated by the A and
B flags (Table 24). The 10m level analysis is common to both, the 49m and
67m analyses are different. The RMSE values (in the last column) are so
nearly identical at the two upper levels that there seems to be no real
difference between the fit of the parameters selected to the distribution
function data. The distinction between the two cases lies in the recessive
component of the mixture that is selected by the least squares estimation
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algorithm (ol, w, at the 49m and 67m levels). In the first case (A) at

the 49m level the least squares algorithm has picked a very narrow spike
that peaks near 11.2m sec"1 but with an occurrence (k) of only 6.69% while
in the second case (B) at 49m the least squares algorithm has selected a
rather broad maximum at the 5.10m sec-1 point which is no longer considered
"recessive”" since k=53.37%. This is very close to the peak (most probable
speed) of the second component of the mixture which in both cases has a
narrower peak near 4.5m sec'l. Apparently, there are three "components" to
the mixture while the empirical formula used permits the identification of
only two. At the 67m level a similar situation prevails but the mixture
component in both cases is definitely recessive (k=8.22 in A and 10.07 in B)
and the choice being made by the least squares algorithm is between two
different ways of fitting the empirical formula to the higher speed distri-
bution function data.



NORTHWESTERN STATES DATA

GENERAL DISCUSSION

Annual data on the frequency of occurrence of wind speeds at two (or
more) anemometer levels for observation locations (airports) in Wyoming,
Montana, and Washington was provided by the Pacific Northwest Laboratory.
Observations at these different levels were not simultaneous, but
came about due to anemometer relocation. For each level the parameters
of the empirical formula for the wind speed p.d.f. were determined and are
tabulated in Table 26, which also contains the anemometer elevation for each
case. The lower anemometer level in all cases was 7/m or lower. The higher
level is generally above 20m except in the cases of Cut Bank, MI, Glasgow, MT,
and Rock Springs, WY. In these cases, the height change of the anemometer
was considered too small to provide a reliable estimate of the exponent in
the scaling formula.

Calculated values of the exponent, b, and the normalized parameter
value (w0 which may be the normalized value of o or wR) are indicated in
Table 27 together with an indication for the parameter concerned. In the
later case the subscript 1 indicates the minor component of the mixture
(k<0.5) while the subscript 2 indicates the major component (k>0.5) (where
this distinction is valid). The cases in which the change in anemometer
height is considered to be too small to give reliable estimates of the
scaling exponent, b, are marked by the letter (a). The values of W, are all
normalized to a reference height z -10m (i.e., the scaling formula used is

w=W (z/z ) » where w may stand for e1ther the parameter o or wp. There are
then 7 cases for which scaling exponents for o were computed with reasonable
input data. The mean exponent value was found to be b=0.2348 with standard
deviation estimated at ob=0.1524.

DETAILED ANALYSIS

It is only in the cases of Casper, WY, Great Falls, MT, Great Falls (AFB),
MT that the model used is exactly the same at the two anemometer levels and
hence that thoroughly self-consistent scaling can be accomplished. In view
of the small anemometer separations at Cut Bank, MT, Glasgow, MT, and Rock

Springs, WY, it would appear that the differences in the parameter models
97



TABLE 26.

Height (m)

24

28

16

20

23

33

15

33

33

PARAMETERS FOR LOCATIONS IN THE NORTHWESTERN

STATES WITH DATA AT TWO DIFFERENT ANEMOMETER
LEVELS (NOT SIMULTANEOUSLY)

9

0.00
0.00

3.43
1.75

4.00
3.70

5.43
2.67
1.84

1.96
1.73

0.00
0.00

1.38
2.45

0.00
2.53

3.49
0.00

0.00
0.00

W P Wy
Casper, WY
0.00 4.56 0.00
0.00 4.9 0.00
Cut Bank, MT
6.94 3.00 0.00
0.00 5.87 0.00
Glasgow AFB, MT
0.00 2.47 0.00
8.18 3.68 0.00
Glasgow, MT
0.00 1.00 0.00
7.86 3.10 0.00
0.00 3.91 0.00
Hawre, MT
8.76 3.39 0.00
0.00 2.74 3.36
Great Falls, MT
0.00 4,23 0.00
0.00 5.23 0.00
Great Falls AFB, MT
0.00 4,02 0.00
0.00 5.51 0.00
Rock Springs, WY
0.00 4,14 0.00
0.00 5.49 0.00
Seatac, WA (A)
0.00 1.20 3.09
0.00 3.00 3.92
Seatac, WA (B)
0.00 2.14 2.91
0.00 . 3.00 3.92

k

0.00
2.45

47.83
26.46

68.68
15.88

31.48
23.20
32.68

11.83
26.51

0.00
3.48

30.23
28.90

5.28
26.97

56.18
5.33

0.00
5.33

RMSE (%)

1.40
0.53

0.60
0.84

0.60
1.05

1.39
0.54
1.22

0.71
1.50

1.76
1.95

0.75
0.97

1.83
0.75

0.34
1.33

1.78
1.33



TABLE 27. SCALING PARAMETER, b, AND NORMALIZED PARAMETER, Wy

(oor wR) FOR LOCATIONS IN THE NORTHWESTERN STATES

Location Param. b
Casper, WY T (b) 0.0533
Cut Bank, MT 0o 0.8681 (a)
Glasgow AFB, MT o 0.2049
Glasgow, MT 09 1.3240 (a)
Great Falls, MT &) 0.1784
Great Falls AFB, MT o1 0.3042
Great Falls AFB, MT a9 0.1671
Rock Springs, WY o9 0.3080 (a)
Seatac, WA (A) a7 0.5375
Seatac, WA (A) W, 0.1396
Seatac, WA (B) ap 0.1982
Seatac, WA (B) Wy 0.1748

(a) Too small height change in anemometer locations.

(b) Subscript 1 indicates a parameter for the minor

component of the mixture, 2 for the major component.

w N W — AR~ BN NN AN

.69
.67
.98
.45
.51
.70
.51
.85
.58
.32
.73
.18



are due more to the sampling variation between the different time periods
rather than the difference in anemometer height. This effect (sample
variation) is without doubt present at locations with larger anemometer
separations. In most of the remaining cases one component of the mixture
seems to be identifiable at both of the levels concerned but the other
component of the mixture seems to be representing different wind speed
regimes at the different levels. An example of the different wind speed
regimes that may occur is given by Glasgow AFB, MT. In this case the
dominant regime at the 4m level is o= 4.00, Wp = 0.00, (68.68%) while at
28m level o= 3.68, Wp = 0.00 (84.21%). The recessive regime at 4m is a

low speed one o= 2.47, wp = 0.00 (31.32%) while at 28m it is a high speed
one, 0=3.70, wp = 8.18 (15.88%). As tabulated in Table 26 the recessive
regime at 4m is associated with the dominant regime at 28m due to the
increase of o with anemometer height. This need not be the best association
of speed regimes. If the dominant regimes at the two levels are associated
as above, then the decrease of o with height may well be due to the difference
between fitting the recessive regime at the low or high speed. A further
point in this connection is that very likely the low speed regime is probably
present at 28m and that the high speed regime is present at 4m. The model
used is confined to identification of only two wind speed regimes. The o
for the dominant regime at 4m may be influenced by an undetected high

speed regime and that at 28m by an undetected low speed regime.

If one uses parameter values for other relative minima of the least
squares procedure and RMSE's that are unacceptably large, the Glasgow AFB,
MT, Tlines in Table 26 may be replaced by:

4 0.00 0.00 3.61 0.00 4.53% 0.84
28 0.00 0.00 4.27 0.00 2.65% 2.03

This corresponds to a regime of “"calms" less than 5% of the time (at both
levels and decreasing with height) and a dominant regime (more than 95%)
corresponding to a Rayleigh p.d.f. with parameter ¢ that increases with
height as it should. The same things can be said of Cut Bank, MT and
Rock Springs, WY.
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SURFACE LOCATIONS

This chapter is devoted to the consideration of the effect of site
exposure on the parameters of the empirical probability density functions
being used and to the diurnal variations of these parameters.

It is understood that the terms such as site, location, exposure, etc.
are used to refer to the relation between the anemometer and the surrounding
terrain on the scale of up to several kilometers. They are not used in
connection with such items as the height of the anemometer above the ground,
the effect of neighboring buildings and general airport building arrangement.
The data used in the following has been taken from standard wind summaries
that cover a span of several years record. In all cases the anemometer has
been relocated several times during this period. The summarized wind speed
record then represents a mixture of records from different detailed loca-
tions, particularly with regard to elevation above the ground. Some of
these details are recorded in the text but only to the extent that they may
verify some degree of homogeneity in the detailed local instrument exposure.
Examples were found in which this was not the case. To discuss these
details as they affect the p.d.f. for scalar wind speed requires going to
the original records and re-doing the summaries in terms of these exposure
details (as was done in the cases discussed in the previous chapter). Such
detail is beyond the scope of this report. It is felt that the larger
scale effects of surrounding terrain have an effect on the parametric des-
cription of the p.d.f. for scalar wind speed that is more important than
the effects of detailed instrument exposure and consequently records that
include several locations and elevations of the wind instruments may be
reasonably valid if used with care.

EFFECT OF THE SITE ON THE PARAMETERS

In order to obtain some information on the effect of the wind measure-

ment site on the parameters that enter the empirical formula being used to
describe the p.d.f. for scalar wind speed these parameters were computed
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for several groups of observation points located near each other but at
which the effects of the surrounding terrain were expected to be different.
The station groups used were:

(1) Boston (Logan International Airport), Bedford (L. G. Hanscomb
Field), and South Weymouth (NAS), MA

(2) Washington (National Airport), Andrews AFB, Dulles International
Airport, D.C., Ft. Mead, MD, Quantico and Ft. Belvoir, VA

(3) Bridgeport and New Haven, CT
(4) Tucson, AZ (Municipal Airport and Davis-Monthan AFB).

Each of these is discussed separately in the following. The parameters
for the scalar wind speed p.d.f. were calculated for the months of January,
April, July and October, and for the entire year. The frequency function
data were extracted from Reed (1975).

The parameters shown in each of the tables are indicated in the column

headings as:

015 Oy wind component standard deviation

Wis Wy mean resultant wind speed

k the fraction due to the part of the mixture
indicated by the parameters Ops Wy

p the approximate average wind power as determined
from the computed parameters (see Appendix E for
the method of computation)

For the most part, the tables are arranged so that k<50% and hence the

component of the mixture with parameters 01, W, may be called the "minor
component” (and that with parameters Tps Wy the "major component") of the
mixture. This arrangement is not always strictly possible or is at least
inconvenient to follow consistently. The two mixture components usually
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differ in that one will have a distinctly larger most probable wind speed.
It occasionally happens that for one month this is the minor component of
the mixture while for the other months it is the major component of the
mixture. When this happens the columns headed O1s Wy (and Ops w2) label
the mixture component with the higher (or lower) most probable speed and
the value of k for that month will assume a value greater than 50%.

Boston Area

The parameters for the empirical formula for the p.d.f. of scalar wind
speed at Boston, MA, (Logan International Airport), Bedford, MA, (L. G.
Hanscomb Field), and South Weymouth, MA (Naval Air Station) together with
an approximation to the average wind power (watts/mz) for the midseason
months and the entire year are given in Table 28.

Logan International Airport is located about 32 km north northeast of
the center of old Boston and is surrounded by Boston Harbor except to the
north northwest. The field elevation is about 4.9m. The period of record
for Logan International Airport is from 1951 through 1960. During the first
11 months the anemometer was at a height of 18.9m but was moved on
November 22, 1951 to a height of 10.1m where it remained for the rest of
the period. The total number of observations is 87,672,

L. G. Hanscomb Field is approximately 19 km west northwest of Logan
International Airport at an elevation of 38.1m and is surrounded by hills
to 91.5m (or more). The airport is in the valley of the Concord River (3
km northwest) and swamp areas lie in all directions. The period of record
listed by Reed (1975) is from 1951-1970 (20 years). During this period
the anemometer height steadily decreased as follows: 3/53-6/54 at 21.3m,
6/54-11/56 at 18.3m, 11/56-4/62 at 11.3m, 4/62-date at 4.0m. The total
number of observations is 58,658.

The South Weymouth Naval Air Station lies 13 km south of Boston Harbor

(21 km south southeast of Logan Airport) at an elevation of 46.3m. It is
surrounded by swampy areas in all directions with occasional hilltops to 61m.
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TABLE 28.

Month

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

4.94
6.03
4.47
4.03
5.81

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

PARAMETERS OF THE EMPIRICAL DISTRIBUTION
FUNCTION FOR LOCATIONS IN THE BOSTON AREA

SHOWING SEASONAL AND ANNUAL VALUES

Wy o, W, k(%)

Boston International Airport, MA

5.27 2.09 7.00 73.91
0.00 2.11 6.78 59.24
0.00 1.87 5.63 44,52
4.44 0.56 6.36 74.63
0.00 2.06 6.07 53.37

. G. Hanscomb Field, Bedford, MA

0.00 3.63 0.00 22.93
- 0.00 3.54 0.00 17.13
0.00 2.69 0.00 27.20
0.00 3.17 0.00 28.98
0.00 3.25 0.00 25.18

South Weymouth, MA (NAS)

0.00 3.71 0.00 8.54
0.00 3.83 0.00 3.48
0.00 2.57 0.00 1.07
0.00 3.03 0.00 11.87
0.00 3.26 0.00 7.48
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P (watts/mz)

469.7
411.7
183.2
263.8

3390

84.9
84.7
32.6
52.1
59.2

107.7
124.9
38.7
56.5
73.8



The period of record listed by Reed (1975) is 1954-1972 (19 yrs.) (nearly
coincident with that at Bedford). During the years 1954-1960 the anemometer
height was at 13.7m and 1960-date at 3.7m. The total number of observations
is 142,467.

Inspection of the table indicates that while South Weymouth NAS shows
somewhat more available wind power than Hanscomb Field, both have only about
25% of that available at Logan Airport. This is not due to the difference
in anemometer height since it is much too great to be accounted for by
scaling. Further the wind p.d.f. parameters at Logan are of a distinctly
different character than those at Hanscomb Field and South Weymouth NAS.

The annual and monthly wind speed p.d.f. parameters at Bedford and
South Weymouth are all of the same type; a simple Rayleigh p.d.f. with a
spike at zero speed. The numerical values for P at these two points are
very nearly the same. The largest difference lies in the fraction of cases
that are assigned to the "calm" category. At Bedford, about 25% of occur-
rences are so assigned while at South Weymouth generally less than 10%.

The p.d.f. for scalar wind speed at Logan Airport is described as a
mixture of p.d.f.'s with somewhat different characteristics. The first
"component" of this mixture (parameter Oys wl) is characterized by a
rather broad peak (values of 04 in the range 4.03 to 6.03). The second
"component" is characterized by a much narrower peak (02 in the range
0.56 to 2.11). Table 29 gives the most probable speed for each component
of the mixture (wl* and wz*) and the "width" of the peak there (the half
width of the parabola that fits the maximum measured at half the height
of the maximum, Ll’ L2) (see Appendix F for a discussion of these quantities.)
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TABLE 29. THE LOCATION OF THE MAXIMUM (wl* and WZ*) AND
THE "WIDTH" OF THE PEAK THERE FOR LOGAN AIRPORT

Month wl* WZ* L1 L2

Jan 6.71 7.29 5.04 2.17
April 6.03 7.08 4,26 2.19
July 4.47 5.92 3.16 1.95
Oct 5.59 6.38 4.15 0.56
Annual 5.81 6.39 4.1 2.15

Though the two most probable values, wl* and wz*, are not far apart the
half-width of the second component of the mixture, L2, is about half that
of the first component, Ll' It is also to be noted that the proportions
in which the mixture occurs are between 45% and 75% so that in all cases
each mixture component is well represented. (The column headed k% is the
fraction in percent of the mixture that consists of the first component.)
The implication of this is that the shape of the overall p.d.f. (for the
mixture as a whole) is somewhat more sharply peaked and has more extensive
“tails" than would be expected from a simple generalized Rayleigh p.d.f.

At least a part of the difference in apparent wind power at Logan
International Airport and Bedford and South Weymouth may well be due to the
fact that the anemometer height at Logan was generally at 10.1m while at
the other two locations was at various heights but mostly at 4.0m and 3.7m
respectively.

At Logan International Airport the wind observations were made hourly
throughout 24 hours per day. This is not the case at Bedford and South
Weymouth. At Bedford it appears that there were 8 observations/day while
at South Weymouth the number turns out to be 20.54. On the basis of the
rather odd frequency of observations at South Weymouth one is inclined to
assume 24 observations per day during most of the period with an abbreviated
schedule for the remainder (as 24 observations/day for 78% and 8 observations/
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day for 22%, for example). The record’ then fairly well represents samples
taken reasonably uniformly throughout ethe day. It is impossible to infer
anything from the 8 observations/day at Bedford. If these were made at three
hourly intervals, the day would be uniformly covered and the three records
would be comparable in this respect. If the 8 observations/day were during
daylight hours the lower night wind speeds would be missed and hence the

low available wind power at Bedford would be an over-estimate.

It is reasonably evident that the reason for the large wind power
differences in the Boston area are due to the differences in anemometer
location with respect to the surrounding terrain. Boston Airport is an
"exposed" location, with no hills in the immediate area and generally open
to the sea. Bedford and South Weymouth are "sheltered" locations, in
swampy areas which are completely surrounded by hills. The effect of the
hills to decrease valley winds is apparently effective over short distances
since South Weymouth is only a few kilometers from the coast.

Washington D.C., Locations

Six locations in the Washington, D.C. area were selected to get infor-
mation on how the site influenced the parameters of the empirical formula
for the p.d.f. of the scalar wind speed. These were: (1) National Airport,
(2) Andrews AFB, (3) Dulles International Airport, (4) Quantico, VA, (5)

Ft. Belvoir, VA, and (6) Ft. Mead, MD. The parameters and the average
available power are shown in Table 30.

The National Airport is located on the west bank of the Potomac River
near the center of the city at an elevation of about 4.6m. The river is
immediately adjacent to it on the north, east, and south. Hills rise to an
elevation of about 76m or more in all directions. The period of record is
10 years (1951-1960) during which the anemometer was occasionally relocated
as follows: 9/28/50-12/30/57 at 35.1m, 12/30/57-9/30/59 at 6.1m, 9/30/59-
9/20/60 at 35.1m, 9/30/60-date at 6.1m.
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TABLE 30.

Month

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

Jan
April
July
Oct
Annual

01 W P Wo
Washington National Airport, DC
1.03 0.00 3.40 3.09
1.65 6.51 3.62 0.00
1.03 5.06 2.78 0.00
1.38 0.00 2.52 3.43
0.15 0.00 3.13 2.28
Andrews AFB, DC
1.12 0.00 3.83 0.00
0.70 0.65 3.26 0.00
0.00 0.00 1.95 2.28
0.29 0.00 2.89 0.00
0.94 0.00 3.20 0.00
Dulles International Airport, DC
5.15 0.00 2.50 0.00
6.53 0.00 2 3.12 0.00
0.31 0.00 2.49 0.00
1.50 0.00 3.01 0.00
3.92 0.00 2.27 0.00
Quantico, VA
3.04 0.00 1.28 0.00
3.75 0.00 2.45 0.00
2.38 2.78 1.55 1.73
2.36 3.23 1.42 1.78
3.40 0.00 2.04 0.00
Ft. Belvoir, VA
3.18 0.00 0.89 0.00
2.91 0.00 0.91 0.00
2.12 0.00 0.83 0.00
2.59 0.00 0.89 0.00
2.83 0.00 0.92 0.00
Ft. Mead, MD
0.92 0.00 3.28 0.00
0.86 0.00 3.14 0.00
0.32 0.00 2.03 0.00
0.88 0.00 2.63 0.00
0.91 0.00 2.87 0.00

PARAMETERS OF THE EMPIRICAL DISTRIBUTION

FUNCTION FOR LOCATIONS IN THE WASHINGTON, D.C.

AREA SHOWING SEASONAL AND ANNUAL VALUES
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k(%)

8.47
17.08
18.18
13.54

1.98

19.07

5.59
12.14
10.49
12.73

22.31
6.98
8.35

45.67

31.28

70.33
23.41
19.58
26.44
31.74

46.78
61.82
45.96
37.37
45.23

43.30
27.49
35.28
55.94
44,55

144,
127.
40.
81.
97.

105.
75.
31.
49.
66.

98.
109.
32.
37.
61.

46.
62.
26.
31.
42.
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Andrews AFB is located near Suitland, MD at an elevation of about 79 m.
This is the highest ground in the immediate vicinity although there are
hilltops to over 91m, the nearest being 10 km to the northwest. The period
of record is 1944-1972 (28 yrs.). The anemometer was relocated several
times: 3/44-4/55 at 15.2m, 4/55-9/56 at 18.3m, 9/56-11/61 at 20.7m,
11/61-date at 4.0m.

Dulles International Airport is located west of the city in rolling
country at about 9Im. Surrounding hilltops reach to over 122m. The air-
port itself is on the highest ground in the immediate area. The anemometer
height is 6.1m. The period record is 1963-1971 (8 years).

Quantico Airport (Marine Corps Air Station) is located south south-
west of Washington on the west bank of the Potomac River at the mouth of
Chapawamsic Creek which enters the Potomac from the west. The creek valley
is broad and swampy with much open water immediately west of the field.
There are hills to somewhat over 6Im to the northwest and southwest. The
field elevation is at about 3m. The record covers the years 1946-1972 (26
years). Before 1958 the anemometer was located 18.3m above ground level
and since at 4.3m.

Ft. Belvoir, VA, Davison Airfield, lies between lashington and Quantico
1.6 km west of the head of Gunston Cove (Accotink Bay) with Accotink Creek
on the northwest, northeast and southeast sides. The field elevation is
about 21.3m. Hills a 0.8 km northwest rise to 43m with more distant hilltops
to near 76m. The record is from the years 1958-1970 (12 years). Though
the anemometer was moved frequently, the height changes have not been
extreme: 2/57-3/59 at 8.5m, 3/59-3/60 at 8.8m, 3/60-3/62 at 6.1m, 3/62-3/68
at 4.6m, 3/68-1/71 at 6.4m.

Ft. Mead, MD, Tipton Airfield, is northwest of Washington at an eleva-
tion of 46m. The Little Patuxent River is immediately to the west and south
of the field at 30m with large extents of swamp. The Patuxent River itself
is 4.8 km southwest with more swamp. The highground rises to 91m in all
directions. The period of record is 1960-1970 (10 years). Prior to 9/15/60

the anemometer height was 11.3m and since at 4.0m.
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There are significantly higher wind speeds at the high elevation
airports (Andrews and Dulles) with Washington in this category due to the
unusually high anemometer location for so much of the data period.

The tables are arranged so that generally the parameters (ol, wl) for
the minor component of the mixture (k<50%) are listed in the first two
columns while those for the major component (02, w2) follow. Exceptions
appear in the cases of Quantico, Ft. Belvoir, and Ft. llead; these being
cases in which the parameters of the mixture component with the higher
(lower) most probable speed are listed first.

The outstanding feature of this comparison of mixture parameters is
the fact that the fraction of cases (k) attributed to the "minor" component
at the airports that are at relatively low level with respect to the sur-
rounding terrain exhibit distinctly larger values of the parameter k
(fraction of cases due to the minor component of the mixture); Quantico,
Ft. Belvoir and Ft. Mead. At the higher elevation airports (Dulles and
Andrews AFB) the minor component of the mixture is usually quite small
(usually less than 15%). At Quantico and Ft. Belvoir the minor mixture
component has the larger most probable speed and hence the mixture component
with the smaller most probable speed tends to occur the larger fraction of
the time. The opposite is true at Ft. Mead. (There'is an exception of
one month in each of these three cases.)

Bridgeport, CT, and New Haven, CT

The parameters for the empirical formulas for the p.d.f. for scalar
wind speed at Bridgeport, CT, and New Haven, CT, together with an approx-
imate average power (watts m'z) for the midseason months and the entire
year are given in Table 31.

These two airports are on the north shore of Long Island Sound and are
about 21 km apart. The anemometer at Bridgeport is at a height of 10.0m
while that at New Haven is at 6.Im. The average wind power for each month
and for the year at Bridgeport is about twice that at New Haven. The power
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TABLE 31.

Month

Jan
April
July
Oct
Annual

Jan
April
July
October
Year

PARAMETERS OF THE EMPIRICAL DISTRIBUTION
FUNCTION FOR BRIDGEPORT, CT, AND NEW HAVEN, CT,

SHOWING SEASONAL AND ANNUAL VALUES

0.00
0.40
1.96
1.21
0.00

0.46
0.51
0.41
0.60
0.55

¥

0.00
5.14
3.68
4.69
4.16

10.46
10.68

0.00
10.77
10.66

S W

Bridgeport, CT

New

4.70 0.00
4,56 0.00
3.73 0.00
4,42 0.00
4,26 0.00
Haven, CT

3.54 0.00
2.02 4,16
1.36 3.58
2.03 3.54
2.01 3.58

m

k(%)

2.10
3.47
64.40
13.79
3.34

1.69
2.81
4.81
1.52
2.80

3 (watts/mz)

234.1
213.8

89.2
182.8
173.6

112.4
112.3
44.8
81.7
90.2



difference may in part be due to the difference in anemometer height but a
comparison of the parameter values of the Table 31 indicates that it is
probably only a partial explanation of the difference in average power.
There are also rather important differences in the terrain around these
airports.

At Bridgeport, CT, the airport is southwest of the mouth of the
Housatonic River at an elevation of about 3.0m above sea level. There is
the river and marsh to the north and northeast while the Long Island
Sound lies to the east, through south to northwest with marsh to the west.
The surrounding terrain is rather flat for 3 km to 5 km to the northwest.
Beyond this distance the terrain becomes hilly (tops to near 61m).

At New Haven the airport is on the east side of New Haven Harbor at an
elevation of about 3m. There are hills with tops to 6Im or more in all
directions except to southeast through south to southwest. These hills are
at about 6 km (across New Haven Harbor) to the west but at less than 1.6 km
to north through northeast to east.

Had anemometer height differences been a major factor in the average
wind power difference, one would expect very similar parameters for the
empirical formula with differences due largely to scaling. Inspection of
the table indicates quite different wind regimes. At Bridgeport the major
wind regime is as though it was independent of direction (resultant wind
speed w1=0 for all months) while at New Haven the major wind regime is
characterized by a sizable resultant wind speed (about 4 m/sec) and a ratio
wl/c1 of about 2. The minor wind regimes at these locations are also dis-
tinctly different though amounting to only a few percent.

At Bridgeport the minor wind regime usually consists of a narrow peak
about a resultant wind speed near that of the major wind regime so that in
effect overall the wind speed p.d.f. is somewhat more peaked than a genera-
lized Rayleigh p.d.f. (Note 1: January and Annual minor wind regimes are
degenerate; January assigns 2.1% to calms [spike at zero speed] while Annual
assigns 3.34% to a spike at 4.16 m/sec..) (Note 2: In July the major wind

regime at Bridgeport corresponds almost exactly to that at New Haven.)
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At New Haven, the minor wind regime is quite different, being a narrow
peak at somewhat over 10 m/sec but accounting for only 1% to 2% of the
cases. July is again an exception in that the minor regime (4.81%) peaks at
0.41 m/sec.

It would seem reasonable that the proximity of the hilly terrain at
New Haven accounts for these differences in the p.d.f. of wind speed.

An adequate discussion of the difference in wind regimes at two loca-
tions like Bridgeport and New Haven is not possible on the basis of scalar
wind speed data alone. Both locations are subject to sea/land breeze
influences in addition to the effects of terrain on the prevailing winds.
Consideration of the details of the bivariate vector wind component p.d.f.
is required to take these items into account.

The minor component of the mixture displayed at Bridgeport for the
annual wind speed frequencies is exceptional in that 01=0 while wlfO. The
treatment of the case ol=w1=0, k>0, as a degenerate "spike" at zero speed
has been used throughout. In this case there is a "small" spike (k=3.34%)
at w1=4.16 m/sec.

The data for New Haven and Bridgeport were taken from Reed (1975).
The period covered by the record is tabulated there as 1949-1968 and 1951-
1970 respectively. Thus, there are 20 years of record at each location
which are also nearly coincident. On the other hand, the total number of
observations are listed as 50,769 for Bridgeport and 27,204 for New Haven.
The 10 years of record 1951-1960 tabulated in the series Dicennial Census of

United States Climate, Summary of Hourly Observations contain 87,672 obser-

vations. On this basis the number of observations per day at New Haven
averages somewhat less than 4 (3.73) while at Bridgeport it averages somewhat
less than 7 (6.95). The effect of the selection of the observation time can
significantly affect the apparent power available from the wind. If one
assumes observations for air traffic purposes, the implication is that the
observation hours are predominantly in the daytime when the wind speeds are
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generally larger than at night. One might also infer that at Bridgeport

(7 observations/day) covers early morning and late evening hours and hence

a larger proportion of low wind speed cases than at New Haven, (4 observa-
tions/day). This is at odds with the fact that the apparent wind power
available at Bridgeport is nearly twice that at New Haven. One might expect
that if wind had been observed hourly at both locations, the difference in
wind power available would be even larger.

Tuscon, AZ (Municipal Airport vs. Davis-Monthan AFB)
(A Digression on Class Interval Values)

The Municipal Airport lies to the south of the city about 3 km east of
the Santa Cruz River (usually dry). The terrain is rather flat and slopes
gradually upward toward the southeast. Ground elevation at the airport is
about 793m. The nearest "peak" is Sahwarita Butte about 3 km west southwest
which rises to 869m (about 76m above ground level). The city is built up
to the north edge of the airport.

Davis-Monthan AFB is on the southeast edge of the city with built-up
areas on the north and west. Its elevation is also about 793m. It is about
10 km northeast of the Municipal Airport. The general terrain at the two
locations is nearly the same. |

Although these locations are close to each other in almost identical
terrain, the available wind power at the Municipal Airport is half again
larger than that at Davis-Monthan AFB.

The data used is that contained in Reed (1975) which lists the period
of record at the AFB as 1942-1970 (28 years). For the Municipal Airport,
Reed indicates broken record periods. However, the Summary of Hourly
Observations (U.S.W.B.) indicates the period 1956-1960 (5 years), and the
values listed check those of Reed. Thus, the 5 years of record at the

Municipal Airport is about the middle of the 28 year period of record at
the AFB.
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Station history sheets indicate that the anemometer at the Municipal
Airport was located 10.0m above the ground from October 14, 1948 to
October 15, 1958 and at 7.0m from October 15, 1958 to the present (1963).
At Davis-Monthan AFB the anemometer height prior to March 1949 is not listed
but more recently the record indicates 3/49 to 4/14/54 at 20.1m, 4/14/54 to
5/4/55 at 10.7m, 5/4/55 to 10/17/55 at 7.6m, 10/17/55 to 5/2/56 at 12.2m,
5/2/56 to 2/79 at 4.0m (but at several locations with respect to the runway
configuration). During the 29-year period of record, the AFB anemometer
was above 7.6m for at least 7 years and perhaps as long as 14 years.

The interesting feature of the wind power available at these two sites
lies in the fact that the apparent wind power available at the Municipal
Airport is half again as large as that available at Davis-Monthan AFB.
Though the anemometer height at the two locations are not strictly compar-
able, one would expect that the period of 7 (to possibly 14) years of greater
anemometer height at the AFB would at least partially compensate for the
final period at 4.0m (vs. 7.0m at Municipal). The fact that the AFB is
adjacent to the built-up city on the north and west does not seem to account
for the lower wind speeds since the prevailing wind direction is from the
southeast where the terrain at both locations is essentially open desert
sloping downward very gradually to the northwest. (Prevailing down-slope
winds; over 50% of occurrences are from east to south.)

In Reed (1975) there are severai cases of dunlicate data tables for a
single location. Tucson, AZ (Municipal Airport) is an example. The only
difference between the two tables is that in one the class interval for
wind speed is in knots while in the other the class interval is given in
miles per hour. In carrying out the calculations for the parameters
appearing in the empirical p.d.f. the wind speed at the upper edge of each
class interval was used as the speed associated with the D. F. concerned,
i.e., Pr (w<wi) for the probability that the wind speed, w, is less than
the i'th class interval division point, W . The class intervals are listed
in ranges such as (knots) 1-3, 4-6, 7-10,-~- or (mph) 0-3, 4-7, 8-12,---.
In the first case the division points are taken as 3.5, 6.5, 10.5,--- (knots)
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while in the other they are 3.5, 7.5, 12.5,--- (mph). Since output is to
be in meters per second, these class interval division points are converted
to m/sec. The division points in m/sec for these two cases are:

knots 1.80 3.35 5.41 8.49 11.07 14,16 17.25 ---
mph 1.56 3.35 5.59 8.27 10.95 14.08 17.21 ——-
difference +0.24 0.00 -0.18 +0.22 +0.12 +0.08 +0.04 ---

It is readily seen that the difference between the values is always less
than a quarter of a m/sec. The question is than whether these discrepancies
in the class interval division points has a significant effect on the para-
meter estimate computed.

The least squares estimates of the parameters concerned are given in
Table 32. This table differs from the others appearing in this section in
that two sets of parameters are listed for the Municipal Airport, one for
class intervals in knots and the other for class intervals in mph (each
being so labled). Also a column for the root mean square error (RSHE) is
included. Values of RMSE are in percent.

The three parts of this table agree in that all indicate a mixture of
scalar wind speed p.d.f.'s. The nature of the p.d.f.'s entering into the
mixture as computed from Municipal Airport (mph) and the AFB (knots) class
intervals agree that the mixture consists of two ordinary Rayliegh p.d.f.'s
(w1=w2=0 throughout). These are tabulated so that o4 corresponds to the
one with the lower most probable speed, 0y to the higher.

In the case of the parameters calculated using the Municipal Airport
(knot) class intervals the minimization procedure leads to a mixture of
p.d.f.'s one of which is a generalized Rayleigh p.d.f. throughout while the
other is an ordinary Rayleigh (except for January when it is also a gene-
ra]ized'Rayleigh). Further, the Municipal Airport (knots) part of the
table has been rearranged so that the columns headed Oos Wy correspond to
a most probable speed that closely matches that in the same columns for
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TABLE 32. PARAMETERS OF THE EMPIRICAL DISTRIBUTION
FUNCTION FOR TUCSON, AZ, SHOWING SEASONAL
AND ANNUAL VALUES

Month & W 9, W, k RMSE P
Tucson Municipal Airport, AZ (knots)
Jan 2.47 6.77 1.63 2.20 14,77 0.03 . 66.3
Apr 3.83 0.00 1.24 2.48 59.02 0.04 84.8
July 3.61 0.00 1.26 2.39 55.59 0.08 68.9
Oct 4,20 0.00 1.47 2.30 35.43 0.10 75.1
Annual 3.82 0.00 1.37 2.28 44,38 0.06 68.2
Tucson Municipal Airport, AZ (m.p.h.)
Jan 1.84 0.00 3.55 0.00 46.16 0.70 62.1
Apr 1.88 0.00 3.57 0.00 25.26 0.14 82.2
July 1.74 0.00 3.33 0.00 24.17 0.14 67.4
Oct 2.00 0.00 3.71 0.00 47.90 0.52 70.1
Annual 1.73 0.00 3.37 0.00 30.94 0.26 64.6
Davis-Monthan AFB, AZ (knots)

Jan 1.25 0.00 2.86 0.00 38.23 0.57 35.0
Apr 1.49 0.00 3.14 0.00 34.26 0.71 49.5
July 1.09 0.00 2.80 0.00 20.46 0.49 40.8
Oct 1.29 0.00 2.69 0.00 31.85 0.36 32.1
Annual 1.22 0.00 2.70 0.00 28.73 0.36 33.5
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Municipal Airport (mph) and AFB (knots). This leaves columns o Wy under
Municipal Airport (knots) as representing a mixture component having a
higher most probable speed. This rearrangement of columns is reflected in
the values of the parameter k that appear in the two Municipal Airport
sections. Except for January, where the "knots" section picks an unusually
high most probable speed (and which appears as a very minor component of
the mixture), the values of k agree roughly as to whether the high or Tow
speed mixture component is predominant (large k in the "knots" section
favors the high speed mixture component while small k in the "m.p.h."
section also favors the predominance of the high speed mixture component).

Nothing in the above has indicated any good reason why there is the
large difference in available wind power at these two locations. To further
refine the analysis would require a detailed analysis of the exposure of
the anemometer with respect to the immediately surrounding structures. Such
effects can be significantly large. A refined analysis of instrument expo-
sure requires much more information than is contained in existing wind
summaries and is consequently considered beyond the current effort.

Conclusions

One might summarize the preceding discussion by pointing out that:

(1) Wind measurements sites below the general level of the higher
terrain tend to have a wind speed p.d.f. that can be adequately
represented by a mixture of two simple Rayleigh p.d.f. and that
the fraction of occurrences of the lower wind speed regime tends
to be quite large.

(2) There is a strong tendency for the wind speed p.d.f. at reasonably
sheltered sites to be adequately represented by a combination of
ordinary Rayleigh p.d.f.'s one of which has become degenerate at
zero speed (spike p.d.f. at w=0 for "calms").
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(3) Well exposed sites (either at or near the level of the highest
surrounding terrain or due to the immediate proximity for a
large water body) tend to have a scalar wind speed p.d.f. that
involves at least one mixture component that is a generalized
Rayleigh p.d.f.

(4) Rather small changes in input information significantly affect
not only parameter values, but also the character of the para-
metric description of the mixture.

DIURNAL VARIATION OF PARAMETERS FOR _SURFACE WINDS

The diurnal variation of the parameters of the empirical formula
for the p.d.f. for scalar wind speed is illustrated by examples from
Washington, D.C., Montgomery, AL, Mobile, AL, and Great Falls, MI. The
data were extracted from the Climatography of the United States No. 30-X
(the symbol X refers to the appropriate state index number), Summary of
Hourly Observations (Station Name), Table E. Data for each month and

hour of the day are given, but only the months of January and July and
the hours 00, 03, ---, 18, 21 are included here. All data summarized
in this publication are from the years 1950-1955.

In the tables of the parameter values, the mixture component
parameters with the lower most probable speed appear in the columns
headed 94 and Wy (m/sec) while those for the higher most probable speed
are headed o, and w, (m/sec). The parameter k is given in percent and
refers to the proportion of the mixture due to the component with para-

meters Ops W The final column headed P is the nominal wind power

1°
available (watts/mz) computed from the parameter values shown. (See
Appendix E for the determination of P from the parameters 01’w1’°2’w2’k‘)

The "hour" refers to local standard time.
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Washington D.C. (National Airport)

During this period the anemometer was located at an elevation of 35.1m
above the ground. During January the predominant component of the mixture
is that with the higher most probable wind speed (k<33% and usually k<12%)
except for 09 hrs. (Table 33). The most probable speed (m.p.s.) for this
component undergoes a diurnal variation given by (see Appendix F).

Hour ' 00 03 06 09 12 15 18 21
m.p.s. (m/sec) 3.71 3.74 3.92 3.99 6.34 5.63 4.23 3.74

which accounts for most of the diurnal variation. During the hours 15, 18,
21, 00 a small fraction of the mixture is assigned to "calm" (01=w1=0) and
at 03 hours o is so small that this is also essentially the case for this
hour. At 09 and 12 hours a sizable fraction of the mixture is associated
with a Tow speed mixture component with an appreciable (non-zero) m.p.s.
At 09 hours the situation is exceptional in that the analysis method has
picked up a rather infrequent narrow "spike" at 10.95 m/sec.

The situation in July is somewhat different. During most of the hours
the dominant fraction of the mixture is that with the smaller m.p.s. which
shows a strong diurnal variation in parameters. The diurnal variation of
%y and W, is much smaller.

With the exception of 09 hours, the January low speed mixture component
is an ordinary Rayleigh p.d.f. or the degenerate case thereof (01=w1=0)
while the high speed component is either an ordinary Rayleigh p.d.f. or a
generalized Rayleigh p.d.f. In July the low speed mixture component is an
ordinary Rayleigh (at 18 hours it is degenerate) while the high speed
mixture component is a generalized Rayleigh p.d.f. at all hours.

Hontgomery, AL

Anemometer at 8.5m throughout this period. During both January and
July (Table 34) the low speed mixture component had an ordinary Rayleigh
p.d.f. (or degenerate version thereof) while the high speed mixture component
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TABLE 33. PARAMETERS OF THE EMPIRICAL DISTRIBUTION
FUNCTION FOR WASHINGTON, D.C. (NATIONAL
AIRPORT) SHOWING DIURNAL VARIATION

Hour o4 Wy g, W, k RMSE (%) [
January
00 0.00 0.00 3.71 0.00 11.31 1.32 104.3
03 0.76 0.00 3.74 0.00 10.85 0.79 107.5
06 1.19 0.00 3.92 0.00 20.36 0.70 111.3
09 0.53 10.95 2.62 3.31 9.74 1.80 88.6
12 3.64 0.00 2.88 5.74 32.88 1.21 208.2
15 0.00 0.00 2.77 5.02 1.89 1.31 188.7
18 0.00 0.00 2.93 3.43 2.95 0.89 118.8
21 0.00 0.00 3.74 0.00 4,55 0.82 115.0
July
00 1.56 0.00 1.00 4.91 68.32 0.00 33.3
03 1.55 0.00 1.17 4,29 69.43 0.00 25.8
06 0.41 0.00 1.72 2.68 16.52 0.04 30.2
09 3.66 0.00 0.41 3.43 55.95 0.82 74.8
12 3.81 0.00 1.12 4.47 73.49 0.07 112.3
15 3.95 0.00 1.66 4,29 29.45 0.17 99.8
18 0.00 0.00 1.27 4.46 2.43 0.10 72.8
21 2.93 0.00 1.11 2.77 52.85 0.02 41.4
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Hour

00
03
06
09
12
15
18
21

00
03
06
09
12
15
18
21

TABLE 34. PARAMETERS OF THE EMPIRICAL DISTRIBUTION FUNCTION
FOR MONTGOMERY, AL, SHOWING DIURNAL VARIATION

9 Wy o, W, k (%) RMSE (%) P
January
0.00 0.00 2.06 2.77 25.46 0.22 37.6
1.14 0.00 3.22 0.00 46.08 0.08 43.0
0.00 0.00 2.85 0.00 29,23 0.66 37.7
0.00 0.00 2.23 3.85 7.40 0.48 84.9
1.58 0.00 2.52 4,95 14,06 0.38 144.7
2.50 0.00 1.65 6.06 45,68 1.18 115.6
1.31 0.00 3.57 0.00 42.56 0.62 62.4
0.72 0.00 2.01 3.47 27.27 0.00 49.5
Jduly
0.97 0.00 2.14 0.00 69.94 0.01 8.3
0.94 0.00 2.20 0.00 74.82 0.01 7.6
1.23 0.00 0.68 3.20 68.30 0.00 10.6
1.69 0.00 0.68 4,88 65.76 0.00 33.8
0.00 0.00 1.81 3.01 0.00 0.60 46.5
0.00 0.00 2.37 2.63 0.67 0.68 60.7
1.10 0.00 1.46 2.96 43,76 0.01 20.7
0.93 0.00 2.01 0.00 51.91 0.00 10.0
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had either ordinary or generalized Rayleigh p.d.f. In the month of January
there was a strong tendency for the high speed mixture component to be
dominant while in July the reverse was generally the case (exceptions at 12
and 15 hours).

In both January and July the Tow speed mixture component had a most
probable speed that was quite small. These are shown explicitly in the
table (since where w1=0, the value of 0y is itself the m.p.s.). However,
when both ordinary and generalized Rayleigh p.d.f.'s are present the most
probable speed tendency from hour to hour is not so easily visualized.
These are listed here on the lines headed w2* for both January and July:

Hour 00 03 06 09 12 15 18 21
January
w2* 3.29 3.22 2.85 4,35 5.48 6.27 3.57 3.93
July
w2* 2.14 2.20 3.27 4.93 3.47 3.30 3.26 2.01

The diurnal trend is evident and the fact that generally the most probabie
speed for this component of the mixture is larger in January than in July.
Also in July the m.p.s. is a maximum at 09 hours while in January it is a

maximum at 15 hours.

The major difference between the two months lies in the fact that in
January the dominant component tends to be that with the larger m.p.s.
while in July it is the one with the Tower m.p.s., exceptions being at
12 and 15 hours.

Mobile, AL

Anemometer height at 17.0m except for the first 9 months during which
it was at 9.1m. The Mobile, AL, (Table 35) wind speed data differs radically
from the two preceding examples in that at nearly all hours it requires a
pair of generalized Rayleigh p.d.f. to represent it adequately. In fact the
only exception are at 00, 03 and 21 in July. It also is different in that
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Hour

00
03
06
09
12
15
18
21

00
03
06
09
12
15
18
21

TABLE 35.

0.38
0.93
1.65
1.70
2.81
1.84
0.40
0.39

2.21
2.11
1.23
1.09
0.99
1.47
1.22
2.32

PARAMETERS OF THE EMPIRICAL DISTRIBUTION FUNCTION

FOR MOBILE, AL, SHOWING DIURNAL VARIATION

.44
.42
.89
.95
.96
.69
.48
.52
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k (%)

48.
67.
9.
89.
79.
63.
64.
46.

47.
25,
77.
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97.
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110.
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in both January and July there is a very strong tendency for the mixture
component with lower m.p.s. to be dominant. The diurnal variation of the
m.p.s. is evident from the data tables since it is given by gy Or gy when
w1=0 or w2=0 respectively and is a few tenths of a m.p.s. larger than Wy
or w, depending on the size of o1 O oy respectively.

Another feature is the fact that the sharper the maximum the more this
case is avoided regardless of whether it is the high or low speed mixture
component.

Great Falls, MT

The diurnal variation of parameters for Great Falls, MT (Table 36) is
a mixture of the variations exhibited by the preceding examples. The out-
standing feature of the January situation is that the low speed mixture
component (°1’ wl) is an ordinary Rayleigh p.d.f. while the high speed mix-
ture component (02, "2) is a generalized Rayleigh p.d.f. The diurnal
variation of 01 is not well defined, nor is that for the parameter Wos but
0, has a well defined diurnal variation. The parameter k is always less
than 35% so that the low speed mixture component is a minor contributor
to the overall p.d.f., but again it does not show a well defined diurnal
variation.

In July both the high and low speed mixture component switch between
an ordinary and generalized Rayleigh p.d.f.'s. The low speed mixture compo-
nent appears as a generalized Rayleigh p.d.f. except for one hour (03 hours).
This may be a property of the data reduction method since when Wi<oq the
procedure sets w1=0 and accepts this form if the mean square error is not
significantly increased (it usually is not). In the case of the high speed
mixture component the shift from the generalized Rayleigh to ordinary
Rayleigh p.d.f. during daylight hours is also accompanied by the diurnal
increase in o As with the January case, the low speed mixture component
occurs the smaller fraction of the time (k<50%) except for 03 and 09 hours.
The diurnal variation of k is not significant.
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Hour

00
03
06
09
12
15
18
21

00
03
06
09
12
15
18
21

TABLE 36.

1.69
2.51
2.68
1.00
2.14
2.63
2.09
2.46

0.32
3.20
1.07
1.82
1.23
1.15
1.94
0.99

PARAMETERS OF THE EMPIRICAL DISTRIBUTION FUNCTION

FOR GREAT FALLS, MT, SHOWING DIURNAL VARIATION

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

2.96
0.00
2.65
2.19
2.83
3.56
3.29
2.67

4.38
2.70
2.87
4.93
5.09
4.18
3.80
2.64

2.63
1.91
4.2]
5.59
5.17
5.66
2.73
2.43

W)

January

6.74
9.52
9.51
6.04
8.35
7.80
7.22
9.38

July
4.4]
5.77
0.00
0.00
0.00
0.00
7.15
5.58
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k (%)

11.68
33.39
33.56

5.31
25.08
31.00
16.94
37.46

30.58
67.43
44,33
58.34
37.52
41.17
44.89
49.14

RMSE. (%)

0.72
0.31
0.28
0.48
1.79
0.49
1.37
0.33

0.53
1.41
0.44
0.69
0.83
0.31
0.00
0.00

517.
494,
511.
582.
764.
492.
451.
443.

111.
108.
108.
185.
208.
262.
246.
112.

8
2
7
1
5
6
3
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The parameter tables tend to mask what is really going on since the
parameter selection procedure introduces zeros that appear to interrupt the
trend of the information. A better picture of the situation is presented
by a tabulation of the most probable wind speed for each mixture components,
wl* and wz*, and a measure of the sharpness (breadth) of the peak (maximum)
there, L1 and L2, (the half width at half height of the parabola that fits
the maximum). These are shown in Table 37.

It will be noted that neither wl* nor L1 show any significant diurnal
variation. The breadth of the low speed mixture component maximum (Ll) for
January and July appear to be about the same. The most probable speed,
wl*, is significantly larger in July than in January (the opposite of what
would seem reasonable).

The situation with regard to w2* and L2 for the higher speed mixture
component is somewhat different. L2 for January is somewhat larger than
for July and both show a definite diurnal variation with a minimum near
03 hours and a maximum near 12 hours. The most probable speed, wy*, for
July also exhibits a diurnal variation but with a minimum at about 06
hours and a maximum at about 18 hours. The diurnal variation of w2* for
January is very small and masked by its variation from point to point.
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TABLE 37.

00
1.69
1.20
7.81
4.17

2.98
0.32
5.01
2.51

03
2.5]
1.78
9.88
2.65

3.20
2.26
6.06
1.86

06
2.68
1.90
9.92
2.8]

2.84
1.03
4.21
2.98

January

09
1.00
0.7
7.34
4.56

July
2.68
1.68
5.59
3.95
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12
2.14
1.51
9.52
4.86

3.06
1.19
5.17
3.65

MOST PROBABLE WIND SPEED AND WIDTH
OF THE PEAK AT GREAT FALLS, MT

15
2.63
1.86
8.71
4.05

3.73
1.12
5.66
4.00

18
2.09
1.48
8.04
3.64

3.73
1.85
7.62
2.65

21
2.46
1.74
9.93
2.59

2.84
0.96
6.04
2.35



CONCLUSIONS

GENERAL OBSERVATIONS

It is evident from elementary considerations that the probability
density function for the scalar wind speed at low speeds must have a series
expansion that starts with the first power of the speed and the series
expansion contains only terms of odd powers of the speed. The Weibull
probability density function fails to meet this criterion and consequently
is not a physically acceptable probability density function for the scalar
wind speed. Further, inspection of scalar wind speed frequency function
data turns up a number of cases in which the probability density function
is definitely bimodal which clearly indicates that to be generally adequate
an empirical probability density function must be expressed as a mixture
of at least two probability density functions with different parameters.
The generalized Rayleigh probability density function was selected for
this purpose since it is the exact function resulting from the bivariate
circularly normal probability density of the vector wind. Further, a
wide variety of bivariate wind vector probability densities reduce to
a single generalized Rayleigh distribution.

The parameters of the generalized Rayleigh distribution have definite
physical significance in terms of the bivariate density function of the
vector wind; the parameter o is the magnitude of the standard deviation of
a component of the vector wind while the parameter wp is the magnitude of
the mean resultant vector wind. On the other hand, since so many mixtures
of bivariate vector wind distributions lead to a single parameter pair
OsWp it is not possible to infer from these parameter values what the
parent bivariate distribution would be.

The mixture of two generalized Rayleigh distributions is specified by

five parameters which we write as the pentad (ql, Wis Gps Wos k) where
the subscripts indicate which of the two mixture components is concerned.
The R is dropped from the mean resultant wind speed symbol to avoid writing
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subscripts on subscripts. The first component of the mixture, parameters
01, Wi is usually the low speed component (the smaller most probable wind
speed) while the second component parameters Tos Wos is usually the high
speed component (the larger most probable wind speed). In any case the
mixing fraction, k, O<k<l always indicates the fraction of the mixture with
parameters oys Wqe Five parameters appears to be the minimum required to
handle the cases of a bimodal probability density for the scalar wind speed
(which occur with sufficient frequency that they cannot be ignored).

In general, it may be said that the more varied the situations that
contribute to the data collected into the scalar wind speed frequency
function table the simpler the parameter collection (pentad) of the mix-
ture that can be used to describe it. Thus, yearly data (a mixture of
months and hours of the day within months) may usually be described with
the simplest collection of parameters. The monthly data tends to require
a more complex collection of parameters. Hourly data within months seems
to require a still more complicated ensemble of parameters.

The mixture parameters (01, Wis Oy Wos k) were fitted to the fre-
quency function data by the method of least squares using the probability
distribution function rather than the probability density function. It
is typical of the method when sevcral parameters are involved that there
is not only a combination that gives a least sum of squares of the errors
but that there are other combinations that give relative (or local) minima.
It frequently happens that such a relative minimum may have a sum of squares
of the errors that for all practical purposes is just as satisfying as the
absolute minimum. When such is the case an arbitrary selection was made,
usually picking the parameter pentad with the larger number of zeros. Also
the selection was influenced by the parameter pentad at adjacent tower
levels or for adjacent months or hours of the day.
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VARIATION OF PARAMETERS WITH ALTITUDE

The variation of the mixture parameters with altitude was determined
from data collected at varjous levels on meteorological towers at various
locations. To adequately discuss parameter variation with altitude it is
necessary that the parameter description of the scalar wind speed be the
same (or nearly the same) from level to level. This is generally not the
case. For example, the higher speed component of the mixture tends to be
an ordinary Rayleigh distribution at lower levels and shifts to a genera-
lized Rayleigh distribution as the altitude increases. The exception to
the rule is the tower data from the White Sands Missile Range, NM, which
for all months of the year could be described as the particularly simple
combination of a degenerate and an ordinary Rayleigh distribution,
(0,0,02,0,k), k>0.

For the tower data in general, it may be said that over those altitudes
which permit a common parameter mix, the parameters ol,wl,oz,w2 may be
approximated by a simple power law w=w0(z/zo)b.

The values of the exponent, b, in the power law has been computed in
previous sections under a wide variety of conditions. In Table 38 the
values of this exponent from annual wind speed frequency function data have
been summarized. The first column contains the location and the table
number concerned. The column heading indicates the parameter in the empi-
rical formula for the p.d.f. which is being scaled. The data blocks are
arranged so that the first item is the number of cases, the second item is
the average value of the exponent, b, for these cases, and the last item
is the standard deviation, O for this group of cases. The row labeled
"Combined" contains the result of combining all of the values on the rows
above into one batch with the resulting total cases, grand mean, and stan-
dard deviation about the new mean. On the last row the data on the exponent,
b, are further combined so that the data pertaining to 0q and dy form one
batch and that pertaining to Wy and Wo another as indicated by new inserted
column headings. It is obvious that in an overall sense the values b=0.25
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TABLE 38. SUMMARY OF ANNUAL VALUES OF THE SCALING EXPONENT, b.

Location 0 Wy

Hanford, WA (HMS)
(Table 5)

Cape Kennedy

(Table 12)
Patrick
(Table 15)
NPPS (2 levels) 16 3
(Table 22) 0.2734 0.2007
0.1392 0.2619
NPPS (3+ levels) 9 5
(Table 25) 0.2363 0.2091
0.1751 0.2056
N.W. States 1
(Table 27) 0.3042
Combined 26 8
0.2617 0.2060
0.1514 0.1924
0y and 0o
70
Further 0.2562
Combined 0.1680
For o
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1590

2 ]
3505 0.2370
3033 -

2 2
3185 0.2315
1294 0.0049
21 4
2471 0.3098
1825 0.1210
12 3
2585 0.3504
1482 0.0319

6 2
2232 0.1572
1636 0.0249
44 12
2529 0.2754
1773 0.0991

Wy and W,
2
0.2476
0.1479
For Wp



and(JbR=0.15 are reasonably representative. (Note: In this table, and also
the ones that follow, there are a few cases in which isolated odd values of
b from the previous tables have been omitted.

The values of the scaling exponent, b, determined from monthly data
are summarized in Table 39. The format is the same as that of Table 38.
It is to be noted that in these cases the combined mean value, b, is some-
what smaller than that obtained from annual data and its standard deviation
is also somewhat smaller. This is due at least in part to the fact that
data from the large number of nuclear power plant sites was available only
in annual summary form and thence does not appear here. The values of b
and Ok would be even smaller, o especially, if the Cape Kennedy data (only
one year of record) had been excluded. In the previous discussions of the
monthly data it was pointed out that a distinct annual variation of the
exponent, b, was present. In this table such annual variation has been
eliminated, but is reflected as an increase in Ope

The values of the scaling exponent, b, from hourly data are summarized
in Table 40 in the same format as used in Tables 38 and 39. The results
are nearly the same as for the monthly data, a reduction of the value of
b for the parameter oo and especially of op as compared with the annual data.

VARTATION OF PARAMETERS WITH EXPOSURE

At sites below the general level of the higher terrain the p.d.f. for
scalar wind speed tends to be that of a mixture of ordinary Rayleigh p.d.f.'s
with a large fraction of occurrences in the lower speed mixture component.
This lower speed mixture component has a tendency to become degenerate at
zero speed (spike p.d.f. at,w=0 for "calms").

At sites near the level of the highest surrounding terrain or in the

immediate proximity of a large body of water the p.d.f. for scalar wind
speed tends to have one mixture component that is a generalized Rayleigh
p.d.f.; usually the mixture component representing the higher wind speeds.
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TABLE 39. SUMMARY OF MONTHLY VALUES OF THE SCALING EXPONENT, b.

Location 02 w2
WSMR 12
(Table 3) 0.2141
0.0391
Hanford, WA (HMS) 12
(Table 5) 0.1455
0.0292
Cape Kennedy 12 12
(Table 12) 0.2650 0.2610
0.1656 0.1391
Patrick 4 4
(Table 15) 0.1783 0.2210
0.0398 0.0743
40 16
Combined 0.2052 0.2510
0.1065 0.1272
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TABLE 40. SUMMARY OF HOURLY VALUES

Location

HMS
(Tables 7 & 9)

Patrick
(Table 18)

Combined

.1676
.0326

.2193
.0947

16

.1935
.0638

Jan
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OF THE SCALING EXPONENT, b.

0.2823
0.0689

0.2823
0.0689

.1633
.1323

. 1506
.0639

15

.1574
.1062

July

. 2546
. 1631

. 1991
.0958

13

.2204
. 1290



The observations above are based primarily on data from the Boston,
MA, and Washington, DC, areas. There are some exceptions (or modification
of definitions) that should be noted. Logan Airport (Boston) is virtually
at sea level, almost surrounded by Boston harbor, and well away from hills.
It must be considered as an "exposed" location. This "sea" effect does
not extend far inland. South Yarmouth NAS is only a few kilometers from
the sea, but is indeed a "sheltered” location. One would normally consider
Washington National Airport "sheltered" but the data summarized includes
mostly years during which the anemometer was located about 35.1m above the
ground so that the distribution function is that for an "exposed" location.

ANNUAL AND DIURNAL VARIATION

The annual variation of parameters and the type of distribution
appearing in the mixture components may be summarized by stating that the
low speed component is more frequent in the summer and tends to be an
ordinary Rayleigh distribution while in the winter the high speed component
tends to be most frequent and to be a generalized Rayleigh distribution. A
notable feature of the monthly distribution functions is that the generalized
Rayleigh distribution appears more frequently than in the annual data.

The diurnal variation of the parameters and the distribution types
that appear in the mixture are similar to those that appear in the annual
variation but in a more extreme way (early morning corresponding to
summer and late afternoon to winter).

136



REFERENCES

Abramowitz, M., and I. A. Stegun, 1964: Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, National Bureau of
Standards, Applied Mathematics Series No. 55, Sup. Doc., U.S.G.P.0O.,
Washington, D.C., 20402, June 1964, 1046 p.

Alexanderson, Hans, 1979: A Statistical Analysis of Wind, Wind Profiles
and Gust Ratios at Granby, Uppsala, Meteorologiska Institutionen
vid Kunegl. Universitatat, Uppsala, 1979, Reports No. 55, 39+21 p.

Anon., 1976: Monthly Wind Summary, Patrick Tower 313 (Computer Print-out,
Loaned by Jack W. Reed, Div. 4533, Sandia Laboratories, Albuquerque,
N.M., 87185)

Anon., 1971: Cape Kennedy Wind Tower Statistics, 18m and 15m Towers,
National Weather Records Center, Ashville, N.C., Job. No. 06913 (W-1280),
July 26, 1971

Beardsley, W. E., 1980: Note on the Use of the Inverse Gaussian Distribution
for Wind Energy Applications, J. Appl. Meteor., Vol. 19, pp. 1126-1130

Boehm, A. R., 1976: Transnormalized Regression Probability, AWS-TR~75-259,
Air Weather Service (MAC), U.S. Air Force, (pp. 18 and 19, 7 Fits to
Pittsburgh Surface Wind Speed Data)

Brooks, C.E.P., et al, 1950: Upper Winds Over the World, Geophysical Memoirs,
No. 85, Meteorological Office, Air Ministry, London, 57 p.
also Q. J. Roy. Meteor, Soc., Vol. 195, pp. 55-73

Buell, C. E., 1976: Comments on "Estimation of Long-Term Concentrations
using a 'Univerisal' Wind Speed Distribution," J. Appl. Meteor.,
Vol. 15, pp. 515-516

Cliff, W. C., 1977: The Effect of Generalized Wind Characteristics on Annual
Power Estimates from Wind Turbine Generators. PNL-2436, Pacific Northwest
Laboratory, Richland, Washington.

Crawford, J. C., and H. R. Hudson, 1970: Behavior of Winds in the Lowest
1500 Feet in Central Oklahoma, June 1966-May 1967, ESSA Tech. Memo., ERL,
TM-MSSL 48, 57 p.

Davies, M., 1958: Non-circular normal wind distributions, Q. J. Roy, Meteor.
Soc., Vol. 84, No. 361, pp. 277-279.

Dinkelacker, 0., 1948: Die Verteilungsfunktion der Windgeschwindigkeit
flir die Hockrkdn, Wetter und Klima, Vol. 1, Nos. 9/10, p. 257-270.

137



Dinkelacker, 0., 1949: Uber spezielle Windverteilungsfunktionen, Wetter
und Klima, Vol. 2, Nos. 5/6, pp. 129-138

Doran, J. C. and M. G. Verholek, 1978: A Note on Vertical Extrapolation
Formulas for Weibull Velocity Distribution Parameters. J. Appl. Meteor.,
Vol. 17, pp. 410-442

Essenwanger, 0., 1959: Probleme der Windstatistik, Meteorologische
Rundschau, Vol. 12, No. 2, pp. 37-47

Gloyne, R. W., 1959: Note on a tabulated function for use with two-
dimensional wind distributions, Meteorological Magazine, Vol. 88,
pp. 170-171

Gomes, L., and B. J. Vickery, 1974: On the Prediction of Extreme Wind
Speeds from the Parent Distribution, Sidney University, Sidney,
Australia

Guterman, I. G., 1961: On the Statistical Law of Wind Velocity Distribution,
Meteorologiya y Gidrologize, No. 9, pp. 13-24 (In: Studies of Tem-
perature Distribution, Wind Velocity, and Weather Forecasting, U.S.S.R.,
January 9, 1962, Office of Technical Services, U.S. Dept. of Commerce,
Washington, D.C. JPRS:11845, pp. 14-27)

Hansen, Frank V., and V. D. Neil, 1964: Honthly Wind and Temperature
Distributions in the First 62 Meters of the Atmosphere for White Sands
Missile Range, New Mexico, Environmental Science Department, U.S. Army
Electronics Research and Development Activity, White Sands Missile
Range, N.M., ERDA-113, February 1964, 33 p.

Hennessey, Joseph P., 1977: Some Aspects of Wind Power Statistics,
J. Appl. Meteor., Vol. 16, pp. 119-128

Hesselberg, Th., and E. Bjorkdal, 1929: Uber das Verteilungsgesetz der
Windunruhe, Beitrag zur Physik der Frien Atmosphare, Vol. 15,
pp. 121-133

Jahnke, E., F. Emde, and F. Losch, 1960: Tables of Higher Functions,
McGraw-Hi11 Book Co., Inc., New York, N.Y., 1960

Justus, C. G., W. R. Hargraves, and Ali Yalcin, 1976: Nationwide
Assessment of Potential Output from Wind-Powered Generators,
J. Appl. Meteor., Vol. 15, No. 7, pp. 673-678

Justus, C. G., W. R. Hargraves, Amir Mikhail, and Denise Graber, 1978:
Methods for Estimating Wind Speed Frequency Distributions. J. Appl.
Meteor., Vol. 17, pp. 350-353

Justus, C. G., 1978: Winds and Wind System Performance, The Franklin
Institute Press, Philadelphia, PA, 120 p.

138



Knighting, E., 1954: Upper Winds over the World, Q. Jour. Roy. Meteor.
Soc., Vol. 80, No. 344, p. 239-240

Luna, R. E., and H. W. Church, 1974: Estimation of long-term concentrations
using a "universal" wind speed distribution, J. Appl. Meteor., Vol. 13,
pp. 910-916

Miller, K. S., 1964: Multidimensional Gaussian Distributions, John Wiley
& sons, N.Y., 129 p.

Nash, J. C., 1979: Compact Numerical Methods for Computers: Linear Algebra
and Function Minimization, Halsted Press, John Wiley and Sons,
New York, 1979, ix+227 p.

Peterson, E. W., and J. P. Hennessey, Jr., 1978: On the Use of Power Laws
for Estimates of Wind Power Potential. dJ. Appl. Meteor., Vol. 17,
pp. 390-394

Reed, Jack W., 1975: Wind Power Climatology of the United States, Sandia
Corporation, Albuquerque, N.M., SAND74-0348, June 1975, 163 p.

Reed, Jack W., 1978: Wind Speed Distribution Changes with Height at Selected
Weather Stations, Sandia Corporation, Albuquerque, NM, SAND76-0714,
August 1978

Reed, Jack W., 1979: Wind Power Climatology of the United States, Supplement.
Sandia Corporation, Albuquerque, NM, SAND78-1620, April 1979

Reynolds, George W., 1976: Threshold Values in Wind Speed lleasurements,
Third Symposium on Atmospheric Turbulence, Diffusion, and Air
Quality, Oct. 19-22, 1976, Raliegh, N.C., American Meteorological
Society, 45 Beacon St., Boston, MA 02108, 596 p. (pp. 130-133)

Smith, 0. E., 1976: Vector Wind and Vector Wind Shear Models 0 to 27 km
Altitude for Cape Kennedy, Florida, and Vandenberg AFB, California,
NASA TM X-73319, George C. Marshall Space Flight Center, Marshall
Space Flight Center, Alabama 35812, 95 p.

Stewart, D. A., and 0. M. Essenwanger, 1978: Frequency Distribution of Wind
Speed Near the Surface. dJ. Appl. Meteor., Vol. 17, pp. 1633-1642

Stone, W. A., D. E. Jenne, and J. M. Thorp, 1972: Climatography of the
Hanford Area. BNWL-1605, Pacific Northwest Laboratory, Richland,
Washington.

Takle, E. S., and J. M. Brown, 1977: Note on the Use of Weibull Statistics
to Characterize Wind Speed Data. J. Appl. Meteor., Vol. 17, pp. 556-559

U. S. Weather Bureau, 1963: Summary of Hourly Observations (Various
Locations), 1951-1960, Supt. of Documents, U. S. Govt. Print. Off.,
Washington, D.C.

139



Van der Auwera, L., F. de Meyer, and L. M. Malet, 1980: The Use of the
Weibull Three-parameter Model for Estimating Mean Wind Power Densities.
J. Appl. Meteor., Vol. 19, pp. 819-825

Verholek, M. Gary, 1977: Summary of Wind Data'from Nuclear Power Plant
Sites, BNWL-2220, WIND-4. Pacific Northwest Laboratory, Richland,
Washington.

Wagner, A., 1929: Theorie der Bbegkeit and der Hdaufigkeitsverteilung von
Windstarke and Windrichtung, Gerl. Beitr. Geophys., Vol. 24,
pp. 386-436

Wanner, E., 1939: Uber die Frequenz der Windstdrke auf dem Sante's 1932-39,
Annalen der Schweitz Meteorologische Sentralanet, Vol. 76, No. 7,
pp. 1-3 {Uses a Poisson distribution)

Wax, N., 1954: Noise and Stochastic Processes, Dover Publications, Inc.,
New York 19, New York, 1954, 337 p. (A source for Rice, S.0., 1945
Mathematical Analysis of Random Noise, Bell System Technical Journal,
Vols. 23 and 24)

Weil, H., 1954: The Distribution of Radial Error, Ann. Math. Statist.,
Vol. 25, pp. 168-170

White, R. G., 1975: Distribution and Moments of Radial Error, NASA TM
X-64962, George C. Marshall Space Flight Center, Marshall Space
Flight Center, Alabama 35812, 52 p.

Widger, W. K., 1976: Estimating Wind Power Feasibility. Power Eng.,
Vol. 80, pp. 58-61

Widger, W. K., 1977: Estimation of Wind Speed Frequency Distributions
Using only the Monthly Average and Fastest Data. J. Appl. Meteor.,
Vol. 16, pp. 244-247

140



APPENDIX A

THE SERIES REPRESENTATION FOR THE PROBABILITY

DENSITY FUNCTION FOR WIND SPEED FROM
A GENERAL BIVARIATE VECTOR WIND




THE SERIES REPRESENTATION FOR THE PROBABILITY DENSITY FUNCTION
FOR WIND SPEED FROM A GENERAL BIVARIATE VECTOR WIND

Consider a general bivariate vector wind with orthogonal components
u, v and let pz(u,v) be the corresponding probability density function
(p.d.f.). The fraction of cases falling in a rectangle of sides du, dv will
then be given by pz(u,v)dudv. To obtain wind speed, this expression is
transformed so that speed and direction are used instead of orthogonal com-
ponents; u=wcos®, v=wsin6 and the fraction of the cases then becomes
pz(wcose,wsine)wdwde. To obtain the fraction of cases in the interval
w, wtdw one integrates over wind direction so that the probability density
function for speed regardless of direction, p(w), is given by

2n
p(w)dw = wdw J' p,(wcose, wsine)de
0
or (1)
2n
p(w) = w j' pz(wcose, wsing)d®

0]

Returning to the orthogonal wind components form of the bivariate
p.d.f., p2(u,v), and assuming that this has a power series expansion about
the zero vector, u=0, v=0,

Pplu,v) = ppot(apy/au) ut(@p,/av) v
2 2, 2 2 2 2, 2 (2)
+{}8 Po/ 8u )ou +2(3 pz/auav)ouv+(a Po/ v )Ov ]/22+---
where (u,v) on the right side of (2) are considered small quantities and

the coefficients are evaluated at (0,0). Then substituting u=wcosé,
v=wsin® into (2) one obtains

pz(wcose, wsing) = p20+w[}apz/au)ocose+(apz/av)osiné]+
w2 [(82p2/3u2)0c0526+2(82p2/au av)osine cos 6 +(82p2/av2)(,)s1'n2 e:l/23+-—-

142



Integrating this expression over the range of 6 reduces it to
2m

‘/bz(wcose, wsing)dg = znp20+(]/2)[k32P2/3“2)0+(82P2/3V2)é](W2/23)+---
o}
and (1) then becomes
p(w) = (2mp, Jw + (]/2)[(82p2/3u2)0 + (azpz/avz)o] (W3/21)4=== (3)

It may be shown that on integration over o all of the odd power terms of (2)
vanish. Thus, (except for some very unlikely cases) the power series expan-
sion of the p.d.f. for wind speed about the point w=0 starts with a term in
W to the first power and thereafter contains only odd power terms in w.

(The unlikely cases involve the behavior of the function pz(u,v) at
the origin, u=v=0. In particular those cases in which pz(u,v) has an
infinite singularity (pz(u,v)e—m when u2+v2'+-0) or in which pz(u,v)

(and some of its partial derivatives) are zero at the origin. The deter-
mination of the existence of such cases involves the interpretation of the
calm and lowest wind speed frequency. Reynolds (1976) clearly shows that
when reasonably sensitive anemometers are used, the frequency of "calms"
virtually vanishes and that the phenomena is essentially an aspect of the
fact that standard instruments for measuring wind speed are not capable
of measuring speeds below a reasonably large threshold value.

The first paragraph of Appendix B indicates the method of constructing
the bivariate p.d.f. for the vector wind from the tabulated frequency func-
tion by speed and direction class intervals. When "calms" are included in
the Towest speed intervals, it is a matter of experience that no instances
have been found that would give the slightest hint that the p.d.f. had an
infinite singularity at u=v=0. In fact the only hint of exceptional behavior
of the bivariate p.d.f. of the vector wind near u=v=0 that we have noted
is at Gatwick Airport (London, England) where the p.d.f. has a distinct
minimum slightly offset from (0,0).)
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Application. Tabulated data on the frequency of occurrence of wind
in speed ranges is usually in terms of the frequency function f(wi’"i+1)’
the number or fraction (or %) of cases of wind in the range Wi <W<W3 4 ps
i=0,1,2,---, where w, may or may not be zero. The frequency function and

o

the p.d.f. are related by

Wi

flwss wiyg) =f p(w)dw (4)
W,
;

To obtain a value of the p.d.f., one uses the first mean value theorem to
obtain

f(wi, W1-+-|)/(W,i+-|-w1-) = p(g_.)s W.i< €<wi+] (5)

in which it is to be noted that the location of the point £ (a wind speed)
is only very loosely specified as somewhere in the interval (wi, wi+]) (and
in fact there may be more than one such location as is shown in Figure 28).
One may then construct a bar-chart for the p.d.f. for wind speed from the
frequency function data using (5) to adjust for varying widths of the interval
(wi, wi+]) without specifying the point (or points) £ at which the value of
the p.d.f. is actually realized. Note: In forming p(&) from (5) for the
first interval (wo, w]) one should use w,=0 and include the number (or
fraction or percent) of calms. This number has little or no real signifi-
cance in itself and represents more the sensitivity of the measuring equip-
ment than it does a property of the air motion (See Reynolds, 1976).

The importance of the series representation, (3), for the p.d.f. for wind
speed is manifest if one now attempts to form a more reasonable representation
of the p.d.f. for speed from the bar-chart representation. If p(w) is to be
represented by a continuous smooth curve rather than a series of horizontal
lines, then (4) and (5) imply that in each interval (wi, wi+]) the area under
this curve must exactly equal the area under the bar representing p(£) in this
interval. In addition, the series representation, (3), specifically states
that this smooth curve for p(w) must start on a straight 1ine from the point
w=0, p(0)=0; the origin of coordinates for a plot of p(w) as ordinate with w
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as abscissa. Figure 28 shows the result from such an exercise. The smooth
curve representing p(w) is definitely bimodal (two humps) which is hardly
noticeable in the bar-graph representation of the data. (The smooth curve in
Figure 28 actually represents points interpolated from a differentiated cubic
spline through the distribution function points. The area property in each
interval is preserved exactly. On the other hand it is not precisely of the
form specified by the series (3) in the first interval and at the higher wind
speeds shows small oscillations since no polynomial can be asymptotic to zero.)

Conclusion. When the basic physics of the p.d.f. for wind speed derived
from an abritrary bivariate vector distribution is taken into account it is
obvious that an adequate representation must include provision for (at least)
bimodality.
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p(w)

w(mph)

Figure 28. Bar Chart and Smooth Representation of the Probability Density
Function. Data for Birmingham, AL, 18 hrs. Abscissa is in m.p.h. The
smooth curve is the differentiated cubic spline fit to the distribution
function values at the division points between class intervals. The area
under the smoother curve in each class interval is equal to the rectangular
area of the bar chart representation in that class interval. Note that

the bimodal nature of the p.d.f. is much more pronounced in the differen-
tiated cubic spline representation than that of the bar chart.
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THE BIVARIATE PROBABILITY DENSITY FUNCTIONS
OF THE WIND VECTOR AND SOME REASONABLE APPROXIMATIONS
TO THE PROBABILITY DENSITY FUNCTION FOR WIND SPEED

THE BIVARIATE P.D.F. OF THE WIND VECTOR IN THE REAL WORLD

The published tables of the frequency of occurrence of the wind vector
by speed and direction intervals disply data related to the bivariate p.d.f.
of the wind vector based on the relation

"in %5
£(i, ) = f [ Paws0)wduds (1)
W, Bj

where f(i,j) is the frequency of occurrence of speed in the i'th speed
interval (wi,wi+]) and direction in the j'th direction interval (ej, 6j+]).
The bivariate p.d.f. for the wind speed is obtained from the theorem of the
‘mean with the result that

A Ay L -
Pp(W,0) = f(i,3)/A;; | (2)
where Aij = the area of the (i,j)'th cell

Wit O34

Ay = f / wdwds

and where wi<ﬁkwi+], 9j<@‘<9j+] but cannot be more exactly specified at this
point. A reasonable (but not necessarily correct) plotting position for

(Q}@) is at the center of gravity of the area Aij’

Figure 29 shows a typical bivariate p.d.f. for the wind vector. (The
labels on the contours of Figure 29 represent the percent of occurrences per
52 units of area on the plane of the paper, in this case (5 mph)z.) There
are two items displayed in Figure 29 that deserve specific mention: (1) it
certainly is not like any form of the bivariate normal distribution and (2)
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Figure 29. The Bivariate p.d.f. for the wind velocity vector at Great Falls,
MT, for January. Note that the p.d.f. is defintely bimodal and thence
cannot be represented by a single unimodal bivariate p.d.f. (in particular
not by a general bivariate normal p.d.f.). It can be approximated by

a mixture of two circularly normal p.d.f.s.
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it is definitely bimodal. Many bivariate p.d.f!s for the wind vector are
much simpler while many are more complex. The derivation of a reasonable
p.d.f. for wind speed from a general bivariate normal p.d.f. for the wind
vector seems to be entirely out of the question since it does not reasonably
represent the data. The bimodality of the wind vector p.d.f. suggests that
at least this aspect of the data could be represented by a mixture of two
unimodal bivariate p.d.f.'s. The simplest possible representation of this

kind appears to be a mixture of two circularly normal p.d.f.'s.

THE P.D.F. FOR WIND SPEED FROM THE BIVARIATE CIRCULARLY NORMAL P.D.F.

The p.d.f. of the bivariate circularly normal distribution is
expressed in terms of orthogonal components (u,v) as

Polu,v) = (1/2n0% ) exp {- [(U-ﬁ)2+(V-V)2] /202}

where (U,v) are the mean values of the wind components and o is the wind
component standard deviation (common to both components). Now let u=wcose,
v=wsino where w is wind speed and 6 is wind direction; and U=choseR,
V=szineR where Wo is the speed of the mean resultant wind and eR is its
direction. Then

(U-ﬁ)2+(V-V)2 = w2+w§-2wchos(e-6R)

and thence as in (1) of Appendix A, the p.d.f. for wind speed is given by

@=6—6R)
27
P(W;G,WR) = (w/2n02)exp [—(w2+wR2)/202] fexp {-(wwR/oz)cos¢}d¢ (3)
0

The integral factor on the far right is given by Abramowitz and Stegun
(1964) p. 376, 9.616, as 2nIO(wwR/02) so that the p.d.f. for wind speed
from a circularly normal p.d.f. for wind vector components is
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p(w;c,wR) = (w/oz)exp [-(w2+w§)/202] Io(wwR/oz) (4)

where Io(x) is the Modified Bessel Function of zero order. This function
is tabulated extensively; Abramowitz and Stegen, 1964; Jahnke and Emde,
1960, etc.

The p.d.f. (4) is well known and goes by several names depending on the
application being made. In statistics it is a non-central Chi-squared
p.d.f., in operations analysis it is the offset circle p.d.f., in electrical
engineering it is a generalized Rayleigh p.d.f., etc.

The parameters that appear in (4) have definite physical meaning in
terms of the circularly normal p.d.f. from which it was derived. As they
appear in (4), 0 may be interpreted as a scale parameter and Wp as a loca-
tion parameter. In terms of the bivariate circularly normal p.d.f. the
parameter 0 is the (common) wind component standard deviation and o is the
resultant mean wind speed, wR2 = (E)2+(V)2. If s=w/a, A=wR/o (dimensionless
variables) one may write (4) in the form

ps.A) = sexp {-(s24x)/2 } 1 (s1) (5)
Figure 30 shows the function in terms of p(s,A) as ordinate s as abscissa,
for various values of the parameter A. The curve for p(s,0) is skew but for
only moderate values of A it is shaped very much like the Gaussian p.d.f.
with mean value near A=wR/o and unit standard deviation. The location of
the maximum and of the two inflection points on either side of the maximum
(when they exist) is illustrated in Figure 31. See Appendix F for details.
The parallel dashed lines in Figure 31 represent the asymptotes to the curves
concerned.

Although it is convenient to use the dimensionless form of the
generalized Rayleigh p.d.f. (i.e., plotted to a scale corresponding to o=1),
the behavior of this function as it depends on 0 is of considerable importance.
In Figure 32 the curves foro =1, 2, 3, 4, 5, 6 with wR=5 are shown. The
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Figure 30. The family of generalized Rayleigh p.d.f.s. in
dimensionless units s = w/0, A= wR/O. '
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Figure 31. The location of the maximum (most probable value)
and the inflection points of the generalized Rayleigh p.d.f.
as a function of the parameter A(A = wR/Ao).
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.54

w (arbitrary units)

Figure 32. The behavior of p(w) from (3) as a function of w with
w,=5 and values of o shown on each curve (same units as w and w,).

In the 1imit o > d, the curve is an infinite spike along the
vertical at wR=5 enclosing a unit area.
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maximum in all cases is to the right of wR=5. The area under each curve is
1. As o decreases the hump near wR=5 increases. In the limit for g=>0, the
function p(w) becomes a slender spike of infinite height but containing a
unit of area. The case for wR=0 is illustrated in Figure 33. In this case
the leftward displacement of the maximum is more pronounced. The infinite
spike of unit area in the limit for o>0 lies along the vertical coordinate
axis (w=0). This behavior for o>0 makes it possible to identify important
degenerate cases in practical applications, particularly those in which the
frequency of low wind speeds or calms is large.
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Figure 33. The behavior of p(w) from (3) as a function of w with wR=0
and values of o shown on each curve (same units as w and w,). The area
under each curve is 1. In the limit for ¢g=0, the curve is an infinite
spike along the vertical coordinate axis enclosing a unit area.
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SOME MIXING PROPERTIES OF THE GENERALIZED RAYLIEGH
P.D.F. FOR SCALAR WIND SPEED

Consider the case of a two component mixture of distributions with
circularly normal p.d.f.'s p](u,v) and p2(u,v) and let k be the fraction due
to the first component and (1-k) the fraction due to the second component.
The p.d.f. of the mixture will then be

p(usv) = kpy(u,v) + (1-k)p,(u,v)

If we write these expressions in terms of speed, w, and direction, 6, and
the corresponding parameters, one has

P(W,05--=) = kpy(Ws08307,W; 5689 )+(1-K)p,(W,0 30,50y, &)
The p.d.f. for wind speed for the mixture is obtained by integrating over 6

2
pw;---) =fp(w,6;---)d6
0 277 2n
=k [ 2y (w8300uy.8))de+ (1K) [ py(w,8505w10,85)d8
0 0

As in (3) of Appendix B above, introduce ¢'=6 -6] in the first term and
¢''=¢6- 6, in the second term and integrate to obtain the p.d.f. for the
mixture as

p(wy---) = kP(W;c],w])+(1-k)p(w;02,w2) (1)
where the functions on the right are given by (4) of Appendix B. In the
case that G)=0»=0, Wy =W,=Wp the probability density functions on the right

of (1) are identical so that the appearance of a mixture (the parameter k)
is no longer present,

p(w;---) = [k+(1-k)]p(w;o,wR) = p(w;0,wp) (2)
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One then obtains the result that if the mixture of circularly normal
distributions is such that the two (or more) components of the mixture have
the same parameters o, and wp the resulting p.d.f. for wind speed is inde-
pendent of the orientation of the resultant wind speeds 6], 62 and is
independent of the proportions of the mixture, k, (1-k). This implies
that, though specialized, there are a wide variety of wind vector bivariate
circularly normal mixtures of distributions that will appear to be the

same when only the p.d.f. for scalar wind speed is considered.

The situation is illustrated in Figures 34 and 35. Figure 34 represents
a bivariate circularly normal p.d.f. with parameters o0=3, wR=5, (6R=O°).
The contour interval is on a roughly logarithmic scale---,10, 5, 2, 1, 0.5,
0.2, 0.1,---; i.e., as though the logarithm of p(w,0;---) was a vertical
coordinate perpendicular to the plane of the paper. In this case the sur-
face concerned is a paraboloid of revolution, most easily seen in rectan-
gular coordinate form as

z = log p(u,vi--=) = [(u-5)2+v2] /2-32-109(2n-32)

The labeling on the contours expresses p(u,v; - ) in terms of percent per

52 units of area on the horizontal (plane of the paper). If one then
integrates this p.d.f. over the angular parameter 6 the resulting p.d.f.

for scaler wind speed is a generalized Rayleigh p.d.f. as in (4) in Appendix
B with parameters o=3, wR=5.

In Figure 35 the mixtures of bivariate circularly normal p.d.f.'s are
illustrated with the following parameter assignments:

Ops Wy Ops Oy o 95 k
A 3 5 0° 3 5  490°  0.50
B 3 5 0° 3 5  +90°  0.25
c 3 5 -90° 3 5  +90°  0.50
D 3 5 -90° 3 5 +90° 0.75

When the integration is carried out over the angle 6 the dependence on the
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Figure 34. Contours for the Bivariate Circularly Normal
p.d.f. with Parameters o=3, wy=5, 6R=0°.
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c D

Figure 35. Contours for the Mixture of Bivariate Circularly Normal p.d.f.'s

with Parameter Values Listed in the Text. A1l of these reduce to the same

single generalized Rayleigh p.d.f. for scalar wind speed as obtained from

Figure 34 (no mixture) when the angular dependence is removed by integration.
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angles 61 and 6, is eliminated and since 0)=0p=0s Wy=W,=Wp One is lead

from (1) to (2); i.e., that each of these mixtures reduces to a single

generalized Rayleigh p.d.f. for wind speed which also was valid for the
"pure" bivariate circularly normal p.d.f. of Figure 7.

These are only four special cases that would lead to this generalized
Rayleigh p.d.f. For a two component mixture with 01=0,=0, W{=Wy=Wp there
is actually a triple-infinity (oo ) of such cases; an infinity of cases for
each parameter that is dropped: 0.S9]<2n3 0:£62<2n, O<k<1.

The situation is even more general since one need not be limited to a
two component mixture. The same is true for an n-component mixture with
mixing ratios k],---,kn, k1+k2+---+kn=1 provided that 0,=0,===~=0, =0,

In the above a mixture of two discrete components has been considered
such that the probability of the occurrence of the first component is kl’
the probability of occurrence of the second component is k2’ and k]+k2=1.
The situation may be extended to a class of continuous mixtures; let p(x;A)
be a p.d.f. depending on the parameter A and let A itself have a p.d.f.,
say q(A), and let pm(x) be the p.d.f. of the mixture of p(x,A) in which
occurs with p.d.f. g(A). Then

Pn(x) =[p(x.A)a(A)dA
where integration takes place over the range of the parameter A.

In the case of interest for wind speed p.d.f.'s one may show that the
following statement is valid.. Consider an ensemble of circularly normal wind
component p.d.f.'s, pz(w,e, OI’WR’GR) where<ﬁ is a common parameter and for
which the direction of the resu]tant mean wind, eR’ may be dependent on the

speed of the resu]tant mean wind, wR (i.e. 6 f(wR)) Let the speed of the
resultant mean wind, wR, be distributed in accordance with the generalized
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Rayleigh distribution (as in (4) of Appendix B) with parameters 0, and wp.
Then the p.d.f. for wind speed from this mixture of distributions will be of
the same form as that in (4) of Appendix B with scale parameter, o, given
by oz=o]2+022 and with the location parameter (resultant mean speed) the
same as that of the mixing distribution, Wp.

The point of the argument lies in the fact that, given a particular
generalized Rayleigh p.d.f. for wind speed, it is virtually impossible to
infer the combination of circularly bivariate normal p.d.f.'s from which it
might have been derived.

Though a single generalized Rayleigh p.d.f. for scalar wind speed may
come from a wide variety of mixtures, one may refer to Figure 29 to be
reminded that bivariate p.d.f.'s of the real world may require a mixture of
at least two generalized Rayleigh p.d.f.'s for an adequate representation
of the resulting scalar wind speeds. In Figure 29 it is obvious that 01#0
and w]fwz.
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GRAPHIC REPRESENTATION OF THE DISTRIBUTION
FUNCTION FOR WIND SPEED

The use of normal or log-normal probability paper to represent the
distribution function for wind speed always leads to confusion since in both
cases the Tow wind speeds are unduly distorted. In the following section a
representation for the Rayleigh distribution is given after which the use
of such a representation for mixtures of generalized Rayleigh or actual
wind speed distributions is taken up.

THE BASIC PLOTTING PAPER

Let p(w) be the p.d.f. for wind speed (parameters omitted). Then the
distribution function (D.F.) for wind speed is given by

w
P(w) = f p(x)dx (1)
6]

When p(w) is the generalized Rayleigh p.d.f., the corresponding D.F. cannot
be expressed in closed form. However, the expression for the Rayleigh dis-
tribution (wR=0) is handily given by

P(w) = 1-exp(-w2/202) (2)

which may be solved for w explicitly

w =0 \-2In(1-P) (3)

If we let y=w, x = \ (-2)In(1-P), then (3) becomes y=ox which in (x,y)
coordinates is the equation of a straight line with slope 0, The abscissa
may be marked in terms of x=0,1,2,--- (sometimes called "probits") or in
terms of the probability function P (in percent). The ordinate, y, has a
uniform scale in terms of wind speed and may be arbitrary to fit the data at
hand. The ordinate may also be taken as y=w/0 in which case it is dimension-
less.
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When one is concerned with the generalized Rayleigh D.F. the parameter
Wp (resultant mean wind speed) is also involved. Figure 36 illustrates the
case in which the ordinate is the non-dimensional speed w/og. The curves for
the ratio wR/o are labeled with values of this ratio. It is to be noted

that for wR=0 the curve concerned is a straight 1ine and that for wR>0 the
curves have a slope greater than 1 (org) at the origin, are concave downward,

and eventually become parallel to the curve for wR=0.

MIXTURES OF DISTRIBUTIONS

Consider the theoretical case in which the D.F. concerned corresponds
to a two component mixture of generalized Rayleigh D.F.'s.

P(w) = kP] (W;O]sw])'*'(]‘k)Pz(W;ostz) (4)

where the "R" of the resultant mean wind speed is dropped to prevent the
accumulation of multiple subscripts in the functions on the right. The two
extreme cases k=1, P=P], and k=0, P=P2 will then consist of curves from the
family represented in Figure 37. One cannot easily use a dimensionless
ordinate since the parameters o4 and Oy need not be the same. For values
of k in the range 0<k<1 one obtains a family of curves that will lie
between the curves for the extreme cases.

The plotting diagram can be used to estimate the parameters of a
mixture of generalized Rayleigh distributions only in a rather Timited
sense. (This is equally true for estimating the parameters of a mixture
of Gaussian distributions using a plot of data points on ordinary probability
paper.) Some of the special cases that are easily recognized are discussed
in the following paragraphs.

(a) Ordinary Rayleigh Distribution. Straight line with slope o.

(b) Generalized Rayleigh Distribution. See Figure 36 for typical
curves., Note that all of these curves are concave downward. They will not

be asymptotic to any straight 1ine through x=y=0.
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Figure 36. A Plotting Paper for Wind Speed Distributions. The abscissa is
shown in terms of both "probits" (0,1,2,...) and the probability. The
ordinate is the dimensionless ratio w/o. The curves are for the values of
the ratio w,/0 shown of a generalized Rayleigh D.F. The straight line
(labled 0) Borresponds to the Rayleigh D.F.
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Figure 37. A Plot of M1xtures of Two Ray]eigh Distributions. The
narameters are 0 =3, W =10, w Values of the m1x1ng ratio k

are shown bes1de the c&rrespgnd1ng gurves The ordinate is wind speed
in the same units as are used for the parameters Gys Wy sOpsW,.
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(c) Mixture of Two Ordinary Rayleigh Distributions. In this case the
curve lies in the wedge shaped area bounded by the lines y=ayx and y=0Xs
0<ol<d2, and the curve will be asymptot1c to the upper line y—dzx. Its
slope at the origin is given by [k/o +(1- k)/°2 ] which is within the angle

formed by the wedge at x=y=0. See Figure 37.

(d) Mixture of Ordinary Rayleigh and a Degenerate Rayleigh.
If one component of the mixture is degenerate at the origin then w1=0,

01=0, but 0<k. Then for w>0 one has for the mixture
= k+(1-k) [1-exp(-w2/2022)].
Then a bit of algebra gives (for x = \/:ET;Z?:FS, y=w) the relation
x2/0% = 14y2/0%%, n2=(-2)1n(1-k)

which is the equation of an hyperbola that opens to the right in standard
form. The x-intercept is at x=A (where the tangent is vertical) and the
asymptote (in the first quadrant) is the line y=ox. If the probability
scale (P) is plotted along the x-axis, the value of k corresponds to the
value of P where the curve meets the x-axis. See Figure 38.

(e) Other Mixtures. Other mixtures are iilusirated in Figures 39 and
40. In both of these the upper curve for k=0 is that for 02=]0, w2=10 and
corresponds to the curve A=wp/o=1 of Figure 36. When displayed alone this is
scarcely distinguished from a straight line. In practical problems it is

found that with minor adjustments of other parameters the value w2=0 gives
about the same results as far as the data fit is concerned. The fact that
the curves for wR/c>0 (as in Figure 36) are concave downward leads to a useful
rule of thumb: Set a straight-edge at the origin, (i) if the data points
Took like they could approach this straight line from below, it is possible
that the high-speed component of the mixture is an ordinary Rayleigh D.F.;
(ii) if the data points at lower wind speeds 1ie above the iine that seems

170



254
20
15
10 4
7 4 %
T ==T05 1.0 1.5 2.0 2.5
0 /-~ { 1
¥ ITII l l T | T I T l I l I l T ] I I I !l T 11 | 1
0 5 10 20 30 40 50 60 70 80 90 95

Figure 38. A Plot of a Mixture of a Rayleigh and a Degenerate Rayleiah

Distribution. The parameters are (0,0,10,0,k) with the value of k labeling :
the curves. The dashed curves are those for the mix (3,0,10,0,k) as in :
Figure 10. As 07> 0 the lower dashed straight 1ine approaches the axis :
of abscissae and Lrings the dashed part of the curves along to also coincide

with the x-axis.
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Figure 39. A Plot of a Mixture of a Rayleigh and a Generalized
Rayleigh Distribution. The parameters are (3,0,10,10,k) with the
values of k shown beside the corresponding curve. Compare the curve
for k=0 with that labeled 1 (= wR/o) in Figure 9.
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Figure 40. A Plot of a Mixture of Two Generalized Rayleigh Distributions.
The parameters are (5,5,10,10,k) where the values of k label the curves.
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to be an asymptote for the higher wind speed points or (iii) if the higher
wind speed points are asymptotic from below to a line that has as y-intercept
a value of w>0, then at least one component of the mixture is a generalized
Rayleigh D.F. This rule of thumb does not always work.
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MOMENTS OF WIND SPEED ABOUT ZERO

The moments of the wind speed about zero (the average of some power
of the wind speed) are defined by the relation

(-

W = fwap(w)dw (1)

(o]

where p(w) is the p.d.f. for the wind speed. When the p.d.f. for wind speed
is represented in terms of a mixture of different p.d.f.'s

p(w) = kp](w;o].w])+(1-k)p2(w;02.w2) , (2)
(or at least a mixture of p.d.f.'s with different parameters) then
Wi =k fw“p](w;ol,wl)dw’r(]-k) fw“pz(w;az,wz)dw (3)
0 o
If the p.d.f.'s concerned are those of the generalized Rayliegh distribution
plwsonmg) = (wotlexp [~(Pmug?)/262 | 1, (/) )
it is necessary to carry out the integration
1 =o'2exp(-wR2/202) fwa”exp(-w2/202)lo(wk/qz)dw (5)
o

This is easily done (using Abramowitz and Stegun (1964), 11.4.28, p.486)
with the result that

1= 292 1 @n)” exp(-wip/2 G4, 15 wlrzd)  (6a)
or

1 =202 G+ )" M(- /2, 1; -wnzlzoz) (6b)
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where M(a,b;x) is the comfluent hypergeometric function of x with parameters
a and b, and I (x) is the gamma function. The confluent hypergeometric
function is easily computed from the series

Wy = a a(a+l) x- . afa+1)(a+2) x
M(a,bix) = 1+ 5 x+ Gipery 27 * plbei(be2) 37 - (7)

It is readily seen that if a is an even integer, a=2n, then in (6b) a=3%=-n

and the series (7) terminates with the n'th term so that (7) reduces to a
polynomial. These are the Laguerre polynomials M(-n,l;x)=L(g)(x) of degree
n and order zero. In particular

L, x) =1

L, (0 (x) = 1-x

L, (0 (x) = 2-ax + x?)/2
L0 (x) = (6-18x + 9x? - x*)/6
etc.

The numerical coefficients in (6a) or (6b) are given by the table:

a 2a/2r_ (%‘ﬂ)

1 V72

2 2

3 1:3yn/2
4 8
5

6

1:3:5Vn/2
48

For the two-component mixture (3), the moments may then be written as
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e [2“/2r(a/2+1)] = ko M(-a/2, 13-w,%/20,%)
(8)
+ (l-k)oélM(-a/Z,l;-w22/2022)

The confluent hypergeometric function is easily computed using a hand-
held calculator with a modest memory. This series is always convergent for
negative values of the argument, as is the case in (8), and the error is
always less than the first term neglected and of opposite sign. Still, for
large values of sz/Zcz, a large number of terms may be required leading to
unreasonably long computing time. This problem is solved by using the

asymptotic expansion

M(a,bs-x}) = %"(b)/r(b“a)xa];]+a(1+a-b)/1.'x
(9)
+ a(a+1)(1+a-b)(2+a-b)/2!x2+---§

(See Rice, in Wax, 1954.)

The use of the confluent hypergeometric series to compute the moments ;5
from (8) and (9) provides the mean scalar wind speed, w, for o=1 and (using the
appropriate factors for air density) the mean kinetic energy from wz, for a=2,
and the mean wind power from w3, for a=3. When the parameters give a reasonably
good fit to the frequency function data, the results of this method should
be more reliable than using the frequency function data directly for this compu-
tation.

To obtain mean wind power for a particular device the function that des-

cribes its performance must be included in the integrand of (5) with the result
that a numerical quadrature is required.
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ANALYTICAL AND GEOMETRICAL PROPERTIES

In the following paragraphs, some analytical details concerning the
generalized Rayleigh p.d.f. are derived in detail. Some of these were
mentioned in Appendix A in a qualitative manner.

The generalized Rayleigh p.d.f. may be written as

2 2 2
p(wso,uwp) = (wjo2)em (W g )/20 Io(wwR/OZ) (1)

where w = scalar wind speed

Wp = mean resultant wind speed
o

component standard deviation of wind speed

The generalized Rayieigh p.d.f. for scalar wind speed is obtained exactly
if the bivariate wind component p.d.f. is circularly normal. If s=w/oc and
A=wR/c, then (1) becomes

p(ssA) =s-exp [-(52+A2)/2] I,(xs) (2)
in which ¢ has been used as a scaling factor.

MOST PROBABLE WIND SPEED

The most probable wind speed is that for which p(s,A) attains its
maximum as a function of s given A (or where p(w;o,wR) attains its maximum
in w given the parameters o,wp).

Differentiating (2) with respect to s one obtains

op/as = [#O(As)(1-52)+AsI](As)] exp [-(52+A2)/é]

and thence for the maximum one must solve the transcendental equation
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Io()\s)(]-sz)+AsI](As)=0 (3)

for s given the parameter value A. A workable procedure is to use an
iteration technique with (3) written in the form
- 1/2 (4)
Spt] = []+AsnI](Asn)/Io(Asn)]
An initial value, So is needed to start the iterations. The better
the starting value, the more quickly will the sequence, Sp n=1,2,---,
converge to the solution of (3). , Some manipulation of (3) using the

power series (for small As) and asymptotic series (for large As)
indicates that reasonable starting values are

. 17y 1-A2/2 , A<0.8
and
s, = (A+ N 2¢4%)/2, A>0.8

The most probable value of s as a function of A is shown as the central
curve in Figure 31 of Appendix B.

wn
]

Another method of computing the most probable value, s*, in terms of
A is to introduce the parameter £=As so that one has the two equations

S*

1+E1,(8)/1 /86 12

>
"

§/s*

in parametric form. For each assignment of the independent variable ¢, a
suitable pair s*,A is obtained. Suitable tables of 10(5) and I](é) are
contained in Abramowitz and Stegun (1964).

INFLECTION POINTS

The inflection points of (1) or (2) are those at which the second
derivative is zero. Differentiating (2) twice and setting the second
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derivative with respect to s equal to zero gives the relation
s*1_(As)-s? [310(As)+2xs1](xs)J + As [Aslo(l\s)ﬂl/)ts)} - 0 (5)

which is another transcendent equation to be solved for s given A. The
results are illustrated in Figure 31 of Appendix B. One may also write (5)
in terms of the variable &é=As. Then if we let B = 611(6)/10(5), (5) becomes

st - s%(3428) + (£%48) = 0

and

A= E/s

so that the above may be considered as expressions for s,A in terms of the
parameter £. The quartic in s will have two positive roots corresponding
to the left and right inflection points.

For £=0, the quartic has the root \/S-for the righthand inflection
point and a double root at s=0.

One may write the quartic in s as a quartic in A (and the parameter £)

420262 (3+2B) + 2} (£24B)

n
o

or
X (14B/£2)- )2 (3+28) +£2

"
o

Then for §-0, note that B/52ﬁ>]/2, B0 so that in the limit for £=0 one
has

N (3/2)-x%3 = 0
which has roots A2=0,2. The lefthand inflection point is then at s=0,
A=\/E{ On the range 0<A<\J§ the lefthand inflection point is at s=0.

For A>4/2 both left and right inflection points are present (as shown
in Figure 31 of Appendix B).
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THE SHARPNESS OF THE MAXIMUM

The peakedness of the p.d.f. at the point of most probable scalar wind
speed may be measured in terms of the parabolic approximation at that point.
If one expands the p.d.f. in a power series about the most probable scalar
wind speed, then

p(s,A) = p(s*,A)+

Q Q>
wn nNo
—
w
I
w
*
o
N
~
N
+
H
1
1

which may be written as

p(S’A) = p(S*ik) []'(S-S*)Z/ZLZ-I-—-_]
. . 2 . .
in which L is given by

12 = - [p/(azp/asz)] o*

and L is the half width of the parabola that approximates the p.d.f. at its
maximum measured at half the height of the maximum.

Since 32p/ds? = (S +X)/2 §s410()\s)-52 [310(As)+2)tsI]()\s)]
+As [ASIO(AS)+I](AS)] §

then

A A
p/(azp/asz) = 5354-52 [3+2A ]I( S)/Io.( SJ)] (As) + sl (As)/Io(As)f -]

Evaluating AsIl(As)/IO(As) at s<s* from (3) one has As*Il(As*)/IO(As*) = s*2-1
so that

L = of(s* +]/s*2 2)]/2
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For A=0, s*=1 and L=0/\/E. For large A\, note that s* approaches X in such

a way that s*zglzﬂs*. Then

L ~¢ [(1/2+As*)/(5/4+/\s*)] 1/2

whence for As*»>» then L= o. Thus, the half width of the maximnum at the half

height has a small range and lies in the interval 0.7070<L<0o.

ASYMPTOTIC FORM OF THE P.D.F.

If the parameter product As is large, then IO()\s) in (2) may be
replaced by its asymptotic form

AS 1 1-9 1:.9.25
I (As) =~ \:e /\/Zm\s] {H + + LT S
0 8As  2'(8As)? )3

(8\s 3!(8As

Using only the first factor on the right above in (2) one obtains

p(s,A) = 4/ s/2m\ exp [—(s-/\)Z/Z} (6)

Since the factor \/s/A = \/w/wR varies slowly compared with the exponential:
near s=A, it is evident that for large As, the p.d.f. is very much like the
ordinary Gaussian p.d.f. with mean value A and unit variance.

VALUES OF HR’ o FOR GIVEN MOST PROBABLE SPEED W*

It is convenient to know the functional relationship between Wp and ©
for a given value of the most probable speed w*. Two extreme cases may be
set down at once. If wR=0 (or A=0) and 0 #0, it then follows from (3) (since
IO(O)=1, I](0)=O) that s=1, i.e., that o=w*. From (6) it is readily seen
that for large values of the product As, the maximum of the p.d.f. is near
s=A for small values of o. This then means that for c>0 one has w*=wR.

The functional relation between wp and o for a given w* follows
immediately from the solution of (3). Let this solution be s*=w*/o for
which A=wp/0. Then A=(wR/w*)/(o/w*) and so (o/w*)=1/s* and wR/w*=/\/s*.
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Thus, given X\, the computation of s* leads to the ratios o/w* and wR/w*.
These values are shown in Figure 41.

SERIES EXPANSION FOR SMALL s

The behavior of the p.d.f. for small values of s is conveniently given
by the series expansion about s=0. When e /2 and IO(As) are expanded in
series and the product formed, one obtains

2
p(s,A) = e~ M/2 [§+(A2-2)53/4+(x4-8A2-8)s5/(2:)242

+(A6-18A4+72x2-48)s7/(3:)243+---] ,

Differential Equation

The generalized Rayleigh p.d.f. contains the factor IO(AS), A=wR/o,
s=w/c and since Io'(x) = I](x) and In'(x) = In_](x)-(n/x)In(x) one may
eliminate IO(AS) and I](As) from the p.d.f. and its first two derivatives
with respect to s to obtain the linear homogeneous differential equation

s2(5%p/3s2)+s(252-1) (3 p/as)+(1+s7-¥s?)p = 0
or in terms of the original variables

o4w2(azp/aw2)+02w(2w2~oz)(ap/aW)+(o4+w4-wR2w2)p = 0.
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Figure 41. The Relation Between Wp and o for a Given Value of
the Most Probable Wind Speed, w*. The labled points on
the curve indicate the values of A=wR/c.
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EXPRESSIONS FOR THE GENERALIZED RAYLEIGH D.F.

Scalar wind speed data is usually tabulated in terms of the "frequency

function;" i.e., the fraction of occurrences (usually in percent) of wind
speed in a system of class intervals. The frequency function is related to
the probability density function (p.d.f.) in that it is equal to the inte-
gral of the p.d.f. over the range of each class interval. If (wi_], Wi)
represents a class interval, fithe frequency function, and p(w) the p.d.f.,
then

j

w
;= f
w.

p(w)dw
i-1

it then follows that

fil(wi-wi_]) = p(¢), Wi 1S ESwi
so that the p.d.f. at the point & is the frequency function divided by the

width of the class interval. The difficulty here lies in the fact that the
location of & on the range (wi_], wi) is not known. A1l that is explicitly
known is that such a point exists, in fact there may be several such points.

In the case of data on the scalar wind speed the nominal choice as 5~(w{+w._])/2

i
turns out to be rather poor in general.

One can do a little better by considering the distribution function
(D.F.) rather than the p.d.f. The D.F. is defined as

Wi
P(wi) = Jr p(w)dw
0

and is the probability that the scalar speed of the wind is less than (or
equal to) the value W.. If the wind speed data is given in terms of the
frequency function, fi’ i=1,---,n, over class intervals (wi_], wi), then
one has

i "
2 fio= [ plwdw = Plwy)s
k=1 0
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i.e., the D.F. at the class interval division point W is the sum of the
frequency function values over all class intervals with upper end points
less than or equal to W The values of W; can be specified with reasonable
accuracy.

In the case of the generalized Rayleigh p.d.f., the D.F. is given by
the expression )

o 2, 2y,, 2
P(w;O;wR) = u/‘(v/oz)e'(v WR )/ 20 Io(va/oz)dv (1)
0

This integral cannot be evaluated explicitly in terms of a finite number of
elementary functions.

SERIES EXPANSIONS

If one makes the substitution x=w2/202, y=wR2/202 in (1), expands the
factor Io(-) in infinite series, and integrates term by term, the resulting
infinite series for P(x,y) becomes

© n
1-P(x,y) = &) S (y/n2) S (xk/ke) (2)
n=0 k=0

In the form (2) the series is in terms of increasing powers of y and y"/n!
has as coefficient a polynomial of n'th degree in x. To obtain the power
series

P(x,y) = a x"
nz=:o"

where the coefficients a are functions of y, one merely expands (2) and
collects terms in like powers of x after converting eX to a power series
in x and multiplying the two. The end result is the expression

[~ n-1
P(y) = nZ=]<-1)""[%(-1)"(";’“%/“)] (x"/n?) (3)
or showing the leading terms
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P(x,y) = eV ix-(1-y)x2/2+(1-2y+y2/2)x3/6

(3a)

~(1-3y+y2/3-y3/6)x* 128+ --

and in terms of the original varijable and parameters
P(ws owp) = exp(-wy2/20°) 2w2/202-(1-wP2/202)w4/804 )
' 3b

+(1-wp /P /80% w8 1485- (1- 3w s 2 v 11207 w8 14805 B 38467+~

In Appendix D it was noted that the diagram with coordinates
X = \/-ZIn(1-P » y=w was useful for a graphical representation of the distri-
bution function. The series expansion permits the determination of the
shape of the curve p=p(w) for small values of w. If, however, one has a
two-component mixture of distribution functions, one must combine these
before taking the logarithm of (1-P). Thus, for the mixture

P = kP] (w;O.I s Wy )+(]-k)P2(w;q2,w2)
one rnust form the series

1-P

k(1-P])+(1-k)(]-P2)

-y -y
1- [ke .yc]2+(1—k)e 2/0]2] (WZ/Z)

+

-y -y
k(e Vo 10 (e de 2oy (WP r2) 284

Then

-y 5
\-21n(1-P) = [ke Ve, 2+ (1-k)e 2/022]”2w+---

where only the first power term is included. The slope of the curve repre-
senting the mixture at w=0 is then given bym (if y=mx in the diagram) where
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m = (k/olz)exp(-w]2/2012)+ [(l-k)/ozz] exp(-w22/2022) -]/2.
ASYMPTOTIC EXPRESSIONS
In terms of the variables s=w/g, X=wR/o one may write
_ 2.2 &, n
P(s,\) = exp [—(s + )/2] 2 (s/x)71 (xs) (4)
and B
- 2,2 > n
1P(s,2) = exp [-(s%+X)/2] 30 (/)1 as) (5)

n=0
The relation (4) is given by Rice (see Wax, 1954). The asymptotic expan-
sion for In(z) is (Abramowitz and Stegun, 1964)

I (z)~(e%/2n2) g1-(4n2-1)/82+(4n2-1)(4n2-9)/2.'(8z)2
(6)
+(4n2-])(4n2-9)(4n2-25)/3!(82)3+—--;

Using only the first term of the series factor of (6) in (4) and (5) leads
to the asymptotic approximations for As>1, s<A

Plen)~(s/20) /2 fexo [-(s-072] | 105 (72)
and for As>1, A<s
25, 1-(5/2m01 2 fexp [ (21772 | /t5-0). (7)
Rice (see Wax, 1954, p. 241) gives the form
P(s,a) = (1/2) g1+erf[(s-)\)/2]%

2z 7)) zexp [—(s-,\)z/Z]Hl-(s-)\)/4a+ [1+(s-)\)2:|/8a2§

which is valid for As>1 and A>>'s-Al.

(8)
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THE DERIVATIVES

Termwise differentiation of (2) gives the expressions

exp[ X+y)] Z (xy)"/n!)?
-exp[ x+y] Z xnﬂ N/ (n+1)

which may be written in terms of the modified Bessel function as

aP/ax

9P/dy

3P/3x = exp [—(x+y)] I(24/xy)
and
3/3y = -(\ x/y)exp {-(Xtv)] I,(2 4/ xy)

In terms of the original variables, note that

oP/ow = (aP/ax)(ax/aw)+(3P/3y)(dy/3w)
oP/3c = (9P/3x)(3x/30)+(5P/dy)(dy/30)
P/BwR = (BP/BX)(BX/BWR)+(8P/3y)(3y/8wR)

2

and since x=w2/20 . y=wR2/202, then

OX/ow = w/02 = 2X/W, 9x/30 = -w2/03 = -2x/0, Bx/awR =0

dy/aw = 0, dy/oo = -sz/o3 = -2y/o, dy/owp = wR/02 = 2y/wR

so that
oP/3w = (2/w)(x3P/3x)

oP/30 = (-2/0) [xaP/3x+y8P/ay]

8P/3wR

(2/wg) (yaP/3y)
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DETERMINATION OF THE PARAMETERS

METHOD OF NON-LINEAR LEAST SQUARES

The parameters Oys Wis Ops Wps k of the two component mixture of dis-
tribution functions (D.F.s)

P(ws-) = kPl(w;Ol,w1)+(1-k)PZ(w;oz,wz) (1)

where Pi(w;(ﬁ’wi)’ i=1,2 are generalized Rayleigh D.F.s was carried out
using the method of least squares. The symbol P(w;-) is used to indicate
dependence on parameters not explicitly listed. Let the data given
consist of the sequence of wind speeds Was i=1,---,n and let Po(wi) consist
of the values of the probability that the wind speed is less than W Then
the sum of the squares of the errors for given values of the parameters is
given by ‘

n
Z[Po(wj)'P(wj;')]z = F(Ol’wl’OZ’ka) (2)
J=1

which is a function of the five parameters concerned.

It is required that values of the parameters be determined that mini-
mize this function. There are many procedures for doing this. Nash (1979),
p. 118-209, is devoted to this subject and gives references to the more
important original papers. The method used here is a combination of the
Newton-Raphson method and the method of steepest descent (see Nash (1979),
p. 175, Algorithm 23). An outline of the technique is given here to
clarify the steps required in the computer program (Appendix J).

The function F(cﬁ’wl’cz’WZ’k) in (2) will be a minimum if the five
partial derivatives with respect to the parameters are set equal to zero.
This gives five equations which in theory provide the required solution,
but which cannot be solved by elementary methods. To simplify the situa-
tion, P(w.;-) in (2) is approximated by estimating the parameters, say

GI,QI,QZ,WZ,Q, and expanding as a series through the linear terms
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Plw,3-) = PJ-0+(3PJ./301)0 Ao

J +-_-+(an/ak)o Ak+--- (3)

1
where P.0 is the function evaluated at wind speed wj using the estimates
and (an/aol)o,--- are the partial derivatives evaluated in the same way.
The increments z&ol,——-, Ak are unknown parameter increments to be found in
anticipation that 01=ol+z&ol,---,k=k+z3k when substituted in (2) will give
a smaller value of the sum of the squares of the errors.

To shorten the notation, let x1= Aol, x2=Aw1, X3= AOZ’ x4=Aw2, Xg= Ak

and let (BPJ./_BOI)o =P (an/Bw])0 = (BPj/BOQ) = P3j,(8Pj/aw2) =P

15° Pose 45°

(an/ak)0 - st so that (2) becomes

n
2 _
;E%{[%o(wj)-Pjo] P]Jx1 PZJXZ P3Jx3 P4Jx4 PSJXS} = G(x],xz,--,xs) (4)
J:

which is to be minimized in X1s=="sXge This is now a linear problem for
which the solution process is elementary. The partial derivatives with
respect to the x's are easily obtained with the result that on being set

equal to zero one has five linear equations

2)
ZPU X +(ZP]J )X +.._+(ZP]J 53 = Z[Po(wj)-PjoJ PU.

(2PosP13 (X Pys *""'(ZPZJ 550%5 = 2. | Polj)-Pyg [Py (5)
J J

(2_PssPyi)x; *‘Zsz 25X +"’+(ZPsz)x5 =2 PolW3)=P3q | Pss
]

which may be written as

5
:E:aijxj =945 1= 1,---,5 (6)
i=1

One should note that in using the empirical distribution function of (1)
that there are some simplifications (as far as computation is concerned

but not in writing the expressions). Then
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]

2 2
k }3“ (3P /ao) ay, =k %;(aq/ao-l)(apl/awl)j

(7)
2 2
ay, » 3y = K ZJ:(SP]/awl) ;
(]-k)ZZ(aP /36.)%. , a,, = 22 3P,/30,) (3P,,/5w,,)
. 2°°%27 5 0 934 2/ 23
2 2
234 s A = ZJ:( 2/aw
J J (9)
k(]-k)JZ_(aPl/awl)(apz/aoz)j, 2y = k(]—k)%;(BPl/awl)(aPz/awz)j
813> 347 T A1y 83) T 853, 34y T Ay, (10)
a5y = k22 (Py=P,)3P1/30))j, a5 = &g = k20 (P1=P,) (3P, /3w, ) j
J (11)
I (1-k)§; (Py-P,) (3P,/30,);, 845 = 85, = (]-k)Z(P]-PZ)(aPz/awz)j
2
J

k2 (P-P)(2P; /30, ), g, = k}: (P,=P)(3P1 /3w, )j
J

(1- k)Z(P -P){( 3P,/da, )i, gg = (1-k) Z(P -P) (apz/aw )i (13)
J

2. (Py=P)(P{-P,)j
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The computation of the increments X1s-==»Xg Was carried out using a
modification of Nash (1979) which in turn is based on a method of Marquardt
(see Nash 1979). This involves a modification of the diagonal terms of the
matrix of coefficients of (6) to

a5 (14A)+ar

where a=1 is used to avoid singularity of the equations and A is Marquardt's
parameter, initially taken as 0.0001. For A=0 the method corresponds to the
Newton-Raphson technique; for relative large )\ it approaches the method of
steepest descent. If, at the end of an iteration step the sum of square

has decreased, the Marquardt parameter X is decreased to 0.4\ for the next
step (in which the coefficients aij’gi of (6) are reevaluated). If the sum
of squares has not decreased the Marquardt parameter is increased to 10A

and a solution obtained without recomputation of the coefficients. Iteration
was stopped when the parameter increments were small (0.0001).

A further modification was made to take advantage of the fact that this
particular least squares problem is linear in the mixing ratio k. Given the
parameter values O15W1s0p5Wyp the best value of k is readily obtained from

k= 3 (Py-P)(Py-P,)/ > (Py-P,)° (14)
J J
where in (14) the values of P, are the observed values of the distribution
function Po(wj) and those of P are computed at W5 from (1). The values of
P] and P2 are those of the individal terms on the right of (1).

INITIAL ESTIMATES

The direct minimization of the sum of the squares of the errors
described in the preceding section requires as input information reasonable
estimates of the parameters O sWps0ysW,.  No estimate for k is required
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in general since the minimization problem is linear in k (i.e., given 9>

Wis Ops W, @ best k may be obtained easily from (14)).

The problem of the initial estimates of the parameters may be handled
graphically using techniques outlined in Appendix D (if only a few cases are
to be investigated) or it may be handled analytically. This later case is
described in this section.

A basic assumption is made to simplify the work required: that one may
estimate the parameters 1 Wy that determine the low wind speed shape of
the distribution function from low wind speed data ignoring the effect of
Ops Wy and conversely that the parameters Opy W, May be determined from the
high wind speed data ignoring the effect of the low wind speed parameters
Ops Wye This assumption is not necessarily true, but seems to provide a good
operating basis that straightens itself out in subsequent steps of the
computations.

Another aspect of the initial estimate problem lies in the fact that
one must be prepared to handle several special cases that may lead to simple
satisfactory solutions, simple solutions of sufficient accuracy being
preferred to complex solutions of only a little more accuracy.

ESTIMATION OF THE HIGH WIND SPEED PARAMETERS

The estimation of the high wind speed parameters is carried out on a
highly simplified basis from the tabulated values of the frequency function.
In general the speed ranges in the various intervals is not uniform, but the
range changes between adjacent intervals at the high speed end is relatively
small so that the estimates are sufficiently accurate. The frequency function
is checked starting at the high speed end until a maximum is reached or
until two ranges show the same value. The wind speed at the upper end of
such an interval is taken as an estimate of W,. The estimate of 9, is based
on the assumption that the decrease in the frequency function is Gaussian
toward the higher wind speeds, i.e.,
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f(w) = f(wz)exp[{w~w2)2/202%] (1)

Then if w01>w2 is the next higher wind speed tabulated and f0 the tabulated
frequency function, f0=f(w0), f2=f(w2), it follows from (1) that

g, = (wo—wﬂ,@/Zln(fz/fo) (2)

ESTIMATION OF THE LOW WIND SPEED PARAMETERS

The low wind speed parameters are estimated from the first three points
of the D.F. using the infinite series expansion of this function about zero
speed
P(w) = (e7Y/20%)we- [(1-y)e'y/804] Whe [(1-2y+y2/2)e’y/4806] Wi-ae  (5)

where _y=wR2/202 (see Appendix G).

Degenerate Case

The first test is made for the presence of the degenerate case
P(w) = k+(1-k)P(w;G],w]) in which case (5) is used for P(w;O],w1). In this
case the D.F. is fitted to the pdlynomial

I (6)

P(w) = A+Bw
and the parameters identified with the coefficients using
A=k, B=(1-k)e™Y/262, C=-(1-k) [(1-y)e‘y/804] (7)
Obviously, for a proper degenerate case 0<A<1 and B >0 so the degenerate
case is ruled out if these inequalities are not satisfied. Also one notes

that

[BZ + 2(1-A)C] /B2 = 1-(1-y)e+y (8)
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is independent of k and is positive for all y. If the expression on the
left is positive, this relation is solved for y. Then

ay = 0.5 [(1-y)B/(-C)] 1/2
d Od\[E;

are used as the parameters for the degenerate case. If the left side of

i

(9a)

W

(8) is not positive it is assumed that y=0 and the estimates

0.5 \/ 8/(-C)

9
(9b)

are used,

NON-DEGENERATE LOW WIND SPEED ESTIMATES

The non-degenerate low wind speed parameter estimated are made by
letting

P(w)/w2 = A+BWZ + Cw” (10)
to the first three data points and using
A=eY202, B = -(1-y)eY/80%, ¢ = (1-2y+y%/2)e Y /4800 (1)

If A>0 and B#0 it follows that

2 2

RZ = (2B2-3AC)/R%

= Y2192, y = wb/ad (12)
so that if R2:>O then there are two possible positive roots for y. For

B <0, y=R/(R+1) while for B>0 then y=R/(R-1), so that one must have R>1
for y>0 in this case. One then obtains two estimates for Oys W given by
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Q
"

1 A(1-y)/(-B) (13)

o \[75; (14)

depending on the selection of the root for y.

"

Another expression that may be used is

2

Q = (A%+28) /A2

= 1-(1-y)e¥ (15)

In this case if Q>0 the transcendental relation (15) may be easily solved

for y with the resulting estimates for qys ¥

\/ ey /2A (16)
o, Yy (17)

There are then three possible non-degenerate estimates of the para-
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meters 0ps W for the low wind speeds. Of these, usually only two occur
in any particular case and occasionally only one.

The special case for w]=0, o]fO, is of considerable importance and is
always tested. In this case one uses y=0 in (11) from which 0]=(1/2)
'V A/(-B) or °]=(]/2)'V (-B)/C or both depending on the signs of A,B,C and
whether B#0 and/or C#0. Mlhere both exist the average value is used as the
estimate of oy

In the above parameter estimates from (10) only the first three data
points are used. Data irregularities in this regfon are frequent and may
easily Tead to no valid parameter estimates. This is particularly the case
in which P(wi), Wi< Wy< Wy is very small. In this event one may solve

2

P/wl = A+Bw (18)
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for A and B using w2 and Ws. If this yields A>0 and Q>0 from (15) the

estimates (16) and (17) remain valid.

If the data is so irregular that even this fails to give a reasonable
estimate of the parameters O., w.,, then one may use
A= [P(w])/w12+P(w2)/w22+P(w3)/w32:]/3 to obtain the special case estimate

) V 1/2A (19)

Wy = 0 (20)

of

The following flow charts indicate the logic in making the various
initial estimates. In most cases it has been found that all of the valid
initial estimates should be tried. This is due to the fact that the least
squares solution process does not necessarily converge to a unique minimum.
In fact it is not infrequent that given two not widely different initial
estimates one (or even both) may not converge to a reasonable minimum at
all.
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HIGH END
11=1241, W1=W(11), F1=FO(I1)
W2=W(12), F2=FO(12), F1<F2=Max,
oH=(W1-W2)/SQRT(2.%ALOG(F2/F1))
AT

DEGENERATE

P = A+Bwlecw®

Yes/ a<o No No

Yes

A

Y Q =[BZ+ZC(1-A)}/J

‘ [q = 1-01-y)eY]
: !
o = VB(1-y)/(-C)/2 ap= (1/2)VB/(<C)
Wp= SGDVZy Wo= 0
I ]
[
0, 0, Ops Wps k#0
—
(CONT.)

Figure 42. Flow Chart for Parameter Estimation, High
Speed Estimate and Degenerate Case
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LOW ED
P/wl = A+BwlrCW] L=0
- ~ ‘No es @ No
Pwe = Al | —~— ﬁ
L=1,620 (w,,wy) [ #2- (282 30087

No Yes 1
@ o=(A2+T3)/A2 i 1 Y‘?%Y

o, =VA(T-y)/(-8)

W = o2y
f

GLoWLs Ops Wips k

l : aL,wL,oH,wH,k J
cL,wL,oH,wH,k Y

] op =0, =0
AB<0, c]=(1/2)\/A/(1-B)
BC<0, 02=\/(1-B)/6C
o]=0, 02=0, STOP
c]=0, 02>0. °L=°2

%m,%m,qw]

9,>0, o, O, °L=(°1+°2)/2
|

°L'0'°H'"H'k

Figure 43. Flow Chart for Parameter Estimation, Non-degenerate Cases
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COMPUTER PROGRAM




COIMPUTER PROGRAM

The main program, PARAMS, is listed beginning on page 210. The sub-
routines are listed as PROB, p. 217; CHOLl, p. 219; CHOLZ2, p. 220; KBEST,
p. 221; MARQ, p. 222, COEF, p. 224; SOLV, p. 225; ROOT, p. 225. These are
discussed under the headings indicated in the following sections.

PROGRAH PARAIHS

The main program (1) accepts a variety of housekeeping parameters, and
(2) the input frequency function table. This information is (3) organized
into a standard format and (4) output for reference. It then either (5)
accepts initial estimates of the parameters or (6) computes such estimates
from the frequency function. The initial estimates are then (7) subjected
to an iteration procedure from which final values that minimize the sum of
the squares of the errors are obtained.

The data input requires housekeeping procedures since data from various
sources differed widely one from another. The basic inputs for program
control are listed with the format statement number under which they are
read:

IWE (1002) skip error details

0]
- O
-

= 1, write error details

IMD (1002) = 0, skip iteration parameters below
= 1, write IT = iteration number, SS = sum of squares,
EMQ = Marquardt parameter
= 2, write also G(I) = righthand term of normal equation
(modified) and X(I) = computed parameter increments

(I = 1”‘"‘95)
IUI (1002) = wind speed input units, 1=mph, 2=kts, 3=mps
IUDO (1002) = wind speed output units, 1=mph, 2=kts, 3=mps
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IMI (1002) = anemometer height input, 1=ft, 2=nm

IMMO (1002) = anemometer height output, 1=ft, 2=m

EMQQ (1024)

Marquardt parameter

smallest frequency function value used in high

PX (1024)
end parameter estimates

M (2004) = number of wind speeds in the frequency function table

W(I), I=1, M, (1004) = wind speed frequency function table (the
speed at the high end of each class interval)

MS (2004) = number of stations in a batch (used where several stations
have identified frequency function table formats)

ISTN (1005) = station name

JA, JB, JD (7000) JD = 1,2,3 to assign hour, month, and level

MB (7000) = number of frequency function tables in a batch

NC (2005) = index for level, month, hour

N (2005) = number of items in the frequency function table

CT (2005) = number of cases tabulated (100 if frequency function
given in percent) CT=0 leaves frequency function table
unchanged

NE (2005) = O to use last parameter values as estimates for next

frequency function table, =-1 to compute initial parameter
estimates
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Fo(I), I=1, N, (1007) = input frequency function table

The first step of the computations consists of checking the frequency
function table and where necessary inserting the frequency of calms in the
Towest wind speed class interval. At the same time distribution function
values are calculated. The whole is then printed out for reference and
checking.

The initial parameter estimates (XE(I), I=1,5) are then input or
initial estimates are computed from the values of the probability density
function {or frequency function) and the final estimates calculated by
jteration in the subroutine MARQ. The details of calculating the initial
estimates are covered in Appendix H.

SUBROUTINES

The subroutines are discussed in the order in which they appear in the
program listing.

PROB(-) -- This subroutine is used to compute the generalized Rayleigh
distribution function and its derivatives with respect to the parameters
at the given wind speed points.

CHOL1(-) -- The lower triangular matrix corresponding to the symmetric
matrix input is computed.

CHOL2(-) -~ The triangular matrix from CHOL1(-) is used to solve the
equations for the increments to be added to the parameter estimates to
obtain a smaller sum of squares of the errors.

KBEST(-)-- This subroutine serves two functions. It uses the most

recent estimates of the first four parameters to get the value of k=x(5)
that yields the smallest sum of squares of the errors, (x(I), I=1,4) being
fixed. It also is used to compute the sum of squares of the errors.
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MARQ(-) -- This subroutine could have been included as a part of the
main program. It is used to control the iteration process. The method
used is described in Nash (1979), Algorithm 23, p. 175. Some inconsequen-
tial modifications have been made so that iterations are terminated when
the required accuracy is obtained. Otherwise they would continue till the
results are comparable to the machine accuracy. This shortened the iteration
process considerably.

COEF(-) -- The matrix of coefficients and vector of non-homogeneous

terms is calculated for new parameter estimates.

SOLV(-) -- Solves a set of three equations used in the computation of
parameter estimates.

ROOT(-) -- Solves a transcendental equation to obtain the root used in
the computation of parameter estimates.
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FROGRAM PARAMS
C DETERMINE UP TO S5 PARAMETERS OF WIND SFEED DISTRIBRUTION FUNCTION
c FROM FREQUENCY TAELE DATA
INTEGER DEVICE
LOGICAL CHAR(1)sISTN(16)»IFILE(11)
DIMENSION FACT(3s3)sUN(2)yVEL(3)sEL1(S)»yFO(20)yEE(20) »STD(S) » XE(D)
X sFAC2(252) s WW(R0) sFF(20)+Z(5)»TT(3)
COMMON/ERL1/NsW(20)sFO(20) yX(5)/BK2/AC15) »G(5)
COMMON/DEVICE/DEVICE
DATA FI/3,.141596/yFACT/1.50.868450.4470551.151651.90.5148»
*¥2.236951.942509 1./ yUN/2HF Ty 1HM/ » VEL /3HMFHy BHKTS s 3BHMFS/
*¥sFAC2/1.0+3.28085,0.3048,1.0/
c READNI/WRITE CONTROLS. E1(I)sI=1,5,=ROUNID FOR INCREMENTS
CALL OFEN(6y "WINDDATADAT " »2)
WRITE(3y9999)
READ(3y?991)DEVICE
9999 FORMAT(’ ENTER DEVICE NO. FOR OUTFUT - CRT=3,FRINTER=2yLISKE=10 '
9991 FORMAT(IZ2)
CALL OFEN(10s "DATAFILEDAT’ »2)
READ(6,1102)IFILE
1102 FORMAT(11A1)
CHAR(1)=IFILE(1)
IF(CHAR(1).EQ.“0)6G0 TO 1
CALL OFEN(7sIFILEs2)
1 READ(65,1000) (E1(I)»I=1+5)
1000 FORMAT(SE10.1)
WRITE(DEVICE»1001)(E1(I)»I=1+5)
1001 FORMAT(’ INCREMENT TESTS:’»5E10.1)
IWE=0sSKIF# =1yWRITE ERROR DETAILS
IWD=0sSKIFs =1yWRITE ITsSS,EMQi=2 WRITE ALSO G(I)sX(I)
IUI=UNITS INFUT» IUO=UNTS OQUTFUT,y 1=MFHs, 2=KTSs 3=MFS
MAX=MAXIMUM ITERATIONS
IMI»IMMOF INFUT/0UTPUT FOR HEIGHTs 1=FT,2=M
READN(651002)IWE IWDy TUT» TUO Y IMI » IMMO»MAX
1002 FORMAT(715)
ISAVE=IUI
WRITE(DEVICE»1003)IWE»IWD,IUI»IUOy IMIy IMMOYMAX
1003 FORMAT(’ IWE =7»I2y3Xy IWD ='yI2s3Xy IUI ='y12y3X
1 “JUD =7512y3Xs IMI =/912,3Xs " IMMO ='912y3Xy " MAX ='»1I3+3Xr//)

oo

C EMQAR=SCALE FACTOR IN MARQ, J2=NO. FPTS. IN HI END ESTIMATE
C PX =SMALLEST FF VALUE IN HI END ESTIMATES
READ(671024)EMAQPX

1024 FORMAT(2(E10.1))
WRITE(DEVICE»1026)EMQQyFX

1026 FORMAT(’ EMQ =’sEB8.,195Xs'FX ="yF6.4)

896 REAN(65y2004)M

2004 FORMAT(IS)
IF(M.EQ.0)STOP

c WIND SFEED AT DIVISIONS OF F-TABLE

READ(651004) (W(I) s I=1yM)

1004 FORMAT(F7.2)
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20

898

oo oo

1005

7000

200

aonoaaon

20095

r3

2006

1006

1007

EB=FACT(IUO,IUI)

DO 20 I=1,yM

W(I)=W(I)XEB

MS=NO. OF STATIONS IN ERATCH

REALDCSy2004)MS

MT=0

MT=MT+1

IF(MT.GT.MS)G0 TO 896

DATA ILDENTIFICATION

ISTN=STATION INDEX

Jih=1 GETS JA=HRy JB=MOy JJC=L VL

JD=2 GETS JA=HRy» JC=M0y JE=]_VL

JD=3 GETS JC=HRy JA=MOs JE=L VL

ME=NUMEROF F-TAELES TO EBE FROCESSED IN A RBRATCH
READ(61005)ISTN

FORMAT(16A1)

READNCL27000)JAy JEy JDy MB

FORMAT(41%5)

RETURN FOINT FOR EATCH

MM=0

MM=MM+1

IF(MM.GT.MEB)GO TO 898

JC=LVLy MOy HR» INDEX

N=NQ, OF DATA ITEMS IN F-TAELE ,
CT=TOTAL NO. OF CASES IN F-TABRLE OR 100. IN FPERCENT
CT=0 LEAVES F-TAELE UNCHANGED

NE=0 USES LAST X(I)yI=1+5y AS ESTIMATES FOR NEXT F-TARLE
NE=-1y COMFUTES ESTIMATES
REALN(62005)JCsNyCTsNE

FORMAT(2IS,F5.1+1I3)

GO TO(2v456)y 4D

IHR=JA

IMO=JR

LVL=JC

GO TO 8

IHR=JA

IMO=JC

LVL=JR

GO TO 8

IHR=JC

IMO=JA

LVL=JR

WRITE(DEVICE»2006)

FORMAT(//777)
LVUL=IFIX(FLOAT(LVL)XFAC2(IMI»IMMO))
WRITE(3y1008) (ISTN(NN) yNN=2y14)yIHRy IMOYLVL
WRITEC(LNEVICEy1006) (ISTN(NN) yNN=2y16)» IHRy IMOsLVL

FORMAT(‘OISTN = ‘915A192Xy 'HR =791I392Xs 'MO =/91I352XsLVUL =/+1I3)

READ(6y1007)(FO(I)»I=1sN)
FORMAT(F7.2)
IF(CT.EQ,0.)G0 TO 13
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14

1008

1009

1010

CHECKS SUMSs ADJUSTS FOR CALMS
SUM=0.
DO 10 I=1sN
SUM=SUM+FO(I)
CONTINUE '
IF(CT.LT,.SUM)CT=SUM
FO(1)=FO(1)>+CT-SUM
E=100./CT
Do 12 I=1sN
FOCI)=FOC(I)XR
CONTINUE
GETS DISTRIEUTION FUNCTION
FO(1)=FO(1)
DO 14 I=2yN
I1=1-1
FOCI)=FOCI1)+FOCI)
CONTINUE
N1=N
IF(N.GE.B)N1=8
WRITE(DEVICEy1008)VEL(IUO)» (W(I)sI=15N1)
FORMAT(’ Wy ‘sA39y2X+8F7.2)
WRITE(DEVICE,1009)(FD(I)>yI=1yN1)
WRITE(3y1009)(FO(I)sI=1sN1)
FORMAT(’ F(Z)’ 24X98F7.2)
WRITE(DEVICE»1010)(FOCI)»yI=1sN1)
WRITE(3+10103(FOC(I)»I=1yN1)
FORMAT(’ F(X)’»4X»8F7.2/)
IF(N.LE.B8)GO TO 16
N1=9
N2=N
IF(N.GT+16)N2=16
WRITE(DEVICE»1008)VEL(IUD)y (W(I)y»yI=N1yN2)
WRITE(DEVICE1009)(FO(I)yI=N1yN2)
WRITE(DEVICE»1010)(FO(I)»I=N1yN2)
IF(N.LE.146)G0 TO 16
N1=17
WRITE(DEVICEy1008)VEL(IUD) »(W(I)yI=N1sN)
WRITE(DEVICE»1009)(FO(I)»I=N1sN)
WRITE(DEVICE»1010) (FOCI) »I=N1sN)
CHANGES Z TO FRACTION
D0 18 I=1yN
FOCIY=FO(I)>/100.
FOCI)=FOCI)>/100.
CONTINUE
IF(NE>197,23,21
NF=0

RETURN FOINT FOR ESTIMATES
NF=NF+1
IF(NF.GT.NE)GO TO 200
READ(621007)(XEC(I)»I=1+5)
BE=FACT (IUOsIUI)
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Do 22 1=1+4
22 X(I)=XE(I)XB
X(S)=XE(3)
23 WRITE(DEVICE»1011)
1011 FORMAT(/14Xy’SG1’96Xs’WR1’ 96Xy SG2/rb6Xy "WR27 96Xy 'K’
1 8Xs/RMSE’»SXy  EMAX’)
IF(NE.GT.0) ISW=0
WRITE(DEVICEs1012)ISWy (X(I)»I=1+3)
1012 FORMAT(’ INITIAL’sI1y4(F9.2)sF%.4)
KR=1
CALL MARQ(SyMAXsE1»IWDsSSyKKsEEyEMAX,EMQQR, ID2,IT)
30 RMSE = SQRT(SS/N)¥100
EMAX=EMAX%100.
D0 24 I=1,4
24 Z(I)=0.
AR=X(35)
IF(AK.EQ.0.,) GO TO 25
Z(1)=X(1)

Z(2)=X(2)
IF(AK.EQ.1.,) GO TO 26
25 Z(3)=X(3)
Z(4)=X(4)
26 Z2(5)=AK
WRITE(DEVICE»1013)ITy(Z(I)sI=1+5) yRMSEsEMAX
1013 FORMAT(’ FINAL “»I254(F9.2)3sF2.4s2(F9.2))
IF(ID2.EQ.0)GO TO 31
WRITE(DEVICE,1022
1022 FORMAT(’ NO CONVERGENCE’)
31 IF(IWE.EQ.0)GO TO 196
D0 32 I=1+N
32 EEC(I)=EE(I)%100,
N1=N
IF(N.GE.7)N1=7
URITE(DEUICE:1016)UEL(IUO)9(U(I)vI 1yN1)
1016 FORMAT(’ W ‘yA392X»7F9,2)
WRITE(DEVICE»1018)(EE(I)sI=1yN1)
1018 FORMAT(’ ERRORS ‘»7(F%.2))
IF(N.LE.7)G0 TO 196
N1=N1+1
N2=N
IF(N.GE.14)N2=14
WRITE(DEVICEy1014)VEL(IUO) » (W(I)yI=N1yN2)
WRITE(DEVICEy1018) (EE(I) s I=N1yN2)
IF(N.LE.14) GO TO 196
N2=N2+1
WRITE(DEVICEy1016)VEL(IUD) » (WCI) s I=N2sN)
WRITE(DEVICEy1018) (EE(I)sI=N2sN)
CHECKS FOR NON-ZERO RUT SMALL WR
SETS SMALL WR=0 AND RECOMFUTES ESTIMATES
196 IF(X(2).EQ.0.,) GO TO 192
IF(X(1).LE.X(2)) GO TO 192
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194

197

198
199

)
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204

X(2)=0

GO 70 23

IF(X(4).EQ.0.) GO TO 194
IF(X(3).LE.X(4)) GO TO 194
X(4)=0,

GO TO 23

IF(NE.GE.0) GO TO 902

GO TO (208y9002224,220,220,900)5ISUW
CALCULATEDI FARAMETER ESTIMATES
HIGH ENI' ESTIMATES '

no 198 I=1yN

I2=N+1-1

I1=12-1

IF(I1.EQ.0)GO TO 199

Fi1=FO(I1)

F2=FO(I2)

IF(FOCI2).LT.FX) GO TO 198
IF(F1-F2) 199,199,198

CONTINUE

W2 = W(I2D)

F2 = FO(I2)

I1=12+1

Wi=W(Il)

F1=F0(I1)
SGH=(W1-W2)/SART (2. XALOG(F2/F1))
WRH=W2

IF(WRH.LE.SQH/2) WRH=SGH/2

LOW END ESTIMATES. DEGENERATE CASE
D0 202 I=1,3 '
Wi=W(I)

WW(I)=W1xW1

Z(I)=FOCI)

CALL SOLV(ZsWWrAAsER,CC)
IF((AA.LE.O0).OR.(BB.LE.0))GO TO 208
QQ=(BEXBR+2 . XCCkx(1-AA) )/ (BBXER)
IF(QQ.GE.100.)G0 TO 208
IF(QQR.LT.0.,)G0 TO 204

CALL ROOT(QQsYY)
SGD=0.5kSQRT((1.-YY)XEBB/(-CC))
WRD=SGDXSART(2.XYY)

GO TO 206

SGI=0,5%SART(BB/ (-CC))

WRLD=0,

ISW=1

X{1)=0

X(2)=0

X(3)=56GD

X(4)=WRD

X(3)=0,5

G0 TO 23
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NON DEGENERATE LOW END ESTIMATES

208 N0 210 I=1,3

W1=MW(I)
WW(I)=W1xW1

210 Z(I)=FD(I)/(WikWl)
CALL SOLV(ZyWWsyAAsEBR,CC)
L=0
IF(AA.LE.O0,.,)> GO TO 218
IF(BB.EQ.0.) GO TO 218
R=(2 . XBRXRE~-3 . XAAXCC) / (BEBXER)
IF(R.LE.0.)G0 TO 218
R=8SQRT(R)
IF(RR)212,218,214

212 YY=R/(R+1)
ISW=4
GO TO 216

214 IF(R.LE.1)GO TO 218
YY=R/(R-1)

ISW=5

216 SGL=SQART(AAX(1.-YY)/(-RB))
WRL=SGLXSART(2.%XYY)

G0 TO 226

218 EBB=(Z(3)-Z(2))/(WU(3)-WW(2))
AA=Z(2)~-RRXWW(2)

L=1
IF(AA.LE.0,)G0 TO 222

220 QQ=(AAXAA-2.XEB)/ (AAXAA)
IF(QRQ.LE.O0,) GO TO 222
IF(QQ.GT.1500.) GO TO 222
CALL ROOT(QQsYY)
SGL=SART(EXP(-Y)/(2.%AA))
WRL=SGLXSART(2.%YY)

ISW=3
GO TO 226 .

222 IF(L.EQ.0) GO TO 218
AA=(Z(1)+Z(2)4+Z(3))/3.
SGL=1./SQRT (2., %AA)
WRL=0,
ISW=2
GO TO 226

224 SG1=0,
SG2=0.
IF (AAXBE.LT.0.) SG1=SART((AA)/(~EE))/2
IF (BEXCC.LT.0.) SG2=SART((-ER)/(&6.%CC))
IF((SG1,EQ.0.,)+AND, (S62.EQ.0.)) GO TO 900
IF((SG1.EQ.0.,) . AND,. (SG2.GT.0,)) SGL=SG2
IF((SG1.6T.0.).AND, (SG2.EQ.0.)) SGL=SG1
IF(SG1%SG2.6T.0.) SGL=(SG1+SG2)/2.,
WRL =0
ISW=6
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226 X(1)=S6L
X(2)=WRL
X(3)=5GH
X(4)=WRH
X(S)=,5
GO TO 23
END

216
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SUBROUTINE FROB(W»SGsWRsP»I)

GIVEN WySGyWRsCOMFUTES P(1)=FROB.»P(2)=DF/DSGyF (3)=0OF/DUWR
WHERE E=ACCURACY ‘

FOR CONVERGENCE CRITERIA. I=UPFER INDEX REQUIRED 1,3,

DIMENSION P(3)
E=1,E~07
IF(SG.NE.0)GO TO 10
CASE SG=0
IF(W.LE.WR)F(1)=0
IF(W.GT.WR)F(1)=1
F(2)=0

P(3)=0

RETURN

Y=2.,%SGX86

X=WiW/Y

Y=WRXWR/Y
IFC(Y.NE.O0)GO TO 15
CASE WR=0
IF(X.GT.50)GO TO 1
Z=EXP(~X)

P(1)=1-Z
P(2)=-2,%X%XZ/86
F{(3)=0,

RETURN
IF(ABS((W-WR)/(2.%5G6)).GT.2.5) GO T0 1
IF((X+Y).GT.60.) GO TO 40
EX=EXF(-X-Y)
SuMi=1

sSuM2=1

SUM3=1

SuUM4a=1

SUMS=X

A=1

TX=1

TY=1

TZ=1

TX=TXXX/A
TY=TYXY/A
SUM1=SUM1+TX
SUM2=SUM24TY
SUM3=8SUM3+TYXSUM1
A=A+1

R=A

IF(I.EQ.1) GO TO 25
TXY=TX%XTY
SUM4A=SUMA+TXY
TZ=TXYXX/A
SUMS=SUMS+TZ
Ti=1-Y/R
T2=1-(XXY)/ (BXRB)
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40

IF(T1.LE.0)GDO TO 20

IF(T2.LE.0)GO TO 20
IFCEXXTXXTY/Z(T1%XT2)-E)30520520
SUM3=SUM3+SUM1X(EXF(Y)-SUM2)
F(1)=1-EXXSUM3

IF(I.EQ.1)RETURN

F(3)=-2,XYXEXXSUMS/WR

F(2)=-2 . XEXX(XXSUMA~-YXSUMS) /S0

RETURN

ASYMFTOTIC FORM FROM RICE F. 109(F.241)
X1=W/56G

X2=WR/S6

DX=ARS(X1-X2)

TE=1./(1.40,.33267%DX)

ZE=EXF (-DXXDX/2,)/2.50662829
PP=1,-ZEXTEX(0,4361836+TEX(-0,1201676+TEX0.9372980))
IF(X2.6T.X1) FP=1.-PP

RAT=(X1-X2)/(2.%X2)

AA=1.,/(8 . XX2%X2) ~
P(1)=FPP-(ZE/ (2. %XX2))%(1.+AA-0 . SXRATX(1.~RAT))
IF(I.EQ.1) RETURN
PS=ZEX(1.+AA+RATX(1.-AA-O0 . 5XRATX(1.-RAT)))
FC=ZEX(1.+3.XAA+RATX(—-1.+1.5%RAT) )/ (2.%WR)
F(2)=—(X1-X2)XFS/86~FC

F(3)=-F5/8G6+FC/X2

RETURN

END
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SUERROUTINE CHOL1(M)
COMMON/BK2/A(15)»G(35)
GETS LOWER TRIANGULAR FACTORsL »A=LTL»A=SYMMETRICs»RETURNS
L IN A

DO 14 J=1sM
IQ=J%(J+1)/2
IF(J.EQ.1)GO TO 5
DO 4 I=JsM
IM=I%(I-1)/2+J
S=A(IM)

Ji=J-1

0 2 K=1,J1

I3=IM~-K

I12=1Q-K
8=8-A(I3)XkA(I2)
CONTINUE

ACIM)=S

CONTINUE
IF(ACIQ).GT.0) GO TO 6
ACIR)=0
S8=5QRT(ACIQR))

DO 12 I=JsM
IN=I%(I-1)/2+J
IF(8)8,8»10

A(IM)=0

GO TO 12
AC(IM)=A(IM)/S
CONTINUE

CONTINUE

RETURN

END

219



[N ]

S

10

12

11

13

14

16
18

8]
<

8]
D

AR
re]

SUBROUTINE CHOL2(M)
COMMON/ERK2/A(15) yG(5)
FORWARD SUEBSTITUTION
IF(A(1))29254
G(1)=0

GO TO &
G(1)=6(1)/A(1)
IF(M.EQR.1)>G0 TO 13
10=1

DO 11 I=2,M

IM=I-1

D0 8 J=1,sIM

I1=1Q+1
G(I)=G(I)-A(IQIXG(J)
CONTINUE

10=1Q+1
IF(ACIRY)10510,12
G(I)=0

GO TO 11
G(IH)=G(I)/ALIQ)
CONTINUE

BAC SOLUTION
MM=MX(M+1)/2
IF(A(MM)Y)14514516
G(N>=0

GO TO 18
G(M)=6G(M)/A(MM)
IF(M.EQ.1) GO TO 28
[0 26 I1=2sM
I=M-1142
IQ=I%(I-1)/2

IM=1I-1

D0 20 J=1,1IM
I18=1Q+J
G(J)=G(J)-G(I1)XACIB)
CONTINUE
IF(ACIQ)»22,22,24
19=1-1

G(I®?)=0

GO TO 26

19=1I-1
G(I9)=6(I?)/AC(IQ)
CONTINUE

RETURN

END
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SUBROUTINE KBEST(SSyEMAXsEE»KK)

GETS BEST K IN X(3) AND SUM OF SQUARES OF ERRORS .

GETS INDIVIDUAL ERRORSsEE(I)»I=1sNsy AND

PICKS OUT LARGEST ARSOLUTE EMAXs KK=1y USUAL, =0sSETS X(5)=0.

DIMENSION Q1(20)sQ2(20)EE(20)sFP1(3)sF2(3)
COMMON/BK1/NsW(20) s FOC(20) 9y X(5)
R=0,

SUM1=0.,

SUM2=0.

SUM3=0,

PO 2 I=1+N

Wi=W(I)

X1=X (1)

X2=X(2)

CALL PROB(W1,X1X2sFP1s1)
X3=X(3)

X4=X(4)

CALL FROB(W1yX32X4:FP251)
Q1c1)=PF1(1)
Q2(I)>=F2(1)
Al=F1(1)-F2(1)
Ri=FOC(I)-P2(1)
SUM1=SUM1+A1%A1l
SUM2=SUM2+R1X%XE1
SUM3=SUM3+A1X%XE1l
CONTINUE

AK=8UM3/SUM1
IF(AK-1,)6+4+4

AK=1,
S$S8=8UM1-2.%XSUM3+5UM2
GO TO 12

IF(AK)8.,8510

AK=0.

58=8SUM2-AKXSUM3

IF(SS .LT. 0.) 85 = 0O,
X(5)=AK

RIG=0.,

N0 14 I=1sN
AA=Q1(I)-Q2¢I)
E3=FP0O(I)-Q2(I)-AKXAA
EE(I)=E3

E2=ARS(E3)
IF(E2,LE.RIG)GO TO 14
RIG=E2

CONTINUE

EMAX=RIG

RETURN

END ~
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SUERROUTINE MARQ(MsyMAXyE1l,IWDySSyKKIEE»EMAXyEMQQA, ID2yIT)
MODIFIED MARQUARDT ADAFTED FROM NASH.

M=NO. OF VARIARLES; IWO=0sNO WRITE, =1,WRITE EACH ITERATION
MAX=MAX NO. ITERATIONS, E1(I)»I=1yM,TEST ON

CONVERGENCE OF INCREMENTSs SS=SUM OF SQUARES OF ERRORS»
ID2=0 FOR OKy =1 FOR NO CONVERGENCE. KK=1,USUALs» =0ySETS X

INTEGER DEVICE
IIMENSION F1(3),F2(3),BR(20)sY(5),E1(5),EE(20)66(5)
COMMON/EK1/N»W(20) s FOC20) »X(5) /BK2/A(15) »6(5)
COMMON/DEVICE/DEVICE
EMA=ENQQ
JM=MK (ML) /2
IT=0
ID2:=0
GET INITIAL SUM OF SQUARES
CALL KBEST(SSsEMAXsEEsKK)
AKO=X(5)
IF (IWD.EQ.0)GO TO 100
WRITE(DEVICE»2600) (X(I)»I=155)
WRITE(DEVICE,1014)ITySS,ENQ
RETURN FOR ITERATIONS
100 IFC(IT.EQ.MAX)GO TO 16
50=55
IT=IT+1
ITT=IT
EMA=EMQX . 4
CALL COEF (KK)
STORES COEFFICIENTS AND FARAMETRS
0o 2 I=1,M
Y(I)=X(I)
66(I)=G(I)
CONT INUE
D0 4 I=1yJM
BR(I)=ACI)
4 CONTINUE
AUGMENTS DIAGONAL
99 00 5 I=1,JM
ACI)=EB(I)
5 CONTINUE
D0 6 I=1sM
IQ=IX(I+1)/2
ACIQ)=BER(IQ) X (1. +EMQ)+EMR
6 CONTINUE
D0 7 I=1,5
G(I)=GG(I)
7 CONTINUE
IF(IWD.LE.1)GO TO 20
WRITE(DEVICE»2400) (G(I)sI=1,5)
2400 FORMAT(’ G’/10E10.4)

%
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‘SOLVES FOR INCREMENTS

CALL CHOL1(M)
CALL CHOL2(M)

ADD INCREMENTSy ADJUST IF OUT OF RANGE

Mi=M-1

Do 8 I=1,M1

X(D=Y(I)+G(I)
IF(X(I) LT 0.)X(I)=0
CONTINUE

CALL KREST(SSyEMAXsEEKK)
IF(IWD.LE.1)60 TO 22
WRITE(DEVICEs2600)¢(X(I)yI=1,+5)
FORMAT(’ X’ »/3E10.4)
IF(IWD.EQ.0)GO TO 2
WRITE(DEVICE»1014)>IT»SS»EMQ

FORMAT(’ IT =’/s14,4Xs’88 =',E11.5,4Xy EMQ

G(S)=X(5)~-AKO

CHECKS SIZE OF INCREMENTS
IC=0

DO 10 I=1,M

IFCARS(G(I)) LEWEL1(I)>)IC=IC+1
CONTINUE

ARO=X(3)

IF(IC.EQ.M)GO TO 18
IF(SS.EQ.0.) GO TO 18
IF(SS.LLE.SO0)G0O TO 100
IF(EMQ.EQ.0.)EMQ=1.E-07
EMQ=EMQX%X10

GO TO 99

In2=1

IT=ITT

RETURN

END

223
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SURROUTINE COEF (KK)

COMPUTES COEFFICIENTS FOR LEAST SQUARES
KK=1sUSUALy KK=0sySETS X(3)=K=0,
DIMENSION D(3)»P1(3),P2(3)
COMMON/BK1/NyW(20) yFO(20) s X(3)/BR2/A(135) +G (D)
ZEROS COEFFICIENTS

DO 2 I=1,5

G(I)=0.

CONTINUE

D0 4 I=1,15

A(I)=0.

CONTINUE

COMPUTES COEFFICIENTS
AK=X(5)

BK=1-AK

DO 10 I=1,sN

Wi=Ww(I)

CALL PROB(W1sX(1)»X(2)sP1+s3)
CALL PROB(W1»X(3)9X(4)sP2+3)
DP=P1(1)-P2(1)
S=PO(I)-P2(1)-AKXDF

D) =AKXP1(2)

D2)=AKXF1(3)

D(3)=BKX¥P2(2)

D(4)=BKXP2(3)

D(S)=DF

DO 8 J=1,5

G(N=6(H+S%kD (D)
JA=J%(J-1)/2

DO 6 K=1,J

Ki=JQ+K
A(K1)=A(K1)+DB(J)%XD(K)
CONTINUE

CONTINUE

CONTINUE

[0 12 I=1+5

IQ=I%(I+1)/2

IF(A(IQ) .EQR.0)A(IR)=1
CONTINUE

IF(KK.EQ.1>RETURN

Do 13 I=11,14

A(I)=0

CONTINUE

G(S5)=0.

A(15)=1.

RETURN

END
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SUBROUTINE SOLV(Z,WWsAAyBE,CC)
c FITS QUADRATIC TO THREE POINTS AND OUTFUTS COEFFICIENTS
c OF Z=AA+EBBXWWH+CCXWWXX2

DIMENSION Z(3)sWW(3)

Z1=7Z(1)

22=Z(2)

Z3=2Z(3)

Wi=WW(1)

W2=WW(2)

W3=WW(3)

Y12=(Z1-2Z2)/(W1-W2)

Y23=(Z2-2Z3)/(W2-W3)

CC=(Y23-Y12)/(UW3~-W1)

RE=Y12~-CCX(W1+W2)

AA=Z1-BEXW1-CCXk(W1%xW1)

RETURN

END

SUEROUTINE ROOT(QQrYY)

c SOLVES 1-(1-Y) EXP(Y)-Q=0 FOR Y.
Z1=80RT(2.%QQ)
Z2=7Z1-(1.-QQ-(1.~-Z1)XEXP(Z1))/(Z1XEXF(Z1))
IF (ABRS(Z2-Z1)-0,001) 626714
4 Z1=72

GO TO 2
6 YY=Z2

RETURN

END

M
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