o ooty)

SAND--89-2712

CAE Tools® Limitations
Case Study: An SSI Design To An ASIC DE90C 002902

Jeff Everts
Sandia National Laboratories
P.O.B. 5800, MS: 2312

Albuquerque, NM 87185 ‘ -

(505) 845-8300, 844-4024 ;

Abstract

Every computer-aided engineering (CAE) tool has its limitations and
shortcomings. ~ Knowing where the pitfalls lie and how to get around them is
extremely: valuable. = This paper takes a look at the problems. and lmitations
encountered- using the Daisy Systems suite ‘of digital design tools (on a Logician 386
and a -PKK386 -MegalLogician, running DNIX 5.02A) to redesign a 169 small scale
integrated. (SSI) component design into an-application specific integrated circuit
(ASIC) gate array, Deficiencies were: found in the libraries; ACE, MDLS, DTA;
MCFS, and the Hotline support. Some solutions and workarounds to these deficiencies
are presented.

Backgrdund

What hoops have to be hopped in order to design with ASICs? What pitfalls lie
in the-ASIC design/development ¢ycle? Knowing what' and where the pitfalls are and
how to avoid them can save millions of dollars and considerable man-hours. Taking a
design through the ASIC design/development cycle not only answers these questions
but also provides the solutions and workarounds to-the problems and limitations
encountered, - This lubricates some of the hoops. and fills some of the pitfalls in:the
development cycle and significantly lowers the cost of future projects. Our approach
to smoothing: out the development cycle, for: the purpose of this paper; focuses on
identifying and overcoming our CAE tools’ limitations,

Introduction

CAE tools have a significant impact on the design/development cycle.
Therefore, any deficiencies or problems in the use of these tools need to resolved. A
project was needed to help identify and solve the limitations and problems associated
with our Daisy digital design tools. " The project chosen was the redésign of an aging
subsystem; containing 169, 5400-TTL components, into an: ASIC gate array.. The
redesign involved the following steps: entering the production drawings (composed of
5400-TTL components) into the Daisy schematic capture package; simulating for
functionality; creating macro-cells. from the gate array vendor’s primitive: cells;
converting the schematic from 5400-TTL components to the gate array primitive and
macro- cells; repeating the functional simulations; verifying the timing; inserting a test
methodology; repeating the functional and timing simulations; performing a fault
analysis; generating test vectors; and delivering the design for implementation into a
gate array. These steps would exercise Daisy’s digital graphics and simulation
libraries, ACE, CED, MDLS, DTA, MCFS.

DISTRIBUTION OF THIS DOCUMEN

s & W

T IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Library Models

The first: pitfall encountered was the incomplete 5400-TTL-components
libraries: - Many 5400-TTL components that we needed were not in the graphics or
simulation libraries. These components had to created. This was done by copying a
similar device into CED, changing its PART_NM, and saving it as a primitive. The
SPARC source . code libraries were modified to include these new components and
their Texas Instruments’ timing specifications and then recompiled. "Another library
deficiency encountered was the graphics libraries’ lack of DeMorgan-equivalent
symbols. " Considerable. time can be saved' during the schematic capture and debug
stages of a design if DeMorgan-equivalent gates are used in the schematic.. The
equivalents' make following and verifying a signal ‘easier, less time consuming, and
therefore less likely to be the source of a logic or:drawing mistake.. We worked
through this deficiency by building our own DeMorgan-equivalent symbols in CED.

Having hopped the library ‘hoops, we were able to simulate a number of the
blocks in the S400-TTL version of the design.

ACE

The next two steps involved ‘using' ACE and CED to create TTL-equivalent
macro-cells: (macro-G_ cells) from the gate array vendor’s primitive cells (G _ cells)
and converting the 5400-TTL-based design to a G__cell-based design.

Occasionally, wires could not be drawn to component pins because the pins did
not line up on a grid point. We drew the page one day and the next day, in the
course of modifying it, deleted signals could not be redrawn. . Solution? . Turn snap
off, start from a component pin, shoot from the hip, and hope you connect. Many
times this approach did not work, so we ended up redrawing the affected portions of
the schematic.

In CED, we created our own graphic models to represent the nested; functional
G__cell subcircuits (e.g. 30-bit shifter, test block, etc.). They were saved as logical
components in a:common graphical library. When we tried wiring up these CED-
created components in ACE, the wires would not end on the pins. The pins were
about a quarter of ‘a pixel off in both coordinate directions. So weé redrew the
components, being very conscious of the spacing and alignment of the pins, thinking
we learned from our previous ordeal. This too was unfruitful. We overcame this
problem by bringing a- Daisy graphics component into CED and deleting everything
except the pins. Then the component was created using those pins as a guide for the
pin placement ‘and. spacing. Having hurdled pitfalls, we completed the schematic
conversion from 5400-TTL components to our ASIC vendor’s gate array G_ cells
without further problems.

MDLS

At this point we had two design versions, the 5400-TTL version and the G_ cell
version. We started simulating these in parallel to verify that the conversion was done
correctly. The G__cell version was assigned to a local MegaLogician and the
5400-TTL version to a networked MegaLogician. Which workstation configures the
MDLS environment? Which workstation administers the microcode? Finding the
right microcode version for the 1-2-1 Mega configuration and establishing the linking
pointers - were accomplished by trial and error. The networked Megalogician, once up
and running, simulated extremely slowly over the network. The speed could not be
increased by copying the design to the networked Megalogician because of limited
disk space and other usage requirements. The PKK386 Megalogician was not bogged
down by network communications so it served as our primary simulator.

The next problem encountered was SOM’s inability: to handle large numbers:
Our functional vectors had lengths of 2,700,000,000 time units (and this was after we
scaled for a X 10 speed improvement). MDLS did not allow continuing a simulation
with different. SOM files.. This would have allowed us to break up the simulation into
sequences. We maneuvered around these obstacles by grouping times into units that
could be repeated. An example is (10000:F0,10000:F0)**100.

Using a: preliminary simulation, we estimated that it would take 40,000 hours
(4.5 years!) for the. PKK386 MegaLlogician to simulate one complete functional vector.
There were no options in MDLS that would help decrease the time-to-simulate, like
specifying a sampling interval or a data filter. —~After considering a number of
workarounds, - options, we modified the design (for simulation purposes only) to
eliminate idle time and allow the relatively slow, internal clocks to run 10,000 times
faster during most of the simulation. ‘These modifications reduced the time-to-
simulate to 4.5 hours. But problems. still remained. The data being displayed for
these long simulations were inconsistent. A wave window would show a 1-t0-0
transition, then going to a list display there would be no transition, and upon
returning to a wave display the signal would be a straight liné. I called the Daisy
Hotline ‘for assistance.. They told me that another company had run into a similar
problem and that they would send me a modified microcode version that might solve
the problem. The modified code corrected the display and data integrity problem and
restored our confidence in the simulation results. Another thing we went to was
shorter simulation vectors.. (If .a long simulation run aborted prematurely-all the
results would be lost.): This minimized the probability of having to rerun a particular
simulation. The limited data that could be stored for any one save operation was
another limitation that prevented us from a quickly reaching our functional and
timing verification milestones.

DTA

The next step in the ASIC gate array design process was to implement a test
methodology. . Squeezing 169, 5400-TTL components-into one integrated circuit (IC)
and decreasing the number of external signals from 88 to 11 made observing and
controlling internal nodes very difficult.. Before we considered any test methodology
we attempted to use DTA to see how bad off we were.

DTA ran extremely slowly and stopped prematurely. Giving it the ability to
add. virtually. an unlimited number of input, output, and bi-directional pins to
improve the testability, it added only two output pins and one input pin. This
improved - the testability figure for the design from 9% to 17%.. With this kind of
performance; DTA is not useful in the ASIC: development cycle. So the DTA hoop
was eliminated from our ASIC development cycle.

MCFS

The low testability figure indicated the need for a unique test methodology.
The test methodology we developed combined level-sensitive scan design (LSSD),
partial scan, pseudo-random number generation, and signature analysis into a form
capable of interrogating highly sequential designs.! The implementation of the test
methodology involved ripping up the schematic. With an initial, roomy layout the

t. J. Everts, D. Gelet, D. Deatherage, and M. Contreras, "ASIC Replacement For
An SSI Component Design, A Case Study," Proceedings of The Second Annual
IEEE _ASIC Seminar and Exhibit, Sept. 25-28, 1989, Rochester, NY, IEEE
Catalog # 89TH0280-8.

changes did not require redrawing the schematics. Signals were broken and intrapage
(inter- or hierarchical as required) connectors were added. Test blocks were added
along the margins of the page and connected up via the intrapage connectors. This
went relatively smoothly. The functional and timing: verifications were repeated
before the various test modes were analyzed. To analyze the effectiveness of our test
methodology on the fault coverage of our chip we required a fault analysis software
package. The local Daisy office arranged for us to use our ASIC gate array design to
evaluate MCFS. - (I have a very high regard for the local office and its staff,
especially T. Burrows, and J. Mervini who have often spent late hours bending over
backwards to help me.) The two road blocks in getting MCFS up and running were
getting ‘a working memory board for the Mega accelerator (The first board had a
hardware: problem.) and scrounging up enough disk space on our small 65 megabyte
disk to install and run the software. Aside from the small disk, speed was also
another handicap. Our Sun386i/250s would have given us a considerable performance
improvement over-our PKK386 but Daisy does. not have a:version of CES running on
the Sun386i. platform. Well, slow and steady wins the race, right?

MCFS has both a statistical and an exhaustive fault analysis mode. We focused
solely on the exhaustive mode because we needed an accurate evaluation of our test
methodology’s effectiveness to detect faults and a precise stuck-at fault coverage
number to include in the project’s reliability report.. Both of these reasons, to some
degree, depend on the test vector sets. Daisy does not have an automatic test vector
generation-tool in their suite of digital design tools (that could take advantage of the
test features we implemented). This meant that our evaluation was based on our
manually~-created test vectors- and our ability to create an effective test vector set.
The manual generation of test vectors is a sore spot in the ASIC development cycle.

MCFS’s problems began almost immediately. While running in exhaustive
mode, the system would consistently lockup: and require rebooting once it reached
5000ns, After trying to solve the problem locally, we called the Daisy Hotline.
Considerable time ‘was spent trying to solve this problem. ' In the end they said, "Send
us your database." - To do this takes considerable time and stops the ASIC design
cycle. ~Does Daisy not know that? = (They have to come up with a better way to
support their customers that run.into serious problems such as this MCFS situation.)
Getting out of MCFS’s quicksand was very:laborious. First we tried dividing the
faults up by class: input faults and output faults. MCFS handled the output faults
without a glitch, but it killed the system while working cn the input fault list. Next
we sorted the input faults between stuck-at-1 faults and stuck-at-0 faults and ran
them" separately. - After blood, sweat, and “tears, we finally had some fault analysis
figures. - The workable scenario, then, required three runs per vector set: 1) output
faults case, 2) input faults stuck~at-1 case, and 3) input faults stuck-at-0 case.

One of the concluding steps along the ASIC development cycle is converting the
simulation vectors and the test vectors into a form that can be used by ASIC testers to
actually test and characterize the fabricated parts. The problem we ran into is how
does one“get 350 megabytes of ASCII Is and Os into an ASIX Systems (Irvine, CA)
tester? ASIX claims to be able to translate Daisy simulation vectors into ASIX
compatible test vectors. An internal test organization tried to do this on a much
simpler circuit and were unsuccessful, s we were not going to tango with certain
failure. The outside fabrication company had the same problem with our functional
vectors. What we ended up giving the foundry was our set of short, fault analysis
vectors for use in the chip’s test mode. The only functional testing that could be done
was in real time, in a real system, using a real part. That is not the way ASIC
design/development should go.

Summary

~The ASIC design/development cycle is littered with pitfalls

xedeagned. into an ASIC gate array took us through the AS;I)C design/Adei‘e:I%Sgi::g:
¢cycle. .Thxs' project helped us focus on the limitations and problems associated with
our Daisy digital design tools. Deficiencies were found in the libraries, ACE, MDLS
DTA, MCF§, and the Hotline. The solutions and workarounds that we’develo’ped wiif
be’of’ considerable valug to future ASIC gate array development work. Though
Daisy’s CAE tools have limitations, it was the tools’ capabilities that enableﬁ us to go
from schematic capture to IC fabrication successfully. &

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, of
process disclosed; or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
fnendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

