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Abstract

Every computer-aided engineering (CAE) too! has its limitations and 
shortcomings. Knowing where the pitfalls lie and how to get around them is 
extremely valuable. This paper takes a look at the problems and limitations 
encountered using the Daisy Systems suite of digital design tools (on a Logician 386 
and a PKK386 MegaLogician, running DNIX 5.02A) to redesign a 169 small scale 
integrated (SSI) component design into an application specific integrated circuit 
(ASIC) gate array. Deficiencies were found in the libraries, ACE, MDLS, DTA, 
MCFS, and the Hotline support. Some solutions and workarounds to these deficiencies 
are presented.

Background

What hoops have to be hopped in order to design with ASICs? What pitfalls lie 
in the ASIC design/development cycle? Knowing what and where the pitfalls are and 
how to avoid them can save millions of dollars and considerable man-hours. Taking a 
design through the ASIC design/development cycle not only answers these questions 
but also provides the solutions and workarounds to the problems and limitations 
encountered. This lubricates some of the hoops and fills some of the pitfalls in the 
development cycle and significantly lowers the cost of future projects. Our approach 
to smoothing out the development cycle, for the purpose of this paper, focuses on 
identifying and overcoming our CAE tools’ limitations.

Introduction

CAE tools have a significant impact on the design/development cycle. 
Therefore, any deficiencies or problems in the use of these tools need to resolved. A 
project was needed to help identify and solve the limitations and problems associated 
with our Daisy digital design tools. The project chosen was the redesign of an aging 
subsystem, containing 169, 5400-TTL components, into an ASIC gate array. The 
redesign involved the following steps: entering the production drawings (composed of 
5400-TTL components) into the Daisy schematic capture package; simulating for 
functionality; creating macro-cells from the gate array vendor’s primitive cells; 
converting the schematic from 5400-TTL components to the gate array primitive and 
macro- cells; repeating the functional simulations; verifying the timing; inserting a test 
methodology; repeating the functional and timing simulations; performing a fault 
analysis; generating test vectors; and delivering the design for implementation into a 
gate array. These steps would exercise Daisy’s digital graphics and simulation 
libraries, ACE, CED, MDLS, DTA, MCFS.
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Library Models

The first pitfall encountered was the incomplete 5400-TTL-components 
libraries. Many 5400-TTL components that we needed were not in the graphics or 
simulation libraries. These components had to created. This was done by copying a 
similar device into CED, changing its PART_NM, and saving it as a primitive. The 
SPARC source code libraries were modified to include these new components and 
their Texas Instruments’ timing specifications and then recompiled. Another library 
deficiency encountered was the graphics libraries’ lack of DeMorgan-equivalent 
symbols. Considerable time can be saved during the schematic capture and debug 
stages of a design if DeMorgan-equivalent gates are used in the schematic. The 
equivalents make following and verifying a signal easier, less time consuming, and 
therefore less likely to be the source of a logic or drawing mistake. We worked 
through this deficiency by building our own DeMorgan-equivalent symbols in CED.

Having hopped the library hoops, we were able to simulate a number of the 
blocks in the 5400-TTL version of the design.

ACE

The next two steps involved using ACE and CED to create TTL-equivalent 
macro-cells (macro-G_cells) from the gate array vendor’s primitive cells (G__cells) 
and converting the 5400-TTL-based design to a G_cell~ba$ed design.

Occasionally, wires could not be drawn to component pins because the pins did 
not line up on a grid point. We drew the page one day and the next day, in the 
course of modifying it, deleted signals could not be redrawn. Solution? Turn snap 
off, start from a component pin, shoot from the hip, and hope you connect. Many 
times this approach did not work, so we ended up redrawing the affected portions of 
the schematic.

In CED, we created our own graphic models to represent the nested, functional 
G__cell subcircuits (e.g. 30-bit shifter, test block, etc.). They were saved as logical 
components in a common graphical library. When we tried wiring up these CED- 
created components in ACE, the wires would not end on the pins. The pins were 
about a quarter of a pixel off in both coordinate directions. So we redrew the 
components, being very conscious of the spacing and alignment of the pins, thinking 
we learned from our previous ordeal. This too was unfruitful. We overcame this 
problem by bringing a Daisy graphics component into CED and deleting everything 
except the pins. Then the component was created using those pins as a guide for the 
pin placement and spacing. Having hurdled pitfalls, we completed the schematic 
conversion from 5400-TTL components to our ASIC vendor’s gate array G_cells 
without further problems.

MDLS

At this point we had two design versions, the 5400-TTL version and the G__cell 
version. We started simulating these in parallel to verify that the conversion was done 
correctly. The G_cell version was assigned to a local MegaLogician and the 
5400-TTL version to a networked MegaLogician. Which workstation configures the 
MDLS environment? Which workstation administers the microcode? Finding the 
right microcode version for the 1-2-1 Mega configuration and establishing the linking 
pointers were accomplished by trial and error. The networked MegaLogician, once up 
and running, simulated extremely slowly over the network. The speed could not be 
increased by copying the design to the networked MegaLogician because of limited 
disk space and other usage requirements. The PKK386 MegaLogician was not bogged 
down by network communications so it served as our primary simulator.



The next problem encountered was SOM’s inability to handle large numbers. 
Our functional vectors had lengths of 2,700,000,000 time units (and this was after we 
scaled for a X 10 speed improvement). MDLS did not allow continuing a simulation 
with different SOM files. This would have allowed us to break up the simulation into 
sequences. We maneuvered around these obstacles by grouping times into units that 
could be repeated. An example is (10000:F0,10000:F0)** 100.

Using a preliminary simulation, we estimated that it would take 40,000 hours 
(4.5 years!) for the PKK386 MegaLogician to simulate one complete functional vector. 
There were no options in MDLS that would help decrease the time-to-simulate, like 
specifying a sampling interval or a data filter. After considering a number of 
workarounds, options, we modified the design (for simulation purposes only) to 
eliminate idle time and allow the relatively slow, internal clocks to run 10,000 times 
faster during most of the simulation. These modifications reduced the time-to- 
simulate to 4.5 hours. But problems still remained. The data being displayed for 
these long simulations were inconsistent. A wave window would show a l-to-0 
transition, then going to a list display there would be no transition, and upon 
returning to a wave display the signal would be a straight line. I called the Daisy 
Hotline for assistance. They told me that another company had run into a similar 
problem and that they would send me a modified microcode version that might solve 
the problem. The modified code corrected the display and data integrity problem and 
restored our confidence in the simulation results. Another thing we went to was 
shorter simulation vectors. (If a long simulation run aborted prematurely all the 
results would be lost.) This minimized the probability of having to rerun a particular 
simulation. The limited data that could be stored for any one save operation was 
another limitation that prevented us from a quickly reaching our functional and 
timing verification milestones.

DTA

The next step in the ASIC gate array design process was to implement a test 
methodology. Squeezing 169, 5400-TTL components into one integrated circuit (IC) 
and decreasing the number of external signals from 88 to 11 made observing and 
controlling internal nodes very difficult. Before we considered any test methodology 
we attempted to use DTA to see how bad off we were.

DTA ran extremely slowly and stopped prematurely. Giving it the ability to 
add virtually an unlimited number of input, output, and bi-directional pins to 
improve the testability, it added only two output pins and one input pin. This 
improved the testability figure for the design from 9% to 17%. With this kind of 
performance, DTA is not useful in the ASIC development cycle. So the DTA hoop 
was eliminated from our ASIC development cycle.

MCFS

The low testability figure indicated the need for a unique test methodology. 
The test methodology we developed combined level-sensitive scan design (LSSD), 
partial scan, pseudo-random number generation, and signature analysis into a form 
capable of interrogating highly sequential designs.1 The implementation of the test 
methodology involved ripping up the schematic. With an initial, roomy layout the

1. J. Everts, D. Gelet, D. Deatherage, and M. Contreras, "ASIC Replacement For 
An SSI Component Design, A Case Study," Proceedings of The Second Annual 
IEEE ASIC Seminar and Exhibit. Sept. 25-28, 1989, Rochester, NY, IEEE 
Catalog # 89TH0280-8.



changes did not require redrawing the schematics. Signals were broken and intrapage 
(inter- or hierarchical as required) connectors were added. Test blocks were added 
along the margins of the page and connected up via the intrapage connectors. This 
went relatively smoothly. The functional and timing verifications were repeated 
before the various test modes were analyzed. To analyze the effectiveness of our test 
methodology on the fault coverage of our chip we required a fault analysis software 
package. The local Daisy office arranged for us to use our ASIC gate array design to 
evaluate MCFS. (I have a very high regard for the local office and its staff, 
especially T. Burrows, and J. Mervini who have often spent late hours bending over 
backwards to help me.) The two road blocks in getting MCFS up and running were 
getting a working memory board for the Mega accelerator (The first board had a 
hardware problem.) and scrounging up enough disk space on our small 65 megabyte 
disk to install and run the software. Aside from the small disk, speed was also 
another handicap. Our Sun386i/250s would have given us a considerable performance 
improvement over our PKK386 but Daisy does not have a version of CFS running on 
the Sun386i platform. Well, slow and steady wins the race, right?

MCFS has both a statistical and an exhaustive fault analysis mode. We focused 
solely on the exhaustive mode because we needed an accurate evaluation of our test 
methodology’s effectiveness to detect faults and a precise stuck-at fault coverage 
number to include in the project’s reliability report. Both of these reasons, to some 
degree, depend on the test vector sets. Daisy does not have an automatic test vector 
generation tool in their suite of digital design tools (that could take advantage of the 
test features we implemented). This meant that our evaluation was based on our 
manually-created test vectors and our ability to create an effective test vector set. 
The manual generation of test vectors is a sore spot in the ASIC development cycle.

MCFS’s problems began almost immediately. While running in exhaustive 
mode, the system would consistently lockup and require rebooting once it reached 
5000ns. After trying to solve the problem locally, we called the Daisy Hotline. 
Considerable time was spent trying to solve this problem. In the end they said, "Send 
us your database." To do this takes considerable time and stops the ASIC design 
cycle. Does Daisy not know that? (They have to come up with a better way to 
support their customers that run into serious problems such as this MCFS situation.) 
Getting out of MCFS’s quicksand was very laborious. First we tried dividing the 
faults up by class: input faults and output faults. MCFS handled the output faults 
without a glitch, but it killed the system while working on the input fault list. Next 
we sorted the input faults between stuck-at-1 faults and stuck-at-0 faults and ran 
them separately. After blood, sweat, and tears, we finally had some fault analysis 
figures. The workable scenario, then, required three runs per vector set: 1) output 
faults case, 2) input faults stuck-at-1 case, and 3) input faults stuck-at-0 case.

One of the concluding steps along the ASIC development cycle is converting the 
simulation vectors and the test vectors into a form that can be used by ASIC testers to 
actually test and characterize the fabricated parts. The problem we ran into is how 
does one get 350 megabytes of ASCII Is and Os into an ASIX Systems (Irvine, CA) 
tester? ASIX claims to be able to translate Daisy simulation vectors into ASIX 
compatible test vectors. An internal test organization tried to do this on a much 
simpler circuit and were unsuccessful, so we were not going to tango with certain 
failure. The outside fabrication company had the same problem with our functional 
vectors. What we ended up giving the foundry was our set of short, fault analysis 
vectors for use in the chip’s test mode. The only functional testing that could be done 
was in real time, in a real system, using a real part. That is not the way ASIC 
design/development should go.

Summary



The ASIC design/development cycle is littered with pitfalls. A subsystem 
i edesigned into.an ASIC gate array took us through the ASIC design/development 
cycle. This project helped us focus on the limitations and problems associated with 
our Daisy digital design tools. Deficiencies were found in the libraries, ACE, MDLS, 
DFA, MCFS, and the Hotline. The solutions and workarounds that we developed will 
be of considerable value to future ASIC gate array development work. Though 
Daisy’s CAE tools have limitations, it was the tools’ capabilities that enabled us to go 
from schematic capture to IC fabrication successfully.
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