LEGIBILITY NOTICE

A major purpose of the Techm-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
acadeiric community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

N A D A AR 4
LA-UR -89-3679

~

Los Alamos Nauonal Laboratory 18 operaled by the University of California for the United Stales Department of Energy under contract W-7405-ENG-36

LA-UR--89-3679
DE90 003393

TITLE A 3-D MEASUREMENT SYSTEM USING OBJECT-ORIENTED FORTH
AUTHOR(S) Kenneth B. Butterficld
SUBMITTED TO FORML Conference

Asilomar Conference Center
Pacific Grove, California

November 24-26, 1989
DISCILAIMER

This report wis prepared as an account of work sponsated hy an agency ol the Umited States
Government Neither the United States Government nor any sgency thereal, not any of then
emplovees, makes any wartanty, express or imphicd. or assumes any legal lability o respony
ity for the accuracy, completeness, ur usetulness oF any infoonabion, appatatus. product, or
prome s dischned or represents gt ws e would el infinge o ately owned nghts Relse
ence heren to any speailic commieroal praduct, promess, o service by trade natne, trademark,
manubacturrr, o othersise does not pecessanly constitute of inply s endorsement, recom
menation. or Laivoring by the United States Government or any ageney thereol The views
and opians of authors expressed heren do not necessanly state o relledt those of the
Umited States Guavernment ot any agency thereol

P T L E N DU LR T TR PL R LI P ST T ngeges thal the 1]y Gt nment relLans, g nonee lyyive royally ee bioeoss to publish of ragradyc e

Yee philohdg Boas ot ey coptahigtinn o Ly abow others la o do sn tor U Yy Gioeseamaent gt poaee,

Tre Loy Anprtars Paatiann b aragbory cergeonty thgl e gubihishier afenbity oy tta e ey wiotk pattarmed oagded: (he gy of ha i)t Dapartment ot) nergy

| 5/ NN 2 Los Alamos National Laborator
| O ANEANMCDE) Lo Alamos National Laboratory

BN WSTHIBITIUN OF THIS DOCUMERT IR I

MASTRR

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A 3-D MEASUREMENT SYSTEM USING OBJECT-ORIENTED FORTH

Kenneth B. Butierfield

ABSTRACT

Discussed is a system for storing 3-D measurements of points that relates the coordinate sysiem of the
measurement device i the global coordinate system. The program described here uscs object-oriented FORTH w
store the measured points as sons of the measuring device location. Conversion of local coordinales to absolute
coordinates is performed by passing messages to the point otjects. Modifications to the object-oriented FORTH
system are also described.

The system described here uses 3-D spatial information obtained from a mcasuring device such as a transit
o determine a point in a global coordinate sysiem. The global system might be the US Geological Survey
coordinates or a specific comer of a room. Most mecasuring devices give informaticn relative to their current location.
To find the global position for a local measurcment, a Galilean transformztion, consisting of a rotation and translation,
must be performed. Any system for locating points in space must determine the location of the measuring device.
To find the location of the measuring device, mcasurcments must be obtained for at least (two reference points.
Altcrmatively, onc measurcinent of a reference point plus a compass bearing could be used. All measurements are
stored as objects. The location of the measuring device is also stored as an objcct. Mcasurements from a particular
device location arc stored as descendants of the mcasurement location.

The object-oriented FORTH system used here is basically the system described by Rick Hoselton.! This
shell provides lists of dependent objects and uscs standard postfix syntax. I have modificd it 10 allow nesting of
mecssages and 0 make the system more robust. For nesting messages, I store the valuc of 'OBJECT before changes,
and I restore the value after the method has been completed (sece ACT in the listing). Hosellon's system was subject
1o complete system failure with just simple opcrator mistakes. For instance, invoking a method without first
specifying a valid object would have the system scarch a non-gxistent linked list. Usually, the system would never
recover. To prevent this type of error, 1 added an object tag ficld to the structure of an object. ACTION chiecks the
tag field to be sure that a valid object is present before scarching the linked list. A similar tag was added to the
methud data structure and is used when creating ncw methods to check whether a unique method name already cxists.
This solves Hoselion's problem of methods that could not have the same name as previously defined FORTH words.
These three modifications greatly crihance the usability of the object-oricnted shell by climinating many system crashes
during development and by allowing onc method to call a previously defined method while still remembering its own
object.

The data structurcs for storing points and transit locations are shown in the listings. These are similar in
that cach contains x, y, and z daw cells. Points inherit this structure from the parent object. In addition, points have
an cxtra data cell containing a lini. to previous uses of the same point name. Typically this list contains all
neasurcments of a known reference, and it is uscd when locating the position of the transit The actual measurcments
of a point arc stored in the x, y, and z cclls. A mcthod is invoked to determine the absolute coordinates of the point
by transforming the local coordinates using the phsolute coordinales of the father object, the station. Stations have
two additional ficlds that are not required Dy point objects. These ficlds are ihe rowtion angle and a flag indicating
that the location is valid. Mcasurcments arc made relative to an arbitrary azimuth, and the actual azimuth mu.t be
determir d as part of locating a station. Mcthods are provided w find the nbsolute position of a point and 1o locate a
swtion given two or ore refercaces.

One advantge of the object-oriented parudigm iy that new objects can be defined that store only the object
numbers for specific points, and these objects will inherit their spatial locations from their fathers objects. For
cxample, a triangle can be defincd as having three cells. An instance of o triangle would be defined ay P P2 P3
TRIANGLE T1, where F1, P2, and P3 are all point objects. ‘Triangle T1 can be queried for its location using a
method that first finds the vertex (P1) and then invokes another method to print the absolute position of the vertex.
All three vertices can be printed because 1 have modified the shell w allow for nested methods. The original shell

Author Kenneth B, Butterficld Page 1 of 8

was able to print the location of the first vertex, but it was unable to find the second vertex because it lost the chject
(T1) when invoking the nestcd method.

The object-oriented FORTH shell has proved to be useful for storing transit information; the ability to
calculate the absolute coordinates by passing a message to the point makes the system very easy to use. However,
there are improvemants that [would like 10 make in the future. I found develoning the 3-D measurement system to
be very difficult until 1 modified it to include the object and message tag ficlds. Now program development is much
easier. In the future, I would like to sce a simplified means of inheriting an object structure. The dclining message
for my STATION object adds iwo more fields than the POINT defining the OBJECT: message, yct the whole
structure has o be replicated. I like the 'feel’ of the object-oriented programming environment and the way that it
enters into the FORTH language. It provides a clean way to associate related data while keeping the FORTH postfix
syniax.

REFERENCE
1. R. Hoselion, "F83 Object-Oriented FORTH,” FORTH Dimensions, Vol. X, 2 (July/August 1988).

Author Kenneth B, Butierficid Page 2 00 8

\ OBJECT.SEQ From Forth Dimensions,

Volume 10,

\ and modified by Ken Butterfield to

\

1) allow nesting of messages by stacking ‘OBJECT

number 2 by Rick Hoselton

\ 2)

comment :

add OBJECT tag and message tag fields to make system more robust.

Some object-oriented words slightly modified by Tom Zimmer

for use in F-PC.

OFFSET

A H O

OFFSET

O & NO

cumment ;

#BYTES
2
2
2
n

#BYTES

JNNNONDN

METHOD format

next older brother METHOD pointer
MESSAGE number

SAAS stored as method marker
method’ s code

OBJECT format

father OBJECT address

youngest son OBJECT address + 4

next older brother OBJECT address + 4
youngest METHOD address

SAS5A stored as object marker
optional local data

only forth also dafinitions

anew objectstuff

code (action)

: action

var fab e P mng
var able fob joet

Aut hog

Kenneth B,

(obj
pop ax
pop bx
add bx,
beylin

untii

add bx,
mov ax,
jmp ax

msg ---)

mov bx, 0 [bx)
cmp ax, 2 [bx]

‘6

cnd~-code

(ob) mag ---)

ovoer
H 1 @
if

423310 - |

tost for valild object)

(nct10n)

olne
t hen

abort "

Buttevtlold

unknown ob ject ®

Pape 3 ol

i

: act

>object

: >super

link,

: object>

: object?

create master

(met hod)

7create

{met hod @)

(pfa msg ---)

2dup 'msg @ !

*object @ >r (save old object)
‘object ! action

r> ‘object ! (restore old object)

(=== 27?2)
*object @ ;

(rel-addr ~-- addr)
me + ;

(rel-addr --- addr)
me @ + ;

(addr ---}
here ov:r @ , swap ! ;

(-—=)

’object 1link,
o,

2 >super link,
6 >super @ ,
42330 , ;

(obj ... obj/f)

dup 8 + @

42330 = not if
drop 0O

then ;

master ‘object !
obilect>
2 >object 6 erase

(-~—- msg)
create here does> act ;

(-—— msg ;
>in @ defined
if >body dup 4 + @

23205 =
c¢lse false
t hen
it nip
clse drop >in ! (method)
t.hen H

(—--)

Terodatoe

5 ~abjot. link, , 23204,

, JUMP

NEST HERE - HERE - ! \ link Into
XHERE PARAGRAPH

DUP XDPSEG !

JUMP t he

XSEG @ = s
XDP OFF
'esp }

(method:) anchcr ." I don’t understand" ;
* anchor >body 2+ ‘msg !

(method:) method: (===
(method:) ;

master method: object: (---)
create object> ;

.method { link ---)
cr dup 6 u.r dup @ 6 u.r
2+ @ dup 6 u.r 2 spaces body> >name .id ;

master method: .methods (---)
base @ hex 6 >object
begin @ 2dup
while dup .method
repeat base H

.me (n -—-)
cr spaces me body> >name .id ;

master method: me, (n obj ...)
.me ;

master method: (.sons) (n-—--)

dup .me
q9 +
2 >object

begin @ dup
while 2dup 4 - (.sons)
repeat 2drop

master method: .sons (~==)
0 me (.sons) ;

master method: .one (===
4 .me ;

\ TRANSIT DATA STRUCTURES 06/28/89 10:34:12.76
\ POINT is the master class.

\ TRANSIT is a son of peint.

\ Stations are sons of transit and inherit POINT structure + more.
\ Each point measured from a station is a son of that station

\ and inherits point structure

\ plus an UNCLE which ils a link to any previous point using

\ the same name.

DECIMAL
MASTER OBJECT: POINT

\ methods to fetch point variables to floating point stack
POINT METHOD: Z 10 >OBJECT F@ ; (OBJ ... |IF: ... FN)
POINT METHOD: Y 18 >OBJECT F@ ; (OBJ ... |IF: ... FN)
POINT METHOD: X 26 >OBJECT FQ@ ; (OBJ ... |F: ... FN)

POINT METHOD: POSITION. (OBJ ...) \ print position of a specified object
ME X 311 f.RME Y 3 11 f.RME 2 3 11 f.R ;

POINT METHOD: POSITION! (OBJ ... |[F: XY 2 ...) \ assign position
10 >OBJECT F! 18 >OBJECT F! 26 >OBJECT F!

POINT METHOD: POSITIONR (OBJ ... {F: ... X Y Z)

POINT METHOD: OBJECT: (OBJ ... [F: XY 2 ...)
\ define point using value on FP stack for initialization
CREATE OBJECT>

£, \ 10 >OBJECT IS Z VALUE
f, \ 18 >OBJECT IS Y VALUE
£, \ 26 >OBJECT IS X VALUE

f0.0 £0.0 £0.0 POINT OBJECT: TRANSIT f0.0 £, -1 ,
(TRANSIT looks like a station)
(and can be used to store reference points.)

TRANSIT METHOD: STATION: (OBJ ...)
CREATE OBJECT>
F0.0 F, \ 10 >OBJECT IS Z VALUE
FO0.0 F, \ 18 >OBJECT IS Y VALUE
F0.0 F, \ 26 >OBJECT IS X VALUE
F0.0 F, \ 34 >»OBJECT IS ALPHA
o, \ 42 >OBJECT 1S FLAG

TRANSIT METHOD: STATION! (I': ALPHA X Y Z2 ...) \ ASS5IGN A STATION VALUE
ME POSITION! 34 >OBJECT K TRUE 42 >OBJECT !

TRANGIT METHOD: ALPHA (OBJ ... |F: ... FN)
34 >OBJECT F@ ;

TRANSIT METHOD: FLAG (OBRJ ... N) \ teteh flag to stack
4?2 OBJECT @

TRANSIT METLEOD: RP. (OBJ ...) \ print relative position
ME X 311 f.RME Y 3 11 f.RME 2 3 11 f.R ;

TRANSIT METHOD: POINT: (OBJ ... IF: XY 2 ...) \ define a transit point
>in @ defined
if >body object? else drop 0 then >r

>in !

CREATE OBJECT>

b \ 10 >OBJECT IS Z VALUE
£, \ 18 >OBJECT IS Y VALUE
f, \ 26 >OBJECT IS X VALUE

r>, \ 34 >object is poin'er to previous use of this name (uncle)

TRANSIT METHOD: GET_STATION ME @ ; (OBJ ... OBJ) \ fetch related station object

TRANSIT METHOD: UNCLE (OBJ ... OBJ)
34 >0OBJECT @

:DOT { F: AB X Y ... FDOT) \ Calculate dot product of (ab) * (x vy)
FROT F* FROT FROT F* F+

TRANSIT METHOD: AP (OBJ ... I|F: ... XY Z)
\ calculate absolute position of point
ME GET_STATION FLAG IF \ hes station been located?

ME GET_STATION ALPHA (r: alpha) \ find rotation and translation
FDUP
FSIN FSWAP FCOS (SIN, COS) \ rotation in X
FOVER FOVER (SIN COS SIN COS)
ME X ME Y (SIN COS SIN COS X Y)
DOT (SIN COS X’)
ME GET_STATION X F+ \ TRANSLATION IN X
FROT FROT (APX SIN COS) \ rotation in Y
FNEGATE ME Y ME X DOT (APX Y’)
ME GET_STATION ¥ F+ (APX APY) \ translation in Y
ME Z ME GET_STATION Z f+ (APX APY APZ) \ 2 is translated, no rotation
ELSE
ME GET_STATION .ONE ." NOT LOCATED"
ABORT
THEN
TRANSIT METHOD: me. (N OBJ ...) \ print absolute position with indentation N
.ME ME AP

FROT 3 11 f.R fSWAP 3 11 f.R 3 11 f.R

.
’

TRANSIT method: POSITION. (OBJ ...) \ P-int absolute position
4 ME ME.
TRANGLT METHOD: JALL (OBJ ... \ PRINT ALL namosakes (uncles)
ME . ONE ME

BEGIN
44 1+ @ ?DUP

WHILE
dup Position.
REPEAT

TRANSIT METHOD: .TREE (N -—-)
me .one
2 >object
begin @ dup
while dup 4 - .all
repeat drop

\ TRANSIT DATA 06/28/89 13:29:51.86
TRANSIT STATION: ST1

10.0e0 15.0e0 20.0e0 ST1 POINT: Pl
10.0e0 30.0e0 S.0e0 ST1 POINT: P2
10.0e0 15.0e0 20.0e0 ST1 POINT: P3
TRANSIT STATION: S5T2

10.0e0 20.0e0 50.0e0 ST2 PCINT: P4
15.e0 25e0 10e0 ST2 POINT: Pl

25e0 40e0 -5e0 ST2 POINT: P2

0e0 10e0 10e0 10e0 ST1 STATION!

\ Station two has not been located in this example.
\ Station one is just offset from the global origin and has no rotation.

Aunthar Kannath 1 Hut t sl t Al

