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Abstract. Regression or function classes of Euclidean type with com-

pact support and certain smoothness properties are shown to be PAC

learnable by the Nadaraya-Watson estimator based on complete orthonor-
mal systems. While requiring more smoothness properties than typical |
PAC formulations, this estimator is computationally efficient, easy to

implement, and knewn to perform well in a number of practical applica-

tions. The sample sizes necessary for PAC learning of regressions or func-

tions under sup norm cost are derived for a general orthonormal system.

The result covers the widely used estimators based on Haar wavelets,

trignometric functions, and Daubechies wavelets.

1 Introduction

The problem of learning regressions orfunctions in the Probably Approximately
Correct (PAC) framework of Valiant {32] continues to generate significant in-
terest and activity [1, 3, 4, 2]. The. ability to obtain sample sizes that ensure
specified levels of precision and confidence is one of the main strengths of this
paradigm. Recent results establish that a function which achieves small empir-
ical error on an independently and identically distributed (iid) sample yields a
PAC approximation under the finiteness of combinatorial parameters such as
the fat-shattering index [1, 5], Euclidean parameters [31, 33], pseudo-dimension
[14, 23], and capacity [34]. Smoothness properties such as piecewise differentia-
bility [16], nth order continuous differentiability [21], and bounded variation [24]
have also been used for obtaining PAC results.

The function estimation is a special case of the well-known non-linear regres-
sion problem studied in classical statistics [13, 25]. Typical results for regression
estimators are asymptotic [30, 17] and are warranted by smoothness properties
[22]. The appeal of such estimators stems from the ease of implementation and
good performance in practical applications [7].

Recently, by combining smoothness and combinatorial (capacity) conditions,
several specific statistical estimators based on Haar kernels have been shown
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to provide PAC solutions for function estimation [26]. In this paper, we obtain
PAC-style sample size estimates for the regression problem using the Nadaraya-
Watson estimator [19] based on general orthogonal systems when: (a) the regres-
sion class is Euclidean [20, 33], and (b) the expansion coefficients of the marginal .
density and the product of regression and marginal density functions with re-
spect to the orthonormal system satisfy mild decay conditions. The Euclidean
class includes several well-known function classes such as VC graph class [11]
and functions with finite pseudo-dimension [23]. Our approach is also applicable
to more general regression classes with bounded scale-sensitive dimension [1].

Let (X,Y) be a random vector on B x R, for compact B C R. General-
ization of our results to higher dimensions can be done using existing methods
(see [27, 12]). We denote random and deterministic variables by X and z, re-
spectively. The regression function is g(z) = E(Y|X = z). Let £3(D) denote
the Hilbert space of real square integrable functions defined on the set D, and
let A(.,.) € L2(B x ®) and f(.) € L£%(B) denote the density of X and Y, and
the marginal density of X, respectively. Let m(z) = [ yh(z,y)dy exist and be
square integrable on B. Note that the regression is given by g(z) = m(z)/f(=).
Given the iid sample (X1,Y1),(X2,Y2), -+, (Xn,Ys), the regression problem in
random design setting deals with estimating g(z) from the sample. Such prob-
lems have been extensively studied in statistics, and more recently in machine
learning [35, 1]. In this paper, we consider the classical Nadaraya-Watson esti-
mator, based on a measurable orthonormal system {¢;|i = 1,2,...} defined on
A C R; the regression estimator is defined by

Sn

ZZE%(@%(X@') sm
b1 o1 it > dr(@)d(X:) #0

gn(m) = Sy N >
Z Z Pr(z)or(Xi) k=1i=1
k=1:=1
0 elsewhere,

where s, = [n¥], wo < 1/2. These estimators have been extensively studied
[19, 12], and are known to perform well in practice. Rigorous results for these
estimators, however, are in terms of asymptotic consistency {30, 10] or conver-
gence rates [17, 12]. In fact, the same is true for most nonparametric regression
estimators, with the possible exception of [27, 28], whose results can be used to
derive samples sizes under certain smoothness conditions. Here we obtain sample
size n that ensures

P (:lelg lgn(z) — 9(z)| > f) <3,

where P denotes the distribution of the sample (X1, Y1), (X2,Y2), ..., (Xn, ¥n).
The sample size is a function of ¢, §, and certain parameters of regressions and
" marginal densities. Due to the compactness of B, the above condition also implies

P [ loale) = g(@lta)de > ¢ | <
eB




~ for the same sample size. This condition is often used in the PAC formulations
of the function learning problem.

Additional motivation for our work stems from the computational complex-
ity. In general, PAC results are associated with high computational complexity.
For instance, when feedforward Heaviside networks are used as estimators, the
computational problem is NP-complete {6]. In our case, however, the estimated
function value, g,(z), at any z, can be computed in O(n!*¥°) evaluations of
¢r(.); for some orthogonal systems (e.g. Haar wavelets) each evaluation can be
done in O(1) time. These computational properties of g,(.) are achieved at the
expense of the following trade-offs: (i) the results are based on smoothness condi-
tions for densities and regressions, and (ii) sample size estimates are less “com-
pact” compared to usual PAC results. However, this makes the results more
transparent since smoothness conditions are sometimes easy to visualize and
quantify. The interpretation of the bounds is also easier since their dependence
on various smoothness and combinatorial factors is more explicit. Furthermore,
our results provide sample sizes for the estimator based on familiar orthonormal
systems such as Haar wavelets, trignometric functions, and Daubechies wavelets.

In section 3, we present a result valid when the regression is chosen from a Eu-
clidean class and satisfies certain smoothness conditions. Then we consider some
interesting variations of this result in Section 4, where the orthonormal system
itself is a Euclidean class, as is the case with trignometric system, Daubechies

- wavelets, and Chebyshev polynomials. Euclidean classes of Lipschitz functions
are considered in Section 5.

2 Preliminaries

Let A be a collection of subsets of ®¢. The trace t7(S,.A) of a set S C R¢ with
respect to A C 2%° is defined as tr(S, A) = {SN A|A € A}. For |S| = n (here
| - | denotes cardinality), we have [tr(S,.A)| < 2". The growth function is defined

by I,{A) = max [tr(S,.A)|. Then A is called VC class of dimension k if
SCR, |S|=n

k is the largest j such that IT;(A) = 27.

Let C(S) and £*°(S) denote the classes of continuous and essentially bounded
functions defined on S C RY, respectively. For f € £>(S), we have || f ||o=
esssup{|f(z)| : ¢ € S}. The modulus of smoothness of f € £°(5) is defined as
wWeo (f;r) = sup (esssup |f(z+h)—f(z)]) where S(h) = {z € S: z+h € S} and

Bleo<r  S(h)
|h|oc = max(Jhi], ..., |hd]). A function f € C(S5) is called Lipschitz if there exist
0 < C < o0,0 < a<1 (called Lipschitz constant and exponent, respectively)
such that weo(f, 7} < Cr®. We denote the class of such Lipschitz functions by
cx(5).

The graph of a function f is defined as graph(f) = {(z,)) e R xR |0 <t <
f(z) or f(z) <t <0} Fiscalled a VC graph class if {graph(f) | f € F} has
finite VC dimension. If ( is a measure, we will use Q(F') or simply QF to denote
J FdQ. For 1 < p < oo and P a probability measure, the covering number of F




- is defined by

Np(e,]—',P):min{mj ?uglmin Plf— filf < €. {f1,f2,"~,fm}Cfp}.
€

<i<m

For two functions f,g : S — R, wesay f > g if f(z) > g(z) forallz € S.
The envelope of a function class F is a function satisfying F > |f|, for any
f € F. Then F is defined as Fuclidean class [20] with envelope F if there exist
constants Cr and Vi (called Euclidean parameters) such that for any measure
@ of finite support, we have N1(¢QF,F,@Q) < Cre~"*. Each VC graph class

is -Euclidean with envelope sup |f|, and each class of bounded functions with
feF
finite pseudo-dimension is also Euclidean {23, 20]. Like the VC-dimension, the

Euclidean property is not immediately appealing to intuition. Metaphorically
speaking, a class of functions is Euclidean if it contains elements that are suffi-
ciently “well-behaved” and thus - in some sense — predictable.

Let F-G ={fglf € F,ge G}, and f-G = {fglg € G} for a given function
f € F. The following Lemma is based on ideas from [23, 20].

Lemmal. (i} Assume F,G are Euclidean with envelopes F,G, respectively.
Then F -G has an envelope FG with parameters Cr.g = 2Y7+V9CxCg and
Vrg =Vr+ V5.

.. . . . 2

(i) If F is Euclidean with envelope F', we have No(e, F,Q) < Ny (%,F . }",'Q) .

Moreover, if max F(x) < vz, then Na(e, F,Q) < Cr (-%’—)VF .

Proof: Consider part (i). Let @ be a measure with finite support, and let A, u
denote measures of densities F' and G, respectively, with respect to Q. Let
m = Ni(eQF, F,@Q) and n = N1(eQG,G,Q). Then for any € > 0 there exist
{fi, -, fm} and {g1,92, -, gn} such that for any f € F, g € G, and for some ¢
and j, we have A|f — f;| < €AF, and p|g — g;| < epG, respectively. Observe that

QU9 — figiD) < Qlfilg —g;)+ Qla(f — i)l < Alg — 951 + plf — fil
< eAG +euF =2eQFG.

There are at most mn different f;g; in F - G, and hence we have

N1(2€QFG’~7: g;Q) .<_ NI(GQF: -7:3 Q)Nl(eQG’g,Q)a

which proves Part (i). Part (ii) follows from the inequalities Q| f— f;|* < 2QF|f—
fil £ 255— = €2, where {Ff;} is the cover for F - Cx with covering number
Nl(%vF va) =

The following result follows from Talagrand [31] {also see van der Vaart and
Wellner {33]).

Lemma 2. Consider a class F of functions f such that 0 < f < 1. Assume that
for any given € > 0, and any probability @ on {2 that is supported on a compact




set, we have Na(e, F,Q) < (%)U, where V,v are constants independent of c.
Then, for all M > 0, we have

1 & .
Pl sup|=S"f(X:)— Ef| > €| < Kpevn®/?e72™,
feF n i=1

where Kr(V,v) = (-&\%Q)v with K (V) specified in Talagrand [31].

Proof: From [31}, we have
z | M\" 2
P | sup f(X;)—nEf| > M\/n §<KV—) e M7
CrOWES niL

from which the lemma follows. O

Lemma3. Suppose a, b, ¢, d, and 6 are positive finite constanis and n is a pos-
itive integer. Then the inequality ante~cn’ < 6 is satisfied for n > w(e,b,¢,d,6),
where

2In¢ (26— cd)4b\]"/*
wla,b,e,d 8) = [ma,x (1, T —ap )] .

Proof: If n > w(a, b, ¢, §), then

cnd

a
o - 2z . (2.1) -
Moreover, since n¢ > Q—b—;%)ﬂ, by letting ¢ = -g—%, we have n¢ > Qb—;}%g—?ﬁ—b =
%} and -tig—zi > (1 — ¢)n?. It follows that et > tnd + # > nd. Therefore
tn® > Innd, implying C‘;’gd > Inn?, or
d b .
% > Elnnd =blnn. (2.2)

Combining (2.1) and (2.2), we have cn? = % + c—gi > blnn + In 4. Thus,
Iné > Ina+ blnn — cnd, yielding an’e=*"* < §.0

3 Main Result

Let {¢x : k=1,2,...} be an orthonormal system defined on A C R such that:
I mea,}]¢k(:z:)| < ugk™? for all k£, and some finite wy € R, ua > G.

Let F = {f} and M = {m} denote sets of functions in £L?(A4) with compact
support B C A, and G = {g = m/f : f € F,m € M} satisfy the following
conditions:

IIa G is Euclidean with L'-integrable envelope G < 1 and parameters (Cg, Vg).




IIb n’gg]f(:c)l >u >0, for f € F, where u is a constant.
IIc The functions f € F and m € M satisfy, for some 1;,72,Cy,Cs > 0

Z agde(z)|| < Ci(lnn)™™, and Z brdr(z)]| < Co(lnn)™"
k=n+1 00 k=n+1

oo

where ap = [ f(t)ér(t)dt = Edr and by = [ m(t)¢r(t)dt = ‘E(Yqﬁk) =
E(g¢x).

The condition I specifies that the magnitude of the elements of the orthonor-
mal system must not increase faster than a polynomial in the index variable.
The condition IIa specifies that the regression class be Euclidean; in spirit, this
condition is similar to specifying the finiteness of capacity or graph dimension
used in PAC paradigms. Euclidean class is not the weakest function class that is
learnable, but our approach can be applied to more general classes (see Reamrk
4.1). The condition ITb specifies that the marginal density be bounded away from
zero. The condition IIc relates the function classes F and M to the orthonormal
system in that each function must be expressible in terms of the orthonormal
system with decaying coefficients. Essentially, the conditions I and Ila-c guar-
antee that the regressions to be estimated and the orthonormal systems used
to represent the regressions are reasonable enough both in terms of smoothness
and combinatorial parameters.

Compared to the distribution-free results typical in the PAC paradigm, addi-
tional smoothness is required here both on marginal densities (which are assumed
to exist) and regressions. Conditions such as IIa {or weaker forms, see Remark
4.1) are usual for the PAC paradigm [5, 2], while I, IIb-c are typical for the
statistical paradigm [28, 17].

Theorem 4. Let {¢p} be an orthonormal system satisfying condition L. If func-
tion classes F and G satisfy conditions I1a through Ilc, then for any 6 > 0 and
€ > 0 we have

i (:lelg |9n(2) ~ g(=)| > 6) < 8,

for sample size n > max(Ni1, Nig, Na1, Naa, Na1, Na3) with Ny of form (/D"
1/d
and Njy of form w(a,b,c,d,e) = [max (1,2/cln§-, M)] with the fol-

e2d?
lowing parameters

a b c |d e a |[b|c
N]_l Ifg(ﬁCévg,QVG)G%VG VGw 26% w 5/3 N12 CQ €1|N2Wq
Ny |18 14 2wyq 6%/41—100(2—}-3102) 5/3 Nos|Ch ey 71 Wo
N31 18 1+2w0 62/41—11]0(2+3”LU2) 6/3 N32 201 € {Mmwo

where s, = n¥°, 0 < wo < 1/2, w=1~—2wo(l +w2), and ¢, = S22,




Proof: Let m, () = %Z Z Yior{2)$r(X;) and fo(z) = %Z Z or(2)dr(X;)
k=1i=1 k=14=1
such that g,(z) = m,(2)/fn(z). Nadaraya’s decomposition inequality yields [18}:

P (sup lon(e) =90l 2 )

e(u —¢)

= — mlz Qqu—¢) su 2 — f(x e{u —¢)
= P (sup fma(@) - m(@) 2 L52) 4 £ (sup (o) - ) 2 L459)
+P(:‘Elyfn(m)—f(l'”>5)=Il+12+l3-

Writing
mp{z) — m(z) = r:zn(z) —-f?’mn(m) + Emp(z) — m(z)
=> %Zwk(xi) - E(Yqﬁk)) ee(@)+ Y bede(),
k=1 i=1 .

k=sn+1

we estimate the first term, I3, as
P (sup |mn(z) — m(z)| > 2€1>
T€EB

> (-}; 3 Yige(X:) - E(quk)) 4()

z€B k=1 i=1

> 61)

<P (sup

+P (sup Z bror(z) > 61)
reEB k=sn+1
= I + In.

The term I13 can be made zero when n is large enough such that s, = n*° >

-
e( €1 ) ™ which yields the expression for Nyj5. Now, for 0 < € < ¢;, we have

P (z": (% ZYi¢k(Xi) - E(Y¢k)) orz) > 61)

k=1 i=1

<P (Zn (% > i g(Xz')]dJk(Xi)) or(z) > 5)

k=1 i=1

+P (Zn (%Zg(Xi)ibk(Xi) - E(Y¢k)> ér(z) > €1 —5) )

k=1 i=1
> )

For any ¢ > 0, the first term is upperbounded by

g

i: (%}:m - g(Xi)]¢k(Xi)) o ()

k=1 i=1




which is in turn upperbounded by

ZP( ( Z i (Xi)]¢k(Xi)) ox(z) >€/sn>
< ;"Z ( > Vi - g(Xi)]m(a\’,-)) ¢k(x)} ,
k=

=1
where the last step is due to Chebyschéev’s inequality. Now each term under
the expectation is zero, and hence the sum is zero. Thus for n > N;s and

D, = {d1,¢2,...,¢s,}, we have
> €1>

Z( ZY@(X Ym)) éi(z)

Ii =11 <P (sup
Tr€B

k=1 =1
<P (sup Zn: (}-Zg(Xi)fﬁk(Xi) - E(Yq’)k)) dr(2)| > 61)
xiB k=1 nn i=1
<P ( Z (%Zg(Xi)%(Xi) - E(Ygﬁk)) > 61//13,,)
k=1 i=1

< sy, P| sup sup
PEP,, 9EG

a ég(XiM(Xi) - E(9¢)‘ > 61/8,11+"’2)

< s2 sup P| sup
¢E¢sn gE¢

L3 o(X)0(X) ~ E(g0)

> 61/31"'2‘”9) .

From Lemma 1, ¢G is Euclidean with parameters (2V¢Cg, V) with envelope

1\
@G, which yields Na(e,¢G, Q) < (20(2;"6 /6) . Thus by Lemmas 2 and 3, we
have, for n > Ny,

L < K6(207% | 2Vg)eVanVoli=aua(itus) g=26nt=2w0l4ea) o5

The treatment of the terms I3 and I3 is similar, and we consider Iz. For

n > N3y = e(%)#w_o, we have
L < P (sup () = Efa()] > )
<p <sup \z S 6u(X0)da(2) — B(or)6u(2)

z€B li=1 =1

®

< P(E |t £ o0 - Bon| > e/st7)
< spP| sup |L zn: #(X:) — E(é)l > 6/3}{*‘"’2) .
PEPs, i=

The last term is upperbounded by 18nlt2wog=e®/4nt TGN G e the supre-
mum is taken over a finite set of functions uniformly bounded by s%2 = n¥ov2
[34]. Then Lemma 3 yields the expression for N3;. O




We now describe well-known examples from harmonic analysis, where condi-
tions I and Ilc are extensively investigated. Note that the additional conditions
ITa-b are needed for sample estimates based on Theorem 4.

Example 3.1: When the trignometric system is used for {¢x}, wa =0, A = R,
and condition Ilc is satisfied for Lipschitz functions ([36], p. 61). Since wy = 0, a
simpler formulae can be obtained for the sample sizes of Theorem 4. By choosing
wo = 1/4, we have w = 1/2. For simplicity assume that g < 1 and € < 1, which

implies that ¢; < ¢e. Let Lg = max [ 18, K¢ \/—CéVG 2VG)€2VG> . Then we have

the following simpler form for the sample size
—Z [In(3/68) + In L¢]?
€1

. 2max(C)y . Cp) max(n1,n2) . .
when s, is chosen to be e 1 . Compared to typical PAC esti-

mates, this sample size is higher since it is proportional to: (a) 1/¢} as compared
to the usual 1/¢2, and (b) the square of In L as compared to the linear depen-
dence on a similar term (for example, based on capacity or graph dimension). On
the other hand, the estimated function value can be computed in O(n3/?) time.
Note that the computational problem of minimizing empirical error required by
PAC methods could be intractable.

Example 3.2: For Haar wavelets, we have w, = 1/2, A = B = [0, 1}, [12], and

condition ITc holds for any function f with weo(f, 7} = O(r*), 0 < a < 1 [§].
The-specific properties of the Haar system have been utilized in [26] for sample -
size estimates, whereas Theorem 4 is more general.

Example 3.3: For Legendre polynomials, we have w, = 1/2 [28]. Let A(z)
be integrable on [ 1,1} with bounded variation. Then functions of the form

flg)=f(-1)+ f h(z)dz satisfy condition IIc (Jackson’s Theorem [29]).

4 Variations

Consider the following conditions:

Ia max|¢r(x)| = Ar, where u1d%t < Ap < ugk™?, and u; > 0, us > 0, w; <
O,Z wg > wy.
Ib & = {¢r/Ar,k = 1,2,--} is Euclidean with £l-integrable envelope H and
parameters (Csg, Vqs)
IIa’ F,G are Euclidean with £!-integrable envelopes F, G and parameters (C}-, Vr),
(Cg, Vi), respectively.

Theorem 5. Let {¢r} be an orthonormal system satisfying conditions Ia and Ib.
If function classes F,G satisfies conditions Ila’ and I1b-c, then for any § > 0,
e > 0 we have

P (225 lgn(z) — g(z)| > €> <4




for sample size n > max(N11, N12, No1, Naa, Na1, Naz), with Njo of form elarvytie”
. 1/d
and Nj, of form w(a,b,c,d,e) = {max (1,2/cln%,m>] with the fol-

c24d?
lowing parameters

a b ¢ id e
N Kg.pe, 9% Vg — 2 1% 2¢5 5
1| =i Vo-e — 2wown Vg.g + wo| 7|1 — 2wo(wo + w2)|8/3
1
Notl B2 2 |y g 262
21~ 505 s — 2wow Ve + wo 7 1 — 2wolwo + wy)|6/3
Kgpe'® . 22
N3y __Luﬂ/‘i’ Ve — 2wow Ve + wo E 1- 2wg(w0 -+ wg) 5/3
a |bic

N12{2Ca€ea|n2wn
N22{2C |e2|niwo
N32i2C1|e |mwg

To prove Theorem 5, we need the following lemma.

Lemma 6. Let F denote a Euclidean class of function with envelope F' bounded
by 1. For fr € F, we have

p(i

k=1

%ka(Xi) —Efi

i=1

8n 2
Ap > 6) < Kr nVF 2V ZA;”/"'e—?n(%Ak) .
k=1
Proof: Noting

p(ij

k=1

%ka(Xi) - Efk

=1

Ay >6) Sip(
k=1

S €
spAx |’
the lemma follows from Lemma 2. O

Proof of Theorem 5: The proof is similar to Theorem 4 except for details of
the bounds for Ny;, N2y and Ng;. For n > Nja, by using Lemma 1, we have

%;fk(Xi) -Efi

5o 2
-— _— _2__5
L =111 <Kge 77,‘7’*7‘4’63‘/9"1r> E AL GRS Zn(’k“‘k

k=1
n™o 1 V.o _o, '322
Ve. 3 2wo 42
< Kgqsfg gepVoe E ( ]cun) e wakTTOTE2
u
k=1 1 2
d 2Vg.¢ n%o _ 2ne
< I‘Q@CZ , n‘/’g.Q k—2Vg.¢wle u§k2w0+2‘”2
- 2Vg.e : :
Uy k=1 R
O A 222 1-2wg(wotwa)
< [Xg-QGQ an.qs—ZVg,gsU)ow;l-'}-wOe ug n

Voo
Uy




By Lemma 3, I; < %, for n > max(Niy, Nqa), where Nyjo = w(a, b, ¢,d,6/3), and

Kg.ges'o® 2¢3
= T b= Vg.e—2wouw Vg g+we, c¢= ol d= 1—2w0(w0+w2).

1

3

For I3 (I can be similarly handled), we have

Sn 5
- - —on(——
Is < K3 n"2¢%V2 E Ag Wa, n(SkAk) <
k=1

w| o

1
for n = max(Nsz1, N3z), where N3 = exp ((%’-) "1‘"°> and N3y = w(a,b,¢,d,8/3)
with parameters specified in the statement of the theorem. O

Remark 4.1: Condition ITa can be relaxed in Theorem 4, namely: ¢ with
envelope G < 1 has finite P,-dimension [1]. A different expression for Ni; must
be derived in this case by using the sample size estimate of [1].

Remark 4.2: A generalization of Theorem 5 can be obtained by eliminating
condition Ib and replacing ITa’ by ITa, along the lines of Theorem 4. Conditions
Ia and Ib, however, are satisfied by a number of orthonormal systems, which
results in the above compact form for the sample size estimates.

Lemma 7. The following orthonormal systems are Euclidean with parameters
X (C’ 4)

(a) trignometric system {sinnz,cosnz} on [—7,];

- (b) Daubechies wavelets on R; and

{c) Chebyshev polynomials, T, (z), on [-1,1].

Proof: Noting that T,(z) = cos(narccosz)), (a)-(c) follow from Lemma 22
of [20] because sinz, cosz and Daubechies’ mother wavelet [9] are of bounded
variation. Furthermore, we can obtain N;(¢, F, Q) < Ce™*, for function classes

(a)-(c). O

5 Lipschitz Functions

In this section, we show that condition Ilc is satisfied for Lipschitz functions
for several orthonormal systems. Recall that for trignometric system and Haar
wavelets condition IIc holds for Lipschitz functions, when A is [—#, 7] and [0, 1],
respectively (Examples 3.1 and 3.2).

For Lipschitz functions, we now show that condition Ilc is satisfied by the

Daubechies wavelets {¢; 1}, generated by the scaling function ¢ (details can be
found in [9}).

Lemma8. For any f € C*(R), there exists C3 > 0 such that
| £(2) = cindin(@) o=l f(2) = D cis2?6(2 2 ~ k) [low < C277
k

k

where c; x = 2/2 [ f(z)(2 z — k)dz.




27 (k4D
Proof: Let b; ;=2 [ f(z)dz. From [15] for any f € C*(R), there exists
2=k

Cy > O such that || f(z) = 3 bj 2d(2 2 — k) ||w< C1277%. Then we have
. keZ

F(@)6(2z — k)dz - / k)92 — k)de|
<10 [ le - 27klo(Y = byde| = |C / 9=3i=11y[ §(y)dy < Co2~ (oD

Notice that [ f(k277)é(2'z — k)dz = f(k277)277 and

277 (k41) 279 (k41)
f(z)dz — f(k279)277| < / Clz — k279 |de < C27%.
2-3k 2=3k
. 277 (k+1) . _
Therefore | { f(2)¢(2z — k)dz — [ f(z)de| < C2277014) e, |20/%¢; ) —
2-ik
bj,kl < Cq27de -

Thus, || f(z) — 3 ¢; £29/2¢(2/ & — k) ||oo is upper bounded by
%

I f(z) =D b xd(2z — k) lloo + 1| D (bjk — 62/ )6(2 2 — k) ||
k k

<0127+ G279 || D [8(Z e — k)| lo< C3277%. D
k

For functions with compact support, it is convenient to replace the two indices
7,k by a single index, n. For each j € Z; U {0}, k € Z, let us define tqg = 0,
te = 2|k| - 1%}— 1/2,k>1landn = Qﬂx’;"t—"“l—%-tk +1 (see the table below).
It is easy to prove that these relationships establish a one-to-one correspondence
between (Z4 U{0}) x Z and Z,.

NklO 1 -1 2 -2 3 -3...
011 3 6 10 15 ...
1{2 5 9 14...

214 8 13...

3|7 12.

4111 ...

51...

%10 1 2 3 4 5 6...

Lemma 9. With the definitions above, if f is Lipschitz with support in [—1,1],
we have

| £(2) = (Paf)(2) lloo < Ca279% < Csn™o72,

for some C4,C5 > 0, where P, is the wavelet approzimation.




Proof: Since f has support in [—1,1], the case |k| > 2/ is uninteresting. If k is
cut off at 27, then ¢; ~ 2|k| and n =~ 2k? ~ 2% Thus, using the lemmas above
| = Paflloox 277 mn™o/2 O.

Remark 5.1: In this paper, we consider batch PAC formulation under smooth
densities with sup norm cost. whereas [16] considered distribution-free on-line
formulation under £2-norm for piecewise twice-differentiable continuous func-
“tions.

6 Conclusions

Euclidean classes of functions and regression with compact support and certain
smoothness properties are shown to be PAC learnable. The Nadaraya-Watson
estimator based on complete orthonormal systems is employed to learn the re-
gressions or functions. The results require more smoothness properties than typ-
ical PAC formulations, but, offer computationally efficiency. Furthermore, this
estimator is known to perform well in a number of practical applications. Al-
though well-studied in statistics, the available results on Nadaraya-Watson esti-
mator only specify asymptotic consistency or convergence rates. By combining
the traditional analysis methods with PAC-style results, we derived sample sizes
necessary for learning regressions or functions under sup norm cost. Further-
more, by restricting the estimator to an orthonormal system, low computational
complexity is achieved. Our results also provide finite sample results for widely
used estimators based on Haar wavelets, trignometric functions, and Daubechies
wavelets. :

There are several open issues and futher research directions. It will be inter-
esting to see lower bounds for the sample sizes under the conditions considered
in this paper. Also, a more direct comparison with existing function learning
methods will be useful in juding the performance of the proposed method. It is
expected that larger sample sizes are needed for our method, but, at a lower com-
putational cost. Finally, it will be useful to investigate other estimators known
in statistics, such as Kernel estimators, regressograms, and delta estimators, for
solving function or regression learning problems.
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