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Abstract

A method is described for generating electron cross sections that are compatible with standard dis-
crete ordinates codes without modification. There are many advantages of using an established discrete
ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capa-
bility is needed for many applications, including the modeling of the response of electronics components
to space and man-made radiation environments. The cross sections have been successfully used in the
DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accu-
rate and efficient solutions to certain multidimensional electron-photon transport problems. The key to the
method is a simultaneous solution of the continuous-slowing-down (CSD) portion and elastic-scattering
portion of the scattering source by the Goudsmit-Saunderson theory. The resulting multigroup-Legendre
cross sections are much smaller than the true scattering cross sections that they represent. Under certain
conditions, the cross sections are guaranteed positive and converge with a low-order Legendre expansion.

1. Introduction

This article describes the use of neutral-particle discrete ordinates codes for electron transport applications.
Electron cross sections are computed that are compatible with standard discrete ordinates codes without
modification. To the extent that these cross sections approximate the physics of the electron interactions,
neutral-particle codes such as DORT,! TWODANT? and TORT? are able to model electron and coupled
photon-electron-positron transport.

The advantages of such an approach are many. Adjoint capability is immediately available. Standard
codes have undergone extensive benchmarking and quality assurance (QA). From a user standpoint, using
the same transport code to model neutron, photon, and charged particle transport is efficient. Acceleration
techniques that have been developed for neutral-particle transport apply to a certain extent to charged-
particle transport. —

There are also some problems involved with using a neutral-particle code for charged-particle transport.
Production discrete ordinates codes are unable to model downscattering that is §-function in angle, which
is inherent in the continuous slowing down approximation (CSDA) describing charged particle transport.
Furthermore, because the charged-particle interaction cross sections are generally much larger than their
neutral-particle counterparts, traditional first-collision source techniques do not work well for charged-
particle beams, and convergence of the solution algorithm may be slow. It is hoped, however, that the
methods presented here provide some progress toward a multidimensional, deterministic electron-transport
capability.

Currently, powerful Monte Carlo codes are available for electron transport.4 While some problems are
well suited for a Monte-Carlo approach, other problems are more efficiently solved with a deterministic
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method, e.g. computing distributions, modeling deep penetration, and low-probability events. Still other
problems are most efficiently solved with a combination of Monte Carlo and deterministic modeling. With
the codes in the ITS series, one- and multi-dimensional geometries can be modeled in forward and adjoint
mode, with either a continuous-energy or multigroup treatment. 3
Deterministic electron transport capabrhty is currently available for one-dimensional geometries, with
the CEPXS/ONELD code package CEPXS/ONELD uses Gauss quadrature for slab and spherical geome-
tnes and Galerkm quadrature for cyhnders Galerkm quadrature sets are also available for multidimen-

in neutral-partlcle transport codes does not allow the use of general quadrature sets.® The approach pre-
sented here eliminates this restriction, allowing more flexibility in the choice of quadrature sets, which
is more in line with neutral-particle calculations. The CEPXS code generates cross-section libraries for
coupled photon-electron-positron transport that are enough neutral-particle-like that a modified version
of the ONEDANT? code can be used for the transport. The method relies upon remarkable ability of
Gauss and Galerkin quadrature sets to exactly integrate 8-function scattering, under certain conditions. The
CEPXS/ONELD code package has reached a high level of sophistication and has been used extensively
for problems where one-dimensional geometry is appropriate. The approach presented here eliminates the
need to exactly integrate §-function downscattering so that general quadrature sets can be used. As de-
scribed later, this is accomplished by using the Goudsmit-Saunderson theory to simultaneously solve the
elastic scattering and continuous-slowing-down (CSD) components of the electron transport.

Bill Filippone and several of his students at the University of Arizona developed the multidimen-
sional, deterministic charged-particle code, SMARTEPANTS. 0 The SMARTEPANTS code uses a dif-
ferent approach than the multigroup-Legendre expansion of the angle-energy dependence of the transport,
an approach better suited to charged-particle interactions. The SMARTEPANTS approach is based on the
Goudsmit-Saunderson solution to the infinite-medium Spencer-Lewis equation. The main limitation of
this method is that the entire energy-angle-spatial down-scatter source must be kept, rather than just the
scattering moments as in neutral-particle discrete-ordinates codes, so that the memory requirements are
even more enormous than for traditional methods.

The work presented here combines the CEPXS/ONELD and SMARTEPANTS approaches, resulting
~ in SMARTEPANTS-like cross sections that are compatible with neutral-particle discrete-ordinates codes.
The resulting cross sections have a number of desirable properties: 1) positivity (in certain circumstances),
2) much smaller than the true interaction cross sections, 3) low-order Legendre expansion, 4) and not tied
to a particular quadrature set. These desirable properties will be further explained, with limitations given,
later in this article. Unlike the SMARTEPANTS code, this work is based on the Boltzmann-Fokker-Planck
equation rather than the Spencer-Lewis equation (modeling based in energy rather than path length).

2. Boltzmann-Fokker-Planck Operator

The numerical modeling of electron transport is difficult because of the highly-forward-peaked nature
of the scattering interactions. Electron transport is characterized by an enormous number of scattering
interactions, individually having only a minimal effect on the energy and direction of travel of the electron.
In other words, electron scattering cross sections are large and extremely forward peaked. Numerical
methods traditionally applied to neutral-particle transport generally do not work well for modeling the
transport of electrons.

For scattering that is highly forward peaked, which is characteristic of charged-particle scattering, the
Legendre polynomial angular expansion of the cross sections that is normally used in discrete ordinates
codes is inadequate. The electron scattering cross section is extremely forward peaked, invalidating a
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standard multigroup-Legendre solution. The Boltzmann-Fokker-Planck (BFP) operator is an approxima-
tion to the Boltzmann-transport operator for scattering interactions that are highly forward peaked, such as
electron transport.

In order to model electron transport with a BFP formulation, the scattering cross section is separated
into three components, 1) the elastic-scattering part (for directional change without energy loss), 2) a “soft”
inelastic-scattering part (for energy loss without significant directional change), and 3) a “hard” inelastic-
scattering part (for both energy loss and directional change). The scattering cross section is the sum of the

———elastie-seattering-and-the-“soft >inclastic-scattering-and-“hard-inelastic=scattering-cross-sections;-where
we have dropped the spatial coordinate in the cross sections,
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where the angular dependence of the cross sections is assumed to be independent of direction, depending
only upon the angle, 1, between the pre- and post-scattering directions of the electron. The soft-inelastic
portion of the scattering cross section is approximated by the continuous slowing down approximation
(CSDA), 11 55 that the Boltzmann-Fokker-Planck operator is given by
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where the stopping power is defined by
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where ¢ is the energy boundary (artificial) between “soft” and “hard” scattering.

The inelastic-scattering cross section is separated into two components by specifying an artificial energy
and directional boundary separating the two components. For energy loss greater than the artificial bound-
ary value, the inelastic-scattering cross section is handled with a standard multigroup-Legendre expansion, -
requiring that this part of the cross section not be too anisotropic. For energy loss less than the artificial
boundary, the inelastic-scattering cross section is modeled by the continuous-slowing-down theory, requir-
ing that the angular change be negligible. How this boundary is specified may have a great impact on
the accuracy of the result. In the CEPXS code, down scattering to an adjacent group is treated with CSD
theory and down scattering beyond an adjacent group is treated with the standard multigroup-Legendre
expansion. This is also the convention that is used here.

3. The Goudsmit-Saunderson Operator

The Goudsmit-Saunderson operator formulation includes 1) the elastic-scattering part (for directional
change without energy loss), and 2) the “soft” inelastic-scattering part (for energy loss without signif-
icant directional change) and neglects 3) the “hard” inelastic-scattering part (for both energy loss and
directional change) The Goudsmit-Saunderson formulation solves the infinite-medium problem. The
value of the Goudsmit-Saunderson equation is that it can be solved exactly. The Goudsmit-Saunderson
operator is

Los®(, E) = —0ud(2, E) + / ouilpio, B)B(SY, B)dSY + 5%[5@] @

The Goudsmit-Saunderson solution is based upon the expansion of the angular fluence and elastic-
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scattering cross section in infinite Legendre-polynomial expansions. The elastic-scattering cross section
is extremely forward peaked and, therefore, requires a huge number of Legendre expansion coefficients
for accurate modeling (typically ~200). If the angular fluence and the elastic scattering cross section are
expanded in infinite Legendre-polynomial series. The angular fluence at energy E is, after some manipu-
lation, related to the angular fluence at an upper energy bound, ®(p, Ey), by

S(E)2(s, E) = ]
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Eq. (5) forms the basis of the current method. To summarize, Eq. (5) relates the angular fluence at a
given energy, F, to the integral over angle of the angular fluence at a higher energy, £, neglecting “hard”
scattering and spatial effects.

The Goudsmit-Saunderson approach combines the elastic scattering and continuous slowing down in
a single downscatter operator. The success of the method depends on this downscatter operator being
less anisotropic than the scattering cross section. The anisotropy of the downscatter operator is related to
the separation between the two energy bounds, £ and Ey. Referring to Eq. (5), as Ey approaches F, the
exponential termin Eq. (5) vanishes, and the downscatter operator approaches a  function. Conversely, as
the separation between the two energy bounds increases, the downscatter operator becomes less anisotropic,
due to the presence of the exponential term. Physically the reason for this is that as the electrons slow down
from Ey to F, the elastic scattering deflects the electrons.

The elastic-scattering cross section is extremely forward peaked, but the Goudsmit-Saunderson expan-
sion removes a §-function component from the elastic scattering cross section, utilizing only the difference
between the moments of the elastic-scattering cross section rather than the moments themselves (6-function
elastic scattering is like no scattering at all, and can be removed without effect). By combining the CSD
with the non-é-function component of the elastic scattering, the down scattering is much less forward
peaked, and may be approximated by a low-order Legendre expansion.

The multigroup-Legendre solution, of the type used by standard discrete-ordinates codes, of the Goudsmit-

Saunderson is
2+1 ,
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where a;,_, o are the moments of the multlgroup scattering cross sections. Comparing Eqgs. (6) and (5) sug-
gests that it may be possible to approximate the Goudsmit-Saunderson downscatter operator by multigroup-
Legendre cross sections. Integrating Eq. (5) over energy group g and dividing by the group width, and
truncating the Legendre expansion at the Lth moment, results in an equation that is very similar to the
multigroup-Legendre solution,
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®(u, Ep) is the angular fluence at as yet unspecified energy Fy. In the following sections, ®(u, Ey) will be
related to the multigroup angular fluences, resulting in several different forms of the multigroup-Legendre
scattering moments.




4. Multigroup-Legendre Cross Sections

Eq. (7) relates the group-g multigroup fluence to the fluence at an upper energy bound, Fy. In order
to proceed, a relationship between the multigroup and boundary fluences is needed. The nature of this
relationship has a profound effect on the properties of the resulting multigroup-Legendre cross sections and
on the accuracy of the approximation. In this section, two different energy-differencing approximations
are described. The first is a linear-continuous (diamond) differencing, which is very accurate, but results

n negative cross sections._The second differencing method results_ in all positive cross section, but with

some loss in accuracy.

4.1 Linear-Continuous Differencing

The linear-continuous (diamond-difference) approximation is illustrated in Fig. 1, which shows the rela-
tionship between the multigroup values (dashed lines) and continuous values (solid lines).
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Figure 1: Linear-continuous differencing showing the relationship between the differential and multigroup
values.

Utilizing a linear-continuous approximation in Eq (7) after some manipulation, 13 results in total,
downscatter, and absorption cross sections,
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Unlike the standard CEPXS cross sections, the self-scatter cross sections are all zero, and the higher-
order down-scatter moments are
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This method results in cross sections that are very effective for modeling integral quantities, such as
charge and energy deposition profiles. The cross sections are not tied to a particular quadrature set. The
cross sections are also much smaller than the true scattering interactions that they represent, resulting in
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fast convergence of the discrete-ordinates solutions.

The cross sections also have some undesirable features, however, including 1) many negative cross
section elements, and 2) the cross sections may result in severe oscillations in the energy dependence of
the calculated fluence. The energy differencing scheme described in the next section eliminates these
undesirable features, but with some loss of accuracy.

4.2  First-Order Polynomial Differencing

ATirst-order polynomial approximation results in total, self- and down-scatter, and absorption Cross sec-
tions given by

: S, Se
Org = 255, ad 03y = 00511 = Ouc = 2o a0
The higher-order scatter moments are as before
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This procedure results in a multigroup-Legendre cross sections that are all positive that work well in the
DORT code. The cross sections are less accurate for computing energy deposition profiles than are the
linear-continuous cross sections due to numerical straggling, which is the artificial spreading of the energy
dependence resulting from the multigroup approximation.

5. Summary and Comparison with Measurements and Monte Carlo Calculations

The Goudsmit-Saunderson approach combines the elastic scattering and CSD terms into a single down-
scatter cross section. By averaging over energy groups, the need to model §-function downscattering is
eliminated, and the downscatter cross section can be approximated by a truncated Legendre-expansion.
In this section we demonstrate good agreement with experiment and Monte Carlo results for several test
problems.

The cross sections were computed with a version of the CEPXS8 code, modified to include the Goudsmit-
Saunderson terms in the cross sections. The CEPXS code produces a cross section library in the BXSLIB
format that is directly usable in the ONELD? code, which was used for the one-dimensional calculations.
The CEPXS cross sections were further processed into the GIP format for use in the DORT! code, which
was used for the two-dimensional simulations. The DORT calculations used §-weighted spatial differenc-
ing and an S-16 fully symmetric quadrature set.

The discrete-ordinates results are compared with measurements, when available. For problems where
measurements are not available, the discrete-ordinates results are compared with Monte Carlo calculations
performed with the ITS* codes. The TIGER code of the ITS package was used for the 1-dimensional
calculations, and the ACCEPT code, which has combinatorial-geometry modeling capability, was used for
the 2-dimensional calculations. The accuracy of the discrete-ordinates results depends on the fineness of
the discretization (spatial mesh, energy grid, and angular quadrature order) used in the calculation. The
discretizations were refined to the point where further refinement resulted in only a few percent change in
the results. Uniform energy groups were used for all of the calculations.

All of the discrete-ordinates calculations and most of the Monte Carlo calculations were performed
on a single processor of a SUN-SPARC1000 workstation. The single exception to this was the ACCEPT
modeling of the junction-diode electron-hole pair distribution described in Sec. 5.1.3, which was performed
with 1,000 processors on a PARAGON. This modeling was done on the PARAGON, since the estimated
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SUN-SPARC1000 runtime was about 60 days.

5.1 Energy-Deposition Profiles

5.1.1 One-dimensional measurements of Lockwood et al.

Lockwood, et al.14 have used a calorimetric technique to measure energy-deposition profiles in one-
__dimensional geometries for electron sources. They used electron beams with energies ranging from 0.3

t0 1.0 MeV, and they considered targets ranging from low-Z elements such as beryllium to high-Z ele-
ments such as uranium. They also measured energy deposition profiles for several high-Z/low-Z multilayer
arrangements. The reported experimental uncertainties are less than a few percent.
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Figure 2: Comparison of discrete-ordinates calculation with the measurement of energy deposition versus
depth for 1-MeV electrons normally incident on aluminum. Electrons are incident from the left. Depth is
given in terms of the fraction of an electron range.

We have modeled several of the Lockwood geometries with the CEPXS-GS/ONELD codes. For 1-
MeV, normally-incident electrons on aluminum, the results are shown in Fig. 2. The CEPXS-GS/ONELD
calculation used 50 electron energy groups, S-32 Gauss quadrature, P-11 Legendre expansion, and required
0.9 min on a SPARC1000 processor. The calculation and measurement are in excellent agreement.

5.12  1-MeV electron beams on two-dimensional tantalum

Figs. 3 and 4 are plots of the Monte Carlo and discrete ordinates calculations of energy-deposition dis-
tributions for a 1-MeV collimated electron beam normally incident on a bar of tantalum that is 0.015 by
0.015 cm (about one third of a range thick). The electron beam is collimated to a width of 6 pm, nor-
malized to one source electron. The modeling is done in two dimensions, implying an infinite length in
one of the axes. The CEPXS-GS/DORT calculation used 2,500 spatial cells (50x50), 100 electron energy
groups, S-16 quadrature, and P-5 Legendre expansion, and required 282 minutes on a SPARC1000 proces-
sor. The agreement between Monte Carlo and discrete-ordinates is very good. The Monte Carlo results are
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less-smooth, due to the statistical

8

nature of the solution.
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Figure 3: Monte Carlo calculation of the energy-deposition contours from a collimated beam of 1-MeV
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Figure 4: Discrete-ordinates calculation of the energy-deposition contours from a collimated beam of
1-MeV electrons normally incident on tantalum.
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Figure 5: Monte Carlo modeling of the electron-hole-pair distribution from 100-keV photons normally
incident a gold-contact diode. Photons are incident from the top and are normalized to 1 erg/cm?. The
contours are electron-hole pairs per cubic micrometer.
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Figure 6: Discrete-ordinates modeling of the electron-hole-pair distribution from 100-keV photons nor-
mally incident a gold-contact diode. Photons are incident from the top and are normalized to 1 erg/cm?.
The contours are electron-hole pairs per cubic micrometer.

5.13  Junction-diode electron-hole pair distribution

The response of semiconductor devices (such as junction diodes) to irradiation depends upon the distribu-
tion of electron-hole pairs throughout the semiconductor materials. The cross section of a typical junction
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diode is shown in Fig. 5. The diode consists of a thin (1 xm by 4 pm) gold contact adjacent to a 0.5-pm
p* silicon layer, followed by a 3.5-pm EPI silicon layer, above substrate silicon.

Figs. 5 and 6 show the distribution of electron-hole pairs for 100-keV photons normally incident from
the top of the junction diode. Fig. 5 shows the ACCEPT results and Fig. 6 shows the CEPXS-GS/DORT
results. A P-3 Legendre expansion is adequate to model the scattering, because the electrons production
is fairly diffuse in angle. The photon source was normalized to 1 erg/cm?2, and the electron-hole pair
distributions are shown in units of electron-hole pairs per cubic micrometer.

- The-generation-of-electron-hole pairs is-dominated by-clectron-emissionfrom-the-gold contact into-the——

surrounding semiconductor materials. The electron-hole pair distribution was computed from the energy-
deposition distribution, assuming 3.6 eV per electron-hole pair The discrete-ordinates results are about
10% higher than the corresponding Monte Carlo results. The reason for this difference is not understood,
but the difference does persist with a finer energy and angle discretization and with a higher-order Legen-
dre expansion of the scattering. The CEPXS-GS/DORT calculation used 5,400 spatial cells, 40 photon
energy groups and 100 electron energy groups, S-16 quadrature, P-3 Legendre expansion, and requlred
142 minutes on a SPARC1000 processor.

5.2  Electron-Emission Spectra

521 Electron beam on two-dimensional tantalum

Fig. 7 shows the reflected, transmitted, and transverse electron spectra emitted from the one—third range
tantalum bar irradiated with a collimated beam of 1-MeV electrons, described in Sec. 5.1.2. The symbols
are the ACCEPT results and the smooth curves are the CEPXS-GS/DORT results. The agreement is quite
good, differing by at most about five percent. The only exception to this is at the very low energy end of
the spectrum, where the discrete-ordinates results of the reflected spectra is much higher than the Monte
Carlo results. The reason for this difference is not known.

. ——

o -y
toss o

Electron Escape (#/MeV)
& ,
(o]

04
0.2

oglivssagtst et 80 Tty ]
B0 0.2 04 0.6 0.8 1.0

Electron Energy (MeV)

Figure 7: Electron-emission spectra from a 1-MeV electron beam incident on a two-dimensional, one-third
electron range tantalum. The symbols are the ACCEPT Monte Carlo results and the smooth curves are the
discrete-ordinates results. The reflected, transmitted, and transverse spectra are shown.
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6. Discussion and Suggestions for future work

The multigroup-Legendre cross sections also work well in adjoint calculations, and there are many po-
tential applications in this area. The cross sections should also be effective for multigroup Monte Carlo
calculations.

The multigroup-Legendre cross sections have been demonstrated to work for a wide variety of problems.
However, there are some problems for which the cross sections have not worked so well. For high-energy

_electron_beams_on_water_(of importance in radiation_oncology studies) a very high-order Legendre ex-

pansion is required. For these types of problems some type of first-collision source technique may prove
effective.> For high-energy electron beams on high-Z materials a large number of energy groups is re-
quired to reduce numerical straggling. Allowing for non-uniform electron energy group widths would
improve the modeling, in some cases.

The use of CEPXS-GS cross sections eliminate well-known numerical oscillations in the CEPXS/ONELD
results in some cases with a very small spatial mesh size. As described on p. 44 of the CEPXS results
guide,6 energy-deposition profiles can oscillate severely for a monoenergetic electron beam incident on a
low-Z material. Fig. 8 shows that these oscillations are eliminated by using CEPXS-GS cross sections. Fig.
8 shows the energy-deposition profiles for 1-MeV electrons normally incident on one-dimensional beryl-
lium. The calculations used an cutoff energy of 0.01 MeV, 200 spatial meshes, 40 electron energy groups,
and an S-32 Gauss quadrature set. The CEPXS/ONELD calculation used a P-31 Legendre expansion, and
the CEPXS-GS/ONELD calculation used a P-17 Legendre expansion.
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Figure 8: Comparison of CEPXS-GS/ONELD, standard CEPXS/ONELD, and Lockwood measurements
for 1-MeV electrons normally incident on range-thick beryllium.
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