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ABSTRACT

The very general problem of model reduction of nonlinear systems was made tractable by
focussing on the very large subclass consisting of linear subsystems connected by nonlinear
interfaces. Such problems constitute a large part of the nonlinear structural problems encountered
in addressing the Sandia missions. A synthesis approach to this class of problems was developed

consisting of

« detailed modeling of the interface mechanics.

» collapsing the interface simulation results into simple nonlinear interface models.

* constructing system models by assembling model approximations of the linear subsystems
and the nonlinear interface models. These system models, though nonlinear, would have very
few degrees of freedom.

A paradigm problem, that of machine tool vibration, was selected for application of the reduction
approach outlined above. Research results achieved along the way as well as the overall modeling
of a specific machine tool have been very encouraging.

In order to confirm the interface models resulting from simulation, it was necessary to develop
techniques to deduce interface mechanics from experimental data collected from the overall
nonlinear structure. A program to develop such techniques was also pursued with good success.

DISTRIZUTICN OF THIS DOCUVENT IS UNLIMITED

1ii



This page intentionally left blank.

iv



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.






Acknowledgments

Many people participated at each stage of this research effort. Several wandered in or were
impressed into participation as their contributions were needed and one or two were deleted from
the project as our budgets were adjusted. A founding member of our team was Lane Harwell (Org
1484), who designed the experimental part of our program. Professor James Kerns of the
University of Turabo (now of York College of Pennsylvania) and Clark Dohrmann (Org. 9234)
made major contributions to the interface identification component of this project. Susan Tucker
(Org. 2338) used her skill in neural nets to synthesize the results of the SPH cutting calculations
into a simple mathematical interface model. We thank all of these itinerant members of our team
for their work, for their help, and for their patience. We also thank the LDRD program for their
support.



This page intentionally left blank.

vi



Table of Contents

Introduction
Paradigm Problem
Problem Description
Simulation of Cutting Interface with Smooth Particle Hydrodynamics
Example of System Synthesis
Deduction of Nonlinear Interface Behavior
Paradigm Problem
Force Reconstruction by Fourier Analysis
Force Reconstruction by Dynamic Programming
Conclusions on Force Reconstruction
References
Appendix: Publications Associated with the Nonlinear Model Reduction LDRD

vil



This page intentionally left blank.

viii



Y o 4 waesaminam i sta— g 1.

Introduction

The nonlinear model reduction LDRD effort - case number 3507.270 - addressed the problem of
reducing the number of degrees of freedom necessary for reliable numerical modeling of nonlin-
ear structures. Because nonlinear structures do not avail themselves to the efficiencies of modal
decomposition and spectral truncation used in linear model reduction, nonlinear modeling, in gen-
eral, must be done in a transient manner with nonlinear solution of large systems of equations.
Computational economies can be found primarily in reducing the size (number of degrees of free-
dom) of the system which is to be solved.

This effort focussed on that large subclass of nonlinear dynamic systems consisting of linear
subsystems connected by nonlinear interfaces. Such problems constitute a large part of the
nonlinear structural problems encountered in addressing the Sandia missions. A synthesis
approach to this class of problems was developed consisting of

* detailed modeling of the interface mechanics using a relatively new smooth particle
hydrodynamics (SPH) modeling technique.

* collapsing the interface simulation results into simple nonlinear interface models.

* constructing system models by assembling model approximations of the linear subsystems
and the nonlinear interface models. These system models, though nonlinear, would have very
few degrees of freedom.

A paradigm problem, that of machine tool vibration, was selected for application of the reduction
approach outlined above. Research results achieved along the way as well as the overall modeling
of a specific machine tool have been very encouraging.

In order to confirm the interface models resulting from simulation, it was necessary to develop
techniques to deduce interface mechanics from experimental data collected from the overall
nonlinear structure. A program to develop such techniques was also pursued with good success.

The fundamental approach pursued in this study was to isolate degrees of freedom which have lin-
ear governing equations from those that have nonlinear governing equations. In several classes of
machining problems, a vast majority of the problem degrees of freedom fall into the first class.
Where possible, methods of linear model reduction are applied to the first set of equations and an
nonlinear system ID or nonlinear system synthesis are applied to the second set of equations.

The paradigm problem for the purpose of defining quantities will be that of the dynamics of a sys-
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tem composed of linearly elastic parts coupled together by nonlinear systems. (See figure below.)

uy, U,
Uy, U, ug U

Uy,

Linear Substructure

NN

Nonlinear Substructure

Linear Substructure

U/
Figure 1. A formal partition of a structure containing linear and nonlinear compo-
nents. Interface degrees of freedom and connection forces are introduced.

Formally, we decompose all degrees of freedom into three sets {u;} , {uy} ,and {ug} where:
{u,} are the degrees of freedom which are associated only with linear governing equations;

{uy} are degrees of freedom associated with nonlinear governing equations;

and
{ug} are degrees of freedom that couple the other two sets.

We must also introduce the forces {Fp} associated with {u,} , connecting the two sets. Addi-
 tionally, we must introduce boundary conditions which are represented here as forces f,; acting

on the linear portions and forces f, ,; acting on the nonlinear portions of the problem.

In the figure above, all degrees of freedom are drawn as particle displacements, but they could
instead be generalized degrees of freedom such as modal coordinates. Formally, we have a system

of N + Np dynamics equations for the linear system involving sets {u;} , {up}, {Fz} and
{fpr}; where N; = size{u;} and Np = size{up} . There are Ny, + N equations associated
with the nonlinear process involving sets {uy}, {up} , {Fp},and {f,y}; where

Ny = size{uy} . It is the intent of this program to resolve out as many as possible of the thor-

oughly linear degrees of freedom and to develop simple models involving few degrees of freedom
for the nonlinear system.

Employing the partitioning described above to reduce the number of linear degrees of freedom,
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we approximate the results of a full numerical model of the nonlinear éystem by a simpler nonlin-
ear model with few degrees of freedom. The resulting coupled model for the full system can then
be solved efficiently.

The-most-uncertain-part-of this-approach-is-achieving-an-adequate-mathematical-model-for-the
nonlinear interface. To confirm the accuracy of that nonlinear model or to determine parameters
of that model, we must develop techniques to deduce the force time histories at the interfaces -

locations where taking data is impossible in any practical sense. Instead, an approach was devel-
oped to deduce the force displacement histories at the interfaces from the measurements taken
elsewhere on the structure. This approach requires inverse dynamics and necessarily results in il
conditioned computations.

Paradigm Problem

Problem Description :
Here we consider the turning of a modestly thin tube on a lathe. In this simplified analysis, the

ANN

/4

Figure 2. A paradigm nonlinear model reduction problem consists of
a machine tool with a a very nonlinear cutting interface and a simple lin-
ear dynamic model for the rest of the system.

part is assumed to be thin enough that its displacement compliance is much larger than the com-
pliance of the tool and the tool holder. Further, we approximate the cutting problem as two-dimen-
sional. The portion of the work piece not near the cutting tool can be analyzed through linear
finite element analysis, and that analysis will be used to yield a reduced model. That reduced lin-
ear model consists of vertical, horizontal, and torsional stiffnesses and mass and moment of iner-
tia. This linear model will be the conventional second order system with constant coefficients.

The nonlinearity of this model resides in the cutting region. The reduced nonlinear model required
relates traversal speed, depth of cut, and cutting angle to vertical and horizontal forces. In general,
the nonlinear behavior will involve various time derivatives of these parameters. Constraining the
size of the nonlinear system involves limiting the order of derivative considered.
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The reduced nonlinear model is deduced from the predictions of a complex, many-degree-of-free-
dom numerical model of just the nonlinear process. The nonlinear numerical tool used to explore
the physics of the problem is smooth-particle-hydrodynamics (SPH). The modeling/reduction

process is suggested by the following figure, where homogeneous boundary conditions consistent

" with parameters {up} are imposed on the boundaries of a control volume. The many-degree-of
freedom system of particles are employed to calculate the resultant forces on the cutting tool.

Figure 3.  Calculation of the nonlinear structural behavior at the cutting region using
smooth-particle-hydrodynamics-in-a-control-volume:

Simulation of Cutting Interface with Smooth Particle Hydrodynamics

Classic methods such as slip lines, e.g. Merchant [1] and Lee and Shaffer [2], have been used in
the past to explore the cutting process and to predict cutting forces. These methods require severe
kinematic assumptions and are somewhat limited to simplified material (constitutive) response.
Resorting to weighted residual techniques involving basis functions with only local support is
therefore desirable and often necessary to solve the field equations. Several efforts have been
made using the finite element method, see e.g. Strenkowski [3, 4], Shih [5]. However, several defi-
ciencies of the finite element method in the simulation of cutting remain:

*» the propensity of individual elements to be turned inside out as the material undergoes very
large deformations in the vicinity of the cutting tool;

* the difficulty of accommodating material failure (separation) within the finite element mesh;

 the uncertainty and ambiguity of implementing material failure criteria during cutting.

Recently, Maraush [6] has shown that aggressive re-meshing may be used to circumvent severe
mesh distortion. However, there is a substantial cost associated with re-meshing and there is
uncertainty in preserving material state variables in the re-mapping process. Approaches to
addressing the second of these issues are discussed in the literature and a good review can be
found in [6], yet in general this issue awaits satisfactory resolution.

Because of the above fundamental uncertainties, most simulation focuses on orthogonal cutting,
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where these research issues can be attacked with relatively little expense.

Here, the natural manner in which the SPH method meets many of these challenges is presented.
The issue of material failure criteria during cutting appears to be as difficult in this approach as in
the others.

Smooth Particle Hydrodynamics

The method of “smooth particle hydrodynamics” is reviewed in Benz [7] and discussed in other
perspectives in that paper. Just a minimal discussion of this technique is given here for the purpose
of clarity and continuity. SPH consists of a collection of nodes each having physical degrees of
freedom. The nodes have no fixed connectivity. Instead, the instantaneous connectivity is deter-
mined from proximity of nodes to near neighbors, using a search technique. The nodal contribu-

tion to the field quantity, f, at a location 2 is:

fR) = f,W(E-2,h) )

where f, is the field value associated with node n and W(X - 2,, k) is the corresponding shape

function. The shape function is centered on the node » and can take many forms (several are dis-
cussed in [7], but must satisfy specific requirements. It must be spherically symmetric and inte-
grate to unity, i.e.

P2\
{W(*—hﬁ)dr;=_l , )

decay monotonically from its reference node 2, , and be zero beyond a distance of #, i.e. have
local support. The shape function used here is a cubic spline:

slp-2, 3x-32)
13 2"' 2 :”l IfO<|2-2]<h
W(E-2,h) = = 2 4h ©)
TR Ce-p-x)® ithsfpoz)<2n
0 otherwise

One of the most important features of SPH is the manner in which the gradient of the field quan-
tity is computed. It can be shown that the contribution of a nodal value to the gradient of the field

at X is f,VW (% -2X,, h). Note that the gradient remains meaningful no matter how neighboring

nodes are rearranged. In this way the SPH method obviates the problem of element distortion
common to finite elements in problems of large shear. Finally, point masses are associated with
each node (also referred to as particles).

In the case of the explicit transient dynamic simulation such as used here, the momentum equa-
tion:
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0= pJm)+Veo @

is solved using a central difference time integrator. In equation (4), p is the material density, v is

the material velocity and G is the Cauchy stress. Using the above gradient methods for evaluating
the strain rate from the velocity field, and using appropriate constitutive equations, stress incre-
ments can be calculated. Finally, the divergence of the stress field is evaluated, and each node
occupying a volume V with mass p V is accelerated accordingly. In this manner the motion of the
nodes is driven by the mechanics being simulated. We note that relevant field quantities are re-
evaluated at each time step and at each 1/2 time step as required by the central difference time
integrator.

Unfortunately, a recent stability analysis of SPH has shown the SPH gradient operator to be only
conditionally stable. A numerical technique called conservative smoothing seems to stabilize the
SPH algorithm in explicit transient dynamics applications at the expense of introducing some
numerical diffusion. Further details on this can be found in Swegle, et. al. [8, 9] and Wen et. al.
[10].

Material Failure Modeling

Calculating separation through material failure modeling is another of the difficult issues in cut-
ting simulation. One method used in finite element analysis to address this issue is to evaluate
damage on each element and to remove those that suffer damage beyond some specified level.
‘The obvious deficiency of this approach is that a significant part of the material volume is
removed from the calculation unless an excessively fine mesh is used.

Another method used to attempt to capture material failure requires postulating the locus of mate-
rial separation. A special layer of contact elements are placed on that path and separation is per-
mitted as some break-away load is achieved. The deficiencies of this approach are not only that it
lacks theoretical rigor, but that implementation of it in the context of large-deformation plasticity
is a logistical ordeal.

The kinematics of material separation are accommodated in SPH in a manner that neither involves
the loss of material, requires foreknowledge of the locus of separation, nor requires special
numerical treatment. Material damage is incorporated at SPH nodes through a loss of cohesion as
neighboring SPH particles separate from each other. This comes about because once those parti-
cles are more than the critical distance, &, from each other, each particle no longer contributes to
the strain calculated at the other and the corresponding cohesive component of the stress disap-
pears.

Though the SPH method offers advantages over the finite element methods in terms of accommo-
dating the large deformations and the kinematic issues of material failure modeling, the problem
of defining physical criteria (such as failure strain, failure stress, or failure energy) for material
separation remains. That problem is a continuing topic for research.
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Cutting Simulations

Orthogonal cutting problems involve passing a relatively hard tool through a softer work-piece,
and this process is appropriately simulated by solving the nonlinear governing equations in a
region very near the cutting tool. (See Figure 4). In this local problem, kinematic boundary condi-
tions are applied suitably far from the cutting tool/work-piece interface, providing relative motion
between work-piece and tool. As a result, feed force, cutting force and cutting tool moment reac-
tions are evaluated at boundaries that are also far from the cutting interface.

F; = Feed force
M. = Tool moment
<«— F. = Cutting force

Workpieé .
boundary conditio

Figure 4. Smooth Particle Hydrodynamics (SPH) is used to solve the governing
equations in the vicinity of the cutting process. Feed force, cutting force and cutting
tool moment reactions are evaluated at boundaries that are far from the cutting inter-
face

In the simulations done here, the tool is assumed to be elastic with properties: elastic modulus
E=30ES®6 psi, Poisson ratio v = 0.3. The aluminum 6061-T6 work-piece material is modeled as
elastic, hardening-plastic. We note that, like the finite element method, the SPH method will
admit any reasonable (or unreasonable) material constitutive model. The one used here is a power
law hardening with failure model described in Stone, et. al. [11]. The criterion for material failure
in this model is the equivalent plastic strain modified by the maximum tensile and the mean
(hydrostatic) pressure. Importantly, this captures two well known effects: much higher likelihood
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of failure with positive maximum principal stress and decreased ductility in the presence of
hydrostatic tension.

The cutting process simulated here includes inertial effects, but is assumed to be slow relative to
thermal conduction so that temperature effects are ignored. Because of uncertainty in the nature of
sliding during cutting, surface sliding is assumed to occur with a uniform coefficient of friction

L = 0.5 in the calculations presented here.
FE Example:

The first simulation is an illustration of the finite element method applied to the orthogonal cutting
__of aluminum 6061-T6 (Figure 5). This particular simulation accommodates material separation

and material failure by “killing off” elements that undergo equivalent plastic strain beyond some
critical level. We note that material failure characterized by the equivalent plastic strain exceeding
a critical level is known to have significant error, especially under non-tensile loadings. In fact the
failure criterion developed in [11] accounts for damage accumulation under general non-tensile
loading conditions. However, application of this material model described in [11] to the orthogo-
nal cutting problem resulted in severe (numerically fatal) mesh distortion when applied to this
problem.

Yet even with a critical level of equivalent plastic strain dictating failure, the characteristics of ele-
ment death can be observed. Figure 5 shows the sensitivity of the results to the value of that criti-
cal plastic strain. We see some amount of surface discontinuity - probably quite acceptable - due
to the missing elements. Particularly in the case where elements are permitted to undergo the
larger level of plastic strain, some elements suffer extreme distortion: endangering both stability
and accuracy. Refinement of the mesh exacerbates this problem.

Critical Equivalent

Critical Equivalent
Plastic Strain = 1.2

Plastic Strain = 2.0

R a o

A s =

Figure 5. A finite element calculation of orthogonal cutting of Al 6061-T6 in which
material separatlon is achieved by “k.lllmg off” elements that expenence excessive plastlc

strain-————————— - —

SPH Example:

Figure 4, shown earlier, presents the results of using SPH to simulate the same cutting conditions.
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Additional cases explore the effects of rake angle and feed are shown in Figure 6.

+5° rake, .01 doc

S SRR PO

-5° rake, .01 doc -10° rake, .01 doc

Figure 6. SPH simulation of cutting Aluminum 6061-T6 at various rake angles
and feeds (sometimes referred to as depth of cut).

Note that negative rake angle is accommodated with no more difficulty than positive rake angle.
In fact, Figure 7 shows a simulation with a rake angle of -45 degrees.

Figure 7 also shows some incipient cleavage lines in the substrate material about 0.025 inches
below the tool tip. These physically incorrect separations are a manifestation of an instability in
the SPH process discussed by Swegle et. al. [9]. Though this incipient instability would grow with
time, the growth rate is slow enough that it does not interfere with the simulation. Development of
methods to obviate or avoid this instability is a topic of continuing research. The extent of equiva-
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lent plastic strain is illustrated in Figure 7 through a grey-scale spectrum on the SPH particles for
the case of cutting at -45°.

-
0.02 in. >
,‘:‘:{&:,*Q R
.1?««» .;s:;' < Mo N
e o AR ENS A TSRy &
w“§§$@¢g§§m@ewﬁm@vm§%
e, S LIRS e’ LT
. sy a'}”’:-_ﬁ‘y’&w wmi";@ {.;i’{o\?:'f. RO Y
F e R e R R D TR

AV SIS A

-45° rake angle, .01 doc

%

Figure 7. SPH simulation of cutting of Al 6061-T6 at a rake angle of -45°.

Figures 8 and 9 present an examination of the effect of refinement of the “mesh.” In Figure 8, a
positive rake angle with a rounded tip on the cutting tool is examined. Fundamentally the same
kinematics are found with three different meshes. Most interestingly, a small stagnation region in

front of the blunt tip is seen. It is there that the largest plastic strain and the material separation
OCCuUrs.

+30° rake angle, .01 doc

0 1.0

Figure 8. SPH calculations exploring the qualitative effect of mesh refinement for
the case of a 30° rake angle.

Figure 9 examines mesh refinement for the case of a large negative rake angle. Again the kinemat-
ics are fundamentally un-affected by the mesh refinement. The region in front of the cutting tool is
of special interest. There is a large band of material undergoing large plastic strain as the material
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rotates in shear in front of the cutting tool

-30° rake angle, .01 doc

Figure 9. SPH calculations exploring the qual?tative effectzo'P mesh refinement for the
case of a negative 30° rake angle.

Finally, we present the steady-state forces for the condition of +30 degree rake angle and 0.01 in.
d.o.c in Figure 10 as a function of mesh refinement. One sees apparent convergence on net tool
forces as the mesh is refined.

500.0 . . .
400.04— | ]
300.0} -
200.0} ;
1000 —

O'Ocoarse ' f{ne | very fine

mesh refinement

Figure 10. Convergence of the SPH calculation is investigated by examination of the
convergence of reaction forces and moments on the cutting tool.

We note that qualitatively correct predictions are generated for each case of rake angle. In particu-
lar, we see normal chip formation in the cases of positive rake angle and small negative rake
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angle. A large negative rake angle results in the accumulation of material in front of the cutting
tool. Since the actual cutting region is so small and velocities are modest, inertia should not be a
significant part of the problem. With that observation, one expects the steady-state response of the
these calculations to be a reasonable representation of the macroscopic nature of the process.

To model the dynamics and vibration of the overall cutting process, one would use this simple
nonlinear steady state model as a nonlinear interface between the dynamically linear subsystems
consisting of the cutting machine, the cutting tool, and the part.

Observation on Modeling of Cutting Interface by Smooth Particle Hydrodynamics

The method of Smooth Particle Hydrodynamics is fairly new. Its features are not fully understood
and the most effective means to exploit it are still being discovered. Despite its newness, the SPH
method can be seen to be a very promising tool for the study of machining. Most importantly, this
method is a tool that permits the study of the large deformations that occur near the cutting tool
without the loss of accuracy and stability associated with finite element analysis of these prob-
lems.

In particular, the SPH method has been shown here to overcome the major difficulties of cutting
simulation that obstruct finite element simulation of these processes. The problems of element
inversion and material separation, which confound finite element analysis, are handled smoothly
with the method of SPH. Another advantage demonstrated here is that mesh transition to obtain
fine resolution in the vicinity of the cutting tool is achieved in a natural and easy manner.

Example of System Synthesis

System synthesis is illustrated by consideration of the vibration and chatter of the turning of a nar-
row part on a lathe (Figures 2 and 11).

Ssil
\

7 - I

Figure 11. The simplest cutting configuration for dynamic analysis is the lathe where
a preponderance of the dynamic compliance is in the first bending mode.
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The simplest cutting configuration for dynamic analysis is that of the turning of a long thin part on
a lathe. In such a case a preponderance of the system compliance is captured in the first bending
mode. The only nonlinearity in the system is the interface between the part and the cutting tool. In
the convention of linear dynamic analysis, we approximate the displacement of the (linear) part
by expansion in terms of the eigen modes. Further, for the sake of illustration, we assume that the
cutting tool is placed near the center of the part and that the cutting tool and its platform are near
rigid.
In this case, we approximate the displacement of the beam using only the first bending mode and
achieve a governing equation

md +k8(t) = —f y(8(£)x5+R(O(£)) - h(2)) (5)
where m is modal mass, k is modal stiffness, 8(¢) is the magnitude of the modal displacement at
time t, x5 is the value of the bending mode at the location of the cutting tool, 0(#) is the rotation
of the part at time ¢, R(0) is the current radius of the part at circumferential location 0, A(?) is

the imposed displacement of the cutting tool, and f, is the nonlinear force displacement model
of the interface.

A neural net model reproducing the force disbandment relations found through the SPH simula-
tions was constructed and expressed in terms of c-language code. That code provided values for

fn in the numerical solution of Equation 5. An example of the simulation of the dynamic cutting
process is performed using the following parameters:

Table 1: Parameters of Chatter Simulation of Turning Process

Young’s Modulus of Part 7.8¢6 Ibg/in®

Density of Part ' 8.18e-4 Ibgsec?/in®
Length of Part 20 in.

Initial Radius of Part 1in.

Turning Speed of Part 960 revolutions/minute

Force displacement results of the simulation discussed here are shown in Figure 12. We see that
coupling the resulting low-order linear model for the structure with the low-order nonlinear model
for the cutting process is capable of yielding a realistic low-order dynamic model for the overall
process.
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Figure 12. The mathematical model for a simple cutting process is reduced to a single
degree of freedom process when the nonlinearities of the cutting interface are captured
by the detailed SPH calculations and reproduced by a neural net.

Deduction of Nonlinear Interface Behavior

We now move on to another component of nonlinear model reduction discussed in the introduc-
tion of this report. Here we address how to confirm the correctness of the computed interface
model, to deduce parameters of the interface model, or to generate an interface model in the
absence of a detailed knowledge of the mechanistic process, it is necessary to deduce force-dis-
placement histories of the interface from measurements taken on the boundaries of the overall
system. In this approach, formally referring to Figure 1, we observe that as in most engineering
problems, only the behavior of the system as a whole can be measured. Because of the complexity
of the overall system, it is a formidable task to deduce the properties of the nonlinear subsystem
just from the inputs and outputs of the combined system.

A paradigm of a mechanical system containing nonlinear subsystems is that of machine tools. The
evolution of active control strategies to suppress vibration or regenerative chatter in machine tools
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requires the development of high-fidelity models. Though much of the structure is linear, the
response of the structure is dominated by nonlinear processes in the interface (the cutting region)
between linear components. Unfortunately, because of accessibility problems, direct measurement
of the mechanics of those structures is usually nearly impossible. A characteristic picture of this
situation is shown in Figure 13.

Nonlinear domain

Linear domains

Figure 13. Cutting machines are generally linear structures containing small regions of
large nonlinearity.

Figure 14. Linear systems having jointed connections will manifest nonlinear properties even
though the nonlinearity resides exclusively in the jointed interface.

Another similar class of problems are those in which linear subsystems are connected by nonlinear
joints shown in Figure 14. Because of issues of motion, temperature, or accessibility,
measurements can only be take only of linear portions of the structure in these problems. Still, in
order to devise rapid computational models for the full structure, it is necessary to deduce simple
models for the combined structure.
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The purpose of this study is to explore and test techniques to extract the properties of nonlinear
subsystems that are separated from measurement by linear systems.

There are three components to this task:

» deducing the kinematics on the boundaries of the nonlinear domain from the dynamics of the
linear structure

» deducing the forces on the boundaries of the nonlinear domain from the dynamics of the linear
structure

» deducing a simple model relating those forces and displacements.

To perform the first two steps, one needs to fully characterize the linear dynamic subsystem, invert
it, and then perform calculations to deduce the interface displacements and forces from
observations made on linear portions of the structure. The inverse dynamics issue is one of
classical difficulty, often involving band-limiting, causality, or stability problems. To mitigate
some of these difficulties, we explore two separate methods of inverting dynamics, and test them
against a simple paradigm problem.

Paradigm Problem

A simple linear two mass system is coupled to a nonlinear system. Measurements of force and
displacement are taken from the left hand side of the linear system. From that data and a
mathematical model for the linear system, features of the nonlinear subsystem on the right are to
be deduced.

NN

NN

Figure 15. A simple nonlinear system composed of a two-mass linear sub-system coupled
to a nonlinear sub-system whose properties are to be determined indirectly by measurements
of force and displacement on the left hand side of the linear subsystem.

The equations for this linear system are:
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myiy = f1+k(uy—u;)+c(i,—u,) 6)
and
myiiy, = fo—k(uy—u;)—c(ii, — i) (7N

It is the displacement u, , its derivatives, and force f, which must be deduced from #; and f,

Before selecting a method for deducing u, and f, for difficult problems such as nonlinear

damping, we start out with the simplest possible problem, where the “unknown” system is a linear
spring. We then apply the more promising method to addressing nonlinear damping.

In exploring methods of performing the inverse dynamics, we perform the following steps:
1. Specify a mechanism (possibly nonlinear) for the right hand side.

2. Calculate the dynamics of the full system in response to specified forces f; applied to the left
hand side, saving only the histories of f; and u;.

3. Forgetting how the right hand side was specified, invert the dynamics and using the above
histories of f; and u, to calculate the histories of #, and f,.

Because of the difficulties inherent to the inverse dynamics problem, two distinct approaches that
offer some hope of mitigating those difficulties were selected and tested: a Fourier method and an
optimization method.

Force Reconstruction by Fourier Analysis

Fourier analysis is appealing because, as a integral method, it offers the potential of being more
forgiving and because it preserves causality. Further, this approach also has the advantage of
building on the art and science of modal testing and analysis[16].

Fourier transforming Equations 6 and 7 and solving for the transforms of u, and f,,

U UI(—m2m1+k+i03c)—F1
2 k+ioc

®

and
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F, = (k+ioc—0")U,- (k+ioc)U, ©)

where initial conditions are assumed to be homogeneous; U; = F(u;); U, = F(u,);
F; = F(f,); F, = F(f,);and F( ) indicates Fourier transform of its argument. In the

numerical experiments presented below, Fourier integrals are approximated by discrete fast-
Fourier transforms over finite intervals.

Immediately, we see that at high frequencies, U, is of order ® and that F, is of order @”. Unless

test functions U, are used that decay faster than o', the Fourier transforms U o and F, will not

decay and will not be invertible back to time space. Unfortunately, our problem is such that we can
specify F';, but cannot specify U,. Further, in some problems, such as stick-slip, one might want

to specify force histories f(¢) that are designed to excite that phenomenon but whose Fourier

transforms will probably not decay quickly with frequency. The significance of this restriction is
explored below.

The parameters for the two-mass system were selected according to the following table:

Table 2: Parameters of Two-Mass System

Parameter my m, k c

Value 10 1.0 1.0 0.01

Numerical experiments were performed with both impulsive and oscillatory loads f . The two
figures shown below are associated with a driving force () = 1 — cos(, a force history that one
might use to explore stick-slip friction. In these experiments fourth-order Runge-Kutta “forward”
calculations are performed to predict the response of the whole system to the prescribed force. In

what follows, the linear system on the left is referred to as the “known” system and the (possibly
nonlinear) system on the right as the “unknown” system. The prescribed force f; and the resulting

displacement u; of the “known” system are used along with the linear model to estimate the
responses of the “unknown” system.

For the first test case, the “unknown” system is a simple linear spring and the initial results are not
very encouraging. The following three figures (Figure 16 for computed Fourier transform of
displacement, Figure 17 for the computed Fourier transform of force, and Figure 18 force and
displacement in the time domain) demonstrate the potential of this method. We see that the
estimates of the Fourier transform of the displacement of the “unknown” system are reasonably
good for small frequencies, but diverge systematically at larger frequencies. Since the Fourier
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Real U2bar vs. Freq N =2048
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Figure 16. Numerically computed real and imaginary parts of the Fourier transform of the
displacement u, of the “unknown” system. The solid curves are the exact solution and the
crosses are computed from Equation 8. The lower curves are the data for the upper curves ex-

transforms of the forces are derived from those of the displacement in Eq 9, it is not surprising that
the estimates for the Fourier transforms for the force f, are similarly systematically off. These

curves are mapped back to the time domain in Figure 18. Here we see that errors at high frequency
in the Fourier transforms of the force and displacement result in oscillations in the estimated
displacement about the true curve and errors in the force that overwhelm the true force. This
problem is that discussed above: the transfer functions in Equations 8 and 9 increase very strongly
with ® and the test functions U; and F'; do not decrease quickly enough with @ to cause U, and

F, to decrease with ® - a necessary condition for meaningful transformation back to the time
domain.

In order to make U, and F, invertible to the time domain, their values at high frequency must be

suppressed. This is done by applying the filter shown in Figure 19 to them before transforming to
the time domain. When the filtered transforms are mapped back to the time domain, the results
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Figure 18. The displacement and force on the “unknown” system in the time domain. The

solid curves are the exact solution and-the crosses are those obtained by numerical inversion - - -

of the curves on the previous two figures.
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Filter Window vs. Frequency

1 v T T T T T T T T T

1,(00 < @)

08 T ((%))4,(032&)0)]

0.6~ 4

0.5

0.4 - .

0.2- 4
0.1

O k ] 2 ] 1 1] 1 1 1

0 1 2 3 4 5 6 7 8 9 10
Frequency

Figure 19. The filter used to remove the erroneous high frequency information from the es-
timates of the Fourier transforms of the force f, and displacement u, .
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are more reasonable. The calculated forces and displacement are shown in Figure 20.  One sees

U2vs. Time N =2048
20
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Time
F2 vs. Time N =2048

30-
20-
10
0
10

20 ' ' - '

0 2 4 6 8 10 12 14 16 18 20
Time

Figure 20. The displacement and force on the “unknown” system in the time domain. The
solid curves are the exact solution and the crosses are those obtained by numerical inversion
of the curves on the previous two figures. The reasonable agreement between the computed
and exact results is a result of use of the filter presented in the previous figure.

that the inverted Fourier transforms approximate the true solutions reasonably well, except at very
short times. A plot of force versus displacement and force versus velocity is presented in Figure
21. This plot does show the linear force-displacement of the spring. The force-velocity plot shows
that force and velocity stay out of phase.

Note that the filter used above is a low-pass filter, so information associated with rapid changes is

lost. Those band-limiting errors are manifest by the difference between true and calculated values
for force and displacement at short times.
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Figure 21. The force-displacement and the force velocity curves for a linear spring. Values
computed using Fourier methods are shown with crosses (+).These curves are achieved by ap-
plying a sharp filter to the Fourier curves presented above. The near linear plot of force dis-
placement reproduces the stiffness of the spring.
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The conclusions to be drawn about this method are:

* This method can be made to reproduce the forces and displacements on the linear structure
due to the presence of the “unknown” system, for this case.

» Either narrowly selected forcing functions must be used or a low-pass filter must be designed
to assure correct inversion to the time domain.

» The repeated oscillations that one would like to impose on the system to explore stick-slip
processes are expected to have Fourier transforms that decay slowly with frequency, so it
would be necessary to use a low-pass filter.

* Because much of the important stick-slip information will be high frequency, a low-pass filter
would be a serious impediment to capturing that phenomena.

It would be desirable to find a method for reconstructing the forces and displacement due to the
interface between known and unknown systems more suitable to capture stick-slip-like
phenomena.

Force Reconstruction by Dynamic Programming

In the second method presented here, the inverse dynamics problem is formulated as a discrete-
time optimal control problem. In this formulation, the forces at the linear system boundary are
treated as control variables. The optimal control problem is solved using a efficient dynamic
programming algorithm [17, 18]. This algorithm has the attractive feature that the number of
mathematical operations required grows only linearly with the number of discrete times. In the

problem at hand, the algorithm was configured to find the unknown function f, that minimizes
the functional:

T . 2 . 2
R(fy) = fo [(u(2) = 2,(2))" + 0 f2(2)) 1at (10)
where u, is the observed displacement on the left-hand-side, #; is that which would result from

the application of force f, to the linear subsystem, and o is an adjustable parameter (set equal to

10™/in these calculations). Note that this approach is computationally attractive: the core algorithm
is very fast and there is no transformation to and from frequency space. Two other features of the
formulation are:

* Minimizing R(f,) involved finding an f, that generates a #; that closely approximates the

observed u, , but without wild excursions in f’, itself. This second constraints behaves like a

low-pass filter.
* because f, at each time is determined to maximize the agreement of ©; and #; at all times,

we can expect this process to be non-causal.
For the test case of a linear spring as the “unknown” system, the dynamic programming method

works very well. Figure 22 shows the true and computed force and displacement for the case of
alinear spring and force reconstruction of the unknown quantities by dynamic programming. The
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Figure 22. Computed displacement and force for the case of a linear spring and force recon-
struction of the unknown quantities by dynamic programming. In the displacement plot, the
reconstructed displacement is represented by crosses(+) and the “true” displacement is a con-
tinuous curve.

agreement between true and computed force is better than was the case with the Fourier technique,
though there is still some error at the beginning and end of the time interval. The anomalies
occurring at early-time and are artifacts of both band-limiting and non-causality. Errors occurring
at late time are due to noncausality. The force displacement curves are show in Figure 23,
reproducing the properties of the linear spring. This particular plot was constructed without the first
10% of the data points, thereby removing the systematic error found at those times.

With the encouragement of the success of the dynamic programming method applied to the
problem of a linear spring, we go on to examining damping. The first of these explorations is the

case of linear damping. Figure 24 shows computed force f, versus time and computed velocity

u, versus times as well as computed force versus computed velocity. Both the force and velocity

vary sinusoidally with time and the force varies linearly with velocity, reproducing the properties
of a linear damper. Again, anomalies occur at early and late time. The linearity of force with
velocity is as expected for a linear damper.

This brings us to the case of sliding friction, where

fa= —Fuxsign(uz) (11)

Page 26



-
O+t Nn
1

05 i

Force, fz

15 + -
25 e 5 T 05 0 05 Y 5 2
Displacement, i,

Figure 23. The computed force versus computed displacement of the unknown system. The
linear behavior reproduces the properties of the linear spring. This plot was constructed from
the last 90% of the data to avoid systematic error associated with early time.

and F e is the sliding friction, equal to the product of weight times the coefficient of kinematic
friction. In our calculations, we have set F e = 0.1. The predictions for this case of sliding

friction are shown in Figure 25. In this figure one sees plots of computed force f,and computed

velocity 7, as functions of time. Also shown is a plot of computed force versus computed velocity.

The force versus time plot shows force jumping back and forth between positive and negative
values, as one expects with sliding friction. The plot of force versus velocity does appear to be
trying to reproduce the properties of Equation 11.

The most difficult problem is addressed last. This is that of stick-slip friction where

-F spring for qul <8 and IFSI"’ ingl < Flls
fo=  —Fy, sign(Fg,,;,,) for |u2| <3 and Fy. s |Fspn-ng|
—F,, sign(i,) for  3<|u, 12
Above, F o, i, = —k(uy—uy)—c(iy— 1), F,,_is sliding friction, F, _is static friction, and &

defines a range of small velocities at which static friction prevails. In our calculations, we have set

F o = 1.0. Plots of computed force versus time and computed velocity versus time as well as

computed force versus computed velocity are shown in Figure 26. The force versus time plots
show the typical plateaus associated with sliding friction in our previous example as well as some
excursions to much higher values, which are associated with stick at low velocity. The velocity
versus time plot shows oscillations interrupted with plateaus at zero velocity. The plot of force
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Figure 24. Plots of computed velocity versus time, computed force versus time, and com-
puted force versus computed velocity, all for the case of linear damping. In the velocity plot,
the reconstructed velocity is represented by crosses(+) and the “true” velocity is a continuous
curve. The third plot was constructed deleting the first 10% of the data points to remove corre-
sponding artifacts. The very linear nature of force versus velocity reproduces the properties of
the linear damper.
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Figure 25. Computed velocity i, and computed force f, as functions of time for the case
of sliding friction. Also shown is a plot of computed force versus computed velocity. The
force versus time plot shows force jumping back and forth between positive and negative val-
ues, as one expects with sliding friction. Because of anomalous values in force are seen at ear-
ly times, only the last 90% of the time steps were used in the last of these plots. The exact
force/velocity curve is drawn in light gray.
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Figure 26. Computed velocity #, and computed force f, as functions of time for the case
of stick-slip friction. Also shown is a plot of computed force versus computed velocity. The
force versus time plot shows force jumping back and forth between positive and negative val-
ues of kinematic friction, as well as additional, higher values near zero velocity - signifying
stick. The force versus velocity plot shows the expected discontinuity near zero velocity. The
exact force/velocity curve for stick-slip is drawn in light gray.
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versus velocity shows a curve very similar to that of the sliding friction problem, but with
additional loci spanning from —F, to F),_ in the interval near zero velocity.

Conclusions on Force Reconstruction

The theme of the research presented here is to simplify the models for nonlinear dynamic systems.
Where the nonlinearity is due to phenomena isolated to interfaces between linear subsystems, it is
hoped that a simple model can be obtained by coupling the linear subsystem models with simple
models for the nonlinear interfaces. Techniques have been presented here to achieve insight into

the properties of these interfaces by observation of the dynamics of the overall system and

exploitation of the inverse dynamics of the linear subsystems: Of the techniques presented; the
utilization of dynamic programming appears optimal.
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