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Abstract

A data parallel version of the 3-D transport solver in DANTSYS has been in use on the SIMD CM-200’s at LANL
since 1994. This version typically obtains grind times of 150-200 nanoseconds on a 2048 PE CM-200. We have
now implemented a new message passing parallel version of DANTSYS, referred to as DANTSYS/MPI, on the 512
PE Cray T3D at Los Alamos. By taking advantage of the SPMD architecture of the Cray T3D, as well as its low
latency communications network, we have managed to achieve grind times of less than 10 nanoseconds on real
problems. DANTSYS/MPI is fully accelerated using DSA on both the inner and outer iterations. This paper de-
scribes the implementation of DANTSYS/MPI on the Cray T3D, and presents two simple performance models for
the transport sweep which accurately predict the grind time as a function of the number of PE’s and problem size,
or scalability.

L INTRODUCTION

Since 1994, we have been using a data parallel form of our deterministic transport code DANTSYS! to perform
time-independent fixed source and eigenvalue calculations on the CM-200's at Los Alamos National Laboratory
(LANL). Parallelization of the transport sweep is obtained by using a 2-D spatial decomposition which retains the
ability to invert the source iteration equation in a single iteration (i.e., the ordered sweep).>> We have now imple-
mented a message passing version of DANTSYS, referred to as DANTSYS/MP]I, on the Cray T3D installed at Los
Alamos in 1995.* By taking advantage of the SPMD (Single Program, Multiple Data) architecture of the Cray T3D,
as well as its low latency communications network, we have managed to achieve grind times (time to solve a single
cell in phase space) of less than 10 nanoseconds on the 512 PE (Processing Element) T3D, as opposed to typical
grind times of 150-200 nanoseconds on a 2048 PE CM-200, or 300-400 nanoseconds on a single PE of a Cray Y-
MP. In addition, we have also parallelized the Diffusion Synthetic Accelerator (DSA) equations which are used to
accelerate the convergence of the transport equation. This paper describes the implementation of DANTSYS/MPI
on the Cray T3D and presents two simple performance models for the transport sweep which accurately predict the
grind time as a function of the number of PE's and problem size, or scalability. This paper also describes the parallel
implementation and performance of the elliptic solver used in DANTSYS/MPI for solving the synthetic accelera-

tion equations.
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In Ref. 3, we discuss our implementation of the ordered sweep. To summarize, the transport operator on the
left hand side of the first-order form of the source equation, i.e.,

Qe VY, E Q)+, ¥} E Q)=S0 E Q) (1)

may be viewed as a lower diagonal matrix. Thus, given a known source on the right (the result of inner and outer
iterations over scattering and fission sources), the source iteration equation may be solved for the angular flux ex-
actly in one iteration by performing an ordered sweep for each Sy direction. While this sweep is an inherently se-
quential operation, there actually exists a 2-D diagonal plane of cells which can be solved simultaneously, i.e., in
parallel, when sweeping directions in a given octant (see Fig. 1). We map this diagonal plane onto a 2-D processor
mesh, thus achieving 2-D parallelism for 3-D calculations.

Unlike 3-D spatial decompositions which require iterations to solve the source iteration equation, our 2-D spa-
tial decomposition retains the ability to invert this equation in a single sweep, an important advantage in neutronics
calculations where the mesh cells are often optically thin. However, as can also be seen from Fig. 1, the diagonal
plane does not completely fill all the processor mesh when the diagonal plane is near the corners, resulting in a loss
of Parallel Computational Efficiency (PCE), where PCE is defined to be the amount of useful work performed in a
single sweep divided by the amount of total work. For a large cubic mesh, the PCE can be shown to be only 33%.3
Note that this does not mean that the code is only 33% parallel, but that 67% of the cells solved (in parallel) are
actually dummy, or “fake”, cells. However, the PCE can be raised by reordering the data so that the sweep for the
next discrete direction (Method 1, Successive in Angle) (see Fig. 1) or octant (Method 2, Simultaneous in Angle)
is initiated by a processor as soon as it completes the previous angle/octant, while the downstream processors con-
tinue to work on the previous angle/octant. Using these variants, the PCE for large cubic meshes improves to 86%
for Method 1 (S4) and 50% for Method 2. Although Method 1 has a higher PCE, Method 2 proved to be more com-
putationally efficient on the SIMD (Single Instruction Multiple Data) CM-200 due to the overhead costs of gather/
scatter and shift operations on this machine.? Thus, Method 2 was implemented in our production code DANTSYS
(THREEDANT) on the CM-200 in 1994,

II. IMPLEMENTATION OF THE ORDERED SWEEP ALGORITHM IN DANTSYS/MPI

Due to the SIMD nature of the CM-200, the ordered sweep was performed over the entire / x J x K sized prob-
lem mesh. However, on the Cray T3D, we can improve the PCE of the ordered sweep by taking advantage of its
SPMD architecture.* Let N; x N represent the 2-D processor mesh onto which the J x K problem mesh is mapped
such that the largest J and K mesh dimensions on any PE are J = [J/N,] and K> = [K/Ng], where [] is the ceiling
function equal to the smallest integer larger than or equal to x. Let /- represent the number of /-planes to be solved
by a PE before communicating the resulting edge fluxes to the downstream PE's. Then, while we continue to use
the diagonal plane sweeping algorithm over the space /I x N; x Ng, we use a simple sweep along rows to solve
the balance equation within a PE for all cells in a “chunk” of size /- x Jo x K. We refer to this method as Method
3 (Simultaneous in Angle + Block Sequential). Method 3 results in a PCE of

IXIxKxMx?2

PCE=
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where M is the number of angles per octant. The numerator in Eq. (2) is the number of phase space cells solved in

one sweep of the mesh for one pair of octants (quadrant), while the first term in the denominator is the number of
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Figure 1. The Ordered Sweep




steps to sweep through the diagonal plane space for all angles in an quadrant, and the second term is the number of
phase space cells solved at each step. The first term accounts for the loss in parallel efficiency due to the diagonal
plane sweep over the PE space, and the second term accounts for the loss in parallel efficiency due to load imbal-
ancing. For a 128x128x128 mesh with an S, triangular (M = 6) quadrature on 64 PE's and /> = 4, Eq. (2) results in
a PCE of 96.5%. While I = 1 provides the largest possible PCE, we have found that, when communications laten-
cies are considered (see below), the overall computation time is generally minimized with /. = 4 on the T3D.

Since our ordered sweep algorithm is completely compatible with the standard (inner and outer iterations)
method of solving the transport equation, implementation into an existing production code such as DANTSYS is
straightforward. Thus, DANTSYS/MPI retains the traditional DANTSYS structure of input (serial only), edit (serial
only), and solver (serial/parallel) modules. Since the input and edit modules are neither CPU or memory-intensive,
there is no need to parallelize them. The input module prepares the cross sections, geometry information, and other
data required by the solver module. This information is stored in link files on disk, which are then read in by the
solver module to perform the actual calculation. The solver module memory requirements are driven by the storage
requirements for the flux moments, since we do not need to store the angular fluxes for our 2-D spatial decomposi-
tion. In turn, the solver module writes a CCCC-standard® RTFLUX file upon completion, which may then be used
by the edit module for post-processing. Parallel I/O on the T3D is performed by PSFLIB, a local CRI product which
allows flexible yet efficient I/O to a single file from an arbitrary number of PE’s. In addition, for portability, we
have also developed an alternate library (SPEIO) where a single PE performs all I/O operations and uses message
passing to send/receive data to other PE’s as required.

DANTSYS/MPI was originally developed in Fortran 77, but is migrating to full use of the features of Fortran
90, especially automatic/allocatable arrays and array syntax. Communications on the T3D are handled by CRI's
Shared Memory (SHMEM) data passing constructs, but message passing constructs based on MPI have also been
added for portability to other platforms. Since DANTSYS/MPI is written in standard Fortran 90 and uses MPI, port-
ability is not an issue. DANTSYS/MPI has been tested on Cray PVP's and Sun workstations (serial only) and the
CrayT3D, IBM SP2, and the LANL cluster of SGI SMP’s known as Blue Mountain (serial/parallel).

IOI. PERFORMANCE MODELS FOR THE ORDERED SWEEP ALGORITHM

Performance models are a necessity on parallel platforms for truly understanding actual versus ideal (linear)
speedup, and estimating performance for varying problem sizes and machine configurations. One such commonly
used model is Amdahl’s Law, which can be expressed as

¢ = 1
P f T
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where S, is the parallel speedup, T is the solution time for one PE, T, is the parallel communication time, f, is the
parallel fraction of the code, and p is the number of PE’s. Note that Amdahl’s “Law” is actually not a fundamental
statement of parallel performance, but rather a simple performance model based upon a code structure consisting
of only parallel and serial fractions plus, in this form, a constant communications time. While the assumption of a
constant communications time is reasonable for the ordered sweep algorithm since the communications scale lin-
early with the number of PE’s, this is not necessarily true for other parallel algorithms. However, the effects of the
PCE are not included in the above model. Furthermore, Amdahl’s Law requires T in order to estimate speedups,
but it is generally not feasible to run the large calculations one does on hundreds of PE’s on only a single PE due to
time and memory constraints.

Therefore, we have constructed a more realistic performance model for the ordered sweep algorithm in DANT-



SYS/MPL. In this model, we model the total parallel solution time T,as
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where {x} is the floor function equal to the smallest integer less than or equal to x, T, is the time per cell required
to compute the source moments, angular source, and flux moments, Tqp is the time per cell spent in solving the
difference equations, 7', is the communications time (bandwidth) per cell face of a chunk, T}, is the time spent
in calculating boundary data per cell face, T}, is the communications latency, T gync is the average time per each step
of the ordered sweep spent in synchronization, T4p is the serial overhead per each step of the ordered sweep, and
Ter is the serial overhead outside of the sweep. Note that T, will be a function of the problem dependent S n and
Py orders and T, will, in general, be a function of the selected spatial differencing method and the amount of
(problem dependent) negative flux fixup, if any, for diamond differencing with set-to-zero fixup. T, will also vary
from problem to problem, depending upon the number of inner and outer iterations, and other factors. However,
Tows Tonds Tiars Tsync» and Ty, are assumed to be problem independent. As defined here, the total solution time T,
does not include the time required for input or edit processing.

The values for T, Tpngs Tiap Tyncs and T4, were determined by instrumenting the computational kernel
Sweep3D. Sweep3D is a small test code which includes the computational kemel of DANTSYS/MPI which per-
forms the ordered sweep plus the inner iteration. Typically over 95% of the (transport) time in DANTSYS/MPI is
spent in these two areas. A simple one-group, 64x64x64 spatial mesh, S5 P ; problem was run over PE sizes ranging
from 8 to 512 PE’s on the Cray T3D. The values thus determined from Sweep3D were T}, = 0.146 +/- 0.003 psecs/
cell face, T,y = 0.24 +/- 0.02 psecs/cell face, Ty, = 20.0 +/- 0.4 psecs, and T’ sync = 14.8 +/- 1.6 psecs. In addition,
a similar problem, but with varying J and K mesh sizes so that the chunk size varied from 8 to 3136, was run on a
single PE. From these runs, we obtained T4p=28.5 +/- 3.1 psecs and, for diamond differencing with no fixup. Tsup
= 0.802 +/- 0.003 psecs. Note that T}, corresponds to a communications bandwidth of 33.3 MBytes/sec, while the
theoretical maximum for a Cray T3D is 100 MBytes/sec when using two communication wires per PES

As an aside, we used the CRI performance analysis tool Apprentice to examine a Sg P 1. 50x50 x50 spatial mesh
problem on a single PE. Using the FLOP count from the Apprentice, the single PE performance of Sweep3D for
this problem was 15.0 MFLOPs. The peak performance of the DEC Alpha PE used in the T3D is 150 MFLOPs.
However, the Alpha PE used in the T3D has only an 8 KByte Direct Mapped cache, and the transport algorithm in
Sweep3D performs only 1.4 FLOPs/Load. Thus, memory bandwidth/latency, not PE speed, is the limiting factor.
This is typical of most physics codes with large data sets run on cache-based microprocessors.

IV. PERFORMANCE BENCHMARKS

In order to assess the validity of our models, we examined a simple, one-group benchmark problem where we
varied the mesh size, scattering order, and number of PE’s. The basic problem consisted of a homogeneous cube
with reflecting boundary conditions on the left, bottom, and front faces, and a uniform source. The dimensions of
the cube were varied so that a constant mesh spacing of 0.1 cm was maintained. The cross sections were c, =10
cml, 6, = 0.5 cm’!, 6) = 0.2 cmr’!, and o, = 0.05 cm™. A convergence criteria of 105 was used for all problems.
The spatial differencing method was diamond differencing, where no fixup was required given the optically thin



cells. This problem was run using mesh sizes of 48x48x48, 64x64x64, 128x128x128, and 256x256x256, with a S4
triangular quadrature set (M = 6) and a P, scattering order, and also on a 40x40x40 spatial mesh with a P, scattering
order and an S, product quadrature set (M = 9).

In Tables 1 through 5 below we list, for each PE size, the total solution time, the total speedup factor S, (mea-
sured from the first PE size with sufficient memory to run the given problem), the speedup ratio from the previous
PE size [where 2.00 corresponds to an ideal linear speedup, and speedup ratios of greater than 2.00 (i.e., “super-
linear speedup”) are almost certainly due to cache effects], the grind time (calculated by dividing the total solution
time by the number of inner iterations, spatial cells, and number of angles), as well as the grind times predicted by
our models, and, finally, the PCE. In order to lend some significance to our grind times, we note that the DANTSYS
grind time for the 64x64x64 mesh problem on a single processor of a Cray Y-MP is 316.6 nsecs, and the associated
hardware performance is 131.2 MFLOPs. Table 6 lists the number of inner iterations required for each problem, as
well as the resulting integral particle balance. In addition, Table 6 also contains the parameters used for the models,
as described below.

Table 1: 40x40x40 Mesh, S¢P;

Soln. Speedup Grind Amdahl’s Model
p Time Sp Ratio Time Law GT GT PCE
(secs) (nsecs) (nsecs) (nsecs)
1 194.04 1.00 2807.3 2807.3 2802.4 1.0000
2 97.81 1.98 1.98 1415.1 1417.8 1425.1 0.9945
4 50.32 3.86 1.94 728.0 718.0 724.7 0.9890
8 26.92 7.21 1.87 389.5 369.4 *374.5 0.9783
16 13.36 14.52 2.01 193.3 195.1 197.7 0.9677
32 7.90 24.56 1.69 1143 107.9 109.5 0.9474
64 403 48.15 1.96 58.3 643 64.6 0.9278
128 2.94 66.00 1.37 425 425 41.0 0.7426
256 2.19 88.60 1.34 31.7 316 30.4 0.5952
512 1.87 103.76 1.17 27.1 26.2 27.1 0.4148
Table 2: 48x48x48 Mesh, S¢P;
Soln. Speedup Grind Amdahl’s | Model
4 Time Sp Ratio Time Law GT GT PCE
(secs) (nsecs) (nsecs) (nsecs)
1 157.94 1.00 1859.5 1859.5 1864.6 1.0000
2 82.49 191 191 971.2 938.1 950.2 0.9931
4 39.55 3.99 2.09 465.7 4759 483.2 0.9863
8 20.77 7.60 1.90 244.5 244.8 2499 0.9730
16 10.74 14.71 1.93 126.5 129.3 131.5 0.9600
32 5.99 26.37 1.79 70.5 71.5 72.5 0.9351
64 3.56 4437 1.68 41.9 42,6 42.2 09114




Table 2: 48x48x48 Mesh, S¢P,

Soln. Speedup Grind Amdahl’s Model
P Time Sp Ratio Time Law GT GT PCE
(secs) (nsecs) (nsecs) (nsecs)
128 2.39 66.08 1.49 28.1 28.1 274 0.8675
256 1.69 9346 1.41 19.9 20.9 19.7 0.8276
512 1.53 103.23 1.10 18.0 173 18.0 0.5684
Table 3: 64x64x64 Mesh, S¢P;
. Griny M
P g‘?xl;le Sy S;;{eaeg:p ’I’img Go'cll‘el PCE
(secs) (nsecs) (nsecs)
1 1854.0 1.0000
2 939.0 0.9948
4 95.79 1.00 475.8 4747 0.9897
8 48.02 1.99 1.99 238.5 242.7 0.9796
16 24.63 3.89 1.95 1223 1254 0.9697
32 13.40 7.15 1.84 66.6 66.8 0.9505
64 7.25 13.21 1.85 36.0 36.9 0.9320
128 444 21.57 1.63 22.1 22.1 0.8972
256 2.89 33.15 1.54 14.4 14.5 0.8649
512 2.20 4354 131 10.9 109 0.8067
Table 4: 128x128x128 Mesh, S¢P;
Soln. Grind Model
p Time S S%fggp Time GT PCE
(secs) (nsecs) (nsecs)
1 1918.1 1.0000
2 963.9 0.9974
4 483.9 0.9948
8 243.9 0.9897
16 123.2 0.9846
32 108.10 1.00 63.2 629 0.9746
64 54.05 2.00 2.00 31.6 325 0.9648
128 29.52 3.66 1.83 17.3 17.3 0.9458




Table 4: 128x128x128 Mesh, S¢P;

Soln. Speedu Grind Model
D Time Sp peecup Time GT PCE
Ratio
(secs) (nsecs) (nsecs)
256 16.64 6.50 1.77 9.72 948 0.9275
512 9.66 11.19 1.72 5.64 5.64 0.8930
Table 5: 256x256x256 Mesh, S¢P;
Soln. Grind Model
p Time S, Speedup | e GT PCE
Ratio
(secs) (nsecs) (nsecs)
1 1948.0 1.0000
2 976.1 0.9987
4 488.9 0.9974
8 245.2 0.9948
16 123.1 0.9922
32 62.1 0.9871
64 314 0.9821
128 16.0 0.9722
256 113.02 1.00 8.26 8.26 0.9624
512 60.05 1.88 1.88 439 4.39 0.9435
Table 6: Problem and Model Parameters
Problem No. Particle f T, f Tgre y -
Size Inners Bal. v (secs) p (usecs) (secs)
40° 15 3.05-6 0.992 0.2799 | 0.99406 | 1.981 0.4780
(0.009)
483 16 2.22-6 0.992 0.2624 | 0.99429 | 1.050 0.1989
0.011)
64° 16 3.97-6 0.996 1.043 0.2880
(0.008)
1283 17 4,06-6 | 0.9991 1.112 0.5406
(0.022)
256° 17 5.66-6 | 0.9997 1.144 1.227
Q)

From Eq. (3). we can estimate the minimum parallel fraction of the code f, by looking at the ratio of S, at any
two values of p, which we denote p, and p,, and assuming that T is zero, or
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The numbers in column 3 of Table 6 are calculated by choosing 512 PE’s for p,, and p, at the smallest number of
PE’s the problem will fit on. Obviously, DANTSYS/MPI is a highly parallel code and, as the granularity increases
with increasing mesh size, so does the parallel fraction of the code and the maximum possible speedup.

The communications time T is measured by timing the routines that transfer the angular fluxes to the adjoining
PE’s for the 128 PE test cases. Given T, we can exactly determine f» from Eq. (3) for those problems which fit on
a single PE (which provides 7). With Jfp» we can then use Amdahl’s Law to predict the grind times for all PE’s using
the results from only two points (1 and 128 PE’s). Despite the fact that Amdahl’s Law does not include the effects
of PCE, we see that it still does an excellent job of modeling the grind time. As expected, the exact fp’s calculated
from Eq. (3) are greater than those predicted by Eq. (5).

None of the benchmark problems in Tables 1 through 5 required fixup. Thus, we can assume that the value of
Tg,yp determined from Sweep3D is still valid, as are Ty, Tpng, Tian Tsync. and Ty, If we rearrange Eq. (4), we see
that it predicts a linear relationship between the source computation time and the number of cells solved per PE,
with slope T, and Y-intercept T, given that all the other parameters are known. Therefore, by performing a linear
least squares fit to the data, we determine the T,.’s listed in Table 6 for each problem, along with the standard de-
viation listed below in parentheses. In theory, the least squares fit also gives us T, but in practice the resulting
error in this quantity is too large for us to use it. Instead, once we have T, we estimate T';,, by subtracting off all
the other remaining components for the 512 PE data from the total solution time T, and assume that the remaining
time is T, The least squares fit for the 40x40x40 spatial mesh problem is shown below at Figure 1, where the
circles connected by dashes correspond to the data and the solid line is the least squares fit.
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Figure 1. Least Squares Fit for the 40x40x40 Spatial Mesh.
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The parameters for T, and T, listed in Table 6, along with those for Ty, Tpngs Tiass Tsync» and 7y, from
Sweep3D described above, are used to calculate the model grind times in tables 1 through 5. We see excellent agree-
ment with both those predicted by Amdahl’s Law (where available) and the actual grind times. Unlike Amdahl’s
Law, our model does not require that a calculation fit on a single PE in order to determine the model parameters,
but instead needs only two points at any PE size.Thus, we can use our model to predict total speedups for applica-
tions too large to run on a single PE. Figure 2 below shows the actual grind times for the 40x40x40 calculation for
1to 512 PE’s, the grind times predicted by our model, and the ideal grind time, assuming a linear speedup from 1
to 512 PE’s.

10000 ¢
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1000 |- ——-- Model
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~.,
-~

Grind Time (nsecs)
8
I

10 ¢

1 10 100 1000

Number of PE’s

Figure 2. Grind Times for the 40x40x40 Spatial Mesh

In comparing the single PE grind times (both actual and predicted) for the SgP; problems (Tables 2-5), we see
that they fall in the narrow range of 1,859 to 1,948 nsecs, regardless of the mesh size. Since these calculations are
essentially identical except for the spatial mesh size, we would expect the grind times to also be essentially identical,
although the total solution times increase with increasing mesh size. This points out the importance of presenting
both total solution time and grind times. Furthermore, it provides an additional validation of our model, since the
grind time predicted by our model for the 256x256x256 mesh on a single PE, and the data in Table 6 used by our
model (T,.) in making that prediction, are in good agreement with similar calculations actually performed on a sin-
gle PE (Table 2). Thus, the total speedup of ~ 440 predicted for the 256x256x256 mesh problem on 512 PE’s is
reasonable. Of course, since the smaller meshes have a smaller granularity, the agreement in grind times does not
bold true as the number of PE’s is increased, as can also be seen from the tables.

It is also interesting to compare the values of T, in Table 6 between the P, and P, (40x40x40 mesh) problems.
Since, in 3-D, P, calculations have four moments and P, calculations nine, we would expect, for simple one-group
problems, that T, would be approximately twice as great for the 40x40x40 mesh as for the other meshes. This is
indeed the case. This increase in 7'y, for the P, problem is entirely responsible for the increase in the single PE grind
time. Finally, we should also mention that, as the mesh size increases in Table 6, there is very little increase in the
number of iterations required to solve the problem since, for the ordered sweep algorithm, we retain the ability to



invert the source iteration equation in a single sweep.

V. APPLICATION TO ASSEMBLY 6

Performance results for DANTSYS/MPI on a more realistic problem are presented below in Tables 7 and 8.
Assembly 6 is a critical assembly consisting of a highly enriched uranium spherical core surrounded by a beryllium-
oxide reflector. All calculations were performed using an S4 product quadrature set (M = 9) in conjunction with
multigroup ENDF 12-group P, prompt neutron cross sections on a 94x94x94 spatial mesh. Because of mirror sym-
metry, only one-eighth of the assembly was actually modeled by the mesh. The ordered sweep algorithm was im-
plemented in conjunction with diamond differencing in space. No fixup was needed in this problem due to the
optically thin meshes. This assembly is experimentally known to have an eigenvalue of unity, while the value of the
k eigenvalue calculated by DANTSYS/MPI was 0.9969 with a convergence criteria of 104,

Table 7: Assembly 6 Performance Results

Soln. Speedup Grind Model
p Time Sp Ratio Time GT PCE
(secs) (nsecs) (nsecs)
1 3411.8 1.0000
2 1721.7 0.9769
4 864.1 0.9747
8 430.6 0.9500
16 215.6 0.9259
32 3,766.5 1.00 107.5 107.0 0.9176
64 1,876.4 2.01 2.01 535 54.0 0.9093
128 1,002.1 3.76 1.87 28.6 27.6 0.8933
256 541.7 6.95 1.85 15.5 15.1 0.8778
512 311.1 12.11 1.74 8.88 8.88 0.8434
Table 8: Assembly 6 Problem and Model Parameters
Problem | OI:t%rs InI\IIIgI'S Pa];:fle P> (uZérgs) Tser (secs)
94° | 16 586 ‘ 3.65-5 0.9993 2.603 l 56.763
(.030)

The least squares fit for Assembly 6 is shown below in Fig. 3. The value for Tg;c of 2.603 psecs is considerably
larger than that of 1.981 psecs for the one-group S, P, case, but Assembly 6 is a 12-group problem including fission.
Since we do not perform any decomposition over energy, this additional work is entirely local on each PE and re-
quires no additional communications. A smaller version of Assembly 6 with a 14x14x14 spatial mesh was run on a
single PE, where the actual grind time was 3,741.0 psecs. Given the effects of problem size on performance due to



cache and pipelines, this value is in reasonable agreement with our model prediction of 3,411.8 usecs.
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Figure 3. Assembly 6 Least Squares Fit.

Figure 4 shows the actual grind times for the Assembly 6 calculation for 32 to 512 PE’s, the grind times pre-
dicted by our model, and the ideal grind time, assuming a linear speedup from 1 to 512 PE’s, where the grind time
for 1 PE is determined from our model. As can be seen, the model predicts the actual grind times quite closely, and
the estimated total speedup obtained for this realistic application is ~380 on 512 PE’s. More importantly, the grind
time for this application on a single Cray YMP PE is ~400 nsecs, so the performance actually achieved on 512 T3D



PE’s is equivalent to that of 45 Y-MP PE’s.
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Figure 4. Assembly 6 Grind Times
VL. ITERATION ACCELERATION

Many transport calculations require some means of accelerating convergence in order to be practical. DANT-
SYS uses Diffusion Synthetic Acceleration (DSA) to accelerate convergence of both the inner and outer iterations.
DSA has proven extremely valuable in accelerating convergence for calculations containing highly scattering and/
or fissile regions.

DSA works by using a lower-order diffusion-like equation to accelerate the solution of the higher-order trans-
port operator. Typically, one diffusion acceleration step is performed for every transport step. Thus, an efficient
means of solving an elliptic equation is essential in reducing the overall computation time. However, in two or three
dimensions, the solution of elliptic equations is a non-trivial problem. The multigrid method in conjunction with
pre-conditioning by line inversions has proven most successful in the past when used with DANTSYS, but an effi-
cient multigrid scheme has yet to be developed for parallel architectures. Thus we have also implemented a pre-
conditioned Conjugate Gradient (CG) diffusion solver in DANTSYS/MPI because CG schemes are readily paral-
lelized. Since each PE in DANTSYS/MPI contains all cells in the /-dimension for a given J and K, we precondition
by line inversions in the / direction, but use Red/Black iterations over the cells in the J and K dimensions. Although
not as effective a pre-conditioner as line inversions in all three dimensions, this scheme is compatible with our 2-D
spatial decomposition. Furthermore, this scheme represents an extrinsic decomposition in the sense that the results
do not vary as the number of PE's is varied.

To examine the performance of the diffusion solver on the T3D, we have chosen the small LWR problem of
Takeda’ except we have varied the spatial mesh from 50x50x50 to 200x200x200 in each of the coordinate dimen-
sions. This is a two energy group, SgPy k. calculation and is being converged to 5.0e-5 in the eigenvalue and the
pointwise scalar fluxes. To first address the effectiveness of our diffusion solution algorithm on paralle] architec-
tures, we have solved this problem as a pure diffusion problem using DANTSYS/MPL. For each of the spatial mesh
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variations, we have done the diffusion calculation using a number of processors from 16 to 512. In Table 9 we
present the results in terms of total CPU time to solve the problem. We also include for reference results from a
single processor Y-MP run using both the same diffusion solver as that used on the T3D (/-line preconditioned CG)
and also using a multigrid solver. The dashes in the table mean that the calculation would not fit in the available
memory. These results show that we are able to solve large diffusion problems on the T3D and that our algorithm
does scale reasonable well with a speedup ratio of about 1.80, though it does tail off as the number of processors
increase for a constant problem size. We also note in passing that although for the T3D we can run up to 42 times
faster than the Y-MP, the impact of the effectiveness of the method used to invert the diffusion operator is such that
much of the gain is lost. Thus in the best of all worlds, we would very much like a parallel multigrid solver. The
table results are presented in graphical form in Figure 5.

Table 9: CPU Time for a Diffusion Calculation as a Function of the No. of PE’s

Number of PE’s on the T3D Y-MP
mesh size 16 32 64 128 256 512 CG MG
50x50x50 220 | 12.6 73 49 32 - 49.0 8.3
100x100x100 | 2572 | 1439 | 759 | 444 | 264 | 165 | 6938 | 52.8
200x200x200 - - 5842 | 3244 | 1843 | 97.0 - -

DIFFUSION SOLVER PERFORMANCE ON THE T3D
{From the LWR Problem for Various Mesh Sizes)
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Figure 5. CPU Times as a Function of the Number of PE’s for the LWR Problem.

To follow up the impact of the parallelization of the inversion of the diffusion operator upon a total diffusion
accelerated transport problem. we have taken the 100x100x 100 mesh version of the small LWR problem and run it
on the T3D with a varying number of processors. We also include for reference the performance of this problem on
the Y-MP. In Table 10 we present the results as CPU time in seconds broken down in the diffusion solve time, the
transport solve time and the total time to do the calculation. From these results we can discern that the DSA time is
a factor of two greater than the transport time and that they scale very well together. We note in passing that mul-
tigrid is about a factor of 5 times more efficient than the CG although its use requires more transport iterations and



thus more transport time. In Figure 6 we present these results in graphical form.

Table 10: CPU Time for the Components of a DSA Solution of LWR on the T3D
Number Of PE’s On The T3D Y-MP

16 32 64 128 256 512 CG MG

DSA time 3482 | 1954 | 1027 60.1 36.0 223 9282 | 198.2
Trans time 181.3 96.5 52.5 30.6 18.1 11.8 299.1 | 4552
Total time 5364 | 2956 | 157.1 91.8 54.8 346 | 1237.5 | 666.0

DSA PERFORMANC THE T3D AS A FUNCTION OF
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Figure 6. CPU Times for the Various DSA Solution Components From the LWR Problem.
VII. CONCLUSIONS

DANTSYS/MPI is a highly parallel code which performs effectively on realistic applications. As implemented
in DANTSYS/MPI on the Cray T3D, the ordered sweep algorithm allows us to solve not only larger problems than
possible on traditional super-computers, but also to solve them more quickly. Since the 2-D spatial decomposition
of our ordered sweep algorithm inverts the source iteration exactly in a single sweep, its performance is insensitive
to mesh size The ordered sweep algorithm allows to retain both the use of the standard outer and inner iteration
strategy of production codes and also the use of standard accelerations schemes such as DSA. Since the ordered
sweep algorithm provides only 2-D parallelism, it has a lower compute-to-communications ratio than other decom-
position strategies. However, as demonstrated here, the ordered sweep algorithm can be expected to perform well
on any machine architecture with a low-latency communications network. We have provided a performance model
which accurately predicts the performance of DANTSYS/MPI on the Cray T3D, and can easily be used to predict
the performance on other machine architectures as well. Because DANTSYS/MPI is written in standard Fortran 90
using MPYL, it can easily be ported to other architectures. We will present results for other architectures in a future

paper.
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