

Radionuclides, Stable Isotopes, Inorganic Constituents, and Organic Compounds in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

By ROY C. BARTHOLOMAY and LINDA M. WILLIAMS,
U.S. GEOLOGICAL SURVEY, and LINFORD J.
CAMPBELL, IDAHO DEPARTMENT OF WATER
RESOURCES

U.S. GEOLOGICAL SURVEY
Open-File Report 96-496

Prepared in cooperation with the
U.S. DEPARTMENT OF ENERGY
and
IDAHO DEPARTMENT OF WATER RESOURCES

Idaho Falls, Idaho

September 1996

dg
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

GORDON P. EATON, Director

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

U.S. Geological Survey
INEL, MS 4148
P.O. Box 2230
Idaho Falls, ID 83403

Copies of this report can be purchased from:

U.S. Geological Survey
Branch of Information Services
Box 25286
Denver, CO 80225-0286

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

CONTENTS

Abstract.....	1
Introduction	1
Geohydrologic setting	3
Acknowledgments	3
Methods and quality assurance.....	5
Site selection	5
Sample containers and preservatives	5
Sample collection.....	5
Quality assurance.....	8
Radionuclides	8
Strontium-90	9
Tritium	9
Gross alpha-particle radioactivity	10
Gross beta-particle radioactivity	10
Cesium-137	12
Stable isotopes	12
Inorganic constituents.....	13
Trace elements	13
Common ions.....	19
Nutrients.....	19
Organic compounds	19
Dissolved organic carbon.....	22
Anionic surfactants	22
Purgeable organic compounds	22
Insecticides and gross polychlorinated compounds.....	22
Herbicides	22
Summary.....	22
Selected references	27

FIGURES

Figures 1-2. Maps showing:

1. Location of the study area, between the Idaho National Engineering Laboratory and Hagerman, Idaho
2. Location of selected water-quality sampling sites on the eastern Snake River Plain.....

TABLES

- Table 1. Containers and preservatives used for water-sample collection.....
2. Results of field measurements of water for pH, specific conductance, temperature, alkalinity, and dissolved oxygen from selected wells and springs, eastern Snake River Plain
3. Maximum contaminant levels for types of radioactivity and selected radionuclides in drinking water.....

4. Concentrations of strontium-90 and tritium in water from selected wells and springs, eastern Snake River Plain	10
5. Concentrations of gross alpha-particle radioactivity in water from selected wells and springs, eastern Snake River Plain	11
6. Concentrations of gross beta-particle radioactivity in water from selected wells and springs, eastern Snake River Plain	12
7. Concentrations of cesium-137 in water from selected wells and springs, eastern Snake River Plain	13
8. Relative concentrations of stable isotopes in water from selected wells and springs, eastern Snake River Plain	14
9. Maximum contaminant levels and minimum reporting levels of selected trace elements in drinking water	15
10. Concentrations of dissolved trace elements and hexavalent and total chromium in water from selected wells and springs, eastern Snake River Plain	16
11. Maximum contaminant levels and minimum reporting levels of selected common ions in drinking water.....	20
12. Concentrations of dissolved common ions in water from selected wells and springs, eastern Snake River Plain	20
13. Maximum contaminant levels and minimum reporting levels of selected nutrients, dissolved organic carbon, and anionic surfactants in drinking water ..	21
14. Concentrations of nutrients, dissolved organic carbon, and anionic surfactants in water from selected wells and springs, eastern Snake River Plain	21
15. Maximum contaminant levels and minimum reporting levels of selected purgeable organic compounds in drinking water	23
16. Maximum contaminant levels and minimum reporting levels of selected insecticides and gross polychlorinated compounds in drinking water	24
17. Maximum contaminant levels and minimum reporting levels of chlorophenoxy-acid herbicides and other herbicides in drinking water	25
18. Concentrations of herbicides in water from selected wells and springs, eastern Snake River Plain	26

CONVERSION FACTORS AND ABBREVIATED UNITS

Multiply	By	To Obtain
acre-foot per year (acre-ft/yr)	1,233	cubic meter per year
foot (ft)	0.3048	meter
gallon (gal)	3.785	liter
mile (mi)	1.609	kilometer
millirem per year (mrem/yr)	0.010	millisievert per year
picocurie per liter (pCi/L)	0.037	becquerel per liter
square mile (mi ²)	2.590	square kilometer

Temperature can be converted from degrees Celsius ($^{\circ}\text{C}$) to degrees Fahrenheit ($^{\circ}\text{F}$) by the equation: $^{\circ}\text{F} = ({}^{\circ}\text{C} \times 1.8) + 32$.

Abbreviated units used in report: mL (milliliter); L (liter); $\mu\text{g}/\text{L}$ (microgram per liter); mg/L (milligram per liter); μm (micrometer); and $\mu\text{S}/\text{cm}$ (microsiemens per centimeter) at 25 degrees Celsius.

Radionuclides, Stable Isotopes, Inorganic Constituents, and Organic Compounds in Water from Selected Wells and Springs from the Southern Boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

By Roy C. Bartholomay and Linda M. Williams, U.S. Geological Survey, and Linford J. Campbell, Idaho Department of Water Resources

Abstract

The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed.

None of the radionuclide, inorganic constituent, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level.

INTRODUCTION

Recently, the public has expressed concern about waste disposal practices at the Idaho National Engineering Laboratory (INEL) and the effect these practices might have had on the water quality of the Snake River Plain aquifer. The U.S. Department of Energy (DOE) requested that the

U.S. Geological Survey (USGS) conduct two studies to respond to the public's concern and to gain a greater understanding of the chemical quality of water in the aquifer. The first study described a one-time sampling effort in the eastern part of the A & B Irrigation District in Minidoka County (Mann and Knobel, 1990). The second study, an ongoing annual sampling effort in the area between the southern boundary of the INEL and Hagerman (fig. 1), is being conducted in cooperation with the Idaho Department of Water Resources (IDWR) and the DOE. The initial round of sampling for the second study involved analyzing water samples collected from 55 sites during August and September 1989 (Wegner and Campbell, 1991). The second round of sampling involved analyzing water samples collected from 19 of the initial 55 sites in 1990 (Bartholomay and others, 1992), another 18 of the initial 55 sites in 1991 (Bartholomay and others, 1993), and the remaining 18 sites in 1992 (Bartholomay and others, 1994a). The third round of sampling involved analyzing water samples collected from 19 of the initial 55 sites in 1993 (Bartholomay and others, 1994b), and 18 more of the initial 55 sites during 1994 (Bartholomay and others, 1995). This report summarizes the analyses of water samples collected as part of the third round in June-July 1995 from 17 more of the initial 55 sites. One site was not sampled because the pump was not operating and will be sampled at the beginning of the 1996 sample period.

EXPLANATION

- BOUNDARY OF STUDY AREA
- - - BOUNDARY OF THE EASTERN SNAKE RIVER PLAIN
- BOUNDARY OF THE IDAHO NATIONAL ENGINEERING LABORATORY

0 50 MILES
0 50 KILOMETERS

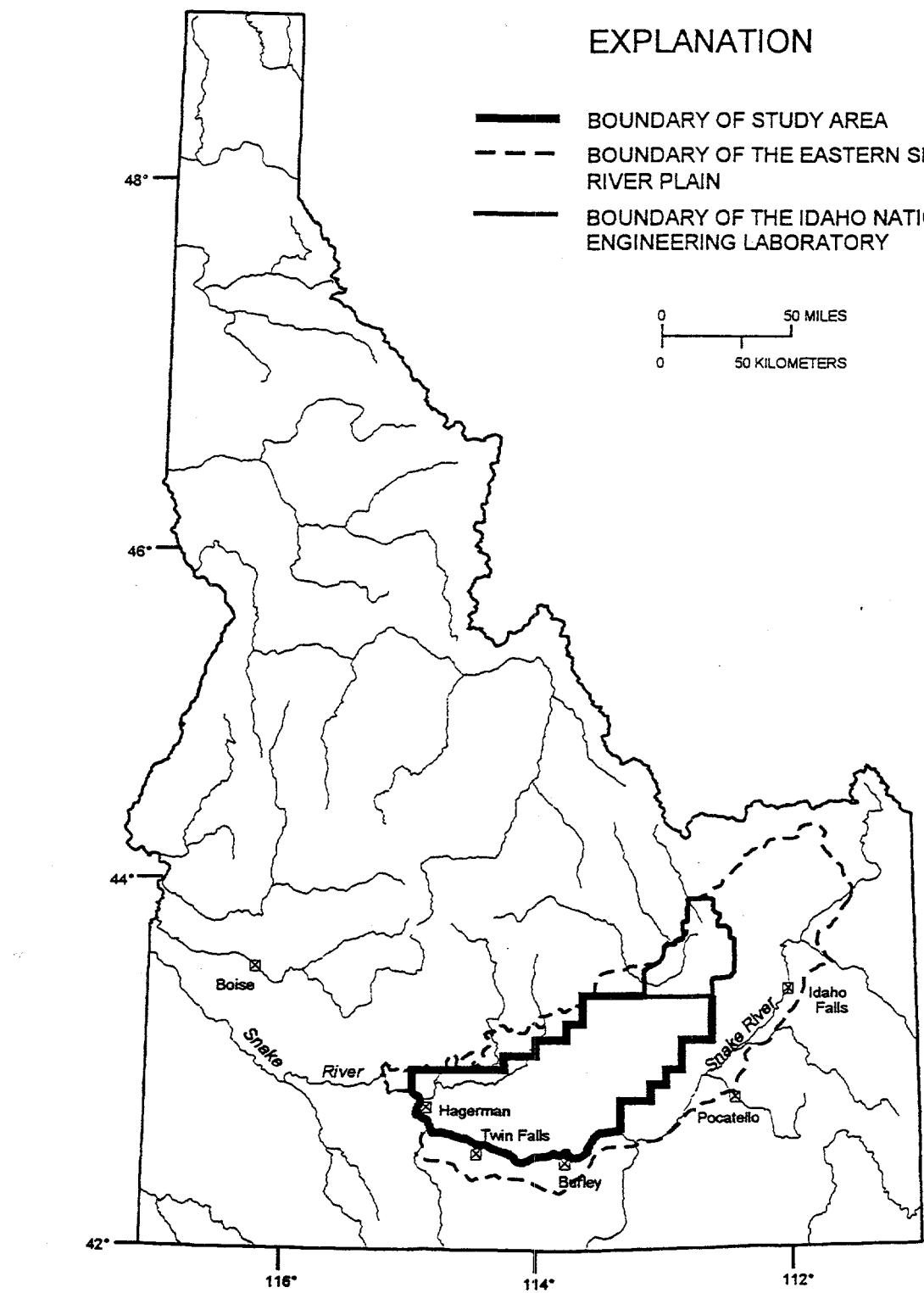


Figure 1. Location of the study area, between the Idaho National Engineering Laboratory and Hagerman, Idaho.

The INEL includes about 890 mi² of the northeastern part of the eastern Snake River Plain and is about 110 mi northeast of the Hagerman area (fig. 1). In the past, wastewater containing chemical and radiochemical wastes generated at the INEL was discharged mostly to ponds and wells. Since 1983, most aqueous wastes have been discharged to infiltration ponds. Many of the constituents in the wastewater enter the aquifer indirectly following percolation through the unsaturated zone (Pittman and others, 1988).

Chemical and radioactive wastes have migrated from less than 1 to about 9 mi southwest of the disposal areas at the INEL (Pittman and others, 1988). Tritium was detected intermittently at concentrations of $3,400 \pm 200$ pCi/L or less in water from three wells along the southern boundary of the INEL between 1983 and 1985. Since 1985, tritium concentrations in water from wells near the southern boundary of the INEL have been less than the reporting level (Bartholomay and others, 1995, p. 22).

Water samples from 17 sites (fig. 2) were analyzed for selected radionuclides, stable isotopes, trace elements, common ions, nutrients, dissolved organic carbon (DOC), anionic surfactants as methylene blue active substances (MBAS), purgeable organic compounds, carbamate insecticides, organophosphate insecticides, organochlorine insecticides, gross polychlorinated biphenyls (PCB's), gross polychlorinated naphthalenes (PCN's), chlorophenoxy-acid herbicides, and other herbicides by the USGS National Water Quality Laboratory (NWQL) at Arvada, Colo. Samples also were collected at the same sites for analyses of selected radionuclides by the Idaho State University (ISU) Environmental Monitoring Laboratory in Pocatello, Idaho. Two replicate water samples also were collected and analyzed as a measure of quality assurance.

Geohydrologic Setting

The eastern Snake River Plain is a northeast-trending structural basin about 200 mi long and 50 to 70 mi wide. The basin, bounded by faults on the northwest and downwarping and faulting on the southeast, has been filled with basaltic lava flows interbedded with terrestrial sediments

(Whitehead, 1986). Individual basalt flows average 20 to 25 ft in thickness with an aggregate thickness of several thousand feet in places. Alluvial fan deposits are composed primarily of sand and gravel, whereas in areas where streams were dammed by basalt flows, the sediments are predominantly silt and clay (Garabedian, 1986). Rhyolitic lava flows and tuffs are exposed locally at the surface and may exist at depth under most of the eastern plain. A 10,365-ft-deep test hole at the INEL penetrated about 2,160 ft of basalt and sediment and 8,205 ft of tuffaceous and rhyolitic volcanic rocks (Mann, 1986).

Movement of water in the aquifer generally is from the northeast to the southwest. Water moves horizontally through basalt interflow zones and vertically through joints and interfingering edges of the interflow zones. Infiltration of surface water, heavy pumpage, geologic conditions, and seasonal fluxes of recharge and discharge locally affect the movement of ground water (Garabedian, 1986).

The Snake River Plain aquifer is recharged by seepage from the upper reaches of the Snake River, tributaries and canals, infiltration from irrigation and precipitation, and underflow from tributary valleys on the perimeter of the plain. Discharge from the aquifer primarily is by pumpage for irrigation and spring flow to the Snake River (Mann and Knobel, 1990). Between 1902 and 1980, spring flow to the Snake River increased from about 3.1 million to about 4.3 million acre-ft/yr, largely as a result of increased recharge from infiltration of irrigation water (Kjelstrom, 1992, fig. 27).

Acknowledgments

The authors gratefully acknowledge the well owners for granting permission to collect the water samples and extend special thanks to Dale Connell of the Shoshone District of the Bureau of Land Management for his help in locating and pumping two of the wells for sample collection. The authors are grateful for technical review of the manuscript by Ivalou O'Dell and Donald L. Boyce of the USGS.

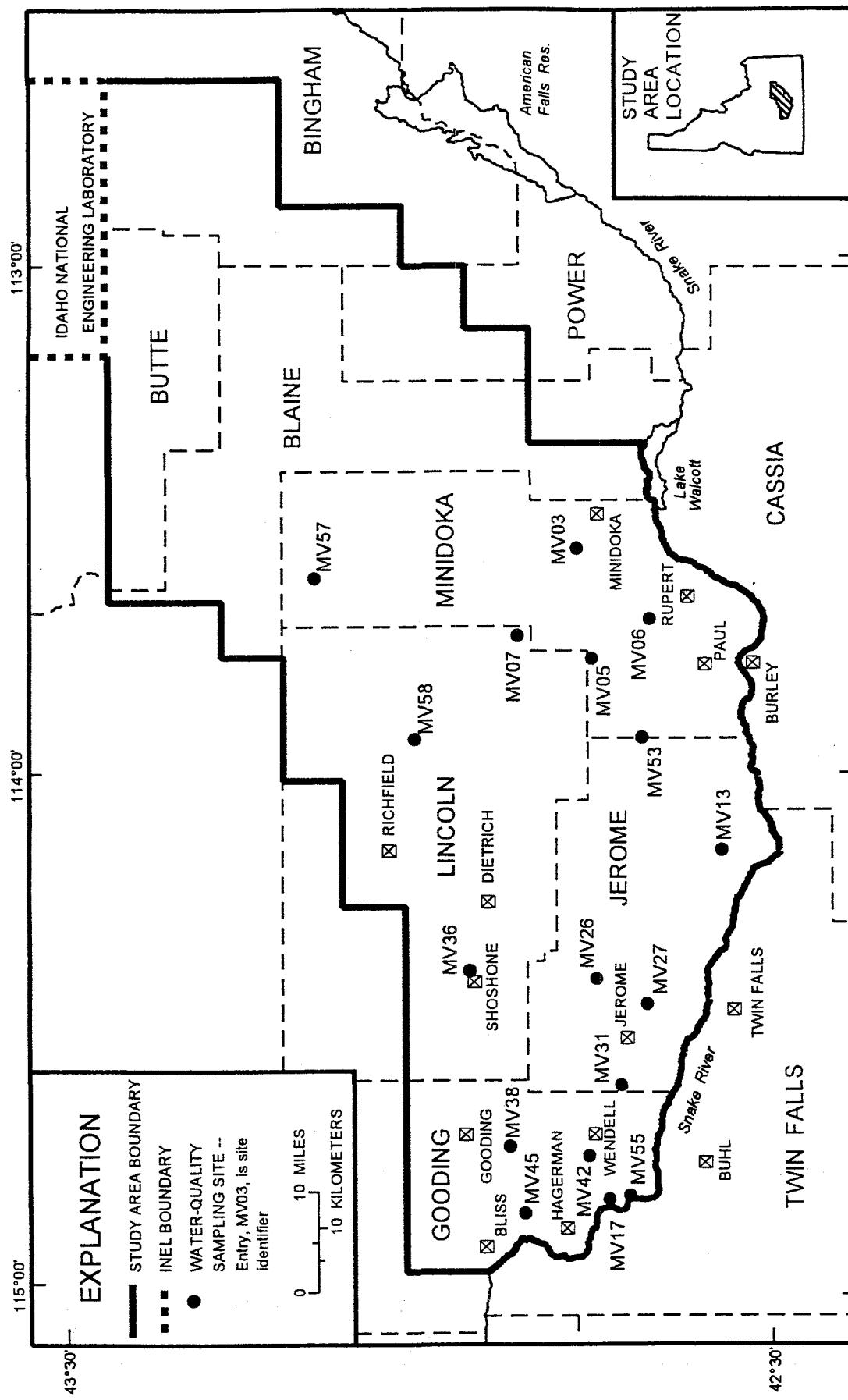


Figure 2. -- Location of selected water-quality sampling sites on the eastern Snake River Plain.

METHODS AND QUALITY ASSURANCE

The methods used in sampling and analyzing for selected chemicals generally followed the guidelines established by the USGS (Goerlitz and Brown, 1972; Stevens and others, 1975; Wood, 1981; Claassen, 1982; W.L. Bradford, USGS, written commun., 1985; Wershaw and others, 1987; Fishman and Friedman, 1989; Faires, 1992; and Fishman, 1993). The methods used in the field and quality assurance practices are outlined in the following sections.

Site Selection

Water samples were collected at 17 sites (fig. 2), including 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance water samples also were collected. The irrigation wells were equipped with turbine pumps. The domestic, stock, and public-supply wells were equipped with submersible pumps. Criteria for site selection were geographic location, ease of sample collection, and long-term access.

Sample Containers and Preservatives

Sample containers and preservatives differ depending on the constituent(s) for which analyses are requested. Samples analyzed by the NWQL were collected and preserved in accordance with laboratory requirements specified by Timme (1995). Water samples analyzed by ISU were collected in accordance with laboratory requirements specified by the Director of the Environmental Monitoring Program at ISU. Containers and preservatives were supplied by the respective laboratories. Containers and preservatives used for this study are listed on table 1.

Sample Collection

Four of the irrigation wells discharged into stilling ponds or canals and were sampled from the discharge pipe. The remaining irrigation wells were sampled from spigots in discharge lines near pumps; domestic, stock, and public-supply wells were sampled from spigots closest to pumps. All the wells either were pumping on arrival of the sampling team or were started on arrival and

pumped long enough to ensure that pressure tanks and pumping systems had been thoroughly flushed as evidenced by stable pH, specific conductance, and water temperature measurements. The spring was sampled near the USGS gaging station by collecting a grab sample from an area of moving water.

Chemical and physical characteristics monitored at the water-sampling sites included pH, specific conductance, water temperature, alkalinity, and dissolved oxygen. These characteristics were monitored during pumping using methods described by Wood (1981) and Hardy and others (1989). A water sample was collected when measurements of these characteristics indicated probable hydraulic and chemical stability. After collection, sample containers were sealed with laboratory film, labeled, and packed into ice chests for shipment by overnight-delivery mail to the NWQL. The samples collected for ISU were stored in coolers until they were hand-delivered to the laboratory.

Measurements of pH, specific conductance, water temperature, alkalinity, and dissolved oxygen are shown on table 2. Measured pH of water from sampling sites ranged from 7.5 to 8.3, which is within the U.S. Environmental Protection Agency's (1994) recommended range of 6.5 to 8.5 for community water systems. Specific conductance measurements ranged from 256 to 820 $\mu\text{S}/\text{cm}$. Measurements of water temperature ranged from 11.5 to 16.0°C. The Idaho Department of Health and Welfare (IDHW) (1989) has established a secondary maximum contaminant level of 26.6°C for water temperature. Alkalinity as calcium carbonate ranged from 99 to 213 mg/L. Dissolved oxygen ranged from 6.6 to 9.8 mg/L.

Conditions at the sampling site during sample collection were recorded in a field logbook; a chain-of-custody record was used to track the samples from the time of collection until delivery to the analyzing laboratory. These records are available for inspection at the USGS Project Office at the INEL.

Table 1. Containers and preservatives used for water-sample collection

[Abbreviations: L, liter; °C, degrees Celsius; µm, millimeter; µl, micrometer; gal, gallon. Chemical formulas: HNO_3 , nitric acid; $\text{K}_2\text{Cr}_2\text{O}_7$, potassium dichromate; SrCl_2 , strontium chloride. Chilled samples were shipped by overnight-delivery mail. Analyzing laboratory: NWQL, U.S. Geological Survey National Water Quality Laboratory; ISU, Idaho State University Environmental Monitoring Laboratory]

Constituent or type of constituent	Type	Container		Preservative	Size	Other treatment	Analyzing laboratory
		Size	Type				
Strontium-90	Polyethylene, acid rinsed	1 L	HNO_3	4 mL	0.45-µm filter	NWQL	NWQL
Tritium	Polyethylene	1 L	None	None	None	NWQL	NWQL
	Polyethylene	1 L	None	None	None	ISU	ISU
Other radionuclides	Polyethylene, acid rinsed	1 L	HNO_3	4 mL	.45-µm filter	NWQL	NWQL
	Polyethylene	1 gal	None	None	None	ISU	ISU
Stable isotopes for:							
Carbon	Glass, baked	1 L	Ammoniacal SrCl_2	50 mL	None	NWQL	NWQL
Nitrogen	Glass, baked	1 L	None	None	Chill 4°C	NWQL	NWQL
Sulfur	Polyethylene	1 L	None	None	None	NWQL	NWQL
Hydrogen and oxygen	Glass	60 mL	None	None	None	NWQL	NWQL
Trace elements	Polyethylene, acid rinsed	250 mL	HNO_3	1 mL	.45-µm filter	NWQL	NWQL
	Polyethylene	125 mL	None	None	None	NWQL	NWQL
Mercury	Glass, acid rinsed	250 mL	$\text{HNO}_3/\text{K}_2\text{Cr}_2\text{O}_7$	10 mL	.45-µm filter	NWQL	NWQL
Common ions	Polyethylene, acid rinsed	500 mL	HNO_3	2 mL	.45-µm filter	NWQL	NWQL
	Polyethylene, acid rinsed	500 mL	HNO_3	2 mL	None	NWQL	NWQL
	Polyethylene	250 mL	None	None	.45-µm filter	NWQL	NWQL
	Polyethylene	250 mL	None	None	None	NWQL	NWQL
Nutrients	Polyethylene, brown	125 mL	None	None	.45-µm filter, chill 4°C	NWQL	NWQL
Dissolved organic carbon	Glass, baked	125 mL	None	None	Silver filter, chill 4°C	NWQL	NWQL
Anionic surfactants	Polyethylene	250 mL	None	None	Chill 4°C	NWQL	NWQL
Purgeable organic compounds	Glass, baked	40 mL	None	None	Chill 4°C	NWQL	NWQL
Pesticides	Glass, baked	1 L	None	None	Chill 4°C	NWQL	NWQL

Table 2. Results of field measurements of water for pH, specific conductance, temperature, alkalinity, and dissolved oxygen from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Site type: I, irrigation; Sp, spring; P, public supply; H, domestic; QA, quality assurance (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55); S, stock. Date sampled: month/day/year. Units: pH, negative base-10 logarithm of hydrogen ion activity in moles per liter; specific conductance, microsiemens per centimeter at 25°C (degrees Celsius); temperature, °C; alkalinity, milligrams per liter (mg/L) as calcium carbonate using digital titration with 0.16 normal sulfuric acid; dissolved oxygen, mg/L using azide modification of Winkler method (American Public Health Association and Water Pollution Control Federation, 1985)]

Site identifier	Site type	Date sampled	pH	Specific conductance	Temperature	Alkalinity	Dissolved oxygen
MV-03	I	7/25/95	7.8	441	12.5	126	8.3
MV-05	I	7/25/95	7.8	696	12.0	166	8.3
MV-06	I	7/25/95	7.5	629	14.0	207	6.6
MV-07	I	6/20/95	7.8	353	13.0	117	7.9
MV-13	I	7/27/95	7.6	611	15.0	188	7.8
MV-17	Sp	7/24/95	8.0	409	14.5	129	8.7
MV-26	I	7/25/95	7.8	467	14.0	133	8.3
MV-27	I	7/31/95	7.6	678	14.5	174	8.0
MV-31	I	7/24/95	7.9	630	14.0	160	8.2
MV-36	P	7/26/95	7.7	424	13.5	184	9.0
MV-38	I	7/24/95	7.8	368	14.0	151	7.9
MV-42	H	7/26/95	7.7	440	15.0	160	7.8
MV-44	QA	7/24/95	7.8	368	14.0	151	7.9
MV-45	I	6/20/95	8.0	368	15.5	137	7.9
MV-53	H	7/26/95	7.7	820	16.0	213	8.9
MV-55	I	7/26/95	7.7	420	14.5	132	8.4
MV-57	S	6/29/95	7.9	256	12.0	99	8.2
MV-58	S	6/29/95	8.3	279	11.5	116	9.8
MV-60	QA	7/26/95	7.7	420	14.5	132	8.4

Table 3. Maximum contaminant levels for types of radioactivity and selected radionuclides in drinking water
 [The maximum contaminant levels were established pursuant to the recommendations of the U.S. Environmental Protection Agency (1995, p. 913) for community water systems and are included for comparison purposes only. Maximum contaminant levels given for strontium-90 and tritium are average annual concentrations assumed to produce a total body or organ dose of 4 mrem/yr (millirem per year) of beta-particle radiation. The maximum contaminant level given for gross alpha-particle radioactivity includes radium-226 but excludes radon and uranium. The maximum contaminant level given for gross beta-particle and gamma radioactivity excludes radioactivity from natural sources and is included for comparison purposes only. Abbreviation: pCi/L, picocurie per liter]

Type of radioactivity or radionuclide	Maximum contaminant level
Strontium-90	8 pCi/L
Tritium	20,000 pCi/L
Gross alpha-particle radioactivity	15 pCi/L
Gross beta-particle and gamma radioactivity	4 mrem/yr

Quality Assurance

Detailed descriptions of internal quality control and overall quality assurance practices used by the NWQL are provided in reports by Friedman and Erdmann (1982), Jones (1987), and Pritt and Raese (1995). Water samples analyzed by the NWQL were collected in accordance with a quality assurance plan for quality-of-water activities conducted by personnel at the INEL Project Office. The plan was finalized in June 1989, revised in March 1992, and is available for inspection at the USGS Project Office at the INEL. Water samples analyzed by ISU were collected in accordance with procedures described by B. Graham (ISU, written commun., 1991). About 10 percent of the water samples were quality assurance samples. Sample MV-44 is a replicate of sample MV-38. Sample MV-60 is a replicate of sample MV-55.

RADIONUCLIDES

Water samples were analyzed for strontium-90, tritium, gross alpha- and gross beta-particle radioactivity. In addition, gamma-emitting radionuclides were identified. The samples were analyzed using methods described by Thatcher and others (1977). Maximum contaminant levels for the types of radioactivity and for selected radionuclides are listed on table 3.

An analytical uncertainty, s , is calculated for each radionuclide concentration. This report presents the analytical uncertainty as $2s$. Guidelines

for interpreting analytical results are based on an extension of the method described by Currie (1984). In radiochemical analyses, laboratory measurements are made on a target sample and a prepared blank. Instrument signals for the sample and blank vary randomly. Therefore, it is essential to distinguish between two key aspects of the problem of detection: (1) The instrument signal for the sample must be greater than the signal for the blank to make the decision that there was detection; and (2) an estimation must be made of the minimum concentration that will yield a sufficiently large signal to make the correct decision for detection or nondetection most of the time. The first aspect of the problem is a qualitative decision based on signals and a definite criterion for detection. The second aspect of the problem is an estimation of the detection capabilities of a complete measurement process that includes hypothesis testing.

In the laboratory, instrument signals must exceed a critical level of $1.6s$ to make the qualitative decision whether the radionuclide or radioactivity was detected. At $1.6s$, there is about a 95-percent probability that the correct decision—not detected—will be made. Given a large number of samples, as many as 5 percent of the samples with measured concentrations greater than or equal to $1.6s$, which were concluded as being detected, might not contain the radioactive constituent. These measurements are referred to as false positives and are errors of the first kind in hypothesis testing.

Once the critical level of 1.6s has been defined, the minimum detectable concentration can be established. Concentrations that equal 3s represent a measurement at the minimum detectable concentration. For true concentrations of 3s or greater, there is a 95-percent-or-more probability of correctly concluding that the radioactive constituent was detected in a sample. Given a large number of samples, as many as 5 percent of the samples with measured concentrations greater than or equal to 3s, which were concluded as being not detected, could contain the radioactive constituent at the minimum detectable concentration. These measurements are referred to as false negatives and are errors of the second kind in hypothesis testing.

True radionuclide concentrations between 1.6s and 3s have larger errors of the second kind. That is, there is a greater-than-5-percent probability of false negative results for samples with true concentrations between 1.6s and 3s, and although the radionuclide or radioactivity might have been detected, such detection may not be considered reliable; at 1.6s, the probability of a false negative is about 50 percent.

These guidelines are based on counting statistics alone and do not include systematic or random errors inherent in laboratory procedures. The values 1.6s and 3s vary slightly with background or blank counts and with the number of gross counts for individual analyses. The use of the critical level and minimum detectable concentration aids the reader in the interpretation of analytical results and does not represent absolute concentrations of radioactivity that may or may not have been detected. In this report, if the concentration of a selected radionuclide was equal to or greater than 3s, the concentration is considered to be above a "reporting level." The reporting level should not be confused with the analytical method detection limit, which is based on laboratory procedures. At small concentrations, the reporting level approaches the analytical method detection limit; however, at larger concentrations, they may be significantly different.

Many analytical results of environmental radioactivity measurements are at or near zero. If the true concentration for a given radionuclide is

zero, a given set of analytical results for that radionuclide should be distributed about zero, with an equal number of negative and positive measurements. Negative analytical results occur if the radioactivity of a water sample is less than the background radioactivity or the radioactivity of the prepared blank sample in the laboratory (American Society for Testing and Materials, 1992, p. 126; Knobel and others, 1992, p. 50).

Strontium-90

Strontium-90 is a fission product that was widely distributed in the environment during atmospheric weapons tests. Strontium-90 generally is present in ground water as a result of these tests and from nuclear industry waste-disposal practices. All water samples analyzed contained concentrations of dissolved strontium-90 less than the reporting level (table 4).

Tritium

Tritium, a radioactive isotope of hydrogen, is formed in nature by interactions of cosmic rays with gases in the upper atmosphere. Tritium also is produced in thermonuclear detonations and is a waste product of the nuclear power industry. Samples were submitted to the ISU laboratory and the NWQL. The ISU laboratory used a liquid scintillation technique and the NWQL used an enrichment and gas counting technique. The analytical method detection limit for the laboratories differed. The analytical method detection limit for the ISU laboratory was 300 pCi/L using a 200-minute counting period, and that for the NWQL was 0.3 pCi/L using a 360- to 1,200-minute counting period.

The concentrations of tritium in the water samples are shown on table 4. Concentrations of tritium in 17 of the water samples analyzed by the NWQL were greater than the reporting level and ranged from 1.34 ± 0.576 to 59.5 ± 3.84 pCi/L (table 4). Concentrations of tritium in all water samples analyzed by the ISU laboratory were less than the reporting level. For the purpose of comparison, background concentrations of tritium in ground water in Idaho generally range from 0 to 40 pCi/L (Knobel and others, 1992). The maximum

Table 4. Concentrations of strontium-90 and tritium in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory (NWQL) and Idaho State University (ISU) Environmental Monitoring Laboratory using the following methods: strontium-90 by chemical separation and precipitation; tritium by enrichment and gas counting at the NWQL and by liquid scintillation at ISU. Analytical results and uncertainties—for example 1.34 ± 0.576 —in picocuries per liter. Analytical uncertainties are reported as $2s$. Concentrations that exceed the reporting level of 3 times $1s$ are shown in bold-face type. Symbol: *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55)]

Site Identifier	Strontium-90, NWQL	Tritium, NWQL	Tritium, ISU
MV-03	0.107 ± 0.255	1.34 ± 0.576	110 ± 120
MV-05	$.085 \pm 0.252$	12.4 ± 1.02	120 ± 120
MV-06	$.147 \pm 0.298$	57.3 ± 3.84	70 ± 120
MV-07	$-.038 \pm 0.179$	$.00 \pm 0.640$	120 ± 120
MV-13	$.124 \pm 0.198$	55.7 ± 3.84	20 ± 90
MV-17	$.116 \pm 0.243$	7.87 ± 0.640	80 ± 120
MV-26	$-.004 \pm 0.245$	7.97 ± 0.768	120 ± 120
MV-27	$.157 \pm 0.205$	37.8 ± 2.56	0 ± 90
MV-31	$.388 \pm 0.295$	33.6 ± 1.92	60 ± 120
MV-36	$.129 \pm 0.267$	53.4 ± 3.84	140 ± 120
MV-38	$.212 \pm 0.271$	40.0 ± 2.56	40 ± 120
MV-42	$.043 \pm 0.250$	22.1 ± 1.47	110 ± 120
MV-44*	$.311 \pm 0.303$	37.4 ± 2.56	150 ± 120
MV-45	$.096 \pm 0.236$	16.5 ± 1.09	40 ± 120
MV-53	$.184 \pm 0.215$	59.5 ± 3.84	50 ± 90
MV-55	$.134 \pm 0.261$	7.65 ± 0.768	80 ± 120
MV-57	$.041 \pm 0.224$	$.544 \pm 0.640$	50 ± 120
MV-58	$.142 \pm 0.209$	40.0 ± 2.56	150 ± 120
MV-60*	$.238 \pm 0.255$	8.06 ± 0.832	90 ± 120

contaminant level for tritium in public drinking-water supplies is 20,000 pCi/L (table 3).

Gross Alpha-Particle Radioactivity

Gross alpha-particle radioactivity is a measure of the total radioactivity given off as alpha particles during the radioactive decay process; however, laboratories normally report the radioactivity as if it were all given off by one radionuclide. In this report, concentrations are reported both as natural uranium in micrograms per liter and as thorium-230 in picocuries per liter by the NWQL, and as americium-241 in picocuries per liter by the ISU laboratory.

Concentrations of dissolved gross alpha-particle radioactivity reported as uranium and thorium-230 in two of the water samples analyzed by the NWQL were greater than the reporting level (table 5); MV-31 had concentrations of 17.4 ± 7.66 $\mu\text{g/L}$ and 10.9 ± 4.65 pCi/L, and MV-57 had concentrations of 2.68 ± 1.45 $\mu\text{g/L}$ and 1.71 ± 0.931 pCi/L, respectively. Total concentrations of gross alpha-particle radioactivity reported as americium-241 in all the water samples analyzed by ISU were less than the reporting level.

Gross Beta-Particle Radioactivity

Gross beta-particle radioactivity is a measure of the total radioactivity given off as beta particles

Table 5. Concentrations of gross alpha-particle radioactivity in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory (NWQL) and the Idaho State University (ISU) Environmental Monitoring Laboratory using a residue procedure. Analytical results and uncertainties—for example 5.75 ± 4.82 —in indicated units. Analytical uncertainties are reported as 2σ . Concentrations that exceed the reporting level of 3 times 1σ are shown in bold-face type. Abbreviations: $\mu\text{g/L}$, microgram per liter; pCi/L , picocurie per liter. Symbol: *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55)]

Site identifier	Dissolved as uranium, NWQL ($\mu\text{g/L}$)	Dissolved as thorium-230, NWQL (pCi/L)	Total as americium-241, ISU (pCi/L)
MV-03	0.462 ± 2.55	0.218 ± 1.20	0 ± 5
MV-05	5.75 ± 4.82	3.56 ± 2.96	-1 ± 6
MV-06	6.71 ± 5.00	4.22 ± 3.11	1 ± 7
MV-07	4.31 ± 3.50	3.36 ± 2.71	-4 ± 5
MV-13	6.62 ± 4.93	4.20 ± 3.09	-2 ± 6
MV-17	$.137 \pm 2.42$	$.103 \pm 1.82$	-2 ± 5
MV-26	3.07 ± 3.27	2.22 ± 2.36	-1 ± 5
MV-27	4.29 ± 4.61	2.56 ± 2.73	-1 ± 6
MV-31	17.4 ± 7.66	10.9 ± 4.65	1 ± 7
MV-36	6.26 ± 4.29	4.54 ± 3.08	1 ± 6
MV-38	2.12 ± 2.95	1.62 ± 2.26	2 ± 5
MV-42	4.33 ± 3.69	3.21 ± 2.72	-1 ± 5
MV-44*	1.32 ± 2.72	1.01 ± 2.08	0 ± 5
MV-45	5.06 ± 3.68	3.96 ± 2.85	1 ± 5
MV-53	2.81 ± 4.61	1.55 ± 2.54	-1 ± 7
MV-55	-1.05 ± 1.87	$-.808 \pm 1.44$	-2 ± 5
MV-57	2.68 ± 1.45	1.71 ± 0.931	0 ± 5
MV-58	$.0928 \pm 1.64$	$.0585 \pm 1.03$	-4 ± 4
MV-60*	4.28 ± 3.65	3.20 ± 2.71	-3 ± 5

during the radioactive decay process. The laboratory instruments for these measurements are calibrated to either a single radionuclide, cesium-137, or a pair of radionuclides, strontium-90 in equilibrium with yttrium-90. In this report, concentrations are reported as cesium-137 in picocuries per liter and as strontium-90 in equilibrium with yttrium-90 in picocuries per liter. Reporting of the concentrations of gross beta-particle radioactivity in either one of these ways is for reference purposes only and does not imply that the radioactivity is attributed to these specific isotopes. The average annual concentrations of strontium-90 and cesium-137 in public drinking-water supplies that produce a 4-mrem/yr dose are 8 pCi/L and

120 pCi/L , respectively. Gross beta-particle radioactivity measurements should not be compared directly with these concentrations.

Concentrations of dissolved gross beta-particle radioactivity reported as cesium-137 and as strontium-90 in equilibrium with yttrium-90 in 16 of the water samples analyzed by the NWQL were greater than the reporting levels (table 6) and ranged from 3.48 ± 1.06 to $13.1 \pm 4.37 \text{ pCi/L}$, and 2.66 ± 1.62 to $8.18 \pm 3.40 \text{ pCi/L}$, respectively. Concentrations of total gross beta-particle radioactivity reported as cesium-137 in 17 of the water samples analyzed by ISU were equal to or greater than the reporting level (table 6) and ranged from 3 ± 2 to $9 \pm 2 \text{ pCi/L}$.

Table 6. Concentrations of gross beta-particle radioactivity in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory (NWQL) and Idaho State University (ISU) Environmental Monitoring Laboratory using a residue procedure. Analytical results and uncertainties—for example 4.58 ± 2.91 —in picocuries per liter. Analytical uncertainties are reported as 2σ . Concentrations that equal or exceed the reporting level of 3 times 1σ are shown in bold-face type. Abbreviation: Sr-90/Y-90, strontium-90 in equilibrium with yttrium-90. Symbol: *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55)]

Site identifier	Dissolved as cesium-137, NWQL	Dissolved as Sr-90/Y-90, NWQL	Total as cesium-137, ISU
MV-03	4.58 ± 2.91	2.66 ± 1.62	3 ± 2
MV-05	12.0 ± 5.38	8.18 ± 3.40	6 ± 2
MV-06	7.93 ± 4.86	5.44 ± 3.20	0 ± 2
MV-07	6.49 ± 4.24	5.03 ± 3.19	6 ± 2
MV-13	10.1 ± 5.09	6.95 ± 3.31	9 ± 2
MV-17	7.01 ± 4.14	5.32 ± 3.03	5 ± 2
MV-26	9.02 ± 4.63	6.70 ± 3.27	4 ± 2
MV-27	9.57 ± 5.18	6.37 ± 3.28	7 ± 2
MV-31	13.1 ± 4.37	6.87 ± 1.87	5 ± 2
MV-36	7.03 ± 4.22	5.23 ± 3.03	2 ± 2
MV-38	4.71 ± 3.85	3.61 ± 2.90	3 ± 2
MV-42	8.65 ± 4.36	6.52 ± 3.12	6 ± 2
MV-44*	7.57 ± 4.16	5.81 ± 3.06	4 ± 2
MV-45	6.10 ± 4.19	4.73 ± 3.16	5 ± 2
MV-53	9.57 ± 5.40	6.09 ± 3.27	7 ± 2
MV-55	8.46 ± 4.25	6.51 ± 3.11	4 ± 2
MV-57	3.48 ± 1.06	2.99 ± 0.738	4 ± 2
MV-58	4.94 ± 2.44	3.40 ± 1.58	3 ± 2
MV-60*	4.39 ± 3.87	3.32 ± 2.88	5 ± 2

Cesium-137

Gamma spectrometry involves using a series of detectors to simultaneously determine the concentrations of a variety of radionuclides by the identification of their characteristic gamma emissions. When no specific gamma-emitting radionuclides are identified, the concentration is reported by ISU as total cesium-137. Cesium-137 is a fission product of uranium-235, uranium-233, or plutonium-239. Concentrations of total cesium-137 in all water samples were less than the reporting level (table 7).

STABLE ISOTOPES

Water samples were analyzed for relative concentrations of stable isotopes of hydrogen (H),

oxygen (O), carbon (C), sulfur (S), and nitrogen (N). Because the absolute measurement of isotopic ratios is analytically difficult, relative isotopic ratios are measured instead (Toran, 1982). For example,

$^{18}\text{O}/^{16}\text{O}$ of a sample is compared with $^{18}\text{O}/^{16}\text{O}$ of a standard:

$$\delta^{18}\text{O} = (\text{R}_{\text{sample}}/\text{R}_{\text{standard}} - 1) \times 1,000,$$

where

$\text{R}_{\text{sample}} = ^{18}\text{O}/^{16}\text{O}$ in the sample,

$\text{R}_{\text{standard}} = ^{18}\text{O}/^{16}\text{O}$ in the standard, and

$\delta^{18}\text{O}$ = relative concentration, in units of parts per thousand (permil).

Delta ^{18}O ($\delta^{18}\text{O}$) is referred to as delta notation and is the value reported by isotopic laboratories for stable isotope analysis. $^{2}\text{H}/^{1}\text{H}$,

$^{13}\text{C}/^{12}\text{C}$, $^{34}\text{S}/^{32}\text{S}$, and $^{15}\text{N}/^{14}\text{N}$ are defined in a similar manner with the respective ratios replacing $^{18}\text{O}/^{16}\text{O}$ in R_{sample} and R_{standard} . The standard used for determining $\delta^{18}\text{O}$ and $\delta^2\text{H}$ in water is standard mean ocean water as defined by Craig (1961). The standard used for determining $\delta^{13}\text{C}$ in water is the PeeDee Belemnite reference standard (Timme, 1995, p. 71). The standard used for determining $\delta^{34}\text{S}$ in water is the Vienna Canyon Diablo Troilite reference standard (Carmody, USGS, written commun., 1996). The standard used for determining $\delta^{15}\text{N}$ in water is air (Timme, 1995, p. 71). The respective precisions of measurement for $\delta^2\text{H}$, $\delta^{18}\text{O}$, $\delta^{13}\text{C}$, $\delta^{34}\text{S}$, and $\delta^{15}\text{N}$ are 2 permil, 0.2 permil, 0.3 permil, 0.2 permil, and 0.2 permil at the 95-percent confidence level (Timme, 1995, p. 71-72; Carmody, USGS, written commun., 1996).

Table 7. Concentrations of cesium-137 in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the Idaho State University Environmental Monitoring Laboratory using gamma spectrometry. Analytical results and uncertainties—for example -0.64 ± 3.42 —are for total concentrations in picocuries per liter. Analytical uncertainties are reported as 2s. Symbol: *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55)]

Site identifier	Cesium-137
MV-03	-0.64 ± 3.42
MV-05	$.50\pm1.98$
MV-06	$.71\pm1.84$
MV-07	$.81\pm3.66$
MV-13	$.63\pm5.60$
MV-17	$.44\pm2.05$
MV-26	1.93 ± 4.70
MV-27	1.88 ± 3.66
MV-31	-2.50 ± 3.88
MV-36	$.58\pm4.32$
MV-38	2.45 ± 3.94
MV-42	-2.97 ± 4.14
MV-44*	2.43 ± 2.18
MV-45	$.29\pm5.34$
MV-53	2.47 ± 3.62
MV-55	2.36 ± 3.74
MV-57	1.99 ± 4.16
MV-58	$.69\pm4.32$
MV-60*	$-.44\pm2.00$

Relative concentrations of stable isotopes are shown in table 8. Relative isotopic ratios reported as $\delta^2\text{H}$ for water from 19 samples ranged from -139 to -128 permil. Relative isotopic ratios reported as $\delta^{18}\text{O}$ for water from 19 samples ranged from -18.10 to -16.29 permil. Relative isotopic ratios reported as $\delta^{13}\text{C}$ for water from 19 samples ranged from -13.0 to -8.1 permil. Relative isotopic ratios reported as $\delta^{34}\text{S}$ for water from 19 samples ranged from 5.5 to 16.2 permil. Relative isotopic ratios reported as $\delta^{15}\text{N}$ for water from 18 samples ranged from 2.8 to 6.2 permil.

INORGANIC CONSTITUENTS

Water samples were analyzed for selected inorganic constituents. These constituents included trace elements, common ions, and nutrients. In this report, minimum reporting levels and method detection limits established for these constituents are not to be confused with reporting levels and analytical method detection limits for selected radionuclides. The minimum reporting level for inorganic and organic constituents is the smallest measured concentration of a constituent that may be reliably reported using a given analytical method (Timme, 1995, p. 92). The method detection limit is defined as the minimum concentration of a substance that can be identified, measured, and reported with 99-percent confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte (Timme, 1995, p. 92).

Trace Elements

Water samples were analyzed for selected dissolved trace elements including aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc. Water samples also were analyzed for hexavalent and total chromium. The maximum or secondary maximum contaminant levels and minimum reporting levels of selected trace elements are shown on table 9. The concentrations of dissolved trace elements and hexavalent and total chromium are shown on table 10.

Table 8. Relative concentrations of stable isotopes in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. Symbols: $\delta^2\text{H}$, delta notation for stable hydrogen isotope ratios; $\delta^{18}\text{O}$, delta notation for stable oxygen isotope ratios; $\delta^{13}\text{C}$, delta notation for stable carbon isotope ratios; $\delta^{34}\text{S}$, delta notation for stable sulfur isotope ratios; $\delta^{15}\text{N}$, delta notation for stable nitrogen isotope ratios; \pm , plus or minus; permil, parts per thousand relative to a standard; *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55); BL, bottle broke in laboratory]

Site identifier	$\delta^2\text{H}$ (± 2 permil)	$\delta^{18}\text{O}$ (± 0.2 permil)	$\delta^{13}\text{C}$ (± 0.3 permil)	$\delta^{34}\text{S}$ (± 0.2 permil)	$\delta^{15}\text{N}$ (± 0.2 permil)
MV-03	-136	-18	-10.1	12.7	3.7
MV-05	-134	-17.73	-10.7	12.1	4.2
MV-06	-128	-16.29	-12.1	14.7	3.8
MV-07	-138	-18.10	-9.1	16.2	4.2
MV-13	-128	-16.51	-10.8	12.0	6.2
MV-17	-136	-17.8	-9.7	14.1	4.4
MV-26	-136	-17.79	-9.9	13.4	4.3
MV-27	-134	-17.16	-11.1	11.6	5.1
MV-31	-133	-17.27	-11.1	12.2	5.4
MV-36	-130	-17.12	-13.0	9.6	5.9
MV-38	-134	-17.27	-12.1	10.7	4.1
MV-42	-134	-17.44	-11.4	13.3	6.1
MV-44*	-133	-17.34	-12.2	10.8	5.0
MV-45	-135	-17.65	-9.8	11.7	4.7
MV-53	-131	-16.8	-11.7	11.8	BL
MV-55	-138	-17.85	-10.5	13.8	5.4
MV-57	-139	-18.02	-8.1	5.5	2.8
MV-58	-135	-17.59	-11.3	6.9	4.2
MV-60*	-136	-17.85	-10.3	13.8	5.1

Table 9. Maximum contaminant levels and minimum reporting levels of selected trace elements in drinking water
 [The maximum contaminant levels are for total measurements and were established pursuant to the recommendations of the U.S. Environmental Protection Agency (1994; 1995, p. 912, 974) for community water systems and are for comparison purposes only. Secondary maximum contaminant levels—in brackets—are from U.S. Environmental Protection Agency (1995, p. 1,055). Minimum reporting levels are from Timme (1995). Units are in micrograms per liter ($\mu\text{g/L}$). Symbols: -- , maximum contaminant level has not been established; *, lead has an action level of 15 $\mu\text{g/L}$.]

Constituent	Maximum contaminant level	Minimum reporting level
Aluminum	[50 to 200]	10
Arsenic	50	1
Barium	2,000	1
Beryllium	4	.5
Cadmium	5	1
Chromium, dissolved	--	5
Chromium, hexavalent	--	1
Chromium, total	100	1
Cobalt	--	3
Copper	[1,000]	10
Iron	[300]	3
Lead	*	1
Lithium	--	4
Manganese	[50]	1
Mercury	2	.1
Molybdenum	--	10
Nickel	100	10
Selenium	50	1
Silver	[100]	1
Strontium	--	.5
Vanadium	--	6
Zinc	[5,000]	3

Table 10. Concentrations of dissolved trace elements and hexavalent and total chromium in water from selected wells and springs, eastern Snake River Plain
 [See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. Analytical results in micrograms per liter. Symbols: <, concentration was less than the respective minimum reporting level; *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55)]

Site identifier	Chromium						Copper	Iron
	Aluminum	Arsenic	Barium	Beryllium	Cadmium	dissolved hexavalent total		
MV-03	30	2	23	<0.5	2	<5	<1	<3
MV-05	20	3	53	<5	<1	<5	2	<3
MV-06	<10	3	78	<5	<1	<5	1	<10
MV-07	<10	2	21	<5	3	<5	<1	<3
MV-13	30	4	78	<5	4	<5	<1	<3
MV-17	<10	2	25	<5	<1	<5	<1	<3
MV-26	<10	2	27	<5	<1	<5	<1	<3
MV-27	<10	2	58	<5	<1	<5	<1	<3
MV-31	<10	2	52	<5	<1	<5	<1	<3
MV-36	10	2	40	<5	<1	<5	<1	<10
MV-38	<10	1	29	<5	<1	<5	<1	<3
MV-42	50	3	24	<5	<1	<5	<1	<3
MV-44*	<10	1	29	<5	<1	<5	<1	<10
MV-45	<10	2	21	.7	4	<5	3	<10
MV-53	<10	2	91	<5	1	<5	<1	5
MV-55	20	2	23	<5	<1	<5	1	3
MV-57	<10	2	5	<5	<1	<5	3	<3
MV-58	20	2	18	<5	<1	<5	<1	4
MV-60*	20	2	23	<5	<1	<5	1	<3

Table 10. Concentrations of dissolved trace elements and hexavalent and total chromium in water from selected wells and springs, eastern Snake River Plain—Continued

Site identifier	Lead	Lithium	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Strontium	Vanadium	Zinc
MV-03	<1	34	<1	<0.1	10	<10	<1	<1	200	7	<3
MV-05	<1	39	<1	<1	10	<10	<1	<1	340	8	5
MV-06	<1	36	<1	<1	<10	<10	<1	2	370	<6	4
MV-07	<1	25	<1	<1	10	<10	<1	<1	190	<6	12
MV-13	<1	21	<1	<1	20	<10	<1	<1	250	12	<3
MV-17	<1	26	<1	<1	<10	<10	<1	<1	200	8	8
MV-26	<1	32	<1	<1	<10	<10	<1	<1	230	<6	10
MV-27	<1	44	<1	<1	<10	<10	<1	<1	350	<6	5
MV-31	<1	36	<1	<1	<10	<10	<1	<1	310	<6	<3
MV-36	<1	5	<1	<1	<10	<10	<1	<1	190	<6	4
MV-38	<1	6	<1	<1	<10	<10	<1	<1	160	<6	6
MV-42	<1	18	<1	<1	<10	<10	<1	<1	200	12	13
MV-44*	<1	8	<1	<1	<10	<10	<1	2	160	<6	5
MV-45	<1	10	<1	<1	20	<10	<1	<1	180	<6	<3
MV-53	<1	47	2	<1	20	<10	1	<1	400	6	86
MV-55	<1	26	<1	<1	<10	<10	<1	<1	190	8	7
MV-57	<1	11	5	<1	<10	<10	<1	<1	130	11	22
MV-58	<1	7	1	<1	<10	<10	<1	1	100	14	60
MV-60*	<1	23	<1	<1	<10	<10	<1	1	190	7	<3

Aluminum.—Concentrations of aluminum in eight samples were equal to or greater than the minimum reporting level and ranged from 10 to 50 $\mu\text{g}/\text{L}$. The secondary maximum contaminant level is 50 to 200 $\mu\text{g}/\text{L}$.

Arsenic.—Concentrations of arsenic in all samples were equal to or greater than the minimum reporting level and ranged from 1 to 4 $\mu\text{g}/\text{L}$. The maximum contaminant level is 50 $\mu\text{g}/\text{L}$.

Barium.—Concentration of barium in all samples were greater than the minimum reporting level and ranged from 5 to 91 $\mu\text{g}/\text{L}$. The maximum contaminant level is 2,000 $\mu\text{g}/\text{L}$.

Beryllium.—The concentration of beryllium in one sample (MV-45) was 0.7 $\mu\text{g}/\text{L}$; the other samples had concentrations less than the minimum reporting level. The maximum contaminant level is 4 $\mu\text{g}/\text{L}$.

Cadmium.—Concentrations of cadmium in five samples were equal to or greater than the minimum reporting level and ranged from 1 to 4 $\mu\text{g}/\text{L}$. The maximum contaminant level is 5 $\mu\text{g}/\text{L}$.

Chromium.—Chromium analyses included dissolved, hexavalent, and total chromium. All the samples had concentrations of dissolved chromium less than the minimum reporting level of 5 $\mu\text{g}/\text{L}$. Concentrations of hexavalent chromium in five samples were equal to or greater than the minimum reporting level and ranged from 1 to 3 $\mu\text{g}/\text{L}$. Concentrations of total chromium in all samples were equal to or greater than the minimum reporting level and ranged from 1 to 9 $\mu\text{g}/\text{L}$; the maximum contaminant level is 100 $\mu\text{g}/\text{L}$.

Cobalt.—The concentration of cobalt in one sample (MV-06) was 5 $\mu\text{g}/\text{L}$; the other samples had concentrations less than the minimum reporting level of 3 $\mu\text{g}/\text{L}$.

Copper.—Concentrations of copper in all samples were less than the minimum reporting level of 10 $\mu\text{g}/\text{L}$. The secondary maximum contaminant level is 1,000 $\mu\text{g}/\text{L}$.

Iron.—Concentrations of iron in six samples were equal to or greater than the minimum report-

ing level and ranged from 3 to 21 $\mu\text{g}/\text{L}$. The secondary maximum contaminant level is 300 $\mu\text{g}/\text{L}$.

Lead.—Concentrations of lead in all samples were less than the minimum reporting level of 1 $\mu\text{g}/\text{L}$. Lead has an action level of 15 $\mu\text{g}/\text{L}$.

Lithium.—Concentrations of lithium in all samples were greater than the minimum reporting level and ranged from 5 to 47 $\mu\text{g}/\text{L}$.

Manganese.—Concentrations of manganese in three samples were equal to or greater than the minimum reporting level and ranged from 1 to 5 $\mu\text{g}/\text{L}$. The secondary maximum contaminant level is 50 $\mu\text{g}/\text{L}$.

Mercury.—Concentrations of mercury in all the samples were less than the minimum reporting level of 0.1 $\mu\text{g}/\text{L}$. The maximum contaminant level is 2 $\mu\text{g}/\text{L}$.

Molybdenum.—Concentrations of molybdenum in six samples were equal to or greater than the minimum reporting level and ranged from 10 to 20 $\mu\text{g}/\text{L}$.

Nickel.—Concentrations of nickel in all the samples were less than the minimum reporting level of 10 $\mu\text{g}/\text{L}$. The maximum contaminant level is 100 $\mu\text{g}/\text{L}$.

Selenium.—The concentration of selenium in one sample (MV-53) was equal to the minimum reporting level of 1 $\mu\text{g}/\text{L}$. The maximum contaminant level is 50 $\mu\text{g}/\text{L}$.

Silver.—Concentrations of silver in five samples were equal to or greater than the minimum reporting level and ranged from 1 to 2 $\mu\text{g}/\text{L}$. The secondary maximum contaminant level is 100 $\mu\text{g}/\text{L}$.

Strontium.—Concentrations of strontium in all samples were greater than the minimum reporting level and ranged from 100 to 400 $\mu\text{g}/\text{L}$.

Vanadium.—Concentrations of vanadium in 10 samples were equal to or greater than the minimum reporting level and ranged from 6 to 14 $\mu\text{g}/\text{L}$.

Zinc.—Concentrations of zinc in 14 samples were greater than the minimum reporting level

and ranged from 4 to 86 $\mu\text{g/L}$. The secondary maximum contaminant level is 5,000 $\mu\text{g/L}$.

Common Ions

Water samples were analyzed for dissolved common ions including bromide, calcium, chloride, fluoride, magnesium, potassium, silica, sodium, and sulfate. The maximum or secondary maximum contaminant levels and the minimum reporting levels of these ions are shown on table 11. The concentrations of dissolved common ions are shown on table 12.

Bromide.—Concentrations of bromide in all samples were greater than the minimum reporting level and ranged from 0.03 to 0.21 mg/L .

Calcium.—Concentrations of calcium in all samples were greater than the minimum reporting level and ranged from 22 to 67 mg/L .

Chloride.—Concentrations of chloride in all samples were greater than the minimum reporting level and ranged from 5.1 to 72 mg/L . The secondary maximum contaminant level is 250 mg/L .

Fluoride.—Concentrations of fluoride in all samples were greater than the minimum reporting level and ranged from 0.2 to 0.6 mg/L . The maximum contaminant level is 4 mg/L .

Magnesium.—Concentrations of magnesium in all samples were greater than the minimum reporting level and ranged from 11 to 25 mg/L .

Potassium.—Concentrations of potassium in all samples were greater than the minimum reporting level and ranged from 2.5 to 6.9 mg/L .

Silica.—Concentrations of silica in all samples were greater than the minimum reporting level and ranged from 27 to 41 mg/L .

Sodium.—Concentrations of sodium in all samples were greater than the minimum reporting level and ranged from 10 to 54 mg/L . IDHW (1989) recommends an optimum concentration of 20 mg/L of sodium for public drinking-water supplies.

Sulfate.—Concentrations of sulfate in all samples were greater than the minimum reporting

level and ranged from 9.7 to 74 mg/L . The secondary maximum contaminant level is 250 mg/L .

Nutrients

Water samples were analyzed for dissolved ammonia (as nitrogen), nitrite (as nitrogen), nitrite plus nitrate (as nitrogen), and orthophosphate (as phosphorus). The maximum and secondary maximum contaminant levels established by the U.S. Environmental Protection Agency (1995) and the minimum reporting levels are shown on table 13. A maximum contaminant level has not been established or proposed for ammonia or orthophosphate. Concentrations of nutrients are shown on table 14.

Ammonia (as nitrogen).—Concentrations of ammonia (as nitrogen) in six of the samples were greater than the minimum reporting level and ranged from 0.02 to 0.03 mg/L .

Nitrite (as nitrogen).—Concentrations of nitrite (as nitrogen) in all the samples were less than the minimum reporting level of 0.01 mg/L . The maximum contaminant level is 1 mg/L .

Nitrite plus nitrate (as nitrogen).—Concentrations of nitrite plus nitrate (as nitrogen) in all samples were greater than the minimum reporting level and ranged from 0.41 to 4.8 mg/L . The maximum contaminant level is 10 mg/L .

Orthophosphate (as phosphorus).—Concentrations of orthophosphate (as phosphorus) in 15 samples were equal to or greater than the minimum reporting level and ranged from 0.01 to 0.04 mg/L .

ORGANIC COMPOUNDS

Water samples were analyzed for selected organic compounds. These compounds included DOC, anionic surfactants as MBAS, purgeable organic compounds, insecticides, gross polychlorinated compounds, and herbicides. Minimum reporting levels and method detection limits established for these constituents (Timme, 1995) are not to be confused with reporting levels and analytical method detection limits for selected radionuclides.

Table 11. Maximum contaminant levels and minimum reporting levels of selected common ions in drinking water

[The maximum contaminant levels are for total measurements and were established pursuant to the recommendations of the U.S. Environmental Protection Agency (1995, p. 974) for community water systems and are for comparison purposes only. Secondary maximum contaminant levels—in brackets—are from U.S. Environmental Protection Agency (1995, p. 1,055). Minimum reporting levels are from Timme (1995). Units are in milligrams per liter (mg/L). Symbol: "•, maximum contaminant level has not been established]

Constituent	Maximum contaminant level	Minimum reporting level
Bromide	•	0.01
Calcium	•	.02
Chloride	[250] •	.1
Fluoride	4 [2]	.1
Magnesium	•	.01
Potassium	•	.1
Silica	•	.01
Sodium ¹	•	.2
Sulfate	[250] •	.1

¹Idaho Department of Health and Welfare (1989) recommends an optimum concentration of 20 mg/L.

Table 12. Concentrations of dissolved common ions in water from selected wells and springs, eastern Snake River Plain
[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. Analytical results in milligrams per liter. Symbol: *, quality assurance sample (MV-44 is a replicate of MV-38, MV-60 is a replicate of MV-55)]

Site identifier	Bromide	Calcium	Chloride	Fluoride	Magnesium	Potassium	Silica	Sodium	Sulfate
MV-03	0.08	41	32	0.6	15	3.5	33	25	34
MV-05	.14	52	62	.5	22	5.1	33	45	71
MV-06	.06	67	30	.2	19	5.3	30	23	47
MV-07	.03	33	13	.6	14	3.5	31	16	29
MV-13	.09	48	35	.4	18	6.3	41	41	55
MV-17	.05	35	22	.5	15	3.6	33	20	32
MV-26	.09	44	32	.6	16	3.9	33	24	40
MV-27	.21	62	60	.3	24	5.2	34	36	66
MV-31	.14	59	51	.4	22	4.4	34	32	59
MV-36	.03	47	7.3	.3	14	2.8	30	14	18
MV-38	.03	40	8.0	.3	13	2.9	31	15	18
MV-42	.04	36	16	.4	18	3.5	35	20	32
MV-44*	.03	38	8.0	.3	13	3.0	31	15	17
MV-45	.03	33	11	.4	16	3.8	33	17	24
MV-53	.15	62	72	.4	25	6.9	35	54	74
MV-55	.05	35	23	.6	15	3.5	33	19	34
MV-57	.03	22	6.5	.4	11	2.5	29	10	15
MV-58	.03	24	5.1	.4	11	2.8	27	14	9.7
MV-60*	.05	35	22	.5	15	3.5	33	19	34

Table 13. Maximum contaminant levels and minimum reporting levels of selected nutrients, dissolved organic carbon, and anionic surfactants in drinking water

[The maximum contaminant levels were established pursuant to the recommendations of the U.S. Environmental Protection Agency (1995, p. 974) for community water systems and are included for comparison purposes only. The secondary maximum contaminant level—in brackets—is from U.S. Environmental Protection Agency (1995, p. 1,055). Minimum reporting levels are from Timme (1995). Units are milligrams per liter. Symbol: •, maximum contaminant level has not been established or proposed]

Constituent	Maximum contaminant level	Minimum reporting level
Ammonia (as nitrogen)	•	0.015
Nitrite (as nitrogen)	1	.01
Nitrite plus nitrate (as nitrogen)	10	.05
Orthophosphate (as phosphorus)	•	.01
Dissolved organic carbon	•	.1
Anionic surfactants	[0.5]	.02

Table 14. Concentrations of nutrients, dissolved organic carbon, and anionic surfactants in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. Analytical results in milligrams per liter. Abbreviation: MBAS, methylene blue active substances. Symbols: <, concentration was less than the respective minimum reporting level; *, quality assurance sample (MV-44 is a replicate of MV-38; MV-60 is a replicate of MV-55)]

Site identifier	Ammonia (as nitrogen)	Nitrite (as nitrogen)	Nitrite plus nitrate (as nitrogen)	Orthophosphate (as phosphorus)	Dissolved organic carbon	Anionic surfactants as MBAS
MV-03	<0.015	<0.01	1.2	<0.01	0.5	<0.02
MV-05	<0.015	<.01	2.2	.01	1.0	<0.02
MV-06	<0.015	<.01	4.3	.02	.5	<0.02
MV-07	<0.015	<.01	4.8	<.01	.3	<0.02
MV-13	<0.015	<.01	1.5	.01	.7	<0.02
MV-17	.03	<.01	.94	.02	.4	<0.02
MV-26	<0.015	<.01	.91	<.01	.5	<0.02
MV-27	<0.015	<.01	1.9	.02	.8	<0.02
MV-31	.03	<.01	1.9	.01	.6	<0.02
MV-36	<0.015	<.01	1.3	.04	.6	<0.02
MV-38	.03	<.01	1.4	.03	.3	<0.02
MV-42	<0.015	<.01	1.3	.03	.4	<0.02
MV-44*	.03	<.01	1.3	.03	.3	<0.02
MV-45	<0.015	<.01	1.1	.01	.5	<0.02
MV-53	<0.015	<.01	3.7	<.01	1.3	<0.02
MV-55	.03	<.01	.99	.01	.3	<0.02
MV-57	<0.015	<.01	.41	.01	.2	<0.02
MV-58	.02	<.01	1.4	.01	.3	<.2
MV-60*	<0.015	<.01	1.0	.01	.4	<0.02

Dissolved Organic Carbon

Water samples were analyzed for DOC (table 14). Concentrations of DOC in all the samples were greater than the minimum reporting level of 0.1 mg/L and ranged from 0.2 to 1.3 mg/L; no maximum contaminant level has been established.

Anionic Surfactants

Water samples were analyzed for anionic surfactants as MBAS (table 14). Concentrations of all but one sample were less than the minimum reporting level of 0.02 mg/L; the secondary maximum contaminant level is 0.5 mg/L. One sample (MV-58) had a concentration less than 0.2 mg/L.

Purgeable Organic Compounds

Water samples were analyzed for 61 purgeable organic compounds. The maximum contaminant levels and minimum reporting levels of these compounds are shown on table 15. None of the samples had concentrations of purgeable organic compounds greater than their respective minimum reporting levels (table 15).

Insecticides and Gross Polychlorinated Compounds

Water samples were analyzed for concentrations of 8 carbamate insecticides, 11 organophosphate insecticides, 15 organochlorine insecticides, gross PCB's, and gross PCN's (table 16). The minimum reporting levels ranged from 0.01 to 1.0 µg/L. Water samples also were analyzed for an additional group of 19 insecticides that included 11 of the carbamate, organophosphate, and organochlorine insecticides mentioned above. Analyses for the 19 insecticides were made using different laboratory schedules with different minimum reporting levels; therefore, 11 insecticides are listed twice with two different minimum reporting levels. The maximum contaminant levels and minimum reporting levels for all the compounds are shown on table 16. None of the samples contained concentrations of insecticides or polychlorinated compounds larger than their respective minimum reporting levels.

Herbicides

Water samples were analyzed for concentrations of 4 chlorophenoxy-acid herbicides and 28 other herbicides. Maximum contaminant levels and minimum reporting levels for these compounds are shown on table 17. Because a new laboratory schedule with lower method detection limits and minimum reporting levels than past schedules was used, several samples had concentrations of some herbicides that exceeded the method detection limits or minimum reporting levels (table 18). Some of the samples listed in table 18 had concentrations that exceeded the method detection limit but were less than the minimum reporting level. One sample had an estimated concentration less than the method detection limit. Concentrations of atrazine in four samples ranged from 0.004 to 0.018 µg/L. Estimated concentrations of desethyl atrazine in seven samples ranged from 0.002 to 0.010 µg/L. Concentrations for desethyl atrazine are estimated because the analyses for desethyl atrazine demonstrates low recovery because of poor retention on the solid-phase extraction column (Zaugg and others, 1995). The estimated concentration of metribuzin in one sample (MV-45) was 0.007 µg/L. The estimated concentration of simazine in one sample (MV-06) was 0.029 µg/L and in another sample (MV-53) was 0.003 µg/L. The estimated concentrations in table 18 need to be evaluated carefully because of variable performance (Zaugg and others, 1995). Samples from wells not listed in table 18 had concentrations less than the minimum reporting levels and method detection limits for all herbicides. Concentrations of herbicides not listed in table 18 were below the minimum reporting levels and method detection limits in all the samples.

SUMMARY

The USGS and the IDWR, in cooperation with the DOE, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic com-

Table 15. Maximum contaminant levels and minimum reporting levels of selected purgeable organic compounds in drinking water

[Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory using an analytical method equivalent to U.S. Environmental Protection Agency method 524.2. Maximum contaminant levels were established pursuant to the recommendation of the U.S. Environmental Protection Agency (1994; 1995, p. 972) for community water systems and are included for comparison purposes only. Minimum reporting levels are from Timme (1995). Units are in micrograms per liter ($\mu\text{g/L}$). Symbols: -- , maximum contaminant level has not been established or proposed; $*$, total trihalomethanes—which include bromoform, chlorodibromomethane, chloroform, and dichlorobromomethane—in community water systems serving 10,000 or more persons cannot exceed 100 $\mu\text{g/L}$ (U.S. Environmental Protection Agency, 1995, p. 912). Abbreviations: MCL, maximum contaminant level; MRL, minimum reporting level]

Compound	MCL	MRL	Compound	MCL	MRL
Benzene	5	0.2	1,3-Dichloropropane	--	0.2
Bromobenzene	--	.2	2,2-Dichloropropane	--	.2
Bromochloromethane	--	.2	cis-1,3-Dichloropropene	--	.2
Bromoform	*	.2	trans-1,3-Dichloropropene	--	.2
Bromomethane	--	.2	1,1-Dichloropropene	--	.2
n-Butylbenzene	--	.2	Ethylbenzene	700	.2
sec-Butylbenzene	--	.2	Hexachlorobutadiene	--	.2
tert-Butylbenzene	--	.2	Isopropylbenzene	--	.2
Carbon tetrachloride	5	.2	p-Isopropyltoluene	--	.2
Chlorobenzene	100	.2	Methylene chloride	5	.2
Chlorodibromomethane	*	.2	Methyl tert-butylether	--	1
Chloroethane	--	.2	Naphthalene	--	.2
2-Chloroethylvinylether	--	1	n-Propylbenzene	--	.2
Chloroform	*	.2	Styrene	100	.2
Chloromethane	--	.2	1,1,1,2-Tetrachloroethane	--	.2
2-Chlorotoluene	--	.2	1,1,2,2-Tetrachloroethane	--	.2
4-Chlorotoluene	--	.2	Tetrachloroethylene	5	.2
1,2-Dibromo-3-chloropropane	.2	1	Toluene	1,000	.2
1,2-Dibromoethane	.05	.2	1,2,3-Trichlorobenzene	--	.2
Dibromomethane	--	.2	1,2,4-Trichlorobenzene	70	.2
1,2-Dichlorobenzene	600	.2	1,1,1-Trichloroethane	200	.2
1,3-Dichlorobenzene	600	.2	1,1,2-Trichloroethane	5	.2
1,4-Dichlorobenzene	75	.2	Trichloroethene	5	.2
Dichlorobromomethane	*	.2	Trichlorofluoromethane	--	.2
Dichlorodifluoromethane	--	.2	1,2,3-Trichloropropane	--	.2
1,1-Dichloroethane	--	.2	1,1,2-Trichloro 1,2,2-trifluoroethane	--	.2
1,2-Dichloroethane	5	.2	1,2,4-Trimethylbenzene	--	.2
cis-1,2-Dichloroethene	70	.2	1,3,5-Trimethylbenzene	--	.2
1,1-Dichloroethene	7	.2	Vinyl chloride	2	.2
trans-1,2-dichloroethene	100	.2	Xylenes, total ortho, meta, and para	10,000	.2
1,2-Dichloropropane	5	.2			

Table 16. Maximum contaminant levels and minimum reporting levels of selected insecticides and gross polychlorinated compounds in drinking water

[Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. The maximum contaminant level was established pursuant to the recommendations of the U.S. Environmental Protection Agency (1995, p. 973-974) for community water systems and are included for comparison purposes only. Minimum reporting levels are from Timme (1995). Method detection limits are from Zaugg and others (1995). Units are in micrograms per liter. Symbols: **..**, maximum contaminant level has not been established or proposed; *****, samples analyzed using two different laboratory schedules with different minimum reporting levels. Abbreviations: MRL, minimum reporting level; MCL, maximum contaminant level; MDL, method detection limit]

<u>Carbamate Insecticides</u>					
Insecticide	MCL	MRL	Insecticide	MCL	MRL
Aldicarb	3	0.5	Methomyl	..	0.5
*Carbaryl (Sevin)	..	.5	1-Naphthol	..	.5
*Carbofuran	40	.5	Propham	..	.5
Methiocarb	..	.5	Propoxur	..	.5

<u>Organophosphate insecticides</u>					
Insecticide	MCL	MRL	Insecticide	MCL	MRL
*Chlorpyrifos; Dursban	..	0.01	*Malathion	..	0.01
DEF	..	.01	Methylparathion	..	.01
*Diazinon	..	.01	Parathion	..	.01
*Di-Syston (Disulfoton)	..	.01	*Phorate	..	.01
Ethion	..	.01	Trithion	..	.01
*Fonofos	..	.01			

<u>Organochlorine insecticides</u>					
Insecticide	MCL	MRL	Insecticide	MCL	MRL
Aldrin	..	0.01	Heptachlor	0.4	0.01
Chlordane, technical	2	.1	Heptachlor epoxide	.2	.01
DDD, p,p'	..	.01	*Lindane	.2	.01
*DDE, p,p'	..	.01	Methoxychlor, p,p'	40	.01
DDT, p,p'	..	.01	Mirex	..	.01
*Dieldrin	..	.01	Perthane	..	.1
Endosulfan I	..	.01	Toxaphene	3	1.0
Endrin	2	.01			

<u>Gross polychlorinated compounds</u>					
Compound				MCL	MRL
Gross polychlorinated biphenyls (PCB's)				0.5	0.1
Gross polychlorinated naphthalenes (PCN's)				..	0.1

Table 16. Maximum contaminant levels and minimum reporting levels of selected insecticides and gross polychlorinated compounds in drinking water—Continued

<u>19 insecticides with different MRLs</u>							
Insecticide	MCL	MRL	MDL	Insecticide	MCL	MRL	MDL
Azinphos methyl-	..	0.038	0.001	HCH, alpha-	..	0.007	0.002
*Carbaryl (Sevin)	..	.046	.003	*HCH, gamma- (Lindane)	0.2	.011	.004
*Carbofuran	40	.013	.003	*Malathion	..	.010	.005
*Chlorpyrifos	..	.005	.004	Parathion, ethyl-	..	.022	.004
*DDE, p,p'	..	.010	.006	Parathion, methyl-	..	.035	.006
*Diazinon	..	.008	.002	Permethrine, cis-	..	.019	.005
*Dieldrin	..	.008	.001	*Phorate	..	.011	.002
*Disulfoton	..	.028	.017	Propargite I & II	..	.006	.013
Ethoprop	..	.012	.003	Terbufos	..	.012	.013
*Fonofos	..	.008	.003				

Table 17. Maximum contaminant levels and minimum reporting levels of chlorophenoxy-acid herbicides and other herbicides in drinking water

[Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. The maximum contaminant level was established pursuant to the recommendations of the U.S. Environmental Protection Agency (1995, p. 973, 974) for community water systems and are included for comparison purposes only. Minimum reporting levels are from Timme (1995). Method detection limits are from Zaugg and others (1995). Units are in micrograms per liter. Symbol: .., maximum contaminant level has not been established or proposed. Abbreviations: MCL, maximum contaminant level; MRL, minimum reporting level; MDL, method detection limit]

<u>Chlorophenoxy-acid herbicides</u>					
Herbicide	MCL	MRL	Herbicide	MCL	MRL
2,4-D	70	0.01	Silvex	50	0.01
2,4- <i>DP</i>	..	.01	2,4,5-T	..	.01

<u>Other herbicides</u>							
Herbicide	MCL	MRL	MDL	Herbicide	MCL	MRL	MDL
Acetochlor	..	0.009	0.002	Molinate	..	0.007	0.004
Alachlor	2	.009	.002	Napropamide	..	.010	.003
Atrazine	3	.017	.001	Pebulate	..	.009	.004
Atrazine, desethyl-	..	.007	.002	Pendimethalin	..	.018	.004
Benfluralin	..	.013	.002	Prometon	..	.008	.018
Butylate	..	.008	.002	Pronamide	..	.009	.003
Cyanazine	..	.013	.004	Propachlor	..	.015	.007
DCPA (Dacthal)	..	.004	.002	Propanil	..	.016	.004
Diethylaniline	..	.006	.003	Simazine	4	.008	.005
EPTC (Eptam)	..	.005	.002	Tebuthiuron	..	.015	.010
Ethalfuralin	..	.013	.004	Terbacil	..	.030	.007
Linuron	..	.039	.002	Thiobencarb	..	.008	.002
Metolachlor	..	.009	.002	Triallate	..	.008	.001
Metribuzin	..	.012	.004	Trifluralin	..	.012	.002

Table 18. Concentrations of herbicides in water from selected wells and springs, eastern Snake River Plain

[See figure 2 for location of sites. Analyses were performed by the U.S. Geological Survey National Water Quality Laboratory. Units are in micrograms per liter. Symbols: <, concentration was less than the respective minimum reporting level; *, quality assurance sample (MV-44 is a replicate of MV-38). Concentrations for desethyl atrazine, metribuzin, and simazine were estimated and need to be evaluated carefully because of variable performance. Samples from wells not listed had concentrations below the minimum reporting levels and method detection limits for all herbicides and concentrations of herbicides not listed were below the minimum reporting levels and method detection limits in all samples]

Site Identifier	Atrazine	Desethyl atrazine	Metribuzin	Simazine
MV-05	<0.001	0.003	<0.004	<0.005
MV-06	.018	.010	<.004	.029
MV-17	<.001	.002	<.004	<.005
MV-31	<.001	.003	<.004	<.005
MV-42	.005	.003	<.004	<.005
MV-44*	.004	.005	<.004	<.005
MV-45	<.017	<.003	.007	<.008
MV-53	.006	.006	<.004	.003

pounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed.

Concentrations of strontium-90 in all samples were less than the reporting level. Concentrations of tritium in 17 of the samples analyzed by the NWQL were greater than the reporting level, but none exceeded the maximum contaminant level for drinking water. All samples analyzed by ISU had concentrations of tritium less than the reporting level. Concentrations of dissolved gross alpha-particle radioactivity in two of the samples analyzed by the NWQL were greater than the reporting level; none exceeded the U.S. Environmental Protection Agency maximum contaminant level. Concentrations of dissolved gross beta-particle radioactivity in 16 samples analyzed by the NWQL were greater than the reporting level. Concentrations of total gross beta-particle radioactivity in 17 of the samples analyzed by ISU were equal to or greater than the reporting level. Concentrations of total cesium-137 were analyzed using gamma spectrometry and concentrations in all the samples were less than the reporting level.

Water samples were analyzed for concentrations of stable isotopes of H, O, C, S, and N.

Relative isotopic ratios ranged from -139 to -128 permil for $\delta^2\text{H}$, -18.10 to -16.29 permil for $\delta^{18}\text{O}$, -13.0 to -8.1 permil for $\delta^{13}\text{C}$, 5.5 to 16.2 permil for $\delta^{34}\text{S}$, and 2.8 to 6.2 permil for $\delta^{15}\text{N}$.

All the samples contained one or more dissolved trace elements and common ions in concentrations greater than the minimum reporting levels. No concentration exceeded an established maximum contaminant level.

Concentrations of ammonia (as nitrogen) in six of the water samples were equal to or greater than the minimum reporting level. Concentrations of nitrite (as nitrogen) in all the samples were less than the minimum reporting level. Concentrations of nitrite plus nitrate (as nitrogen) in all the water samples were greater than the minimum reporting level. Concentrations of orthophosphate (as phosphorus) in 15 of the water samples were equal to or greater than the minimum reporting level. No nutrient concentration exceeded an established maximum contaminant level.

Concentrations of dissolved organic carbon in all the samples were greater than the minimum reporting level. Concentrations of anionic surfactants in all but one of the water samples were less than the minimum reporting level. No purgeable organic compounds, carbamate insecticides, organophosphate insecticides, organochlorine

insecticides, gross PCB's, or gross PCN's were detected at concentrations exceeding their respective minimum reporting levels. Concentrations of some herbicides were greater than their method detection limits and minimum reporting levels, but none exceeded established maximum contaminant levels.

SELECTED REFERENCES

American Public Health Association and Water Pollution Control Federation, 1985, Standard methods for the examination of water and wastewater: Washington, D.C., American Public Health Association, 1,268 p.

American Society for Testing and Materials, 1992, ASTM standards on precision and bias for various applications: Philadelphia, Pennsylvania, American Society for Testing and Materials Publication code number (PCN) 03-511092-34, 478 p.

Bartholomay, R.C., Edwards, D.D., and Campbell, L.J., 1992, Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1990: U.S. Geological Survey Open-File Report 92-91 (DOE/ID 22102), 42 p.

-----1993, Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1991: U.S. Geological Survey Open-File Report 93-102 (DOE/ID-22108), 42 p.

-----1994a, Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1992: U.S. Geological Survey Open-File Report 94-76 (DOE/ID-22114), 41 p.

-----1994b, Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993: U.S. Geological Survey Open-File Report 94-503 (DOE/ID-22117), 35 p.

Bartholomay, R.C., Orr, B.R., Liszewski, M.J., and Jensen, R.G., 1995, Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991: U.S. Geological Survey Water-Resources Investigations Report 95-4175 (DOE/ID-22123), 47 p.

Bartholomay, R.C., Williams, L.M., and Campbell, L.J., 1995, Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1994: U.S. Geological Survey Open-File Report 95-718 (DOE/ID-22124), 37 p.

Claassen, H.C., 1982, Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer: U.S. Geological Survey Open-File Report 82-1024, 49 p.

Craig, Harmon, 1961, Isotopic variations in meteoric waters: *Science*, v. 133, p. 1,702-1,703.

Currie, L.A., 1984, Lower limits of detection—definition and elaboration of a proposed position for radiological effluent and environmental measurements: U.S. Nuclear Regulatory Commission NUREG/CR-4007, 139 p.

Faires, L.M., 1992, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—determinations of metals in water by inductively coupled plasma-mass spectrometry: U.S. Geological Survey Open-File Report 92-634, 28 p.

Fishman, M.J., ed., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93-125, 217 p.

Fishman, M.J., and Friedman, L.C., eds., 1989, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 545 p.

Friedman, L.C., and Erdmann, D.E., 1982, Quality assurance practices for the chemical and biological analyses of water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A6, 181 p.

Garabedian, S.P., 1986, Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River Plain, Idaho: U.S. Geological Survey Water-Supply Paper 2278, 60 p.

Goerlitz, D.F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 40 p.

Hardy, M.A., Leahy, P.P., and Alley, W.M., 1989, Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 89-396, 36 p.

Idaho Department of Health and Welfare, 1989, Idaho regulations for public drinking water systems: Boise, Rules and Regulations of the Department of Health and Welfare, title 1, chapter 8, not paginated.

Jones, B.E., 1987, Quality control manual of the U.S. Geological Survey's National Water Quality Laboratory: U.S. Geological Survey Open-File Report 87-457, 17 p.

Kjelstrom, L.C., 1992, Streamflow gains and losses in the Snake River and ground-water budgets for the Snake River Plain, Idaho and eastern Oregon: U.S. Geological Survey Open-File Report 90-172, 71 p.

Knobel, L.L., Orr, B.R., and Cecil, L.D., 1992, Summary of background concentrations of selected radiochemical and chemical constituents in ground water from the Snake River Plain aquifer, Idaho—estimated from an analysis of previously published data: Journal of the Idaho Academy of Science, v. 28, no. 1, p. 48-61.

Mann, L.J., 1986, Hydraulic properties of rock units and chemical quality of water for INEL-1—a 10,365-foot deep test hole drilled at the Idaho National Engineering Laboratory, Idaho: U.S. Geological Survey Water-Resources Investigations Report 86-4020 (DOE/ID-22070), 23 p.

----, 1989, Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho: U.S. Geological Survey Water-Resources Investigations Report 89-456 (DOE/ID-22084), 20 p.

Mann, L.J., and Cecil, L.D., 1990, Tritium in ground water at the Idaho National Engineering Laboratory, Idaho: U.S. Geological Survey Water-Resources Investigations Report 90-4090 (DOE/ID-22090), 35 p.

Mann, L.J., and Knobel, L.L., 1990, Radio-nuclides, metals, and organic compounds in water, eastern part of A&B Irrigation District, Minidoka County, Idaho: U.S. Geological Survey Open-File Report 90-191 (DOE/ID-22087), 36 p.

Pittman, J.R., Jensen, R.G., and Fischer, P.R., 1988, Hydrologic conditions at the Idaho National Engineering Laboratory, 1982-1985: U.S. Geological Survey Water-Resources Investigations Report 89-4008 (DOE/ID-22078), 73 p.

Pritt, J.W., 1989, Quality assurance of sample containers and preservatives at the U.S. Geological Survey National Water Quality Laboratory, in Pederson, G.L., and Smith, M.M., compilers, U.S. Geological Survey Second National Symposium on Water Quality—Abstracts of the technical sessions, Orlando, Fla., November 12-17, 1989: U.S. Geological Survey Open-File Report 89-409, 111 p.

Pritt, J.W., and Raese, J.W., eds., 1995, Quality assurance/quality control manual—National Water Quality Laboratory: U.S. Geological Survey Open-File Report 95-443, 35 p.

Stevens, H.H., Jr., Ficke, J.F., and Smoot, G.F., 1975, Water temperature—*influential factors, field measurement, and data presentation*: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. D1, 65 p.

Thatcher, L.L., Janzer, V.J., and Edwards, K.W., 1977, Methods for determination of radioactive substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A5, 95 p.

Timme, P.J., 1995, National Water Quality Laboratory, 1995 services catalog: U.S. Geological Survey Open-File Report 95-352, 120 p.

Toran, Laura, 1982, Isotopes in ground-water investigations: *Groundwater*, v. 20, no. 6, p. 740-745.

U.S. Environmental Protection Agency, 1994, EPA drinking water regulations and health advisories: U.S. Environmental Protection Agency, Office of Water, 822 R-94-001, 11 p.

U.S. Environmental Protection Agency, 1995, Protection of environment, Code of Federal Regulations 40: Office of the Federal Register, National Archives and Records Administration, parts 87 to 149, 1,346 p.

Wegner, S.J., 1989, Selected water quality assurance data for water samples collected by the U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho, 1980 to 1988: U.S. Geological Survey Water-Resources Investigations Report 89-4168 (DOE/ID-22085), 91 p.

Wegner, S.J., and Campbell, L.J., 1991, Radio-nuclides, chemical constituents, and organic compounds in water from designated wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1989: U.S. Geological Survey Open-File Report 91-232 (DOE/ID-22098), 49 p.

Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe, L.E., 1987, Methods for the determination of organic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 80 p.

Whitehead, R.L., 1986, Geohydrologic framework of the Snake River Plain, Idaho and eastern Oregon: U.S. Geological Survey Hydrologic Investigations Atlas HA-681, 3 sheets, scale 1:1,000,000.

Wood, W.W., 1981, Guidelines for collection and field analysis of ground-water samples for selected unstable constituents: U.S. Geological Survey Techniques of Water-Resources Investigations, book 1, chap. D2, 24 p.

Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring: U.S. Geological Survey Open-File Report 95-181, 49 p.