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An Efﬁcient'Strategy for the Inversion of Bidirectional Reflectance Models with Satellite Remote
Sensing Data ' ‘

Thesis directed by Professor William J. Emery

The angular distribution of radiation scattered by the earth surface contains information on the
structural and optical properties of the surface. Potentially, this information may be retrieved through
the inversion of surface bidirectional reﬂe;tance distribution function (BRDF) models. This thesis
details the limitations and efficient application of BRDF model inversions using data from ground- and
satellite-based sensors.

A turbid medium BRDF model, based on the discrete ordinates solution to the transport
equation, was used to quantify the sensitivity of top-of-canopy reflectance to vegetation and soil
parameters. Results were used to define parameter sets for inversions. Using synthetic reflectance
values, the invertibility of the model was investigated for different optimization algorithms, surfaces
and sampling conditions. Accurate solutions were obtained in all cases except for an overhead sun, an
optically-thick canopy and sampling geometries exclusively in the orthogonal plane. Surface state
parameters (e.g., spectral albedo, absorbed radiation) were retrieved more reliably than model

parameters.

Inversions were also conducted with field data from a ground-based radiometer. First, a soil
BRDF model was inverted for different soil aﬁd sampling conditions. A condition-invariant solution
was determined and used as the lower boundary condition in canopy model inversions. Canopy
parameters were retrieved accurately when reflectance was saﬁlpled under preferred conditions (spectral
and angular). Estimates of shortwave albedo and surface absorbed radiation were also accurate;
estimates of canopy absorbed radiation exceeded measured values.

Finally, a scheme was developed to improve the speed and accuracy of inversions. The
scheme weights empirical data with the partial derivative of angular reflectance with respect to a model

parameter. Inversions with data from the satellite-based Advanced Very High Resolution Radiometer




(AVHRR) were conducted with this scheme. The inversions. accurately retrieved leaf area index and leaf
" optical properties.’ |
o This research relied exteﬁsively on data from the Firstv International ~Satellite Land Surface
Climatology Project (ISLSCP) Field Experiment (FIFE). This experimept was conducted on
grasslands near Manhattan, Kansas. Results can provide a foundation for inversions of BRDF models

on a larger scale.
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For 12 years, I have loitered in the halls of higher education.

During this time, mahy talented professors have patiently shared the burden of my formal
education. 1 truly believe some of these individuals to be among the brightest there are. Still, the
greatest lessons I have learned in life have been least associated with formal instruction. Infinitely
more important than the results to be found in these pages, or most others, are the lessons of Myrtle
Tyson Privette and George G. McClelland. It is in reverence and humble adoration that I dedicate this

thesis to my grandmother and grandfather.

Regarding their wisdom as eternal, I feel both honored and obligated to share it here.

However, because their footsteps no longer grace this earth, my grandparents cannot be consulted for
reference. As my own words would undoubtedly do injustice, I defer to the thoughts of a more

seasoned poet who, I must assume, shared my grandparents’ vision:

© To laugh often and much; to win the respect of intelligent persons and the affection of
children; to earn the appreciation of honest critics and endure the betrayal of false friends; to
appreciate beauty; to find the best in others; to leave the world a bit better, whether by a
heaithy child, a garden patch or a redeemed social condition; to know even one life has
breathed easier because you have lived. This is to have succeeded.

— Ralph Waldo Emerson

If these seem the sentiments of angels and saints, then Emerson successfully captured in pen
that which I witnessed in actions. For it is.precisely these, an angel and a saint, that I believe I knew

and loved as Grandmother and Granddad.
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CHAPTER 1
INTRODUCTION

In the present climate of environmental uncertainty, significant emphasis has been placed on
proceés models (e.g., biogeochemistry, ecosystem, and climate) to predict the impact of both natural
and anthropogenic forcing. This attention has prompted increasingly detailed treatments of various
model subsystems and the relationships between them. Parallel to these developments has been the
demand for more accurate and comprehensive earth system data. These data are required for both model
initialization and result vaiidation {Sellers, 1993].

Soil and vegetation properties strongly affect the transfer of energy, mass, momentum and
trace gases between the earth's surface and atmosphere. Thus, process models rely on accurate surface
data for meaningful results. For example, global fields of rainfall, temperature and motion in ‘General
Circulation Models (GCMs) are affected by surface albedo [Shukla, and Mintz, 1982]. Studies suggest
this albedo must be accurate to within £0.05 [Henderson-Sellers and Wilson, 1983]. Such accuracy
requires soﬁe knowledge of the vegetation cover [Dickinson, 1983].

Other important climatological variables, such as momentum exchange rates, are directly
related to plant morphological properties such as leaf érea index (LAI), leaf angle distribution (LAD),
;md vegetation roughness {Sellers et al., 1986). Similarly, photosynthetically active radiation absorbed
(APAR) by vegetation is correlated with photosynthetic rates and plant growth in the absence of
limiting stresses [Monteith, 1972]. In part, photosynthetic rates determine the amount of carbon fixed
by leaves and hence affect the carbon cycle and net primary production.

Since surface conditions vary in both space and time, measurements ove‘r large regions (e.g.,

mesoscale and global) must be made at a relatively high frequency (e.g., biweekly). This is a

formidable task. Due to economic and accessibility constraints, satellite remote sensing is currently




the only practical means for obtaining such measurements. Nevertheless, the determination of relevant

variables fr_om remote sensing data remains an inexact science.

Because satellites effectivély travel throuéh a vacuum, only electl.'omagne;tic’ (EM) or
gravitati;nal events may be detected [Verstraete et al., 1994]. Earth surface remote sensing depends
only on the former. Three EM spectral regions—optical, thermal and microwave—have been used to
obtain surface information. In land applications, thermal remote sensing has primarily been used to
assess surface temperature and hydrological properties such as potential evapotranspiration and canopy
conductance [Taconet et al., 1986]. Although microwave frequencies are not climatologically
important, they appear uséful for assessing vegetation structure and water content, biomass and soil
moisture. Since some microwave frequencies are relatively unaffeéted by atmospheric conditions, their
use may prove particularly valuable in cloudy areas. Nevertheless, optical remote sensing (0.4-3.0 pm)
appears to hold the most promise. There are at least two significant reasons for this. First, unique
interactions i)etwe;an orgaﬁic molecules and shortwave radiation provide useful spectral signatures.
Second, since optical radiation is reflected rather than emitted; changes in the source (sun) and sensor
positions result in angular signatures. Optical methods have been used to estimate LAI, biomass,
fraction of APAR (fAPAR), stomatal condu'ctanc_e, and pogential evapotranspiration, among other
variables. The potential for unraveling additional information from optical rédiation warranted the
present investigation.

Either correlative or physically-based techniques may be used to determine surfafze information
from optical data. Correlative techniques rely on empirical or intuitive relationships between surface
conditions and measured radiation. They are computationally efficient but may be site or sampling
condition dependent. Physically-based techniques rely on radiative transfer models which relate
fundamental surface parameters (e.g., LAl leaf optical properties) to scene reflectance. While
computationally more expensive, physical models permit the simulation of all radiatively active media
(e.g., background, canopy and atmosphere). Below,. applications of both techniques are briefly

discussed.




Most correlative tecﬁniques utilize spectral reflectance information. - For exarl}ple, simple
transforms of red and near-infrared (NIR) reflectance—particularly the Normalized Differénce Vegetation
Index (NDVI) [Tucker et al., _i985]—have been used to aésess LAI, biomass, fAPAR, and vegetation
health. The second derivative of reflectance spectra can be used to assess LAI and fAPAR [Hall et al,,
1990]. Recently, spectroscopic techniques have been used to determine biochemistry and canopy
physiology [Wessman, 1994]. Absorption peak parameters such as width, depth, skewness and
symmetry allow assessment of leaf water, cellulose, lignin, chlorophyll and other pigments. By
comparing field spectra to laboratory leaf spectra, species identification has been possible. Moreover,
the fractional contributions of scene end members (macroscopic reflectance classes such as soil,
vegetation, and shade) may be estimated.

Temporal and spatial correlative techniques may be grouped together as scene models—
multiple spatial samples are required for application. Temporal transforms rely on the profile of
spectral reflectance with time. They have been used to determine species information, stage of growth
and vegetation health [Badhwar et al., 1982]. Spatial information may also be used, although growth
patterns—including row structure in agricultural areas-—are poor discriminators of species [Gerstl and
Simmer, 1986]. Hybrid correlative methods have also been developed. For example, spectral and
temporal techniques were combined to create the tasseled-cap transformation of Kauth and Thomas
[1976]. This method traces the growth of vegetation in multispectral space.

Physically-based optical techniques have primarily utilized the angular di.stn‘bution of séattered
radiation. Angular distributions can be interpreted via surface Bidirectional Reflectance Distribution
Function (BRDF) models, which predict directional reflectance for a given solar position and set of
parameters. Through inversion, BRDF models have been used to estimate morphological (e.g., LAI,
LAD) and optical (leaf reflectance and transmittance, soil single scattering albedo) properties [Goel,
1988]. Upon parameter determination, some BRDF models can also simulate the change in surface
state parameters (e.g., albedo, fAPAR) over diurnal cycles.

Recently, some efforts have been directed toward combining BRDF and leaf spectral reflectance

models [Jacquemoud, 1993]. By utilizing multidirectional and multispectral information, these h'ybrid




models may allow the simultaneous retrieval of canopy morphology and some leaf constituents. To
date, however, high spectral resolition radiometers which point off-nadir have been regulated to aircraft.-
v Finally, some gtudie's suggest that optical polarization data may cé'ntain useful information [Vénderbilt
et al.,, 1991]. Again, however, instruments which measure the polarization of optical radiation have
yet to be placed in orbit.

In the development of surface data sets for process models, physically-based techniques may be
superior to correlative techniques. First, since they‘ are based on radiative transport theory, physical
models can be modular such that specific interactions (e.g., photon interactions with topography,
atmosphere, soil, plant organs, litter, snow, etc.) may be selectively included. Hence, these models can
be adapted for any climate or geographic area. Second, physical models can be comprehensively
\~1a1idated with ground truth data. Similarly, model parameters may be fixed with measured or
intuitively reasonable values such that reflectance behavior of particular canopies can be inferred.
Third, physical models allow the retrieval of biologicaily or climatologically important properties and
states. Finally, physical models require fewer parameters to describe scattering (?haracteristics over
multiple frequencies since physical laws and some parameters (e.g., LAI) are spectrally invariant
[Strahler, 1994]. Nevertheless, there have been few applications of physically;based models to satellite
data for the retrieval of surface parameters.

The present research was undertaken to determine the limitations of and an efficient method for
BRDF model inversions. A priori, this study was limited to grassland applications. Grasslands cover
approximately 16% of earth's land surface (Figure 1.1) énd account for nearly 10% of the its net
productivity [Coombs et al., 1985]. In addition, some results suggest grasslands are one of the most
climatologically sensitive earth covers [David Schimel and Ranga Myneni, personal communication].
Thus, grasslands may be early indicators of a changing climate. Probably the most comprehensive
effort to analyze and measure a grassland system occurred during the First International Satellite Land
Surface Climatology Project (ISLSCP) Field Experiment (FIFE) [Sellers et al., 1988]. This
campaign—conducted non-continuously from 1987 through 1993—included the coordinated

measurement of surface and atmospheric properties by ground, aircraft and satellite-based sensors. FIFE
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data were used extensively in the present study. This allowed unprecedented validation of BRDF

inversion methods and results.




‘yupa uo (paut) pupuny pup (mojiaf) spuoissoib jounjou Jo suojjpoo| ajpwixosddy || 04nbi 4




Our goal was to develop a method for the accurate and efficient inversion of a BRDF model

~ with satellite remote sensing data. However, the canopy BRDF model utilized in this study had
i)reviously noi been inverted. Therefore, an incremental apprdach was pursued as follows. First, the
invertibility of the model was demonstrated for a series of standard problems using error-free synthetic

“data. Next, a soil BRDF model, employed as the lower boundary condition in the canopy model, was
inverted using field data from a ground'-base'd radiometer. Values for five spectrally invariant parameters
were determined; these _soil parameters were fixed in the canopy model. One spectrally dependent
parameter, soil single scattering albedo, remained variable. The coupled soil and canopy BRDF model
was then inverted with field data from a ground-based radiometer. Results suggested that inversions
with satellite data were possible. Anticipating increased noise in satellite data, a scheme was developed
to improve the speed and accuracy of inversions. In this scheme, empirical data are differentially
weighed, depending on sun—target-éensor geometries, to determine the solution. Finally, the weighting
scheme was applied to mo;iel inversions with data from the Advanced Very High Resolution
Radiometer (AVHRR).

The speciﬁc outline of this thesis is as follows. In Chapter II, formal and practical deﬁniﬁons
of the inversion problem are developed. In Chapter IH, criteria used to determine an appropriate BRDF
model are discussed and details of the chosen model are presented. In Chapter IV, the sensitivity of top-

' of-canopy (T 0C) reflectance to model ‘parameters is determined for a range of optical depths (LAI). in~
addition, different optimization algorithms for model inversions are assessed. In Chapter V, analyses of
different spectral bands, view angles, and solar angles for model inversions are detailed. In addition, the
impact of reflectance data errors and satellite sampling geomeﬁies is evalnated. Im €hapter VI, the
FIFE campaign and its relevant data sets are discussed. In Chzipter VII, the lower boundary condition
for the FIFE canopy model is determined. This chapter includes an analysis of reflectance sampling
requirements for a semi-physically-based soil model. In Chapter VIII, a coupled soil and vegetation
model is inverted with ground radiometer data from FIFE. The accuracy of retrieved parameters is
investigated with respect to spectral band and solar angle. In addition, fAPAR and albedo estimates are

formulated and compared with empirical data. In Chapter IX, previous results are combined into an




operational inversion strategy for AVHRR data.” This requires a reduction in the number of adjustable

mode] parameters. In addition, the estimation of site-wide parameters is described.- Finally, a method

for differentially weighting individual reﬂeciange samplés is introduced. Using AVHRR data, critical

input parameters (e.g., LAI leaf reflectance) for earth process models are retrieved. In Chapter X,

conclusions and recommendations for future work are outlined.




CHAi’TER i
INVERSE CANOPY MODELING
A. Formalization of Remote Sensing System
As discussed by Goel [1988], the optical remote sensing environment may be modeled as a
series of subsystems, including:

a) the solar source, defined by a set of parameters {q;} including spectrai intensity, I(A), and location,

(65, §5), where 8 represents the solar zenith angle (SZA) and ¢ represents the solar azimuth angle,

b) the aﬁnosphere, defined by a set {b;} of properties including spatially dependent concentrations and

spectrally dependent optical properties,

c) the vegetation canopy, defined by a set {¢;} including optical and structural properties of vegetation
components (leaves, stalks, stems, etc.j, plapting geometry and distribution, and environmental
ﬁroperties (temperature, humidity, wind speed, precipitation),

d) the background or soil, defined by a set {d;} of properties such as optical properties, roughness,
texture, and moisture profile, and

¢) the radiation sensor, defined by a set {e;} of properties which may include spectral sensitivity,
aperture, calibration, and view geometry (8y, 0,), where 8, represents the view zenith angle (VZA) and
¢y represents the view azimuth angle.

Most parameters in these subsystems have a spectral dependence and many have a spatial and
temporal dependence. The set {R;} of radiation properties detected by a sensor is therefore dependent on
the spectral, spatial, angular, dielectrical and temporal properties of {a;}, {b;}, {ci}, {d;} and {¢;}, i.e.,

{Ri } =R, by, 1, di, &) (2.1)

v

The determination of parameter values (e.£., {c;}) from radiation properties may be conceptualized as,




{ci} = g(R;, a, by, d;, &). _ 22)

This is.referred 10 as the inverse problem, where {c;} are the retrieved parameters.
B. Conceptual Description of the Inversion Problem

For the purposes of this work, it is assumed that the solar, atmospheric and sensor parameters
are known and their effects can be modeled, and that {R;} is limited to spectral radiance (or directional
reflectance), R;. Therefore, Equation (2.1) is reduced to

R; =flc;, di; ay, by, &), (2.3)
where {a;}, {5;}, and {¢;} are effectively fixed.

The state variables {c;, d;} of the surface transport equation describe the distribution,
orientation and optical behavior of the scatterers. If fis non-time dependent, the state variables must
remain invariant during the collection of R;. Clearly, if {c;, d;} bcontains p members, then at least n =p
independent equations in form of Equation (2.3) are required to uniquely determine the state variables.
However, if the subs&stems {a;}, {b;}, and {e¢;} do not change, then only one independent equatipn
exists. In this casé, the system is unsolvable [Verstraete et al., 1994]. A

To determine {c;, d;}, additional independent equations must evolve from variations in solar,
at'mospheric aﬁd/or sens;)r parameters. Assuming horizontal homogeneity of the surface, the solar
zenith and azimuth angles (9, ¢;), view zenith and azimuth angles (0, ¢,) and sensor spectral
wavelength (A) are the most controllable or readily determined parameters. By changing one or more of
these parameters for each sample, a system of independent equations can be formed [adapted from
Verstraete et al., 1994],

Ry =fci. di; ai,1, biys €11

Ry =flc;, di; a; 2, bi 2, i)
. 2.4)

Ry =flc;, dis Gins bi,n’ €in)
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If n <p, this system is underdetermined and more samples are necessary. If n = p, there is

normally no unique solution due to model and measurement inaccuracies. If n > p, thére is no single

solution because the system is overdetermined. In this case, however, a statistically "best" solution

can be determined.
C. Practical Description of the Inversion Problem

For most physically-based models, convolutions in f preclude a simple form of g as conceived
in Equation (2.2). Hence, iterative techniques must be employed to solve the system (Equation 2.4),
In practice, four main components are required, including: 1) measured angular reflectance (R;) with the
associated measurement parameters (g j, i, €ij), 2) a BRDF model (f), 3) an optimization algorithm,
and 4) a figure-of-merit function (or simply, "merit function").

During model inversion, the optimization algorithm iteratively adjusts the vegetation and soil
parameters {c; d;} until the modeled reflectance most closely resembles the measured reflectance (Figure

2.1). The merit function provides a numerical measure of this "resemblance.” In most cases, a least-

squares function [Goel and Strebel, 1983}, €2, is utilized,

n
g=3Y w;j[Rj -R}
j=1

where R; is the spectral reflectance for a given scan and solar angle geometry, R}‘ is the geometrically-
analogous model estimate, and wj is a weighting function value. In some studies, the difference term
in Equation (2.5) is divided by the measured reflectance [Nilson and Kuusk, 1989]. Assuming the

reflectance data are relatively noise-free and the BRDF model is reasonably accurate, the parameter

values minimizing €2 represent those of the surface from which the reflectance data were measured.
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Figure 2.1. Flow diagram of the BRDF inversion problem.

Only reflectance data from visible and NIR spectral bands are sufficiently uncorrelated such
that independent equations can evolve due to wavelength differences. To form additional equations for
the system (Equation 2.4), variations in sun-target-sensor geometry are required [Sellers et al., 1993].

In this study, variations in sampling geometry were used exclusively in creating data sets (R;,j =1, 2,

..., n) for inversion.
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CHAPTER III

THE BIDIRECTIONAL REFLECTANCE MODEL
A. Definition

Reflectance from natural media is anisotopic (i.e., 2 function of direction). A BRDF model
mathematically describes this anisotropy. Specifically, it predicts the magnitude of radiation scattered
into an infinitesimal cone at a given direction by a medium illuminated by an infinitesimal cone of
radiation at a second given direction. Hence, the BRDF model determines "bidirectional” reflectance.

At least three scattering processes—coherence, surface and volume-—may contribute to
bidirectional reflectance [Strahler, 1994]. Coherence occurs when the meah free path of .multiple'
scattering is similar in size to the wavelength. Although Hapke et al. [1993] suggest that photon-
stomatal interactions may cause coherent effects (strong backscattering peaks), present vegetation
BRDF models do not simulate this. Both surface and volume sca.ttering are modeled, hovs{ever. Surface
scattering includes both shadowing effects and gcatterer specular reflectance. Shédowing depends on the
geometric size of the scatterers relative to their spatial orientation. The hot spot phenomenon—a
reflectance peak in the retro-solar direction—is caused by the absence of shadowing at low phase angles.
Specular reflectance is primarily important for leaves due to their waxy outef layer. Volume scattering
generally refers to multiple scattering and is scale dependent. While some models simulate volume
scattering within a single leaf, others generalize the volume scattering over optical{y semi-infinite soil
or vegetation.

At the macroscopic scale, the convolution of surface and volume scattering effects is largely
governed by the optical properties and geometrical orientation of the scatterers. In most cases,

reflectance and transmittance of plant organs (e.g., leaves, stems, and bark) and soil particulates (e.g.,




mineral and organic matter) compose the relevant optical properties. Structural aspects include the soil

" ‘particulate Shapé, size and distribution (and the complementary interstices ,characteri'stics)',. the plant
6rgan composition, shape, size,. orientation and distribution within the plant, and the shape, size,
orientation and distribution of plants within a spatial resolution element of the sampling instrument.
Litter or thatch, defined as the dead organic material on the soil surface, also affeg:ts surface reflectance.
Both optical and structural properties may vary spatially and temporally due to growth stages (e.g.,
budding, blossoming, senescence), climatic conditions (e.g., wind, soil moisture, precipitation events,
temperature) and andmalous events (e.g., anthropogenic disturbances, disease, animal and insect

infestation).
B. Review of BRDF Model Development and Classes

Since the earliest canopy model was formulated in 1954 [Monsi and Saeki], a large number of
surface BRDFs have been developed [Myneni and Ross, 1991]. The models may be grouped according
to five classes: empirical, geometrical, turbid medium, hybrid, and computer simulation models.

Empirical models ére based on simple mathematical functions which can assume the form of
realistic reflectance distributions. Although "layers" of functions may be added to specifically
accommodate scattering phenomena (e.g., the hot spot), the mathematics is not physically-based.
Empirical models by Walthall et al. {1985], Roujean et al. [1992] and Rahman et al. {1994] have been
inverted for the estimation of surface albedo and/or for the correction of surface anisotropy.

Geometrical models simulate heterogeneous sce;les with geometrical objects (e.g., cones,
spheroids, ellipsoids, cubes) protruding from a surface [e.g., Otterman, 1984; Li and Strahler 1985;
1992; § asi-nski, 1990]. Optical behavior of the objects is constant or simplified. Reflectance
anisotropy is determined primarily by the fractions and spatial orientation of shaded and sunlit surfaces
(both canopy and ground) for a particular sun-target-sensor geometry. Geometrical models have been
inverted to retrieve canopy structure [Li and Strahler, 1985; Wu and Strahler, 1994; Hall et al., 1994]

and optical information [Otterman'et al., 19871.




Turbid medium models simulate a canopy with a cloud of infinitesimal platelete having the
opticél properties of plant organs (most commonly leaves) [Shifrin,- 1953]. Although tﬁe platelets are
randomly distributed within plene-parailel layers, their angﬁlar distribution can be prescribed according
to the LAD of true canopies [Ross and Nilson, 1966]. The models generally include single and
multiple scattering; the former is determined quasi-analytically, while the latter must be approximated.
Drawbacks of the turbid medium approach include the absence of scattering behavior eaused by the
finite size of actual scatterers (e.g., shading) and the non-random orientation of scatterers (e.g., leaf
clumping). Recent advances [Marshak, 1989; Verstraete et al., 1990; Myneni and Ganapol, 1991;
Kuusk, 1994] have compensated for these shortcomings. Turbid medium models are particularly
appealing due to their mathematical simplicity and hence computational efficiency. Many have been
inverted, most notably by .Goel and his colleagues [Goel, ~1988, and references therein], Camillo
[1987], Pinty, Verstraete and their colleagues [1989; 1990; Dickinson et al., 1990; Iaquinta and Pinty,
1994], Kuusk and his colleagues [1991b; 1994; Nilson and Kuusk, 1989], Liang and Strahler [1994a-
b], and Privette and his colleagues [1994a; 1994c; Schluessel et al., 1994].

Hybrid models combine the spatial heterogeneity of geometrical models with the realistic
transport treatment of turbid medium models. This permits the simulation of gap probabilities and
path length distributions along with single and multiple scattering [e.g., Norman and Welles, 1983; Li
et al., 1994}, Nevertheless, this complexity results in relatively high computational expense. Thus,
operationel inversions of these models appear impractical. ‘ |

Computer simulation models represent the latest approach to the heterogencous BRDF
problem. These models rigorously trace photon interactions with an arrangement of discrete scatterers.
Although computationally expensive, these models accurately simulate within-canopy spatial
heterogeneity (e.g., organ size distributions, leaf clumping, gaps) and scene-scale heterogeneity (e.g.,
topography). Other models must either neglect or approximate these conditions with quasi-empirical
formulations. While several models have been developed [Ross and Marshak, 1988; Goel et al., 1991;
Borel et al., 1991; Lewis and Muller, 1992}, their computational expense reduces the likelihood that

they will be adopted for inversion applications [Antyufeev and Marshak, 1990].

15




C. Specification of a Lower Bbundary Coﬁdition

Although the earliest canopy models assumed a semi-infinite optical depth [Ross, 1981], their

generalization to finite optical depths required the specification of a lower boundary condition. The

simplest solution was a Lambertian reflector. The importance of specifying the Lambertian reflectance

correcﬂy is clear given the characteristic differences in soil and vegetation spectra—particularly over the
“ted and NIR wavelengths [Tucker and Miller, 1977].

Nevertheless, the anisotropy in soil reflectance is also well known [Irons et al., 1992].
Similar to vegetation bidirectional reflectance, it has been modeled using empirical parameterizations
[Walthall et al., 1985], Monte Carlo techniques [Cooper and Smith, 1985], and formulations based on
the radiative_transfer equation for semi-infinite medi.a [Hapke, 1981; Pinty et al., 1989; Jacquemoud et
al., 1992]. Others have attempted to model soil bidirectional reflectance using erect geometric shapes
that cast shadows [e.g., Norman et al., 1985; Cierniewski, 1987]. Studies dedicated to the inversion of
soil models include Pinty et al. [1989], Deering et al. {1990], Jacquemoud et al. [1992], Irons et al.
{1992] and Privette et al. [1994b].

Presently, few vegetation BRDF models include anisotrépic soil reflectance. Notable
exceptions include the ray tracing model of Kimes et al. [1985b], the Monte Carlo model of Cooper
and Smith [1985], and the turbid medium models of Norman et al. [1985], Myneni et al. [1992],
Schluessel et al. [1994], and Liang and Strahler [1994b]. .Naturally, models without anisotropic soil

reflectance are less accurate under low LAI conditions.
D. Model Choice and Description

The selection of a physical-based BRDF model for the present study was guided by three
primary criteria. First, the limitations to the BRDF inversion problem were sought. This required that

the model be highly accurate—possibly at the expense of computational efficiency. Moreover, it
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required a model based on measurable parameters sﬁch that validation was possible. Second, since

' grasslandg are effectively hoﬁzontally homogeneous at the resolution of environmental radiometers,. a
o.ne dimensional (l-D) formuiation was ;ufﬁ;:ient. A1-D n;odel only allo.ws surface variability in the
vertical direction. Finally, because grassland canopies are generally not optically semiinfinite, the
ability to specify a lower boundary condition was necessary.

Based on these criteria, two turbid medium models by Myneni were utilized [Myneni et al.,
1988; Myneni et al., 1992]. CANTEQ is a 1-D BRDF model based on the discrete ordinates solution
to the radiative transfer equation [Shultis and Myneni, 1988; Stewart, 1990]. In benchmark
comparisons, the discrete ordinates method was found to be four digit accurate. The model has been
validated against reflectance data from soybean [Myneni et al., 1988], maize [Myneni et al., 1988},
prairie grassland [Asrar et al., 1989] and several other agricultural crops [Stewart, 1990].

CANTEQ depends primarily on measurable physical properties. Specifically, canopy depth is
specified with the LAI parameter. The statistical orientation of platelets in the turbid medium is
specified according to the LAD of the simulated canopy. Although CANTEQ originally simulated five

' idealized LADs (planophile, erectophile, plagiophj].e, extremophile, and uniform), a later extension
utilizes the continuous Beta distribution [Goel and Strebel, 1984]. The Beta distribution depends on
four parameters (1(8), v(6), u(e), v(¢)) which may be determined analytically from leaf angle data.
Leaf reflectance anisotropy is modeled by combining diffuse and specular phase functions. Diffuse
scattering is bi-Lambertian [Ross, 1981]; its magnitude depends on the leaf reflectance (p) and
transmittance (). Specular leaf reflectance depends on the refractive index (n) [Vanderbilt and Grant,
1985; Nilson and Kuusk, 1989]. A canopy hot spot approximation is also included by adjusting the
canopy extinction coefficient for the once-scattered radiation [Marshak, 1989; Stewart, 1990]. The
magnitude of the hot spot is specified with the HSP parameter. ‘

A Lambertian soil represents the lower boundary condition. Thus, model validity is reduced in
low LAI conditions. The upper boundary condition includes direct solar irradiance plus isotropic diffuse
irradiance. The relative magnitudes are specified by the ratio (y) of direct-to-total irradiance. Fractions

of absorbed and reflected radiation are determined based on energy balance arguments. In addition,
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canopy photosynthetic efficiency (CPE) values can be calculated via a semi-empirical leaf physiology

model [C(;llatz et al., 1991] coupled to the BRDF model. CPE is the ratio of carbon fixed by the -

canopy (1L mol CO») per incident PAR energy (1 mol photons).i The physiology model was developed
for C3 species and gives net photosynthesis as a function of environmental and leaf parameters and
stomatal conductance.

The discrete ordinates method is used to solve the radiative transport equation. In thig method,
photons are restricted to travel in a finite number of directions. These directions are chosen to be the
ordinates of a quadrature scheme such that the angular integrals are evaluated accurately. The spatial
derivative is approximated by a finite difference scheme, resulting in a system of algebraic equations
which can be solved by iteration on the scattering integral. Methods to accelerate this iteration are also
included in CANTEQ. All calculations in this study utilized six (;rdinates per octant for a total of 48
directions in the unit sphere.

DISORD is a 3-D successor to CANTEQ. It too accounts for all surface and volume
scattering mechanisms and includes a hot spot formulation. In addition to allowing horizontal
heterogeneity, DISORD differs from CANTEQ in its boundary conditions. In DISORD, both may be
anisotropic. Anisotropic soil reflectance is simulated using the turbid medium model of Jacquemoud et
al. {1992]. This model is a function of six parameters, five of which may be considered spectrally
independent. The upper boundary condition is specified with an atmospheric model. This model
presently includes Rayleigh and aerosol scattering but neglects gaseous absorption. N(;te that isotroi)ic
diffuse irradiance was assumed throughout this study. Since DISORD was developed after the present
research had begun, both CANTEQ and DISORD were utilized. Here, DISORD was used in 1-D mode.

Throughout this study, R denotes a Hemispherical directional reflectance factor (HDRF)
(Nicodemus, 1970). An HDRF is the ratio of radiance scattered by a surface in a given direction to the

radiance scattered by a lossless Lambertian reflector, i.e.,

R(ev: ¢v) = HDRF(GV, ¢v) =R L(ev: ¢v) /E,




where L(8y, ¢,) [W m™2 sr-1] denotes the surface scattered radiance and E [W m2] denotes the irradiance.
Althou,gh.most BRDF models estimate radiance for a unit solid aﬁgle, physicai sensors must integrate

radiance over finite solid angles. Hence, in comparisons with empirical data, it is assumed that

oy +AQ By +A9‘
R®,, 0)= | . jAzg(e, ) cosO sind d6 deg. (3.2)

Py -A0 by

Single "effective” wavelengths are also assumed. For readability, individual R(0,, ¢,) and the

distribution of R(0,, ¢,) are both referred to as "reflectance.”
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PRELIMINARY ISSUES ON MODEL INVERTIBILITY

Although a priori information may be mathematically formulated to assist in solving the
inverse problem, the solution is otherwise based strictly on the minimization of the merit function—
the physical sensibility of the solution is not assessed. If a correct solution is not obtained, the model
may not be invertible (i.e., the relationship between reflectance and model parameters is not one-to-one)
for the given problem configuration [Goel, 1988]. Two conditions are required for model invertibility:
the solution must be unique, and the solution must be stable. The uniqueness of a solution is
determined by the presence and severity of local minima in the model parameter space. These minima
represent incorrect parameter sets for which model estimates resemble the measured data. -Solution
stability requires that fhe global minimizer not change significantly for reasonable errors in the data. .

The stability and uniqueness of a solution may be compromised by data overdetermination.

- Overdetermination occurs when too many model parameters are used to determine the reflectance
béhavior. Ina ‘forward ekecution of the model, this is unimportant. In an inverse problem, it is very
important. Parameters which do not sufficiently affect the top-of-canopy (TOC) radiance cannot be

retrieved from reflectance data. Their values at the global minimum are therefore inconsequential. This

results in a poorly defined minimum. Moreover, since these "excess" parameters are not well

determined by the data, low noise levels in the data may significantly alter their retrieved values.
Clearly, these concerns imply that only the most influential model parameters should be adjusted
during an inversion. The determination of an appropriate parameter set can be accomplished through a
sensitivity study. Besides reducing the probability of non-sensible solutions, a smaller parameter set

also reduces the time necessary to minimize the merit function.




A. General Sensitivity Study

'ﬁxe sensitivity of CANTEQ was tested over a wide range of canopy conditions. .The method
implemented required forward computation of a large number of synthetic reflectance sets. Bias was
eliminated by using a randoxﬁ number generator to produce parameter values within reasonable and
physically plausible limits. Reflectance was recorded at 15° intervals in VZA (0-75°) and 45° intervals
in >azimuth (0-180°) (26 total directions). For a given synthetic canopy, each parameter was in turn
perturbed by 10% of its theoretical range and a new reflectance distribution was computed. The sum of
squares of differences between the original reﬂectahce and the perturbed reflectance was recorded. This
statistic was used to indicate the model's sensitivity to that parameter.

This exercise was conducted for 400 synthetic canopies at two different SZAs (5 and 30°).
Canopies were binned by LAI in intervals of 0.25 for 0 < LAI‘ <2,and 0.5 for 2 < LAI < 5. For each
bin, principal component analysis was performed on the sum of squares of differences. Since the first
principal component axis, by definition, was in the direction of maximum varianée, the numerical
weighting of each parameter's cqntribution to that axis provided a measure of the model's relative
sensitivity to the parameters.

The results of this analysis are shown for red and NIR wavelengths in Figures 4.1a-b. While
the graphs are qualitatively similar, close inspection reveals important differences. As might be
expected, soil reflectance is most important in thin canopies (low LAI). At req, LAI is nearly as
influential as soil reflectance in determining TOC reﬂeétance. At NIR, however, it is significantly less
influential. The highly absorbing leaves at red wavelengths decrease the effects of soil on TOC
radiance, whereas at NIR the highly scattering leaves have considerably less impact on the soil
contribution. In both cases, leaf optical properties have relatively minor influence in thin canopies.
With increasing LAI, sensitivity to leaf optical properties increases and sensitivity to soil reflectance
and LAI decreases. The sensitivity curves cross at about LAI = 1.0 for both wavelengths. This
suggests that for canopies of LAI < 1.0, soil reflectance and L.AI are most influential in determining

TOC reflectance, whereas for LAI > 1.0, leaf optical properties (reflectance and transmittance) are most
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influential. Beydnd an LAI of about 2.0, TOC reflectance is essentially insensitive to perturbations in
LAI or soil reflectance. This insensitivity has been observed in empirical data for all spectral bands at
sufficiently high LAI [Chance and LeMaster, 1977]. These sensitivities are consistent with those

found by Goel et al. [1984] using SAIL [Verhoef, 1984} and a more theoretical sensitivity analysis.
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Figure 4.1a. Normalized reflectance sensitivity to five model parameters for increasing LAI at red
wavelengths.
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Figure 4.1b. Same as Figure 4.1a, but for NIR wavelengths.

The NIR and red results differ significantly for optically thick canopies. In the red cz.lse, TOC
reflectance is considerably more sensitive to leaf reflectance than to transmittance. Since the leaf albedo
atred is low, it is highly probable that irradiance will be absorbed in one of the upper leaf layers. Even
i a photon penetrates to the lower layers or to the soil, there is a high probability that it will be
absorbed on its upwelling travel. Therefore, the influence of perturbations in leaf transmittance is
minimized by high leaf absorption. For the same reason, the multiply scattered component of red TOC
radiance is insignificant compared to the once-scattered component. Since only multiply scattered
radiation emanates from shaded areas, red TOC reflectance drops off markedly beyond the hot spot area.
Shaded areas are not visible to the sensor at low phase angles (i.e., near the hot spot). In the NIR,
TOC reflectance is nearly equally sensitive to perturbations in leaf reflectance and transmittance.
Multiple scattering is significant at NIR wavelengths. Thus, if a photon penetrates the canopy and is
reflected at a lower leaf level or the soil, there remains a relatively high probability that it will exit the

canopy top. Since both the leaf reflectance and transmittance determine this probability, both
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parameters significantly influence TOC reflectance. The asymptotic tendency of the curves suggests

" that sensitivities remain approximately the same for canopies of LAI > 3.0. It appears that TOC

reflectance is rather insensitive to perturbations in the hot spot parameter for most canopies.
B. Selection of an Optimization Algorithm

Upon establishing model sensitivity, the inversion problem can be addressed. The task of
adjusting model parameters until the merit function is minimized is regulated to a multidimensional
optimization algorithm. Broadly, algorithms may be classified according to their reliance on function
derivatives. Generally, merit functions which are non-differentiable, or for which finite-difference
derivatives are computationally expensive, are minimized most efficiently with non-derivative based
optimization algorithms. While such algorithms operate only on merit function values, most attempt
to infer derivative information via other techniques. Merit functions with analytical or computationally
inexpensive derivatives may be inverted with more efficient algorithms which require derivative
information.

Accurate, physically-based BRDF models such as CANTEQ are non-differentiable and
relatively computationally expensive. This implies a non-derivative based optimization algorithm is
most efficient. However, recent studies suggest that no single algorithm is superior for all inversion
scenarios [Jacquemoud et al., 1994]. Although somewhat burdensome, determining the most efficient
algorithm may require a series of experiments with different routines. Thus, three commonly used
minimization routines were tested here: a downhill sirﬁplex method [Nelder and Mead, 1965;
subroutine AMOEBA from Press et al., 1986], a conjggate direction set method [subroutine POWELL
from Press et al., 1986}, and a quasi-Newton method [subroutine EO4JAF from Numerical Algorithms
Group, 1990].

Although complete algorithm description is beyond the scope of this thesis, differences
between the three deserve some attention. The simplex method requires initial specification of the p +

1 simplex vertices in the p-parameter space. Beginning with the vertex producing the largest merit
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function value (poorest fit), the algorithin attempts t‘; find a lower merit function position by reflecting
the vertex through the face of the simplex. If the new merit function value is lower than those.'of all
.othef verticeé, a larger reflection is attempted. If the original reflection does not represent an
improvement over the second worst vertex, the simplex contraéts by moving the worst vertex closer to
the others. This is repetitively continued. When all p + 1 vertices produce fits to within a user-defined
tolerance, the program terminates. Whilé simplex theory may be less sophisticated than others, it is
considered robust and useful for discontinuous functions or functions sixbjecf to numerical inaccuracies
[Numerical Algorithms Group, 1990].

Beginning from a single initial position, the conjugate direction set method conducts single
line minimizatiox_ls, accurate to within a user-defined tolerance, in each of the current p conjugate
directions to arrive at the minimum for a given iteration. It then compares the current minimum to the
previous iteration's minimum. If the two estimates are within a second user-defined tolerance of each
other, the program terminates. If the difference is greater than the allowed tolerance, the conjugate
directions are redefined based on the vector between the two minima, and another iteration is executed.

The NAG quasi-Newton algorithm is similar to the direction set method in that it accumulates
function information based on successive line minimizations. The two differ in the way they gather
and store this gradient information. Unlike the direction set method, the quasi-Newton algorithm
approximafes the secbnd partial derivative (Hessian) matrix at each iteration based on informgtion for
the latest search direction. This algorithm is efficient but intended for continuous functions with
continuous first and second partial derivatives [Numerical Algorithms Group, 1990]. In contrast to the
direction set and simplex algorithms, NAG EO04JAF does not allow a user-defined termination criteria.

In the following experiment, the optimization algorithms were judged on two criteria. First,
the algorithm needed to correctly determine the global minimizer given error-free reflectance data. This
required that the routine avoid local "traps" (minima) and proceed even when the slopé of the merit
function was small. The former condition is difficult to achieve since there presently are no error-free

numerical techniques for distinguishing a global minimizer from a local (non-global) minimizer.
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Second, if multiple algorithms find the global minimizer, the algorithm which does so with the fewest

model evaluations (least computational expense) is preferable.

" In this study, the ability to specify termination criteria proved to be important. Figure 4.2
illustrates typical performances (change in log[€2] with number of function evaluations) of the three
routines. The NAG routine consistently gave the poorest performance. In several inversions using
synthetic reflectance data, the NAG routine terminated when the solution was incorrect. This may be
the result of having to use predefined rather than user-specified termination criteria. Furthermore, in
cases where the NAG solution was correct, several thousand function evaluations were often required.
The direction set method, in allowing user-specified tolerances, permitted tuning such that the routine
_ could find the correct solution. However, this tuning often resulted in an excessive number of function
evaluations. The simplex algorithm consistently produced the best results. In cases where the quasi-
Newton method produced incorrect solutions and where the direction set method produced the correct
solution but required several thousand function evaluations, the simplex method efficiently found the
correct solution in 500 to 600 function evaluations. The superiority of the simplex algorithm suggésts
the merit function may not have continuous first and second partial derivatives. Based on these
findings, the simplex algorithm was used exclusively for all subsequent inversions of CANTEQ and

DISORD.




T =T — - bk — -

NAG EO4JAF

-4 -
N,
o

3 _ ]
-6 T T e - -
“~_‘ POWELL 1
AMOEBA Tl 1

—8 P SR U S S SUN R M S S U SR S A P Y I- ._ -. .

0. 500 1000 1500 2000 2500

Evaluation number

Figure 4.2. Typical convergence efficiencies, as shown by the log of the merit function, for optimally-
tuned minimization routines AMOEBA, POWELL, and NAG EO4JAF. The correct solution was (LAI
= 3.0, HSP = 4.0, p = 0.0607, © = 0.0429, Soil Refl. = 0.2). The inversion solutions were AMOEBA
(3.0, 4.1, 0.0608, 0.0426, 0.19), POWELL (3.0, 4.0, 0.0607, 0.0430, 0.20), and EO4JAF (0.1, 2.0,
0.0001, 0.0001, 0.03). The initial parameter estimates for POWELL and EO4JAF were the same.

C. Conclusions

Using a novel application. of principal componen-t analysis, the sensitivity of a TOC
reflectance was determined for canopies of arbitrary optical depth. In general, the TOC reflectance was
primarily sensitive to soil reflectance and LAI for LAI < 1. For canopies of LAI > 1.5, reflectance was’
primarily sensitive to leaf optical properties. At red wavelengths, this sensitivity was significantly
greater for leaf reflectance than for leaf transmittance. The sensitivities were nearly equal at NIR
wavelengths. Sensitivity to HSP was low for all canopies

Three common optimization routines were also assessed. None of the ‘routines required
function derivatives. A simplex routine consistently minimized the merit function in the fewest

number (500-600) of model evaluations. As CANTEQ (or DISORD) requires approximately 2 s to
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execute on a Sun Sparcstation 10, a complete inversion may be completed in less than 20 min.

Moreover, this routine appears less vulnerable to local minima traps than the others.




CHAPTER V
THE INVERTIBILITY OF A DISCRETE ORDINATES REFLECTANCE MODEL
A. Domain of Applicability

In practice, the invertibility of a BRDF model is not guaranteed [Goel, 1988]. For example,
multiple parameter sets may produce the minimum value of the merit function. Moreover, the merit
function may exhibit insufficient variation such that the optimization routine will fail. Therefore,
before CANTEQ is inverted with empirical reflectance data, it is useful to determine its invertibility
using synthetic, error-free data.

In this study, synthetic reflectance data were created through forward model calculations.
Directional reflectances at 15° VZA (0-75°) and 45° view azimuth angle (0-180°) intervals were
calculated. Since the reflectance of 1-D models is symmetric about the principal plane, data in the third
and fourth octants provide no new information. In addition to reflectance, absorbed radiation, spectral
albedo and canopy photosynthetic efficiency (CPE; at red wavelengths only) were evaluated [Myneni et
al., 1992]. A standard atmosphere was assumed such that 80% of the incident irradiance was direct
radiative flux.

A base case canopy was defined by assigning parameters values representative of those
generally encountered in practice. An SZA of 30.° and a uniform LAD were assumed. Variations to the
base case were created by assigning widely varying but reasonable parameter values, one at a time.
Conditions in the base and variation cases at red and NIR wavelengths are given in Tables 5.1-and 5.2,

respectively. Note that leaf optical properties were varied only for the red wavelength. Since LAD was

not variable in these inversions, one planophile (erectophile) case denotes that although the reflectance




distribution was calculated with a planophile (erectophile) LAD, the inversion was attempted assuming

" a uniform LAD.

Table 5.1. Parameter values for the base case and its variations at red wavelengths. Base case values
were used where data are absent. Leaf optical data from birch and maple trees provided by Forrest Hall
[personal communication]. /

Soil
Case Description SZA (®) LAD LAI HSP p Refl.

T
Base Case 30 Untform 3.0 4.0 0.0607  0.0429 0200
Dark Soil 0.075
Low LAl 1.0
High LAI 8.0 :
Doubled Opt. Prop. 0.1214
Halved Opt. Prop. 0.0304
High Sun
Low Sun
Planophile LAD Planophile
Planophile LAD Planophile (uniform for inversion)
Erectophile LAD Erectophile
Erectophile LAD Erectophile (uniform for inversion)

Table 5.2. Same as Table 5.1, but for NIR wavelengths.

Case  Description SZA (°) LAD LAl HSP p T

Base Case 30 Uniform - 30 4.0 0.4357  0.5089
Dark Soil .

Low LAI 1.0

High LAI 8.0

High Sun :

Low Sun

Planophile LAD Planophile :

Planophile LAD Planophile (uniform for inversion)

Erectophile LAD Erectophile

Erectophile LAD Erectophile (uniform for inversion)

Note that perfect resuits were unlikely since the synthetic reflectance values were truncated at
the fourth decimal place. The truncatic;l'; was employed for two rez;sons: a) the computational results
are unstable past four decimal places over different machines, and b) current field reflectance
measurements are not accurate past four decimal places. Therefore, minor discrepancies are to be
expected in the retrieved parameters.

Inversion results for red are shown in Figures 5.1a-d. In general, most parameter values are
retrieved to within about 5% of their correct values. Significantly larger errors occurred in five cases.
In Case 7, denoting a dense canopy (LAI = 8.0), the inversion overestimates LAI by 23% and
underestimates soil reflectance by 23%. This is not surprising since this canopy is optically semi-

infinite; the TOC reflectance is relatively insensitive to LAI in such cases (Figure 4.1a). In Case 10,




denoting dark leaves (leaf optical properties halved), the inversion undel;estimates leaf transmittahce by
100% and overestimates the hot spot parameter by 9%. The 1afge leaf transmittance error is
'understanaable considering the highly absorbing leaves and hence the minor contributioﬁ of radiance
scattered from lower canopy levels. In Case 11, denoting near normal solar incidence, only LAI and
leaf reflectance are retrieved with reasonable accuracy (5% and 8%, respectively). Generally, azimuthal
symmetry increases as SZA decreases. Thus, the information content of the reflectance distribution
a]éo decreases [Goel and Strebel, 1983; Shultis and Myneni, 1988]. In Cases 17 (planophile) and 21
(erectophile), an incorrect LAD caused significant errors. Indeed, only leaf reflectance and LLAI (Case .17
only) are retrieved to within 10% of their correct values. Therefore, in the preéent inversion

configuration, prior knowledge of the actual LAD may be necessary.
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"Retrieved" and correct spectral albedo, fAPAR and CPE are shown in Figures 5.1b-d. The
retrieved surface state values were determined by forward execution of the model ﬁsing retrieved
parameter values. While spec.:traI albedo estimates are Highly accurate (below 0.5% relative error),
small errors are evident in fAPAR (up to 10%) and CPE estimates (up to 11%). Of particular
importance are Cases 7, 10, 11, 17 and 21. Despite significant errors in retrieved parameters, the

surface state variables are well estimated in these cases.
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Figure 5.1b. Comparison of retrieved and actual spectral albedo for red wavelength cases. Black bars
represent retrieved values, hatched bars represent actual values. Case descriptions are given in Table
5.1.
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- Figure 5.1c. Same as Figure 5.1b, but for fAPAR.
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Figure 5.1d. Same as Figure 5.1b, but for canopy photosynthetic efficiency (CPE).

Relative errors in retrieved parameters at NIR wavelengths are shown in Figure 5.2a. Soil

reflectance (16 to 67% relative error) is systematically overestimated in all cases since scattering by




leaves dominates TOC reflectance. This is a result of the relative difference in leaf and soil albedo.
The difficulty in accurately retrieving NIR soil reflectance is well documented [Goel and Thompson,
' 1984a; 1984c]. The remaining parameters are generally retrieved to within 5% of their correct values.
As might be expected, cases which are problematic in the red are similarly problematic in the NIR.
Specifically, a near normal solar incidence and the use of an incorrect LAD produce the largest errors.
While a near Inormal solar incidence yields‘ an LAI overestimation of 23% in the red, an underestimation

of 27% occurs in the NIR.
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Differences in the NIR spectral albedo and fraction of absorbed radiation (fANIR) are shown in
Figures 5.2b-c. The retrieved spectral albedo values are highly accurate (below 1% relative error) in all
cases while fANIR estimates are generally reasonable. The worst case, in which a uniform LAD is

incorrectly assumed (planophile is correct), produces a 38% relative error.

SPECTRAL ALBEDO

CASE NUMBER

‘Figure 5.2b. Comparison of retrieved and actual NIR spectral albedo for NIR wavelength cases. Black
bars represent retrieved values, cross-hatched bars represent actual values. Case descriptions are given -
in Table 5.2.
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Figure 5.2c. Same as Figure 5.2b, but for fANIR.
B. Solution Dependence on Sampling Geometry

Presently, reflectance data at equal angular increments of 15° zenith and 45° azimuth are not
“available from satellite borne instruments. Therefore, model invertibility With sampling geometries of
existing and planned satellite systems wés assessed. Three geometries were investigated here: the
planned Multi-angle Imaging SpectroRadiometer (MISR) [Diner et al., 1989] sampling geometry in the
principal azimuthal plane (i.e., nine VZAs in the plaﬁe defined by the sun, target, and target zenith),
the MISR geometry in the orthogonal plane (vertical plane perpendicular to the principal plane), and
the afternoon sampling geometries of the NOAA-11 AVHRR. The latter were realized for a nine day
period and an earth target at 40° N latitude. The view angles were in and around the principal plane.

For this study, only the red and NIR base cases were considered.
While the AVHRR sensor is advantageous due to its large view angles, daily sampling, and

current operational mode, the necessity of using samples collected over multiple days is not ideal.
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Indeed, the temi)oral invariance of a true canopy is neither certain nor expected. Moreover, the

minimum Ground- Instantaneous Field Of View (GIFOV) of 1.2 km? may' result in sﬁbpixel

-heterogeneity for which a i-D model cannot ac'c<.)unt. While a unique SZA should apply to each"
sample, a single value (30°) was used here. The use of multiple SZAs has been shown to improve

results [Goel et al., 1984], however canopies exhibiting heliotropism may violate the assumption of

temporal invariance [Kimes and Kirshner, 1983].

Figure 5.3a (red wavelengths) shows relative errors in the retrieved parameters for the
sampling geometries. Although errors are low (< 5%) for both geometries, they are lower for the
MISR geometry in the principal plane compared to the full hemisphere geometry. This probably
occurs because TOC reflectance is most characteristic in the principal plane [Kuusk, 1991a]. Thus,
additional samples off the principal plane may have a negative effect by decreasing the per-sample
information content. It is not surprising then that errors are largest (up to 50% relative) for the MISR
geometry perpendicular to the principal plane. Finally, the AVHRR geometry produces reasonably

small errors (less than 8% relative).
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Figure 5.3a. Relative errors in base case inversions at red wavelengths using
sampling geometries representing equal angular increments of 15° zenith and 45°

azimuth (FULL), MISR view zenith angles in the principal plane (MISR PP),
MISR view zenith angles perpendicular to the principal plane (MISR 90), and 9
days of NOAA-11 AVHRR afternoon passes (AVHRR).




Differences between correct and retrieved spectral albedo, fAPAR and CPE values are shown in
Figures 5.3b-d. Surface states parameters appear to be more stable than the canopy parameters as
evidenced by their relatively small erfors (less than 5%). Excluding the MISR geometry perpendicular

to the principal plane, all relative errors are below 1%.
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Figure 5.3b. Retrieved and actual spectral albedo at red wavelengths for different sampling geometries.
Descriptions of sampling geometries are as in Figure 5.3a. Black bars represent retrieved values,
hatched bars represent actual values. :
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Figure 5.3c. Same as in Figure 5.3b, but for fAPAR.
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Figure 5.3d. Same as Figure 5.3b, but for canopy photosynthetic efficiency (CPE).




Relative deviations in canopy parameters at NIR are shown in Figure 5.4a. As in Section A,
soil ;eﬂéctance is overestimated (up to 17%). Again, sampling perpendicular to the principal plane
results in the largest errors. However, excludi.ng soil reflectance; all elfors are below 10% for all
~ geometries. Excluding the MISR geometry perpendicular to the principal plane, errors are below 2%.
As shown in Figures 5.4b and 5.4c, NIR spectral albedo and absorbed radiation are retrieved with high

accuracy (less than 1% relative error) for all sampling geometries.
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Figure 5.4a. Relative errors in retrieved parameters at NIR wavelengths using different sampling
geometries. "FULL" denotes equal angular increments of 15° zenith and 45° azimuth, "MISR PP"
denotes MISR view zenith angles in the principal plane, "MISR 90PP" denotes MISR view zenith
angles in the orthogonal plane, and "AVHRR" denotes nine days of NOAA-11 AVHRR afternoon
passes.
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Figure 5.4b. Retrieved and actual spectral albedo at NIR wavelengths for different sampling

geometries. Descriptions of sampling geometries are as in Figure 5.4a. Black bars represent retrieved
values, hatched bars represent actual values.
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Figure 5.4c. Same as Figure 5.4b, but for fANIR.




C. Effects of Noise in Reflectance Data

In an inversion problem, model parameters may be‘excessively sensitive to the reflectance
values [Goel, 1988]. In this case, small errors in measured reflectance may result in large errors in
retrieved parameters. To assess this possibility with CANTEQ, random gaussian noise was added to
synthetic reflectance data for the base éases. Relative noise levels of 2- to 10% variance, at 2%
increments, were tested. The mean value of the noise was zero. The model was inverted for 30
realizations of noise at each level and at each wavelength.

Mean errors in the retrieved parameters at red wavelengths are shown in Figures 5.5a-g. All
parameters except leaf transmittance are overestimated. The hot spot parameter and soil reflectance are
the most adversely affected by the noise. As the model was found to be least sensitive to these
parameters in the sensitivity study, this result is expected. Relative errors in leaf optical properties and
LAI remain below 7% for all noise levels. These are, respectively, the parameters to which the model
was most sensitive in the sensitivity study. Leaf reflectance, with a maximum error of less than 2%,
is retrieved most éccurately. In general, errors increase with increasing noise.

The one standard deviation confidence intervals express the sensitivity of the retrieved values
to different realizations of noise at a given level. Only the leaf transmittance confidence intervals
increase sieadily (gfeater uncertainty) with increasing noise. Trends for other parameterst are ﬁot
obvious. Leaf reflectance (<9%) and the hot spot parameter (<85%) produce the smallest and largest
confidence intervals, respectively. Although thé model was found to be least sensitive to the hot spot
parameter in the sensitivity study, the results suggest that the hot spot parameter and leaf reflectance
errors may be correlated. This is plausible since strong backscattering may be due to either high leaf
reflectance (an optical property) or a large hot spot parameter (a structural property), or both.
Therefore, these parameters may not be independent for inversion purposes.

The mean retrieved fAPAR values are slightly overestimated. All mean errors are less than
3%. (less than 1% if the 2% noise level is ignored). The relative invariance of the surface state

parameters, despite large errors in some canopy parameters, is consistent with the sensitivity and
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sampling geometry results. Spectral albedo is consistently underestimated, however all mean errors are

less than 0.5%. The confidence intervals bound errors between +2.5%.
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Figure 5.5a-g. Mean relative errors and standard deviations of retrieved model and surface state
parameters at red wavelengths. Note the ordinate scales differ.
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As with inversions at red wavelengths, most parameter estimates at NIR exceed the t1"ue
pérameter valueé (Figures 5.6a-g). Only leaf transmittance and soil reflectance are underestimated.
Meém.relativé-error's in LAT and leaf optical properties are less than 10%. Mean relative errérs in soil
reflectance and the hot spot parameter are up to 18% and 43%, respectively. As with results at red
wavelengths, the NIR results are somewhat predictable based on the sensitivity study. For instance,
the leaf transmittance and reflectance errors are comparable in the NIR, but the reflectance errors are
substéntially lower than the transmittance errors in the red. This was suggested by the model's
significantly greater sensitivity to leaf reflectance at red but not at NIR. The increase in errors with
increasing noise is more obvious in the NIR results. Moreover, the widening of the éonﬁdence
intervals with increasing noise occurs for all parameters. Only the confidence intervals for the leaf
optical properties are reasonable (<26%). Limits for all other parameters exceed 50%. The largest

intervals occur for LAI and the hot spot parameter. This follows from the sensitivity study which

suggested the model was least sensitive to these parameters for base case conditions.
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Similar to those at red wavelengths, errors in surface state parameters at NIR are small. Both

fANIR and spectral albedo are upderesﬁmated; Mean fANIR errors are below 15% for all noise levels,
and bélow 8% through 8% noise. The cbnﬁdence intervals for this parameter are significant—up to
100% relative error for 10% noise. The mean errors in spectral albedo are less than 1% for all noise
levels. The confidence intervals remain below 3% error. There is no clear correlation of errors in
surface state parameters with parameter errors.

In general, these results suggest that LAI is most accurately retrieved from red reflectance data.
Indeed, although the mean errors are comparable between the two wavelengths, the standard deviations
are significantly greater in the NIR. Goel and Strebel [1983] corroborate this result for thin canopies.
. Note that since noise levels were relative, their absolute magnitudes were larger in the NIR. Thus,
poorer results in NIR were expected. In addition, NIR wavelengths may be preferable for inversions
with data from optically thicker canopies. Note that a relatively bright soil was used in this study, yet
Goel et al. [1984] found that a darker soil is preferable for the retrieval of LAI in the NIR. Although
the results for the hot spot parameter are less clear, the red wavelength inversions appear more reliable.
The preferential use of red reflectance data for the retrieval of structural properties (e.g., the hot spot
parameter and LAI) is corroborated by Kuusk [1991a].

*  These results suggest that, for up to 10% gaussian noise in the reflectance data, most
parameters may be retrieved to within a reasonable érror (7% atred, 10% at NIR). The relative stability
of the leaf optical propertigs agrees with results found by Goel et al. [1984]. Accuracy of the hot spot
parameter and soil reflectance appears to be rhost vulnerable to‘ noise at both wavelengths. The largest
mean errors for these parameters are below 23% in the red and 43% in the NIR The surface state
variables appear to be more stable than the canopy parameters and apparently can be retrieved with high
accuracy (<3% for all parameters except fANIR). However, because red reflectance from vegetation is
signiﬁcantly' lower than NIR reflectance, the signal-to-noise ratio may be lower at red wavelengths for

empirical data.




D. Conclusions

The invertibility of the disérete ordinates model was shown for typical conditions using
synthetic, noise-free data. In general, solutions were reasonably accurate except for cases of high LAI,
low SZA and incorrect LAD specification. Soil reflectance was systematically overestimated at NIR
wavelengths. Even for cases with incorrect solutions, estimates of spectral albedo, absorbed radiétion
and canopy photosynthetic efficiency were accurate. Inversions using data collected under satellite
sampling schemes were reasonably accurate in most cases. The only exception was the case of
orthogonal plane samples. Principal plane samples resulted in the most accurate solutions. Again,
soil reflectance was overestimated at NIR wavelengths.

Effects of gaussian noise in empirical data were also tested.. Parameters to which TOC
reflectance was least sensitive were retrieved least accurately. Parameters to which reflectance was most
sensitive were retrieved with less than 10% relative error for noise of 10% relative-variance. Surface

state parameters remained accurate for all noise levels.
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CHAPTER VI

DESCRIPTION OF FIELD DATA

Results in Chapter V demonstrate that CANTEQ is invertible under most conditions with
noise free data. Moreover, most parameters can be retrieved with reasonable accuracy when moderately
noisy data exist. In building toward the goal of inversions with satellite data, inversions were
attempted with data from The First ISLSCP Field Experiment (FIFE). DISORD, for which CANTEQ

is a limiting case, was used through the remainder of this study.

A. FIFE Description

FIFE was a five year, international study of a grassland climate and ecosystem [Sellers et al.,

1988]. The experiment was conducted on a 15 km x 15 km site near Manhattan, Kansas (39° 0'
* latitude, 96° 3' longitude) (Figure 6.1). The Konza Prairie Long Term Ecdlogical Research (KPL.TER)
afea (3487 ﬁecﬁres), for \.vhich previous and continuing records are available, constituted the northwest
corner of the FIFE site. The Konza area consisted mainly of native tallgrass prairie vegetation. It is
owned by The Nature Conservency and managed by Kansas State University_ with support from the
National Science Foundation. The remainder of the FIFE site was privately held and consisted mostly
of grazed and burned grassland. To a reasonable degree, the terrain was flat (50 m elevation), had

natural homogeneous vegetative cover, and had strong climatic forcing.




Figure 6.1. Thematic land cover map of FIFE area.




FIFE included the coordinéted measurement of soil, canopy and atmospheric parameters via
ground, aircraft and space-borne detectors. Four Intensive Field Campaigns ﬂFCs)—peﬂodg in which
ongoing data collection was augmeﬁted with more comprehensive measureinents—were conducted in
1987. In an effort to measure canopy "dry down" conditions, an additional IFC was conducted in
August, 1989. Only data from 1989 were used in this study with ground-based radiometer data
(Chapters VII and VII). Site 916 (4439-ECV), located near the center of the FIFE area, was ghosen for
this investigation (see Figure 6.1). This choice was based on the relatively moist conditions,
availability of extensive ancillary data, and comprehensive radiometric measurements. Site 916
underwent a prescribed burning in the spring of 1989 to eliminate dead vegetation from previous years.
This resulted in a comparatively dense canopy over the summer months. The predominate vegetation
included three C4 grasses: little bluestem (Andropogon scoparius Michx), big bluestem (Andropogon
gerardii Vitmin), and indian grass (Sorghastrum mutan L. Nash). The site was not grazed or cultivated.

The soil was of the Dwight Series.
B. Reflectance Data Description

Initial inversions utilized reflectance data from a Modular Multiband Radiometer (MMR;
Barnes Engineering Co., Stamford, CT). These data were collected by a team from the University of
Nebraska [Walter-Shea et al., 1992]. MMR data were chosen based on the availabilit)" of independent
leaf, soil and TOC reflectance measurements. The MMR had seven bands in the shortwave spectrum
(0.45-0.52, 0.52-0.60, 0.63-0.69, 0.76-0.90, 1.15-1.30, 1.55-1.75, and 2.08-2.35 pm). It had a 15°
instantaneous field of view (IFOV) and was mounted approximately 3.5 m off the ground. This
resulted in a GIFOV of about 0.75 m? at nadir.

A circle of six 3 m x 3 m plots was defined at site 916. Five of the plots were left intact and
sampled for TOC reflectance. The sixth was razed with a string trimmer to expose bare soil. Root
systems and stem stubble were left intact. The MMR sampled each of the plots at seven VZAs in the

principal plane (Figure 6.2). Zenith angle uncertainty was +2° and azimuthal angle uncertainty was

54




£10°. Typically, three samples were collected at each angle. In this study, all samples at a given VZA

and SZA were averaged.

OO
© 500 20°

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Reflectance

Figure 6.2. Sampling geometry of the FIFE ground MMR instrument. The plane of the paper
represents the principal plane, and the radial lines represent view zenith angles. The dark (light) shaded
region depicts the band 4 NIR (band 3 red) reflectance as determined through forward modeling. The
solar zenith angle was 30°.

The MMR boom and housing shadowed the target area at some sun-target-sensor geometriés.
Thus, all data were checked, via trigonometric analysis, for shadow contamination. Contaminated

samples were eliminated from further consideration.
C. Determination of Model Parameters from In Situ Data

For a site-specific sensitivity analysis and model validation, it was necessary to determine
model parameter values from in situ data. As only LAI was measured for the actual mixed canopy (vs.
per species), the determination of other parameters required an averaging scheme. This task was

complicated by the absence of data for some species. The process used is described below.
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FIFE investigators recorded species abundance at 15 plots using the modified Daubenmire

" method [Abrams and Hulbert, 19.87]. Species with less than 5% live green cover in a plot were not '

recorded. In the present study, mean species abundances were determined and normalized. The resulting
fractions were considered the site abundances. Species with abundance < 2% were disregarded. The
remaining eight species and their site abundances are given in Table 6.1.

Table 6.1. Normalized species abundances used to determine canopy parameters at site 916. Species

with less than 2% abundance were disregarded. Rows without data indicate species for which measured
property data were not available.

Leaf Optical
Species Site Means Properties Leaf Angles

Little bluestem 0.240 0.331

Big bluestem 0.222 0.306 0.493
Indian grass 0.157 0.216 0.349
Purple love grass 0.152

Blue gramma 0.051

Switchgrass 0.047 0.065 0.105
Lead plant 0.035 0.048

Inland ironweed 0.024 0.033 0.054

Of the eight species, leaf optical data were available for six species and LAD data were
available for four. Abundance fractions were therefore summed and renormalized for both parameters
(Table 6.1). Mean canopy values were determined through an abundance-weighted averaging of species
data. When multiple sample sets existed, data obtained closest in time to 4-8 August 1989 (or during
the same period of plant life) were use&.' Leaf optical properties were determined by combining both
abaxial and adaxial data for green leaves. Yellow leaf data were not used since these data were not
available for every species and since dead leaf LAI << green leaf LAI. The zenith LAD was determined
by weighting the fraction of a species' leaves occupying each zenith angle bin by that species’ fractional
abundance. The resulting distribution was then used to determine the Beta coefficients (1(8), v(9)).
The HSP parameter was specified with a reasonable value based on previous studies [Stewart, 1990].

Mean parameter values are reported in Table 6.2. The LAIT value is the green leaf average from
five destructive samples. LAD results suggest the canopy was predominately ere(;tophile with a mean

tilt angle of 65.1°. This result agrees well with values determined via inverse optical methods [Welles




and Norman, 1991]. Although azimuthal LAD data were collected, a uniform distribution was assumed

“here.

Table 6.2. Means and standard deviations of spectrally-variant parameters at site 916 in early August,
1989. Spectrally-invariant parameter values were {LAIL W(®), v(8)} = {1.94 £ 0.61, 0.860 £ 0.063,
2.244 + 0.368}. The standard deviation of LAI was determined from site 916 data; remaining values
were determined from all available data.

P T

Band m o u G
1 0.101 0.026 0.041 0.021
2 0.174 0.036 0.144 0.041
3 0.097 0.050 0.053 0.054
4 0.452 0.032 0.490 0.038
5 0.424 0.059 0.510 0.051
6 0.320 0.046 0.436 0.048
7 0.252 0.082 0.318 0.067

D. Determination of Irradiance Parameter

Because diffuse irradiance was assumed to be isotropic throughout this study, the ratio (y) of
direct-to-total irradiance was sufficient to specify the irradiance distribution. However, Y cduld not be
directly evaluated for MMR bands from FIFE data sets. Therefore, the 5S radiative transfer model
[Tanré et al., 1990] was used. The 5S model was configured with atmospheric data from FIFE.
Specifically, the column water vapor, ozone abundance and aerosol optical depth were determined from
sun photometer and radiosonde data. Values were updated for each MMR data set. The thermodynamic
profile was determined from the US62 standard atmosphere, and a continental aerosol distribution was
assumed. The MMR band sensitivities were assumed constant over the full band, half power (FBHP)
wavelengths. Results indicate that 7y increases with wavelength while its variance decreases (Figure
6.3). This suggests that spectrally-independent parameters may be more accurately retrieved at longer

wavelengths.




Calculated for 64 MMR Data Sets
26 July — 08 August 1989
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Ratio of Direct to Total Irradiance

0.48 0.56 0.66 0.83 1.23 1.65 2.22
Wavelength (um)

Figure 6.3. Means and standard deviations of ¥ with wavelength for 64 measurement periods during
IFC-5. Note values are given for the center wavelengths of MMR bands. The abscissa scale is not
linear.

E. Conclusions

Data from a ground-based MMR instrument were used for model inversions. The MMR had
seven bands over the visible and NIR wavelengths. Since MMR data were collected for leaf optical
properties, soil reflectance and TOC reflectance, validation of retrieved solutions will be possible.
MMR data from site 916, gatheréd during IFC-5, will be used exclusively for subsequent inversions.
This site was burned during the spring of the year but was not grazed. Compared to other sites, this
site maintained a thicker canopy through the summer in part due to fortuitous precipitation events.

Site 916 parameters were determined by weighting in situ data for individual species by the
species fractional abundances. Estimates of leaf tilt angle were consistent with values determined via

inverse optical methods. The fraction (y) of direct-to-total irradiance could not be determined from

MMR measurements. Thus, values were estimated using a radiative transfer model and measured
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atmospheric properties (ozone, precipitable water and aerosol optical depth). Mean values of vy
increased and variance decreased with increasing wavelength. These results suggest that spectrally

invariant surface parameters may be estimated more accurately from inversions with data from longer

wavelengths.
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CHAPTER VII
A LOWER BOUNDARY CONDITION FOR THE FIFE CANOPY MODEL

As shown in Chapter V, the TOC reflectance for thin canopies may be strongly impacted by
soil reflectance. To determine whether a Lambertian (1 parameter) or anisotropic (6 parameter) lower
boundary condition is most appropriate for conditions at site 916, a separate study of soil reflectance

was conducted.
A. Background

The effects of soil reflectance anisotropy on TOC reflectance were initially investigated by
Kimes and his colleagues [Kimes et gl., 1980; Kimes, 1983; Kimes et al., 1985]. Kimes [1983] noted
that sparse canopies (< 30% ground cover) exhibit greater reflectance van’ability with changing SZAs
than do complete canopies. The reflectance of a sparse canopy is characterized by a strong backscatter
peak in the retro-solar direction for low SZA. This was attributed to the high gap probability at small
SZAs and the strong backscatter of the comparatively bright soil at red wavelengths. The TOC
reflectance decreases substantially with increasing VZA since the gap probability decreases. Kimes
[1983] further noted that a sparse canopy behaves similarly to a complete canopy at high SZAs since
the gap probability for the solar irradiance decreases. This reduces the impact of soil reflectance over all
view angles. Soil effects are less noticeable in the NIR since soil reflectance is significantly lower
than vegetation reflectance at these wavelengths.

The initial attempts to model a sparse canopy with anisotropic soil reflectance were by Kimes
et al. [1985b]. This effort involved using a simple analytical model [Walthall et al., 1982] as the

lower boundary of a ray-tracing canopy model [Kimes and Kirchner, 1982]. Through the systematic




analysis of scatteriﬁg components, Kimes et al. [1985] were able to attribute net reﬂéctance
characteﬁsti;:s to uhderlying_ mechanisms. Similar,relétibnship§ weré reported by Codper and Smith
‘[1985], Qho used a Monte Carlo model, and by Norman et al. [1985], who coupléd the Cupid
vegetation model to a simple, shadow-based soil model.
Despite these pioneering efforts, few studies on thin canopy reflectance have been reported.
For example, the dependence of TOC reflectance on soil reflectance anisotropy for different
wévelengths, canopies, and soils has not beén systematically addressed. The variance of TOC
- reflectance with soil moisture has also been neglected. In fact, errors in canopy reflectance cansed by
the assumption of a Lambertian soil have yet to be quantified. Ii seems reasonable that, under some

conditions, a Lambertian soil assumption may be suitable.
B. Soil Model Description

As noted in Chapter III, soil reflectance in DISORD may be treated as Lambertian or
anisotropic. The anisotropic model [Jacquemoud et al., 1992] is a 6-parameter extension of thé Hapke
model for planetary regoliths [Hapke, 1981]. The model uses two—térm Legendre polynomials to
approximate the backscatter (b, c¢) and forward scatter (b’, ¢') regimes of the phése function. A
roughness parameter (&) allows increased reﬂectaﬁce in the retro-solar direction to simulate a hot spot.

The lone physical parameter is the soil single scattering albedo (®g). This parameter varies with

wavelength and soil moisture.
C. Errors With A Lambertian Seil Assumption

The effects of soil reflectance anisotropy on TOC reflectance were gauged at different LAI
levels by comparing synthetic TOC reflectance determined over Lambertian and anisotropic’soil
models. The anisotropic soil model was specified with parameter values obtained for a rough clayey

soil [Jacquemoud et al., 1992]. Single scattering albedo values for slightly moist conditions were used.
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The SZA was set to 30°. To determine the appropriate Lambertian reflectance for comparison, the

anisotro;;ic reflectance was sampled in 26 directions—evenly spaced—over the upper hemisphere. The

. Lambertian reflectance determined by a least squares fit of tﬁe anisotropic reflectance was used. All
canopy and irradiance parameters, excluding the varying LAI, were set to values encountered at site 916
(Table 6.2). Although turbid medium models are not well suited for thin canopy conditions, low LAI
values were included so that general trends would be obvious.

Errors in red TOC reflectance caused by Lambertian soil reflectance are shown in Figure 7.1.
Most notable is the large reflectance deficit in the retro-solar direction. Strong backscattering (hot spot)
in true soil reflectance leads to this effect [Kimes, 1983]. Naturally, this effect is most pronounced at
low LAI values and decreases as the canopy path length increases with LAI. Equally predictable is the
overestimation of forward scattering since actual soil reflectance decreases markedly in the forward
directions [Kimes, 1983]. These effects do not occur for some smooth soils [Jacquemoud et al., 1992].
Finally, the decrease in errors with increasing VZA (forward or backward) illustrates the effects of

increasing path length on upwelling radiance.
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Figure 7.1. Error in top-of-canopy reflectance at red wavelengths due to a Lambertian (vs. anisotropic)
soil model. LAI increments are 0.5 for 0.5 < LAI < 5.0, and 2.5 for 5.0 < LAI < 10.0. The SZA was’
-30°.

Errors for NIR reflectance are similar (Figure 7.2). Although absolute errors in NIR are

slightly larger than in red, they are significantly smaller relativq to the canopy reflectance. This can be

"explained by the differences in soil and vegetation spectra. While vegetation acts primarily as an
absorber over the relatively bright soil at red wavelengths, vegetation is typicélly brighter in the NIR.

In addition, high multiple scattering in the canopy moderates the impact of soil reflectance anisotropy

at NIR wavelengths.
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Figure 7.2. Same as Figure 7.1, but at NIR wavelengths.

Therefore, substantial errors in TOC reflectance may occur with Lambertian soil reflectors in

low LAI conditions. Relative errors are largest at red wavelengths (up to 58% for thc_a cases
investigated). The view angles at which the maximum errors occur depend on the specified Lambertian
' rgﬂectance and_ SZA, but appear to be independent of LAL In the cases shéwn, errors are greatest in the
retro-solar direction. Errors decrease with VZA. As LAI increases, errors decrease and become
negligible over all view angles for an LAI near 10.0. This value is significantly greater than the

previously reported value of about 3.0 [Cooper and Smith, 1985; Goel, 1988].
D. Sensitivity of TOC Reflectance to Seil Parameters
Since LAI measurements indicated the mean green LAI at site 916 was about 1.94 (accounting

for about 80% of the above-ground biomass), an anisotropic soil model was necessary to accurately

model the site 916 conditions.




At least six canopy parameters may be successfully retrieved in a DISORD inversion
assuming a Lambertian soil (see Chapter V). However, the potential addition of six parameters for soil .
| aniéotropic :reﬂectance meant DISORD would contain 11 adjustable parameters. To avoid
overdetermination of the data, the parameter set was reduced. As shown in Chapter V, parameters
producing the greatest change in TOC reflectance for small perturbations (analogous to the largest
partial derivatives) are the same parametérs that can be most accurately retrieved via model inversion.
In contrast, parameters producing minimal changes may be fixed without significant loss of accuracy.
A sensitivity study of the simulated FIFE canopy was conducted to determine which, if any,
of the soil model parameters may be fixed. The site 916 canopy was simulated using measured
parameter values (see Table 6.2). Model estimates compared favorably to measured data, despite the
limitations of the turbid medium approximation at low LAL A "baseline" TOC reflectance distribution
was therefore computed using the clayey soil model [Jacquemoud et al., 1992] as a lower boundary.
The reflectance was sampled at seven VZA in the principal plane (coincident with directions used in
MMR sampling). Next, each soil and canopy parameter was berturbed in turn by 10% of its imposed
range, both posiﬁvely and negatively. Parameter ranges were based either on theoretical or empirical
information but generally defined reasonable limits. For each perturbation, the sensitivity (S) of the

model to the perturbation was recorded, where

100, 7.1

and,

) 7
RMS = «\/ ;}Z(Rj - RE»2, (72)
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where R? is the baseline reflectance in direction j, R; is the geometrically-analogous reflectance of the

perturbed distribution, and Rﬁ? is the mean baseline reflectance. This exercise was repeated for three

S.ZAs‘(30, 45 and 60°) and two wavélengths (red and NIR). '

Sensitivity values for the soil parameters are shown in Tables 7.1 and 7.2. Results suggest
that wg produces approximately twice the effect of any other soil parameter. This trend occurs for all
SZA and both wavelengths. The greater impact of soil reﬂectanée at red wavelengths, compared to
NIR, is consistent with Figures 7.1 and 7.2. The soil roughness and phase function parameters {4, b,
¢, b', ¢'} produce significantly smaller changes. Sensitivity values for these parameters were nearly

always lower than those produced by canopy parameters.

Table 7.1. Sensitivity (S) of TOC reflectance in band 3 (red) to perturbations in soil model parameters.
Values are shown for three SZAs.

30° 45° 60°

o 13652 10234 . 5356
h 0468 ~ 0.375 0.206
b 7.911 5.825 3.262
c 6.825 5.187 3.125
b’ 6.246 3.426 1.977
c' 4.127 3.287 1.236

Table 7.2. Same as Table 7.1, but for band 4 (NIR_).

30° 45° 60°

5.612 4.453 3.014
0.341 0.283 0.208
2.852 2.095 1.342
1.313 0.874 0.460
2.475 1.663 1.054
¢ 0.795 0.531 0.018

S G*wme

E. Invariance of Soil Roughness and Phase Function Parameters

Based on the results above, the soil roughness and phase function parameters {#, b, ¢, b, ¢}
were held constant for the DISORD inversions. Determination of appropriate values was complicated

by the wide range of conditions (spectral bands, solar angles and moisture levels) over which the values

.
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must apply. The determination of unique values for .each condition was considered impractical and
' Operationglly unrealistic.

If the roilghness paraineter truly desﬁbes the rbughness of the so.il, this paraméter should be
independent of wavelength, solar direction and moisture content. The same may not apply to the phase
function parameters. However, upon extensive inversion studies with laboratory reflectance data,
Jacquemoud et al. [1992] concluded that the set {A, b, ¢, b, ¢'} is invariant for a given soil. This was
attributed to the dependence of these parameters on the refractive indices (real part) and the low spectral
dependence of these indices. This claim does not require that any single parameter be invariant over
these conditions, only that the set remain approximately constant.

Note that these conclusions were not derived theoretically, but were based on experimental
evidence. Moreover, the parameter independence with soil moisture was invalid for smooth soils—
particularly those with high clay content—since these soils exhibit a large specular effect near

saturation, but a decreased specular effect and increased backscatter with drying.
F. MMR Soil Reflectance Data

As described in Chapter VI, one of the six MMR plots at site 916 was cleared of vegetation
and sampled for soil reflectance. Soil data from five days (26-28 July; 4 and 8 August, 1989) were used
in the present study. Characteristics of the data are given in Table 7.3. Although burn residue covered
" the soil in the late spring and early summer [Forrest Hall, personal communication], the soil surface

probably reached a steady reflectance state by August [John Norman, personal communication].

Table 7.3. Characteristics of soil reflectance data. FIFE data are from site 916, plowed field data are
from Kimes et al. [1985], and remaining data are from Van Leeuwen and Huete [1993].

View Azimuth Spectral Instrument
Data Set VZA (®) Planes (°) Bands SZA (®) IFOV (®)
HIFE soil -50, -35, -20, 0, 20, 35, 50 0 7 20-60 15
plowed field -75 to 75, every 15 0-135, every 45 2 26, 30, 45 12
crust -48, -37, -25, -12, 0, 0,90 46 37,38 15
11, 24, 35, 46 (approx.)
dry sand 1 same ) same same 28,27 same
dry sand 2 same same same 28,25 same
gravel same same same 24,23 same
wet sand same same same © 24,26 same
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Moisture data, obtained from gravimetric measurements in the top 5 cm of subéﬁate, show
two drying évents over this p'er.iod (sée Figure 7.3). The average moisture decreased from 36;%; on 26
July to 26% on 28 July, and from 36% on 4 August to 25% on 8 August. To approximate beneath-
canopy moisture conditions, the bare soil plot was covered with plastic mulch between measurement
days. The mulch allowed the penetration of moisture but hindered the regrowth of vegetation. This .
mulch was removed in the morning before measurements began. However it was not, as a rule,
replaced after each measurement. Thus, the exposed soil was subject to accelerated drying on

measurement days [Blaine Blad, personal communication];
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Figure 7.3. Variation of soil moisture at FIFE site 916 during IFC-5. Asterisks (*) indicate moisture
levels for dates used in this study.




G. Accounting for Diffuse Irradiance in Soil Model

As the reflectance data (R;) of Jacquemoud et al. [1992] were collected under laborator);

conditions, there was no need to account for diffuse irradiance in the calculation of R}k (Equation 2.5).

When compared to field data, however, R}‘ must account for diffuse irradiance. If this correction is not

.

included, retrieved parameter sets would embody information on both the soil and the illumination
conditions and hence not be atmospherically invariant.

Although natural diffuse irradiance is anisotropic, an isotropic formulation was developed for
this study. The scheme utilized an equally-weighted quadrature procedure to determine the additional
reflectance for each R;-‘. Due to its isotropic nature, this parameterization depended only on the fraction
of direct-to-total irradiance, ¥.

The effect of diffuse irradiance on principal plane reflectance is shown in Figure 7.4 for a
clayey soil. The magnitude of the hot spot decreases due to the reduction in direct irradiance.
Furthermore, scattering in the forward domain increases due to backscattering of diffuse irradiance. The
general effect of increased diffuse irradiance is to make surface reflectance more Lambertian. Indeed, if
the direct component is reduced to zero such that all irradiance is diffuse (as might exist on a cloudy
day), the angular reflectance over the principal plane is nearly constant. These results are consistent

with those of Irons et al. [1992], who used a geometrical optics soil model.
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Figure 7.4. Change in principal plane reflectance of soil with 7y (ratio of direct-to-total irradiance).
Ordinate values represent deviations from the reflectance for 100% direct irradiance (straight lme)
Diffuse irradiance was isotropic. The SZA was -30°.

H. Inversion Problem Configuration

Due to the dependence of ®s on moisture level and wavelength, the soil model was inverted by

adjusting the parameter set {®g 1, ..., Ws N, A, b, ¢, b’, c’}, where N represents the number of
independent spectral and temporal data sets. The use of multiple values of ®g but single values of &, b,
¢, b', and ¢'reflects the reported spectral/moisture variance (invariance) of the respective parameters.
Upon t.esting different optimization routines, the quasi-Newton algoﬁthm EO4JAF [Numerical
Algorithms Group, 1990] was found to be most efficient with the soil model. This routine requires
specification of initial parameter values. As there currently is no way to verify if and when
optimization algorithms have found global minimizers (vs. local minimizers), the starting position

was prescribed randomly 50 times. One non-random initialization utilized the reported values for




clayey soils [Jacquembud et al., 1992]. The minimizer that resulted in the lowest merit function value

(Equation 2.5) was cbnsidered the global minimizer and recorded.
1. Use of Parameter Constraints

Although parameter constraints were not employed by Jacquemoud et al. {1992], they were
necessary in this study to prevent errant results. Specifically, without parameter limits, the model
occasionally yielded negative reflectance estimates. To demonstrate the impact of constraints, the
model was inverted twice with a set of seven MMR samples. In the first case, the pérameters were
effectively unconstrained. In the second case, the parameters were constrained with the values in Table
7.4. As shown in Figure 7.5, the estimates of principal plane reflectance by the inversion solutions
are very similar. Howe\;er, the unconstrained solution produces some negative estimates in the
orthogonal plane (Figure 7.6). This suggests parameter limits can be used to ensure reasonable

reflectance in all directions.

. Table 7.4. Parameter constraints imposed for inversions.

Parameter Lower Upper
o5 0.01 1.0
h 0.00 2.0
b -2.0 2.0
c -2.0 2.0
b’ -2.0 2.0
¢ -2.0 2.0
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The limits in Table 7.4 were imposed after a review of Jacquemoud et al.'s [1992] results and

some experimentation. Nevertheless, since the roughness and phase function parameters are not

physical properties, limits on their values are somewhat arbitrary.
J. Inversion Results

Inversions were conducted in three configurations: 1) a single band at a single solar angle, 2)
seven bands together at a single solar angle (denoted "7BAND"), and 3) all bands and solar angles
together (denoted "ALLDATA"). For increased readability, inversion results determined ﬁsing the
diffuse irradiance approximation are denoted "DIFF", while those determined without the approximation

are denoted "NODIFF". The quality of the model fit is indicated by the RMS error,

RMS = , | (7.3)

where €2 is the merit function value from Equation (2.5) with unit weights, n is the number of sample

points, and p is the number of parameters adjusted in the inversion (p =N + 5). The variables pandn

change according to the problem configuration. The values are noted in each case.

Inversions Using Single Bands

Initially, the model was inverted separately for each MMR band at each solar angle. This
condition required the determination of six parameters (p) from seven reflectance samples (n). Data sets
with shadowed samples were excluded since non-linear least squares problems (Equation 2.5) are not
well determined when n= p [Goel, 1988]. Thus, for the five measurement days, only 10 of the 16

available data sets were used.
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First, the model was inverted using the diffuse irradiance approximation. This effectively

" decreased the gradients of the merit function such that minimization proceeded relatively stowly. This

.fdilows from Figure 7.4 and the cémments in Secﬁon G. The mean retrieved values and their standard
deviations are shown in Table 7.5. Clearly, the mean parameter values are inconsistent over different
bands. Also, the standard deviations are large with respect to the imposed parameter ranges (Table 7.4).
Finally, although the RMS differences are rather small, they increase with wavelength. This is
probably due to the decrease in bdiffuse irradiance and the consequent increase in reflectance anisotropy

with increasing wavelength (Figures 6.3 and 7.4).
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A second set of inversions was conducted without the diffuse irradiance approximation. The
inversions proceeded relatively quickly. Results are shown in Table 7.5. Although some parameters
are more consistent over the.differevnt bands (e.g., & and b), others remain incoﬁsistent. Furthermore,
inconsistency within bands is evident from the large standard deviations. In general, mean parameter
values are greater for the NODIFF results. For the roughness parameter 4, this implies a smoother
surface. This is predictable since a smoother surface tends to have icss backscattering and more forward
scattering—the same effects produced by diffuse irradiance (Figure 7.4). Finally, the mean RMS valués
are the same as for the DIFF cases.

To assess the spectral independence of the solutions, the solutions determined from band 7
inversions (DIFF and NODIFF) were used to fit band 1 data for the same SZA. 'i‘hese bands were
chosen for comparison since they represent the extremes in wavelength and since local spectral

~ absorption peaks are produced by different molecules (Fe-O charge transfers and H>O absorption,

respectively). The latter consideration reduces bias due to molecularly-corrélated behavior. In this

comparison, the spectrally-dependent @, was readjusted for the best fit. Results are shown in Figure
7.7 for a low SZA (27.4°) and low soil moisture (26%) case. The hot spot area is underestimated while
the forward scattering is overestimated by ‘both solutions. Errors are slightly’ worse for the DIFF
soluﬁon. Furthermore, the backscatter decreases markedly at large VZAs for both solutions.
Subjective observation of all data sets suggests that a reflectance increase in this region is more
plausible. These results imply that, for the given inversion configuration, retrieved splutions are not

spectrally independent.
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Figure 7.7. Fit of MMR band 1 data (asterisks) in the principal plane using band 7 solutions obtained
with(out) the diffuse irradiance parameterization. The data and solutions were obtained at SZA = 27.4°,

Inversions Using All Bands (TBAND)

A possible reason for the inconsistent results above is the poor determination of the least
squares problem (a six parameter function determined by seven samples). The samplé size can be
significantly increased by inverting all seven MMR bands simultaneously [Jacquemoud et al., 1992].
In this scenario, a single set of roughness and phase function parameters are adjusted with seven o
variables (one per MMR band). This tacitly assumes the spectral independence of the roughness and
phase function parameters. In this study, 49 safnples (n) were fit with a 12 parameter (p) model. This
oversampling permitted the use of data sets with a sample excluded due to shadow contamination.

Inversions with the diffuse approximation resulted in two non-convergent cases. The mean
results for the remaining 14 cases are shown in Table 7.5. The variance of the phase function

parameters decreases markedly compared to the single band results. However, the variance of the
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‘ . foughness parameter is essentially unchanged. The mean RMS error (0.004) is close to the average .of
the single band céses.

All 16 cases converged in the NODIFF case. Mean resulis are shown in Table 7.5. Althoilgh
the standard deviations are lower than for the single band inversions, >the values are larger than for the
7BAND DIFF case. The single exception is the roughness parameter. Unlike the DIFF case, the mean
parameter values are similar to the mean values retrieved in the single band inversions. This supports

the spectral independence hypothesis (Section E). Again, the RMS error is 0.004.

To assess their dependence on SZA, the solutions (DIFF and NODIFF) for the data at SZA =

58.1° (soil moisture = 36%) were used to estimate the data obtained at SZA = 27.4° (soil moisture =
26%). Again, g was readjusted for a best fit. Results are shown in Figure 7.8. As the DIFF
solution deviates strongly from the measured data, the paraﬁleter set clearly does not embody the
fundamental scattering nature 6f the soil. Thus, the solution is source angle dependent. The NODIFF
solution produces a more reasonable fit. Still, the hot spot is underestimated and the forward scattering
is overestimated. Moreover, the backscatter at high VZA appears excessive. This may result from the
non-independence of soil roughness and phase function effects. Specifically, both may produce
increased retro-solar reflectance. Contrary to the findings of Jacquemoud et al. [1992], the comparisons

here suggest the solutions vary with illumination angle and/or soil moisture.
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Figure 7.8. Fit of MMR band 1 data (asterisks) in the principal plane using 7BAND solutions
obtained with(out) the diffuse irradiance parameterization. The data were obtained at SZA = 27.4°, and
the solutions were obtained from data at SZA = 58.1°.

Inversions Using All Data (ALLDATA)

'fo simplify inversions of the coupled canopy model, a universal set of soil parameters—
applicable over all conditions—is desired. Thus, the above results are still unsatisfactory.
Nevertheless, the results suggest that a more diverse data set decreases a soluﬁon's dependence on
sampling conditions. A logical extension is to includg all samples (multiple bands, solar angles, and
soil moisture levels) in a single inversion. This configuration should allow better discrimination
between scattering mechanisms (e.g., backscatter vs. hot spot effects). Moreover, the minimization
problem will be highly overdetermined—an advantageous situation given the limited MMR sampling.
This generalization also follows Jacquemoud et al. [1992].

To reduce the likelihood of a solar angle bias, some data sets were eliminated so that the

resulting SZA distribution would be reasonably even. Specifically, data at three SZAs per 10° interval
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between 20 and 60° were used. Data sets with shaded samples were not included when possible. The

result was a system of 84 data sets (n = 560 unshaded samples) and 89 independent parameters {w;.j,

. Ws84. 1, b, ¢, b', '} (). The inversion was initialized 30 times using randomly chosen sets and the
clayey soil solution of Jacquemoud et al. {1992].

Inversions were first attempted using the diffuse irradiance approximation. After more than
100 hours of CPU time (Silicon Graphics Indigb), only 12 of the 30 inversions were completed. The
lowest RMS solution is reported in Table 7.5. Clearly the parameter values deviate from the 7BAND
values. The RMS error is greater than those of the 7BAND and single band inversions. This reflects
the more diverse data set used in the inversion.

In contrast to the DIFF cases, all NODIFF cases converged. The solution résulting in the
lowest RMS error is shown in Table 7.5. Most of the retrieved values are outside the range of the
mean values found in the single and 7BAND inversions. However, they are within the one standard
deviation intervals. The RMS error again equals that obtained in the DIFF case.

To test the generality of the results, reflectances were calculated for 27.4 and 58.1° SZAs
using both solutions (DIFF and NODIFF). Comparisons of model results with empirical data are
shown in Figures 7.9 (band 1, SZA = 27.4°, soil moisture = 26%) and 7.10 (band 7, SZA = 58.1°, soil
moisture = 36%). The NODIFF solution again produced a better fit (Figure 7.9). While thg hot spot
is underestimated and the forward reflectance is éverestimated, the maximum errdr is less than 10%
relative. Comparing Figures 7.8 and 7.9, it is also clear that the ALLDATA solution is an
improvement over the 7BAND solution. Again, the DIFF solution does not exhibit a hot spot,
although forward scattering is reasonably approximated. In Figure 7.10, the énors are significantly
smaller for both solutions. The ALLDATA NODIFF results in Figures 7.9 and 7.10 are representative
of those for other bands, solar angles and moisture levels. A comparison of all measured and modeled
reflectances (560 points) used in the ALLDATA NODIFF inversion is shown in Figure 7.11. The
mean of the absolute values of errors is 0.006 (3.5%). Based on these results, the 'NODIFF

ALLDATA solution was used for inversions of the coupled canopy model. Mean values of ®; for the

NODIFF case are shown in Table 7.6.




Table 7.6. Means and standard deviations of @ for the NODIFF ALLDATA case.

Band B - o
<1 0.091 0.095
2 0.205 0.046
3 0.259 0.061
4 0.347 0.091
5 0.490 0.132
6 0.603 0.099
7 0.652 0.099
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. Figure 7.9. Fit of MMR band 1 data (asterisks) in the principal plane using ALLDATA solutions
obtained with(out) the diffuse irradiance parameterization. The data were obtained at SZA = 27.4°, and
the solutions were obtained over all SZA.
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Figure 7.10. Same as Figure 7.9, except data were obtained in band 7 and at SZA = 58.1°.
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Figure 7.11. Comparison of measured data with model estimates from the ALLDATA solution. The
560 samples are from 7 spectral bands, 7 VZA, and 12 SZA. The 1-to-1 line is shown. .




K. Comments on the Diffuse Irradiance Approximation

Although the diffuse.irradiance approximation was expected to consistently improve results,
its usefulness appears dependent on ¥ and/or SZA. In Figure 7.9, the atmosphere is relatively
transparent (Y= 0.842). Although both the DIFF and NODIFF solutions fit the empirical data
reasonably well in the forward scattering region, only the NODIFF solution exhibits a definite hot
spot. In fact, the DIFF solution increases continuously with view angle in the backscatter region. The
absence of a hot spot strongly limits the usefulne’ss of this solution in low. SZA cases. Results are
worse for the 7TBAND DIFF case (Figure 7.8). Differences are minimal at high SZAs, however (Figure
7.10).

Sometimes, the DIFF solutions provide a better ﬁt‘(Figure 7.12). In this thick atmospheric
condition (y= 0.600, SZA = ‘58.1°), the two estimates of the data are comparable (')vex; most of the
principal plane. In fact, the DIFF solution exhibits a better fit at high forward scattering angles. The

cases in which DIFF solutions are better appear limited to those in which 1y is low (~0.6).
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Figure 7.12. Fit of MMR band 1 data (asterisks) in the principal plane using ALLDATA solutions
obtained with(out) the diffuse irradiance parameterization. The data were obtained at SZA = 58.1°, and
the solutions were obtained over all SZA. Conditions represent the most turbid atmosphere (lowest 7)
realized during measurements on five days.

Unfortunately, the diffuse approximation substantially increases optimization time. This may
result from a decrease in merit function variance. Specifically, if diffuse irradiance decreases the
reflectance anisotropy, the sensitivity of ieﬂectanée to soil parameters also decreases (Figure 7.4). This
reduces the variance in the merit function, resulting in longer optimization times. The isotropic
irradiance assumption may have resulted in these problems. Regardless, thevparameterization proved

unbeneficial in this study.
L. Model Validity in Directions Absent of Data

The results above demonstrate that inversion solutions depend on the sampling illumination

angles (see Figure 7.8). The solutions may likewise depend on the sampling viewing angles. Indeed,
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because FIFE MMR sampling was restricted to seven VZA in the principal plane, the validity of the
" solutions could not be ascertained for directions off the principal plane. Moreover, the accuracy of the
solutions for VZA > 50° is unknown. Thus, in an effort to validate the ALLDATA solution, the

effects of limited sampling geometries are investigated below.

Comparisons with Solutions from Non-FIFE Data

Assuming most soils scatter similarly, the validity of the ALLDATA solution can be
investigated by comparing it to solutions found with non-FIFE data. Although Jacquemoud et al.
[1992] utilized a comprehensive set of illumination and view angles, a comparison with their results is
not straightforward since MMR measurements were made in the field while those of Jacquemoud et al.
[1992] were made in the laboratory.

However, data from Kimes et al. [1985] data were gathered over a plowed field and thus
contain effects from diffuse irradiance. Moreover, like the data in Jacquemoud et al. [1992], they were
gathered in multiple azimuthal planes and over a lax;ge range of VZAs (see Table 7.3). In the study
below, Kimes data gathered at three SZAs (26, 30 and 45°) in the red (0.58 - 0.68 um) and NIR (0.73 -
1.1 um) bands weré used. For discussion purposes, an ALLDATA solution determined with the Kimes
et al. [1985] data is denoted "KIMES" while the ALLDATA MMR solution (see Table 7.5) and clayey
soil solution from J acquemouﬂ et al. [1992] are denoted "MMR" and "JAC", respectively.

In this experiment, MMR data gathered at 27.4 and 58.1° SZA were fit with the KIMES and
JAC solutions by adjusting ®;. All other parameters from the respective solutions remained fixed. The
diffuse irradiance parameterization was only used with the JAC solution since it was determined from
laboratory-measured data. Despite some differences in shape, all three curves depict the general features
in the data (Figures 7.13 and 7.14). All show a significant hot spot and relatively low forward
scattering. Still, the KIMES and JAC solutions show greater anisotropy. Burn residue at site 916
may be responsible for the more Lambertian nature of the MMR data’ [Forrest Hall, personal

communication].
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Figure 7.13. Comparison of solutions determined from different data sets to MMR band 1 data
(asterisks) in the principal plane. The MMR data were obtained at SZA = 27.4°, and the solutions were
obtained over all SZA.
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Figure 7.14. Same as Figure 7.13, except MMR data obtained at SZA = 58.1°,
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' Allowing that the three curves produce similar behayior in the principal plane, the MMR
solution off the principal plane'can be assessed l;y again comparing the behavior of the three solutions.
Orthogonal plane reflectance (band 1) for the same two solar angles are shown in Figures 7.15 and
7.16. Differences in the mean trends are obvious. Specifically, the MMR reflectance is nearly
constant for SZA = 27.4° while the KIMES and JAC solﬁtions show decreasing reflectance with
increasing VZA. For SZA = 58.1°, the MMR solution produces increasing reflectance with VZA. The

KIMES and JAC solutions, however, sliow nearly constant reflectance.
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Figure 7.15. Comparison of solutions shown in Figure 7.13, but in the orthogonal plane.
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Figure 7.16. Comparison of solutions shown in Figure 7.14, but in the orthogonal plane.

Further comparison is possible using reflectance data from an arid region [Van Leeuwen and
Huete, 1993]. The measured surfaces included crusty soil, dry and wet sand, and gravel. Although data
at only one SZA per surface were available, the reflectance was sampled at multiple VZA in both the
principal and orthogonal planes (Table 7.3). However, the lack of high VZA data (> 50°) is notable.
The data were gathered in 46 spectral bands from 450 to 900 nm. Again, ALLDATA solutions were fit
to MMR band 1 data (SZA = 27.4°) by adjusting ®. Pﬁncipal plane fits are shown in Figure 7.17.
Considering the vastly different surfaces, the estimates are reasonable. In particular, the crust, dry sand
and gravel solutions show distinct hot spots. However, the dry sand solutions produce strong
backscatter at high VZA whereas other solutions produce more modest backscatter. A decrease in
forward scattering is exhibited by all solutions, yet at very high forward VZA, most of the solutions
show increasing reflectance. The absence of ;amples at high VZA prevents validation in this region.

Finally, the decorrelation of the wet sand solution from the others is evident.
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Figure 7.17. Comparisoh of solutions determined for arid surfaces to MMR band 1 data in the
principal plane. The MMR data were obtained at SZA = 27.4°, and the solutions were obtained at
different SZA.

The Qrthogonal plane feflectance is shown in Figure 7.18. Most solutions show slightly
decreasing reflectance to about VZA = 45°, followed by sharp increases. This general behavior is
similar to the MMR solution (Figure 7.15), although the reflectance increases at a greater rate for some
arid soil solutions. Recall the arid soil data were not sampled at large VZAs (> 50°), howeyer. Thus,
the accuracy of the model reflectance at these angles is uncertain. The wet sand results again differ from

those of the other surfaces.
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Figure 7.18. Comparison of solutions shown in Figure 7.17, for the orthogonal plane.

Solution Dependence on Sampling Scheme

The above results suggest that the validity of the MMR solution is questionable for some
directions (VZA > 50° or orthogonal plane). However, some differences between the various solutions
are due to surface differences. To estimate errors due strictly to MMR sampling geémetry, the Kimes
et al. [1985] data were subsampled to geometrically resemble MMR data. First, samples off the
principal plane were eliminated. The reduced data sets contained 11 samples per band per solar anglg.

Samples suspected of shadow contamination ‘were eliminated as before. Inversions were conducted

using data from both bands and all SZA simultaneously (denoted "KIMES2"). Next, measurements at

VZA > 50° were also eliminated. The resulting data sets (7 samples each) were used in independent
inversions of each band and SZA (denoted "KIMES3").
Principal plane estimates of the Kimes data (SZA = 30°) are shown in Figure 7.19. The

KIMES and KIMES?2 solutions produce reasonable estimates over all VZA (the sample at -30° was not
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used since shadow contamination was suspected). The KIMES3 solution produces reasonable
estimates, although it exhibits strong forward scattering at high VZA and appears to overestimate the
hot spot. The similarity of the KIMES3 solution to the arid surface solutions (Figure 7.17) at large

VZA suggests systematic model behavior in these directions when no data are available.
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Figure 7.19. Comparison of solutions determined from plowed field data under different sampling
schemes to plowed field data in the principal plane. The data were obtained at SZA = 30°, and the
solutions were obtained at different SZA.

Results in the orthogonal plane (Figure 7.20) differ significantly. Again, the KIMES
solution produces a reasonable fit. However, the KIMES2 solution underestimates the data—the
magnitude of error increases with VZA. Greater errors are exhibited by the KIMES3 solqtion which
shows increasing reflectance with VZA. The similarity of the KIMES3 result here and the MMR
results in Figures 7.15 and 7.16 suggests that the orthogonal plane behavior for the MMR solution

may have resulted from the limited sample sets. This éupports the hypothesis that large increases in_
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reflectance at high VZA, as shown by the arid surface solutions (Figure 7.18), result from model

inversions without data in the that region.
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Figure 7.20. Same as Figure 7.19, but for the orthogonal plane.
M. Discussion of Errors

Several sources of errors have been identified that may have affected the MMR results. The
reported view angles were accurate to £10° azimuti; and £2.0° zenith. Also, as noted in the data set
documentation, some variable cloud cover could have caused calibration differences since incoming
radiation measurements were not simultancous with surface measurements. As discussed in Section K,
the isotropy assumption in the diffuse irradiance formulation introduces some inaccuracy—possibly
more than the inaccuracy of neglecting diffuse irradiance.

As shown in Section L, the limited angular sampling of the MMR data may have contributed

the largest errors. Not only might this affect the spectral, solar angle and soil moisture invariance of




thé inversion solutions, it may have led to unreliable reflectance estifnates off the principal plane.
Comprehensive sampling may be a greater issue with semi-physically-based models (e.g., the soil
.model) than §vith physically-based models, since CANTEQ was successfully inverted using just nine
principal plane samples (Chapter V).

Finally, since shaded samples could only occur near the solar direction, the shadow filter may
bias the results. Specifically, nadir and forward scattering regions were better sampled than the
backscatter region. Thus, forward scattering characteristics would have a greater effect on the parameter
values. Furthermore; the trigonometric filter does not eliminate the effects of shading since diffuse

irradiance is incident from all directions.
N. Conclusions

Simulations with Lambertian and anisotropic backgrounds revealed that anisotropic soil
reflectance affects TOC reflectance for relatively thick (LAI < 8) canopies. Errors were greatest (and
negative) in the 'retro-sol,ar direction. Thus, anisotropic soil reflectance was deemed necessary for
accurate modeling of FIFE conditions. Comparisons for different levels of 'y suggested that reflectance
anisotropy decreases with increasing atmospheric turbidity. A sensitivity study suggested that TOC
reﬂectancé (LAl = 1.9) was about twice as sensitive to single scattering albedo as it was to qther soil
parameters.

Inversions were conducted with FIFE soil data. Soil parameters that were reportedly
spectrally-invariant were shown to depend on the data sets used for inversion. However, a relatively
invariant solution was determined using data representing a wide range of spectral, SZA and soil
moisture conditions. In this case, the mean of the absolute values of reflectance errors was 0.006
(3.5%). An investigation of data sampling geometries was also conducted. Results showed that
solutions determined with this soil model may not be accurate for directions in which data are absent

during inversion.
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Finally, ‘a diffuse irradiance approximation was added to the soil model. However, this

: approximatidn did not improve inversion results. Moreover, optimization times increased substantially

when this approximation was used. This occurs since soil reflectance becomes less sensitive to model

parameters as diffuse irradiance increases.




CHAPTER VIII
POINT INVERSIONS OF THE FIFE CANOPY MODEL

In the following experiments, DISORD was inverted with TOC reflectance data. Only data
gathered on 4 August and 8 August 1989 were used. No rainfall occured during this period, and canopy
parameters were assumed constant. DISORD was used in 1-D mode with isotropic diffuse irradiance.
The fraction of direct-to-total irradiance (y) was agajn determined with the 5S model. Despite
uncertainty in the accuracy of its non-principal plane behavior, the ALLDATA soil solution from
Chapter VII was used to specify the lower boundary condition. After filtering the data for shadow
contamination, 23 complete data sets (each defined by seven samples at a given plot and SZA)

remained. The range of SZAs for the data was 20 to 60°.
A. Validation of Coupled Model

A partial validation of the coupled (soil + canopy) model was attempted by comparing
DISORD reflectance estimates to MMR TOC data. Mean parameter values (Table 6.2) were used
together with mean atmospheric properties. Representative plots of red (band 3) and NIR (band 4)
reflectance are shown in Figures 8.1 and 8.2. Both TOC and soil reflectance data are shown with model
output. Although the model overestimates the red reflectance (absohite errors < 0.02), the differences
may be due to soil effects. Specifically, the range of soil reﬂeqiance at some angles is more than twice
the magnitude of the canopy reflectance. This large variability is probably due to moisture differences.
A bright soil may substantially increase TOC reflectance, especially in canopies with high gap

probabilities. Since turbid medium theory does not account for canopy gaps, the model may

underestimate red reflectance. The NIR estimates (Figure 8.2) are within the range of the empirical data




for all view angles. Although the soil reflectance variability is similar in absolute units to that at red

'wavelengths, it is lower relative to the canopy reflectance. Therefore, its impact is reduced (see Chapter
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Figure 8.1. Comparison of measured and modeled TOC reflectance in principal plane. Reflectances
" was determined for band 3 (red) at SZA = 60°. Measured parameter values (Table 6.2) were used.

Squares ([1 ) represent TOC data and pluses (+) represent soil data. SZA of measured data were within
+4.5° of 60°.
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Figure 8.2. Same as Figure 8.1, but for band 4 (NIR) and SZA = 30°. The SZA of measured data were
within £2.5° of 30°. '

These comparisons suggest that the method of determining soil and canopy parameters was
reasonable and that the model is able to simulate the canopy reflectance with good accuracy. The latter

condition is imperative to the success of the inversion problem.
B. Model Sensitivity Study

Although a general sensitivity study was conducted with CANTEQ (Chapter IV), a new
sensitivity was required with DISORD due to thé change in soil reflectance (Lambertian vs.
anisotropic) and LAD (idealized vs. continuous Beta distribution). Moreover, while CANTEQ
sensitivity was determined for arbitrary canopies, the following study is catered to conditions at site

916.
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The sensitivity study procedure was similar to that used for the soil model, except that the
ALLDATA NODIFF solution (Chapter V]I)' was used rather than the clayey soil solution. Canopy
paranieters were assigned values as detemﬁned from in situ measurements (Table 6.2). In cases where a
10% perturbation exceeded theoretical bparameter limits, a 5% perturbation was used and the sensitivity
value was doubled. Although y was determined by 5S throughout this ;tudy (see Chapter VI), it was
included here to assess the impact of errors in its determination.

Sensitivity values (S), found using Equation (7.1), are given in Table 8.1. TOC reflectance is
most sensitive to leaf reflectance at both wavelengths. This agrees with results in Chapter IV. This
sensitivity increases notably with SZA in the red band. Since leaves strongly absorb red photons, a
_ higher SZA results in a larger path optical depth. The increased path depth decreases the impact of
parameters for which the reflectance of a semi-infinite canopy is not sensitive (i.e., soil parameters and
LAI). Lower leaf absorption in the NIR results in a smaller effect with SZA. Sensitivity to leaf
transmittance is substantially less than to leaf reflectance in the red, however it provides nearly the
same effect as leaf reflectance in the NIR. This also agrees with previous findings (Chapter IV).. The
sensitivity to leaf transmittance at red also increases significantly with SZA. The sensitivity increases
most sharply at high SZAs due to changes in TOC forward scattering. Since leaf albedo is relatively

high at NIR, there is significant multiple scattering. Hence, changes in leaf transmittance have less

effect on forward scattering at these wavelengths.
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Table 8.1. Sensitivity (S, from Equation 7.1) of TOC reflectance in principal plane to parameter
perturbations. Perturbations equaled 10% of the theoretical or practical ranges. Columns represent
different SZAs (30, 45 and ‘60°) at two wavelengths (red and NIR). Thin lines separate atmospheric,
soil and vegetation parameters, respectively. 7 is the direct-to-total irradiance ratio, A is the soil -
- roughness parameter, b, ¢, b', and ¢’ are soil phase function parameters, s is the soil single scattering
albedo, HSP is the canopy hot spot parameter, p and 1 are leaf reflectance and transmittance, and pL(6),
v(8), (), and v(¢) are coefficients of the LAD. Base case parameter values are given in Table 6.2.

Red (Band 3) NIR (Band 4)

Parameter 30° 45° &60° 30° 45° 60°

Y 6.95 6.66 5.92 1.80 2.36 3.02
h 0.46 0.41 0.27 0.36 0.31 0.25
b 8.68 6.08 2.50 341 2.49 1.59
c 7.92 5.56 2.20 1.77 1.08 0.39
b 6.57 3.98 2.02 2.90 1.99 1.34
c 491 3.93 1.90 1.08 0.71 0.27
O 14.86 10.66 5.15 6.42 5.19 3.82
HSP - 2.73 3.08 1.17 1.00 1.11 0.42
p 60.67 71.44 82.34 23.60 24.15 24.33
T 19.12 28.78 46.57 18.68 19.86 21.38
NE)) 4.62 4.09 5.26 10.10 7.74 7.18
v(6) 1.87 2.45 3.33 3.81 2.57 2.32
() 0.75 - 093 2.66 2.14 2.41 2.87
v(9) 1.74 1.01 2.88 427 4.02 433
LAl 22.54 22.11 18.08 20.72 20.16 18.09

Relative to the sensitivities to the leaf optical properties, the sensitivity to LAI is
significantly lower at red than at NIR. To a lesser degree, this also occurred in Chapter IV‘ results.
Due to high lez;f absorption, the éanopy behaves optically semi-infinite at a lower LAI for red photons.
Hence, reflectance becomes relatively insensitive to perturbations in optical depth (LAI). In contrast to
leaf optical properties, the sensitivity to LAI decreases with increasing SZA. This results from the
increased path optical depth as discussed above. This result differs from that in Goel and Strebel
[1983], where sensitivity to LAI increased with SZA. The fourth most influential parameter at red is
s, the impact of which decr;:ases with increasing SZA. At NIR, the LAD parameter u(6) is fourth
and o is fifth. The relative brightness of the soil with respect to the canopy causes the differences in
parameter sensitivity order between the wavelengths. The sensitivity to the remaining parameters is
not significantly different for either wavelength.

For model inversions, one set of adjustable parameters—influential over every band and solar
angle combination—was desired. The model clearly is sensitive to the set {p, T, LAL @} at both

wavelengths. Although the model is rather sensitive to t(0) at NIR, its sensitivity to ((8) at red is
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less than its sensitivity to b, ¢, b', and ¢’ for low SZAs. Nevertheless, 1(8) was kept variable and b, c,

b', and ¢’ were fixed. This decision was based both on the sensitivity results and on the results of

-Jacquemoud et al. [1992]. The latter suggested that {A, b, c, b’, c'} are essentially invariant with soil
moisture and wavelength. Since LAD depends on two parameters (#(0) and v(8)), both parameters
were included in the adjustable set. Thus, for inversion purposes, the set {LAI, p, T, t(6), v(8), o}
remained adjustable and the set {h, b, ¢, b’, ¢', t(®), v(0)} was fixed. Note the adjustable sgt contains

parameters of both vegetation and soil.
C. Inversion Problem Configuration

Inversions were conducted individually for each of the séven spectral bands and 23 data sets.
Thus, seven samples (unique' VZAs) were used to determine six parameters. This inve.rsion
configuration was used based on the redundancy in sampling (each sample represents an average of three
measurements), the clarity of the atmosphere, and the high information content in the principal plane
(see Chapter V). Equation (2.5) was minimized using a simplex routine (subroutin_e AMOEBA, [Press
et al., 1986]).

To avoid unrealistic results, parameter limits were imposed. The broad rangeé were based on
both theory (0 < ®g < 1) and expected results (LAI < 10). The initial AMOEBA simplexes spanned
the parameter space but were not necessarily the optimal choices. The AMOEBA rou;ine was modiﬁed
to permit variable expansion coefficients such that all vertex movements fell within the allowed
parameter space. Minimization was terminated when the merit function values (Equation 2.5) of all
vertices were to within 10°7. This was found to be a reasonable value in the investigation of
optimization routines (Chapter IV). The procedure was restarted once after the initial convergence to
avoid local minima trapping. Restart simplexes featured one vertex at the original solution and the

remaining vertices extending out from the solution along the respective parameter axes.




D. Inversion Results

»

Spectral Band and Solar Angle Analysis

Comprehensive analysis of retrieved parameters is possible due to the diverse set of spectral
bands and solar angles used. To achieve reasonable statistical significance, SZAs were binned either
above or below 40° (approximately the center of the range). Solutions with LAI < 0.1 were eliminated
since this condition precludes a reasonable determination of any model parameter. It is assumed that
spectral vegetation indices could ascertain whether the target LAI is above this value. The number of
cases averaged per band and SZA combination is given in Table 8.2.

Table 8.2. Mean errors (with mean relative errors in parentheses) and standard deviations in retrieved

leaf reflectance as a function of band and SZA. Measured values (p,) are also shown. The numbers of
samples used to generate means are shown next to standard deviations.

SZA < 40° SZA > 40°
Band Po ME (MRE) o no. ME (MRE) (] no.
1 0.101 0.052 (51.5) 0.020 13 0.022 (21.8) 0.007 10
2 0.174 0.100 (57.5) 0.049 10 0.027 (15.5) 0.044 9
3 0.097 0.071(73.2)  0.031 13 0.053 (54.6) 0.042 9
4 0.452 0.084 (18.6) 0.079 13 0.002 (04) 0.033 10
5 0.424 0.054 (12.7) 0.061 13 -0.015 (-3.5) 0.031 10
6 0.320 0.138 (43.1) 0.125 10 -0.006 (-1.9) 0.066 10
7 0.252 -0.115 (-45.6) 0.043 13 -0.113 (-44.8) 0.019 10
Results are indicated as mean errors (ME) and mean relative errors (MRE, in %), where
1 ¥
ME=N_Z(Pi-Po), (8.1)
i=1 . .
and
N .
MRE =1 Y Fi-Po) 440 82)
N
Py

i=1
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where P, is the measured parameter value, P; is the retrievéd parameter value for data set 7, and N is the
* number of data sets.

| Errors in leaf reflectance Qere lowest at h.igh SZA (’f‘able 8.2). Except for band 3, the standard
deviations were also lower at high SZA. These observations are consistent with the sensitivity
analysis which showed an increased model sensitivity to leaf reflectance with increasing SZA (Table
8.1). They are also consistent with results in Chapter V. This suggests that leaf reflectance is best
estimated when the path optical depth forb irradiance is large. A large path depth increases photon
interaction within the canopy and reduces interaction with the soil. Thus, errors introduced by an
incorrectly determined background or LAI are reduced. Leaf reflectance errors are lowest (< 0.006,
1.9%) in the NIR (bands 4 and 6). This may be due to the greater magnitude of canopy reflectance
relative to soil reflectance at NIR. This increases the effective signa1~t9-noise ratio.

Leaf transmittance, in contrast, is most accurately estimated at high SZA for visible bands,
but at low SZA for NIR bands (Table 8.3). These trends are predictable given the spectra of soil and
vegetation. When the background is relatively bright (as in the visible), results are most accurate when
it receives little irradiance (i.e., long path depth due t(; high SZA). The large increase in model
sensitivity to T with increasing SZA at red (Table 8.1) is consistent with these results. When the
background is comparatively dark (NIR), soil effects on TOC reflectance are small and hence canopy
downwelling transmittance (soil irradiance) is less important. Thys, although the NIR sensitivity to T
increases with SZA (Table 8.1), it is much less significant than for red. These trends also are
consistent with previous results (see Chapter V). The standard deviations are generally lower for all
bands at high SZAs. This trend may also be caused by the high sensitivity of canopy forwérd

scattering to leaf transmittance at high SZA.

102




Table 8.3. Mean errors (with mean relative errors in parentheses) and standard deviations in retrieved
leaf transmittance as a function of band and SZA. Measured values (1,) are also shown.

SZA <40° - SZA > 40°
Band To ME (MRE) o ME (MRE) o]
1 0.041 -0.015 (-36.6) 0.037 0.009 (21.9) 0.012
2 0.144 -0.028 (-19.4) 0.061 -0.018 (12.5) 0.031
3 0.053 -0.013 (-24.5) 0.067 0.012.(22.6) 0.023
4 0.490 -0.026 (-5.3) . 0.078 -0.047 (-9.6) 0.042
5 0.510 0.010 (1.9) 0.057 -0.015 (-2.9) 0.056
6 0.436 0.041 (9.4) 0.054 0.060 (13.7) 0.061
7 0.318 -0.021 (-6.6) 0.130 -0.114 (35.8): 0.036

Errors in o, (Table 8.4) are not well correlated with SZA, although standard deviations are
mostly lower for low SZAs. The absence of a clear trend with SZA is surprising given the greater
sensitivity of TOC reflectance to soil at low SZAs. Nevertheless, a comparison of modeled soil
reflectance using the retrieved @y is revealing (Figure 8.3). The modeled soil spectrum closely follows
the vegetation spectrum for , retrieved at high SZAs. The modeled soil speétrum closely follows the
measured soil spectrum for ®; retrieved at low SZAs. This shows that the inversion correctly adjusts
o to "background” spectral behavior for low SZAs, but that it decouples wg from background
reflectance for high SZAs. Referring again to Table 8.4, estimates of mg are low for all bands .at low
SZAs. The overestimation of leaf reflectance at low SZAs undoubtedly leads to this systematic
" deviation. Still, it must be reiterated that the "measured” g, values were not determined from direct
measurements (see Chapter VII), and hence may not be correct. In addition, the similarity of ’the soil
from which the measured parameters were determined to the below-canopy soil is not known. Canopy
litter was present in the latter case [Dave Schimel, personal communication] which may have impacted
results. Soil moisture also may have differed. The relatively low sensitivity of the coupled model

(Table 8.1) to soil parameters underscores the difficulty in retrieving soil information from TOC data.
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Table 8.4. Mean errors (with mean relative errors in parentheses) and standard deviations in retrieved
@ as a function of band and SZA. Measured values (®g,) are also shown.

SZA < 40° : SZA > 40°
D50 ME (MRE) ME (MRE)

0.091 -0.043 (-47.3) 0.111 (122.0)
0.205 -0.129 (-62.9) 0.084 (41.0)
0.259 -0.098 (-37.8) -0.050 (-19.3)
0.347 -0.084 (-24.2) 0.262 (75.5)
0.490 -0.124 (-25.3) 0.206 (42.0)
0.603 -0.170 (-28.2) -0.086 (-14.3)
0.652 -0.202 (-31.0) -0.208 (-31.9
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Figure 8.3. Nadir reflectance from the soil model using @ retrieved from canopy model inversions.

Diamonds (¢) represent soil reflectance as measured by MMR at nadir, and asterisks (*) represent
equivalent TOC reflectance. Solid line shows soil model reflectance for w; retrieved at high SZA.

Dashed line shows the equivalent for o, retrieved at low SZA.

The retrieved LAI as a function of SZA and spectral band is shown in Figures 8.4a-g and
Table 8.5. The dashed lines (Figures 8.4a-g) represent the mean measured LAI. Several trends are
noticeable. First, the means and standard deviations of the errors generally increase with SZA. This is

consistent with the sensitivity analysis (Table 8.1) which showed that the model's sensitivity to LAI




decreases with increasing SZA. This results from a longer path length for irradiance with increasing
SZA.l However, this result is contrary to that of Goel and Strebel [1983]. The best LAI estimates are
pfovided by bands 4 and 5 at .low SZAs, wheré the mean errors are less. than 0.16 '(8.1%) and the
standard deviations are less than 0.35. This error is well within the uncertainty of the measured value.
The consistency in bands 4 and 5 is obvious in Figures 8.4d-e. This also follows from the sensitivity
study, since the sensitivity to LAI at NIR exceeded the seﬁsitivity to LAI at red, relative to other
parameters. The preferencé of NIR bands for LAI retrieval has been reported in several studies‘ [e.g.,
Goel and Strebel, 1983]. The superiority stems from the lower leaf absorption at NIR wavelengths.
Lower leaf absorption results a greater LAI range for which the canopy behaves optically finite.
Excluding outliers in both bands 1 and 3, the visible bands (1-3) consistently underestimate LAI by a

small amount for low SZA.

Table 8.5. Mean errors (with mean relative errors in parentheses) and standard deviations in retrieved
LAI as a function of band and SZA. The measured LAI value was 1.94 £ 0.61.

SZA < 40° SZA > 40°
Band ME (MRE) c ME (MRE) c
1 0.225 (11.6) 2.382 1.006 (51.9) 1.632
2 -0.641 (-33.0) 0.524 0.466 (24.0) 1.914
3 0.044 (2.3) 2.894 -1.045 (-53.9) 0.658
4 0.157 (8.1) 0.347 5103 (263.0)  2.587
5 -0.068 (-3.5) 0.331 2.484 (128.0) 3.547
6 -0.590 (-30.4) 2.110 1.027 (52.9) 4.266
7 1.845 (95.1) 3.759 -0.828 (42.7) 0.395
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Figure 8.4. Retrieved LAI as a function of spectral band (ordered sequentially from left to right, top to
bottom) and SZA. Horizontal dotted line indicates mean measured LAI. Vertical line partitions SZA
bins. The accuracy and consistency of inversions with NIR bands (4 and 5) at low SZA is apparent.
For graphing purposes, values greater than 5.0 were set equal to 5.0.
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To determine the most accurate estimation of LAD, the 2 statistic was employed [Press et

al., 1986],

10
f; - £i)?

X = — (8.3)
=1 fT + fj

where f; is the estimated fraction of leaf normals in zenith angle bin j, and f; is the measured fraction.
The estimated values were determined at the bin centers and normalized. The estimated distribution is
closest to the measured distribution when xz is lowest. The mean estimates of 1(8) and v(8), their
standard deviations, and the associated 2 values are given in Table 8.6. High SZAs produce the most
accurate estimates for all bands. This may be due to the increased reflectance anisotropy with SZA and
the impact of the LAD on that anisotropy. The best estimates are from NIR bands 4 and 5 (32 = 0.037
and 0.008, respectively); Note the latter value is an order of magnitude lower than all others. The
average LAD from these two bands (%2 = 0.020) matches the true distribution well (Figure 8.5). Band -
5 at high SZAs also produces the least variance in y(8), although v(6) is more consistently estimated
in other bgnds. Bands 4 and 5 also produce relatively accurate estimates at low SZAs. The preference
of NIR bands for the estimation of the LAD is obvious from the sensitivity study results (Table 8.1).
Relative to leaf optical properties, the sensitiyity to LAD parameters is much greater at NIR
wavelengths. Note the NIR sensitivity decreases slightly with increasing SZA. This explains the lack
of a strong dependence on SZA in the NIR inversion results. The opposite sensitivity trend with SZA

occurs at red (Table 8.1); an SZA dependence is evident in visible band results (Table 8.6).
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Table 8.6. Mean errors and standard deviations in retrieved LAD parameters (1(6), v(0)) as a function
of spectral band and SZA. Errors in LAD are characterized by x2: lower values indicate fits closer to
the measured distribution. The measured values were {1(9), v(8)} = {0.860 + 0.063, 2.244 + 0.368}..

SZA < 40°
(8) v(8)

Band ME

1 2.554
2 1.801
3
4
5
6
7

1.907
0.964
1.261
2.451
2.293

SZA > 40°
v(0)

Band ME o] ME

1 0.373 0.395 2.115
2 -0.190 0.392 1.724
3
4
5
6
7

0.212 0.838 2.298
-0.014 0.310 0.924
-0.189 0162  -0.100
-0.180 0.214 1.426

0.782 1411 - 1.806
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Figure 8.5. Comparison of the mean measured LAD (bars) to retrieved LADs (lines). The dashed line
illustrates the distribution determined by averaging over NIR bands and high solar zenith angles.  The
solid line illustrates the distribution determined by averaging over all bands and solar angles. Retrieved
distribution values were determined at bin centers and normalized.

Mean Retrieved Parameters

In previous inversion ;tudies with empirical data, results from multipie bands and SZA were
often averaged.  To better understand those reports in light of the above analysis, the results obtained
here were also averaged.

Spectrally-dependent parameters were determined by averaging over all SZA for each band (19-
23 cases per band after LAI > 0.1 filtering). Leaf reflectance is overestimated in all but band 7 (Table
8.7). Leaf reflectance errors in bands 1-6 are as high as 0.066. The tendency for overestimation was
reported in Chapter V. Mean errors in ieaf transmittance ére lower than those in leaf reflectance for all
bands (Table 8.7). This result was unexpected due to the greater sensitivity to leaf reflectance (Table,

8.1). In part, this is due to the smaller errors in leaf transmittance (compared to leaf reflectance) at low
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SZA (Table 8.3). Although errors in ®g are on the order of those in leaf optical properties, their

stémdard deviations are notably larger in some bands (1, 2, 4, and 5). This indicates the difficulty in
retrieving soil parameters from TOC data. It also emphasizes the need for TOC reflectance data at low

SZA. Indeed, ws may be difficult to assess for canopies at high latitudes. Estimates with bands 6 and

. 7 are particularly inaccurate.

Table 8.7 Mean errors and standard deviations of retrieved parameters (spectrally-variant) determined
from all estimates. Values were averaged over 23 data sets per band. Mean errors in spectrally-
invariant parameters were {LAI, p(8), v(0)} = {0.647, 0.0534, 1.681} and standard deviations were
{LAIL u(e), v(8)} = {2.725, 1.173, 1.341}. Spectrally-invariant parameters were averaged over 7 bands
and 23 data sets.

Band Statistic Wy

1 ME 0.024
o 0.089

2 ME -0.028
o ‘ 0.134

ME -0.078

c 0.055

ME 0.067

) 0.206

ME 0.020

o 0.188

ME -0.128

c 0.099

-0.205

0.106

The spectrally independent parameters (LAL () and v(6)) were determined by averaging over
all bands and solar angles (153 values). LAI is overestimated by 0.647 (33.3%). As the analS/sis
above (Téble 8.5) shows a clear preference for low SZA sampling, it appears that the relatively
- reasonable estimate here is by coincidence. This is confirmed by the standard deviation, which is more
than four times greater than the mean error. This is consistent with results in Chapter V. The LAD
parameter.s are both overestimated, although the distribution remained erectophile (2 = 0.089) (Figure

8.5). The retrieved LAD diverges most notably at large leaf inclination angles.




Surface Albedo -

Although the MMR bands are not contiguous c;ver the shortwave frequencies, albedo may be

estimated using the "extended band" method of Starks et al. [1991]. In this method, the MMR

bandwidths are artificially extended such that all shortwave frequencies are represented (Table 8.8).

Table 8.8. Extended bandwidths used to compute albedo values. Mean weights ( W; ) and standard
deviations were determined from 58 results.

Band Bandpass Limits Extended Limits W, (o]
1 0.450-0.520 0.300-0.520 0.239 0.005
2 0.520-0.600 0.520-0.615 0.146 0.002
3 0.630-0.690 0.615-0.725 0.144 0.001
4 0.760-0.900 0.725-1.000 0.222 0.002
5 1.150-1.300 1.000-1.360 0.139 0.002
6 1.550-1.750 1.360-1.800 0.067 0.001
7 2.080-2.350 1.800-4.000 0.043 0.001

The fraction (—V_V— i) of shortwave energy incident in each band is used to weight the broad-band

spectral albedo ( ALB ;). The total albedo (ALB) is estimated by summing the spectral products:

4.0

ALB= g ALB) Wy dA = ALB; W, (84

M-~

i=1

where

Ap.i

j IoadA
— A'a,i :
Wi=l— | (8.5)

O.J; Iy dA

and where A, and Ay ; are the lower and upper limits of extended band i, respectively. In DISORD,

spectral albedo is determined through quadrature integration of the computeﬂ reflectance distribution.
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The downwelling energy within an extended band was determined using 5S (see Chapter VI). Exact

- solar angles and measured atmospheric data were used in each case. Average weights (Wi) and their

 standard deviations are given in Table 8.8.

1) Casel Equation (8.4) was used to compute albedo for all 23 MMR data sets. In
this case, ALB ; was calculated separately from the retrieved parameter set for each spectral band and
solar angle. Thus, the albedo was effectively determined from seven reflectance samples. This
application differs only slightly from Starks et al. [1991], where an average atmosphere was assumed
and _VVi was determined at 10° increments of SZA (0-70°). That study also employed different
atmospheric and BRDF models.

Albedo estimates were compared with mean measured values as determined from two pairs of
pyranometers. The pyranometer data were gathered at a nearby plot simultaneously with the MMR
data. Model estimates exceed the measured albedo in most cases (Figure 8.6a). Differences decrease

with increasing albedo, however. ‘The correlation coefficient (r) is 0.89.
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Figure 8.6a. Comparison of measured and modeled albedo. Parameter sets were retrieved for each band
and solar angle individually. This follows the method of Starks et al. {1991]. The dashed line is the 1-
to-1 line.

Error values were calculated using Equations (8.1) and (8.2), where (P; - P, ) was replaced with
ALB; - ALB,; , . ALB,; is the measured albedo and ALB,; is the estimated élbcdo for data set i. The
mean error (ME) is 0.025 and the relative error (MRE) is 14.9%. Errors are not well correlated With
either SZA or y. Starks et al. [1991] report larger errors (MRE = 22.4% for 1987 and 27.6% for 1988)
using an empirical model and a more diverse set of MMR data. A significant systematic error—
exemplified by the offset of the regression line in Figure 8.6a—was also apparent in their results.
Systematic errors may have resulted from several sources. First, the band extension technique
assumes constant average reflectance 6ver the entire extended bandwidth. The lack of dat'a over the full
shortwave spectrum prevents validation of this assumption. Second, model or minimization
inaccuracies may have produced parameter errors. Given the 'analysis of parameter errors above, some
parameters clearly were not retrieved accurately for some bands and solar angles. Nevertheless, results

in Chapter V suggest errors in spectral albedo remain small despite significant errors in retrieved
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parameters. Third, the frame suppbrting the pyranometers caused shading. Starks et al. [199'1] found
that shadfng effects incfeasgd»with SZA, resulting in up to 7% underestimation of measufed albedo.
- Nevertheless, improvements in the’ results here compared to thése in Starks et al. [1991] may be due to
the use of a physically-realistic model in this study. This is particularly importanf in directions for
which data were not available, and directions near the hot spot (not accounted for in Starks et al.

[1991]). A comprehensive discussion of albedo errors may be found in Starks et al. [1991].

2 e2 In Case 1, the accuracy of the model parameters differed for each band and
solar angle. Thus, the exercise demonstrated the model's ability to estimate instantaneous albedo given
seven principal plane samples. The operational usefulness of this ability is limited. In a coupled
remote sensing-GCM scenario, albedo must be estimated much more frequently than directional
reflectance data can be obtained. For example, daylight repeat sample times of polar orbiting satellites
are typically regulated to days (e.g., '_-1 sample/target/day from AVHRR). The Community Climate
Models (CCMs) developed at the National Center for Atmospheric Research (NCAR) have temporal
resolutions of 30 minutes. Therefore, a single set of retrieved model parameters must produce accurate
albedo values over a broad range‘ of illumination conditions.

To test the potential of a single parameter set, the measured soil and vegetation parameter
values (Tables 6.2 and 7.5) were used in DISORD. Spectral albedo was determined through forward
model calculations. The total albedo was calculated using Equation (8.4). In this icxer(:ise, only the
solar angle and atmospheric parameters changed with time. The soil and canopy parameters remained
fixed.

A comparison of estimated and measured albedo is shown in Figure 8.6b. The mean difference
is 0.022 (13.0% relative)—a small improvement over Case 1. Again, errors decrease as albedo
increases. The regression coefficient (r = 0.95) indicates a significant reduction in random errors from
Case 1. Since Case 2 did not require inversions and its errors were smaller, inversion solution
differences must have &mtributed substantially to the non-systematic errors in Case 1. Systematic

error sources noted in Case 1 remain possible here.
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Figure 8.6b. Comparison of measured and modeled albedo. Parameter sets were determined from
‘measured values (Table 6.2). Only atmospheric properties and solar zenith angles were changed
between model calculations.

3) Case 3 Cases 1 and 2 suggest that 1) instantaneous albedo can be estimated via
inversion given a set of principal plane data, and 2) a single parameter set can produce reasonable albedo
values over different times/solar angles. The circle can be completed if the retrieved parameters are’
sufficiently accurate to calculate albedo over different times/solar geometries.

Results from the band/solar angle analyéis (Section D) were therefore employed. "Optimal”
retrieved parameter values were determined by averaging the results retrieved under preferred solar and
spectral conditions. Exceptions were not made for anomalously accurate values (e.g., values of @ in
bands 2 and 3 at high SZAs). Specifically, leaf reflectance was obtained from results at high SZA
(Table 8.2). Leaf transmittance in visible bands was obtained from results for high SZAs; while NIR
transmittance was obtained from results for low SZAs (Table 8.3). Soil single scattering albedo- was

obtained from results at low SZAs (Table 8.4). The LAI (1.985) was obtained by averaging results
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from bands 4 and 5 at low SZAs (Table 8.5). Finally, the LAD parameters (u(8) = 0.7582, v(0) =
: 2656) were obtained by averaging results from bands 4 and 5 at hlgh SZAs (Table 8.6).
Albedo was determined using the Case 2 method. A comparison of the estimated and
measured albedo is shown in Figure 8.6¢. Relative to Case 2, the mean error (0.007 or 3.63% relative)
_decreases by an order of magnitude, although the correlation (r = 0.94) is similar. Clearly, a
considerable reduction in the systematic bias ;)ccurs. Therefore, the measured parameter values—or
method of determining canopy averages (Chapter VI)— probably introduced a bias into the Case 2

results.
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Figure 8.6c. Same as Figure 8.6b, but parameter sets were determined from retrieved values at preferred
wavelengths and solar zenith angles.

Two additional observations deserve comment. First, results determined with variable
parameter sets (Case 1) are less accurate than those computed with fixed parameter sets (Cases 2 and 3).
This suggests that inversions with a single band and SZA may yield unrealistic parameter sets. Then,

despite fitting seven samples well, the model may provide poor reflectance estimates in directions
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where data Were absent during inversion (in this study, off the principal plane and at high VZA).
Apgu_lar reflectance errors lead to erroneous spectral albedo upon ihtegration. Some bands may be more
pfone to this problem than othefs. This points to the advantage of using the ApreferredA waveléngths and
SZA for parameter retrieval (Section D). It also suggests that physically-based models may be more
useful for albedo calculations than other models. This assumes that physically-based models can better
relate measured reflectance data in given directions to reﬂecmnée estimates in other directions. Second,
albedo results obtained with retrieved canopy parameters are superior to those obtained with measured
parameters. As this may indicate inaccuracies in the BRDF mode] or parameter measurements, it
underscores the potential for determining radiation variables (e.g., albedo) from radiation data (e.g.,
angular reflectance). Essentially, inverse methods may compensate for model inaccuracies. Such
ihaccuracies can worsen results despite the use of accurate (measured) parameter values.

Although this study had the advantage of ground-based, principal plane measurements, these
results indicaie the potential for accurately estimating albedo from a small number of remotely sensed

samples. Such accuracy would not normally be possible with Lambertian approximations.

Eraction of Absorbed Photosynthetically Active Radiation (FAPAR)

Before proceeding with the fAPAR results, a brief review of previous work is in order.
Studies have suggested that fAPAR may have a near-linear rrelationship with some végetation indices
[Asrar et al., 1989]. Nevertheless, applications with FIFE fAPAR data have revealed limitations.
Walter-Shea et al. [1992] showed that the fAPAR-NDVI relationship depended strongly on the Sensor
view angle. Demetriades-Shah et al. [1992] concluded that even VIs determined from near-ground
sensors were not well correlated with measured fIPAR (fraction of Intercepted PAR). Hall et al. [1992]
showed that fAPAR-VI relationships depended on soil spectra—a significant factor even over the
limited FIFE area. Hall et al. [1992] also showed that Green fAPAR, determined by weighting the

measured TAPAR by the ratio of live-to-total canopy biomass, provided a more linear relationship with
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NDVI. Several tﬁeoretical studies (e.g., Goward and Huemmrich [1992]) have shown that the fAPAR-
VI relationship is also dependent on canopy optical and morphological properties.

o ‘Below, a different method for retrieving fAP:AR is outlined. Results in Chapter V suggested
that spectral fAPAR could be accurately estimated from BRDF model inversions despite some errors in
retrieved parameters. The potential of this method was therefore tested using a series of experiments
similar to those for albedo.

In field applications, fAPAR and fIPAR are defined, respectively, as:

Io‘Rc'(Tc‘Rs),an

fAPAR = d
, I,

where I, is 'the inc.:ident photon flux density (PFD), R, is the exitant PFD above the canopy, T, is the
PFD transmitted through the canopy, and R; is the PFD reflected by the soil. PFD is the number of
photons (0.4-0.7 itm) incident per unit time on a unit surface (mol m2 s™1). Photon counts rather than
energy units are used since photosynthetic ;ates are essentially independent of the energies of the
absérbed photons [Pearcy, 1989]. PFD quantities were measured during FIFE with line quantum
Sensors.

Although Equation (8.6) requires four sensors for determination, a reasonable approximation is
possible by letting R = T, R. I,"!. This effectively assumes the soil and surface (soil + canopy)
albedos are equal. With this substitution, Equation (8.6) requires just three sensors (as used in FIFE)

and can be expressed as [Walter-Shea et al., 1992]:

fAPAR = fIPAR[ 1 -%_].




For modeling purposes, fAPAR is [Myneni et al., 1992]:

0.7 ' . : o
fAPAR = . [1 Faa Wy dA, ' 8.9)

where F, 3 is the fraction of radiant energy absorbed by the canopy at A, defined as,

Fap = j [F:7L + F‘;’A +F§’h 17, (8.10)
¥ _

and W, is the fraction of incident solar energy at A, defined as,

wi=| i —| @.11)

O.J:‘. I dA

In these equations, V is thé volume of the canopy, I3 is the irradiance at A, and FZ,;,, Fg’x, and
F:;,;L are the fractions of absorbed uncollided sunlight, diffuse, and scattered .ﬂuxes, respectively. For the
inversion problem, Equation (8.9) must be approximated since the reflectance data are fromv broad
spectral bands. A band extension method, similar to that used to compute albedo, was used here. Band

intervals and weights are shown in Table 8.9.

Table 8.9. Extended bandwidths used to compute fAPAR and fAPAR,,;;. Mean weights (W ) were

computed by the 5S model. Also shown are the normalized weights after conversion from energy units
to quantum units. Standard deviations were negligible in each case.

Bandpass Limits ) . .
Band Extended Limits Wi [energy] Wi [photons]
T 0.450-0.520 0.400-0.520 0.410 0.345
2 0.520-0.600 0.520-0.615 0330 0.342
3 0.630-0.690 0.615-0.700 0.261 0.313
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The standard deviations of the band weights were negligible. Equation (8.9) for MMR data can then be

* expréssed as,

3
fAPAR:ZFa,iWi,

=1

where —F—a,i is the mean fraction of radiant energy absorbed by the canopy in band i, and

Api

I, dA
|
Wi=| 57 .

1,3 dA
0.!1 ok

where A, ; and Ay are the lower and upper limits of extended band i, respectively. The fraction of

absorbed energy (_F—a,i) is evaluated directly by DISORD. This quantity is determined from computed

canopy and soil albedo using energy balance arguments (Equation 8.6). In this application, F ,; gives

the effective broadband absorption since MMR reflectance data were used to determine the model

parameters. The weighting function, W j, is composed of integrals that are computed directly from

the 5S model. . However, 5S determines irradiance in W m2, Therefore, a correction based on Planck'’s

Law ( Kj o A) must be used to convert W to mol s!. The neglect of this correction biases the

weights towards shorter wavelength (higher energy) bands (see Table 8.9). To facilitate the use of

standard 5S output, _V:’-i was simplified as follows:

M
[Ion Ky dA

a,i

W=7

Api .
JIon dA A




Y ] ,
L= [Iox dA A o (8.15)

a,j

where A, is the center wavelength of extended band i.

1) C_gnbgy JAPAR Equation 8.12 was used to estimate fAPAR in two cases. First, the
measured canopy parameters (Table 6.2) were used in DISORD. Atmospheric data collected near the
time of the fAPAR measurements were used to estimate 'vVi. The fAPAR data—measured in eight
periods over the two days—spanned a range of SZAs from 22 to 56°. Typically, five values were
recorded within each period. Unlike ‘the albedo data, .however, fAPAR data v&;ere not collected
simultaneously with the MMR measurements. Thus, only MMR data sets collected closest in time to
the fAPAR data acquisitions were used.

Modeled fAPAR values are plotted against mean fAPAR data in Figure 8.7a. Error bars
indicate the maximum and minimum values per measurement period. The modeled.fAPAR
consistently exceeds the measured values. The mean error is 0.174 (37.14% relative). The correlation
coefficient is 0.906, which suggests the largest errors are systematic. The predominance of systematic
errors and decreasing errors with increasing fAPAR (and SZA) are the same trends observed for the Case
2 albedo (measured parameters). Errors are worse with Green fAPAR [Hall et a].‘, 19921, which reduced

measured values by 19.5%.
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Figure 8.7a. Comparison of measured and modeled fAPAR. Canopy parameters were determined from
measured data (Table 6.2). Only atmospheric properties and solar zenith angles were changed between
model calculations. Error bars represent the minimum and maximum values per measurement peiiod.
Note that fAPAR was not measured simultaneously with MMR reflectance. The dashed line is the 1-
to-1 line.

Second, the preferred canopy parameters—explained in the Case 3 albedo study—were used
(Figure 8.7b). Again, the model values exceed the measured values. However, the meaﬁ error is
reduced by nearly 20% to 0.142 (30.17% relative). The correlation coefficient (0.899) is similar to the
case above. As in the albedo calculations, the model clearly is more accurate when retrieved parameters
are used. In addition, errors decrease with increasing fAPAR (SZA). The lack of simultaneity in the
MMR and fAPAR data acquisition may contribute some of the non-systematic errors. Systemétic
errors may arise from differences in vegetation between the sampling areas of the MMR and line

quantum Sensors.
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Figure 8.7b. Same as Figure 8.7a, but canopy parameters were determined from retrieved values at
optimal wavelengths and solar zenith angles.

2) Surface fAPAR Clearly, the errors in fAPAR significantly exceed those encountered in the

albedo study. To help isolate the primary sources of these errors, total (canopy + soil) fAPAR values

were compared. Empirical fAPAR;,; values were determined by,

fAPAR gy = I, - Re. ‘ (8.16)
In DISORD,
fAPAR oral = fAPAR + fASOIL 8.17)
=1- ALBpaRr,
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where fASOIL is the fraction of solar radiation absorbed by the soil. Thus, fAPAR,, was determined

by replaciflg F ai in Equation (8.12) with ALB ;, and subtracting the.result from 1.0 tEquation.

8.17). Again, both the measured and preferred retrieved parameters were used (Figures 8.8a-b,

respectively).
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Figure 8.8a. Comparison of measured and modeled fAPAR;q. Canopy parameters were determined
from measured values (Table 6.2). Only atmospheric properties and solar zenith angles were changed
between model calculations. Note that fAPAR;y, was not measured simultaneously with MMR
reflectance.
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Figure 8.8b. Same as Figure 8.8a, but canopy parameters were determined from retrieved values at
preferred wavelengths and solar zenith angles.

Estimates of fAPARq, are within 0.04 (meaéured parameters) and 0.09 (retrieved parameters)
of the measured values. The measured parameter values result in a mean error of 0.002 (0.185%

relative), and the preferred retrieved parameters produce a mean error of 0.005 (0.503% relative). Both

parameter sets underestimate fAPARa. The correlation coefficients are 0.942 and 0.946,

respectively. Thus, both systematic non-systematic errors are relatively minor. Unlike for albedo and
canopy fAPAR, errors in fAPAR, are larger when the retrieved parameters are used. In addition,

errors increase with increasing fAPAR 4 in the measured parameter case.

3) Discussion and Error Analysis Overestimation of canopy fAPAR must be due to errors in
the modeled fAPAR and/or the "measured" fAPAR. Errors in the modeled fAPAR may be further
broken down into errors in the band extension method (Equation 8.12) and errors in the spectral fAPAR

calculations (Equation 8.10).
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First, errors in the band extension method were éstimated using directional reflectance data
" gathered with an SE590 Spectroradiometer (Spectron Enginéering, Denver, CO). Reflectance data were
A ;léierrr.ﬁned at every 5 nm of the PAR spectrum fof canopy, litter (thatch), and so.il. Thatch was loosely
defined as the discernible mat of dead vegetation on the soil surface. The canopy and soil data were
obtained at site 916 during IFC-5. The thatch data were obtained at various sites on 15 September
1993. Only thatch data obtained over previously burned sites were used. SZAs ranged from about 20-
60°. The SES90 reflectance data were averaged over all solar angles for both the true and extended
MMR bandwidths (Table 8.9). Only the maximum VZA (50° backscatter) was used to reduce
contributions from underlying media. '

Mean relative errors (MRE) were determined using Equation (8.2), where P; was replaced with
the average MMR bandwidth reflectance (determined from SE590 data), and P, was replaced with the
average extended bandwidth reflectance (also determined from SE590 data). MRE values for each band
and the PAR spectrum (using quanta wéights from Table 8.9) are shown in Table 8.10. Errors are
~ greatest in band 1, however the weighted PAR errors are less than 3.3% for each component. The PAR
reflectance error for the total soil, litter and canopy systeﬁl is 2.53% (6 = 0.36%) as determined from
nadir reflectance data. Errors are generally correlated with the variability of the spectra in a given band.
These errors should be regarded as rough estimates of band extension errors since MMR spectral
sensitivity and BRDF effects were ignored. For analysis of errors in absorbed radiation, optically semi-
infinite media must also be assumed (i.e., albedo must be considered the co?nplement of the absorbed
fraction). The relatively small errors in Table 8.10 were expected since the actual MMR bands cover
about 70% of the PAR spectrum. This is considerably more than the 26% coverage of the shortwave
spectrum (0.3-4.0 pum), for which the band extension method provided reasonable albedo estimates.
Moreover, since the same band extension (Equation 8.12) was used to determine both fAPAR and
fAPAR a1, significant errors in this technique would cause significant errors in fAPAR o). This
clearly did not occur (see Figures 8.8a-b). This analysis implies the PAR spectral coverage and the

conversion from energy-based weights to quantum-based weights (Equation 8.14) are acceptable.
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Table 8.10. Mean relative errors in extended band reflectance due to the assumption of constant
reflectance outside MMR bandwidths. To reduce effects from other components, the maximum VZA
(50° in backscatter) was used. Results were averaged over multiple SZAs. Reflectance errors over the
*. full PAR spectrum were determined using the quantum band weights in Table 8.9. :

MRE (%)
Component Band 1 Band 2 Band 3 Weighted PAR
Canopy 152 2.51 -10.7 2.75
Litter (Thatch) 124 -1.72 -1.41 3.27
Soil 9.3 -2.03 0.12 2.55

The second source of modeled fAPAR errors may be deduced from the energy balance
relationship (Equation 8.17) and soil model results. If fAPAR is significantly overestirhated and
fAPAR; 1, is reasonable, Equation (8.17) requires that fASOIL be significantly underestimated—i.e.,
the modeled soil must be considerably brighter than the true soil. When compared to soil reflectance
data,. soil model estimates were reasonable (see Chapter VII). However, though prairie soils are
relative!y dark, data suggest thatch is darker. Thus, if thatch were present below the canopy, the soil
model would overestimate the combined soil and thatch albedo (and underestimate fASOIL) for the
measured parameter case (Figure 8.8a). The absence of top-of-thatch reflectance data from IFC-5 makes
quantification of this error impossible. Since soil model parameters were determined from exposed soil
data, soil albedo errors may also occur due to moisture differences between the exposed soil and below-
canopy soil. In the retrieved parameter case, however, ®g should adjust to any background. Thus,
errors with the retrieved parameters (Figure 8.8b) should have been lower than those with the measured
parameters (Figure 8.8a). This did occur to some degree. Finally, the soil model probably
overestimated reflectance off the principal plane (see Chapter VII). This, too, would reduce fASOIL.
Unfortunately; errors off the principal plane could not be evaluated due the absence of measured
reflectance there. The decrease in fAPAR errors with increasing SZA (increasing fAPAR) is as would
be expected for a soil error source. |

The last source of differences between modeled and measured fAPAR is the "measured”
fAPAR. Two points are noteworthy. First, high variance in the fAPAR data (see error bars in Figures

8.7a-b) and low variance in fAPAR,; data indicate significant variability in the transmitted flux (T).
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Sources of this \}ariability include instrument problems, canopy gaps and heterogeneity. Gaps and

‘heterogeneities may have increased due to wind effects. Moreover, the availability of PFD data from

juét eight periods substantially impacts the statistical significance of these results. At best, these
concerns suggest caution in the interpretation of fAPAR results. Second, Equation (8.8) assumed that
the surface albedo equaled the soil albedo. Although soil albedo was not measured, soil directional
reflectance exceeded TOC reflectance in some bands and directions.. If the true soil albedo exceeded the
TOC albedo, Equation (8.8) would underestimate the measured fAPAR. Since this error source would
decrease with increasing fAPAR (increasing SZA and decreasing soil contribution), the trend in fAPAR
errors is consistent with its presence. The assumption of equal soil and canopy albedo was not
necessary in Equation (8.16); therefore, it would not have affected the fAPAR g, results. This is
consistent with fAPAR 1 errors. Quantitative assessment of these error sources will be addressed in

- future work.
E. Other Sources of Errors

Although error sources have been ide.ntiﬁec_i in the sections above, several general error sources
deserve review. First, the minimization algorithm may not have converged at the global minimum of
Equation (2.5). Presently, there is not a method to insure global minimization in multiple variable
problems. Second, the MMR data were measured with a 15° IFOV instrument, yet the mode] assumes
a unit steradian IFOV. This effect is more important in visible wavelengths where the angular
reflectance varies more in proportion to the mean. In addition, the measurement angles were accurate to
+2° zenith and £10° azimuth. Third, soil parameters {A, b, ¢, b', ¢’} were determined using data
obtained over a bare plot. This surface may not have represented the below-canopy conditions. This is
particularly important if litter existed below the canopy or if the moisture regimes were different.
Finally, turbid medium models are not ideally suited to low LAI conditions. Still, for grassland model

inversions, turbid medium models are probably the most reasonable.
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F. Conclusions

ﬁsing measured barameter values (Chapter VI), a i)artial validation of the coupled soil and
canopy model was attempted. Reflectance estimates agreéd well with measured TOC values. A
sensitivity study suggested that TOC reflectance was most sensitive to leaf optical properties at both
red and N[R wavelengths. The third most influential parameter was LAI, however relative effects varied
with wavelength. At red, LAI is significantly less influential than leaf optical properties; at NIR,
sensitivity to LAI and leaf optical properties is nearly equal. Sensitivity to leaf optical properties
increased with SéA, however sensitivity to LAI decreased with SZA. All other parameters were
substantially less influential.

Inversions were conducted with field measuredr data. Results were binned according to SZA
(above or below 40°). Leélf optical properties were generally retrieved more accurately at high SZA,
although leaf transmittance was better determined at low SZA for NIR bands. LAI was most accurately
determined at low SZA with NIR data. LAD was accurately determined with NIR data for all SZA.
Soil single scattering albedo, detemﬂned from low SZA data, exhibited appropriate spectral behavior.

Shortwave albedo was estimated by weighting spectral albedo wifh the fraction of irradiance in
each band. Agreement with pyranometer-measured values was greatest when "preferred" canopy
parameters were used. These parameters were determined using retrieved values from select SZA and
spectral bands. Using a similar technique, fAPAR and fAPAR o, were also determined and compared
with measured values. Values of fAPAR were overesﬁ;nated in all cases, however there was significant

variability in measured data. Values of fAPAR, were highly accurate.
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CHAPTER IX

INTEGRATED INVERSION SCHEME AND APPLICATION TO SATELLITE DATA

A. Introduction

Results in Chapter VIII confirm that model inversions with ground-based radiometer data can
produce reasonable estimates of surface parameters. However, some process models require surface data
at regional or global scales. As noted in the Chapter I, satellites currently provide the only practical
method by which such data cari be obtained with a single, consistent sensor in a reasonable time frame.

Naturally, new issues arise in moving from ground based, point data to satellite data. These

include the differences in temporal, spatial and spectral resolution, the impact of more limited sun-

target-sensor geometries, and the modulation of upwelling radiance by the atmosphere. While different

approaches may be .used to resolve these issues, the method described below is based on the results

from Chapters V-VIIIL In addition, it is designed to facilitate production of regional or global data sets.

B. Satellite Sensor Selection

Presently, environmental satellite sensors do not collect data at the spatial resolution of
ground-based instruments. Indeed, the resolution of continuously orbiting sensors extends from the
High Reéolution Visible (HRV) instrument of Systeme Probatoire d'Observation de la Terre (SPOT),
at 10 m (panchromatic mode), to AVHRR Global Area Coverage (GAC) at 4 km.

High spatial resolution sensors (HRV, Landsat Thematic Mapper and MultiSpectral Scanner)
typically have low temporal resolution (10- to 20 days). As the presence of clouds renders samples

useless to the inversion problem, the effective temporal resolution can be significantly lower. And,




since multiple samples of a target are necessary for inversions of multiparameter models, the data
collection period for a single inversion may be several months. Obviously, a canopy may undergo
significant changes in such a period.. In contrast, lower spatial resolution sensors (AVHRR, Visible
and Infrared Spin Scan Radiometer (VISSR)) have substantially higher temporal resolution (0.5 hours
to 1 day). Therefore, the probability of acquiring a sufficient number of cloud-free samples before
surface conditions change is much higher. For this reason, AVHRR and VISSR represent the only
practical instruments for acquiring data useful in model inversions.

AVHRR and VISSR operate under very different sampling strategies. VISSR is onboard
Geostationary Orbiting Environmental Satellite (GOES). Geostationary satellites orbit above an
approximately constant geographic position. This limits their FOV coverage' to less than one
hemisphere. Furthermore, the target-sensor geometry remains approximately constant for each target.

The quasi-fixed orientation allows frequent observations of Iand targets. In practice, VISSR collects a
sample over each 0.9 km of earth in its FOV every 0.5 hours.

In contrast, AVHRR ‘is onboard the National Oceanic and Atmospheric Admin.istration
(NOAA) polar orbiters [Kidwell, 1991]. NOAA polar orbiters are launched into sun-synchronous
orbits with an inclination angle of about 99°. Sun synchronicity implies that a satellite's orbital plane
maintains a constant orientation with respect to the sun-earth vector by precessing 360° yr‘l. Together
with AVHRR's wide FOV, this orbit ensurés global coverage since the orbital plane bisects the
rotating earth. It also ensures that the satellite crosses the equator at the same local solar time (LST)
on every orbit. NOAA satellites are in one of two orbits dépending on the direction of satellite travel
on the sunlit side of earth. The morning descending orbit (north to soutﬁ) is utilized by all even-
numbered NOAA satellites. The afternoon ascending orbit (south to north) is utilized by all odd-
numbered satellites. Nominal equator crossing times are 0730 and 1330 LST (1430 fdr NOAA-9 and
before), respectively. Due to these differences, some AVHRR sensors collect their daytime samples in
the morning while others collect them in the afternoon.

AVI—IRk scans +55.4° from nadir at a rate of 6 scans s™!. At nadir, the ground instantaneous

field of view (GIFOV) is 1.2 km2. At the edge of the scan, the GIFOV increases to about 15.6 kmZ2.
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Each scan line contains 2048 samples from a 2700 km wide swath. This sampling strategy results in

at least one observation of every earth positiori each day and night. The rate increases with latitude—
surfacé targets at 60° N are sampled at léast three times each day and night. Since NOAA satellites
complete about 14.1 orbits day~!, consecutive observations of a given land target occuf at different
geometries.

Although AVHRR makes repeat measurements less frequently than VISSR, its data were
utilized in this study for several reasons. First, AVHRR data have a significantly larger range of sun-
target-sensor geometries. For example, Figures 9.1a-c show the NOAA-li AVHRR (afternoon
ascending orbit) geometries for three latitudes. In contrast to the minimal variation of target-sensor
. geometry (per target) of VISSR, AVHRR data are collected over a large range of VZAs and a fairly
large range of SZA. The azimuth angle of the sensor relative to the principal plane also varies
significantly. Moreover, the AVHRR collects some data in or near the principal plane at most
latitudes during summer. This was shown to be advantageous in Chapter V. Second, at least two
active AVHRR instruments typically orbit earth at all times. Although multiple sensors may preéent
calibration problems, they also prdvide higher effective sampling frequency and hence increased
probability of daily cloud-free samples. Third, VISSR has just one optical band (0.55-0.70 wm)
compared to two on AVHRR. In addition to the demonstrated supe?iority of NIR data for ipversions
(see Chapter VIII), the extra AVHRR band pro;'ides more complete coverage of the shortwave
spectrum. This permits more accurate estimation of surface albedo. Finally, AVHRR satellites
provide global coverage in contrast to the VISSR sub-hemispherical coverage. Global coverage is

clearly required if data sets are to be produced for GCM usage.
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Figure 9.1a. Polar plot of solar and NOAA-11 AVHRR geometries relative to earth target (represented
by origin) for nine days in early July, 1990. Diamonds represent position of sun, squares represent
positions of AVHRR. Zenith angles are represented by distance from origin. Azimuth angles increase
from north (0°) to east (90°). Latitude of target is 10° N.
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Figure 9.1b. Same as Figure 9.1a, except latitude of target is 40° N.
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Figure 9.1c. Same as Figure 9.1a, except latitude of target is 65° N.
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Fpr this initial invest.igati‘on, only band 2 (NIR.) data from AVHRR were used. NIR data were
fc;und to be superior for the esﬁmation of LAi and LAD in Chapter VIIIL. ﬁevenheless; the inversion
methodology developed below is general and can accommodate data from VISSR and the planned
instruments of the Earth Observing System (EOS) (e.g., MISR, Moderate-Resolution Imaging

Spectrometer (MODIS)) [NASA, 1993].
C. Issues in Using AVHRR vs. Ground Radiometer Data

Unlike ground-based radiometers, the relatively low spatial resolution of AVHRR implies that
large scale horizontal heterogeneity may exist in each GIFOV. Such heterogeneity may include both
topographical and land cover variations; consistent mixtures of surface media (small scale
heterogeneity) are not included in this definition. Significant variation in AVHRR scan angles can
amplify heterogeneity due to changes in GIFOV. In this case, surface heterogeneity at a given target
may not be consistent among repeat samples. Since 1-D BRDF models assume horizontal
homogeneity, inversion results obtained with data from heterogeneous targets may be inaccurate.
Interpretation of results may also be difficult. Finally, it may be impossible for the model to replicate
the measured data.

Effects of atmospheric processes on surface reflectance present another complication [Lee and
Kaufman, 1985; Holben et al., 1986]. First, the atmosphere modifies the quantity and angular
distribution of irradiance striking the canopy. These effects, which increase with SZA., were
investigated with the soil model (Figure 7.4). Second, the atmospheré modulates the surface-reflected
radiation as it travels from target to sensor [Simmer and Gerstl, 1985]. Absorption and scattering
processes decrease the magnitude and reduce the angular diffemnccs in surface reﬂectan‘ce. These effects
increase with VZA. In NIR wavelengths, water vapor and aerosols are the prima'lry culprits of this
attenuation. Finally, the atmosphere scatters radiation from non-target directions into the sensor.

These directions include those of the sun, atmosphere and non-target surface points. This is
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particularly problematic at red wavelengths, where the addition of Rayleigh and aerosol path radiance
causes top-of-gtmbsphere (TOA) fadiance to exceed TOC radiance. This effect increases with SZA and
vza. | | |
The net result of atmospheric effects is apparent in Figure 9.2. The plots depict simulated
reflectance at ground, 5 km, and satellite levels for a typical surface. The model atmosphere is
relatively turbid (optical depth = 0.587). The hot spot decreases significantly with altitude, however
reflectance increases at most other directions—especially in the forward and orthogonal scattering

directions. The nadir reflectance remains nearly constant. Overall, anisotropy decreased with altitude.
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Figure 9.2. Atmospheric effects on surface signal for different altitudes. Reflectance generated for
satellite (top), 5 km (middle) and surface levels (bottom). The solar azimuth angle = +180°; the solar
zenith angle = 45°. : :
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Aith'oﬁgh such effects may be simulated and "removed" using appropria@ fnodeié, accurate
* corrections fequire bknowled'gel of tﬁe atmospheric state at the time of the sampling. C;)mplete
atmospheric information is difficult if not impossible to obtain. Moreover, atmospheric models
intrdduce other uncertainties. Hence, the correction algorithms may reduce data errors, but cannot
eliminate them.

Other sources of errors in satellite data include those of geolocation and sensor drift.
Geolocation errors originate both from orbital models used to navigate the data and ephemeris data used
to initiate the orbital models. Modern navigation algorithms can reduce AVHRR geolocation errors to
about 180 m for non-extreme scan angles [Baldwin et al., 1995]. Sensor drift errors occur because
AVHRR spectral sensitivity changes with time. Hence, pre-launch calibration values become
inaccurate. AVHRR is not equiped for on-board calibration of its optical bands. Various attempts have
been made to determine post-launch coefficients from empirical data, however these values have large
uncertainties (ironically in part due to unknown surface anisotropy) [e.g., Kaufman and Holben, 1993].

The additional sources of error in satellite sensor data, compared to ground-based sensor data,
imply that surface reflectance cannot be determined as accurately. Hence, some variability in
reflectance, previously attributed to changes in surface scattering, must now be regulated to data
uncertainty (i.e., the noise equivalent change in reflectance [NEAp] is increased). This reduces the
accuracy of retrieved parameters. Two methods may be employed to combat this problem. First,
various models (atmospheric, sensor drift, etc.) may be used to reduce errors in data. Second, the
number of BRDF model parameters adjusted during inversion may be reduced. In this study,
atmospherically corrected AVHRR data processed by FIFE Information System (FIS) staff were used.
Therefore, no additional data corrections were attempted. A reduction in-the model parameters was

attempted, however.




D. Reduction in Model Parameters

With respect to the goals and limitations outlined above, several new criteria mz;ly be used to
determine the most suitable parameters to hold constant during model inversions. First, some
parameters may be reasonably estimated based on ancillary data (e.g., LAD for grasslands may be
assumed erectophile). Second, some parameters change more rapidly. For example, soil reflectance
cﬁanges immediately during a precipitation ev.ent, whereas leaf optical properties normally do not
[Walter-Shea et al., 1992]. Third, some parameters may be correlated with other parameters for
particular vegetation classes. In this case, only one parameter needs to be adjusted by the optimization
algorithm—the correlated parameter value can be a function of this parameter. Fourth, some model
parameters (e.g., LAI) may be more difficult to estimate via other techniques. Therefore, model
inversions may be the oniy reasonable method for their quantification. Finally, some BRDF model
parameters (e.g., LAT) are more critical to the accuracy of process models [Collins and Avissar, 1994].
Thus, their retrieval may be of greater priority. Note that all parameters held constant in the Chapter
VII and VIII inversions remained fixed here.

Results in Chapter VIII suggested that LAI, leaf optical propérties, LAD, and g are the
model parameters which most affect tallgrass prairie reﬂectanée. Of these, LAD parameters (t(6) and
v(8)) and @ were least influential. However, @ is important to the determination of canopy fAPAR.
In contrast, LAD is less important to the estimation of albedo and absorbed radiation. LAD also
requires two parameters. Hence, it is a particularly beneficial property to hold constant during
inversion. |

Due to the extensive in situ data collected during FIFE, a site-wide LAD could be reasonably
estimated. Although LAD was measured on both a mixed canopy and a per species basis, the mixed
canopy data were considerably more comprehensive in both space and time. Plant canopy analyzer -
(LAI-2000, LI-COR Inc., Lincoln, NE) data were collected from June to August, 1989 (68 data sets)
and June and September, 1993 (7 data sets) by researchers from the Universities of Nebraska and Kansas

State. In the present study, mean leaf tilt angle data (determined by indirect methods within the LAI-
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’ 2000 processor) were averaged over the site and day for each data set. Using the empirical equations.of
Welles and Norman [1991], the mean leaf angle (58.27°) was used to estimate 11(6) (1.083) and v(8)
( 1.933b) for the entire FIFE site. Standard deviations were 0.063 and 0.368, respectively.' LADs',
determined for all 75 site;-day values of mean tilt angle, are shown in Figure 9.3. Nearly all LAD
profiles tend toward erectophile. Note that measurements were not made over cropland or wooded areas.
However, together these cover classes composed just 15% of the FIFE area. The mean values for p(8)

and v(8) were therefore fixed in DISORD, reducing the number of adjusted parameters from six to four.
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Figure 9.3. LADs determined from mean tilt angles for 75 site-days of FIFE. Tilt angle estimates
were determined by LAI-2000 using indirect methods. The mean LAD is indicated with the thicker
line.

Although DISORD is relatively sensitive to both leaf reflectance and transmittance (see
Chapters V and VIII), these parameters are not entirely independent. Indeed, these quantities vary
similarly throughout the visible and NIR wavelengths [e.g., Walter-Shea et al., 1992]. If the

relationship between these parameters can be reasonably estimated, then only one parameter needs to be




varied by the optimization algorithm. An empirical relationship was therefore found bgsed on leaf
optic;d data from an SE590 field spectrometer. The data were collected from June t(; September in
1989 and 1993. Eleven spécies wére sampled. Usinvg spline inierpolation, FIFE investigators
determined values at 5 nm intervals from 400 to 1000 nm (4991 data points). In the present study, the
variation of leaf transmittance with reflectance for all available data were fit using a linear least-squares
model (Figure 9.4). Although some scatter exists (r = 0.984), the data are clearly corrglated. If this
relationship is utilized in the inversion process, then adjustment of leaf reflectance effectively adjusts
leaf albedo. However, unlike models in which leaf albedo is adjusted without regard to reflectance and
transmittance, this method allows a reasonable estimation of each parameter. Hence, this method

should be more accurate.

LU MRS ne N S B B B B IR L I B LI Y L L B L B AL B B  [LALIRLI S S B B B B BN 7t B
e
Y

Y = -6.5706 + 1.1656 x

N
o

= 0.984

Leaf Transmittance (%)
Ol
')

IIIIIIIllllJllIlI_IllllIIIIIIIIIIII]IIIIIlIIllIIlIIllII

10 20 30 40 50
Leaf Reflectance (%)

Figure 9.4. Regression fit of leaf optical data from SE590 spectrometer. Data were measured over 11
tallgrass prairie species during FIFE.
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E. Estimation of Variable Model Parameters from In Situ Data

For validation purposes, tﬁe variable model parameteré (LAL, leaf 'optical properties, w) were
also estimated. Since mean site-wide values were not available in FIS, manipulation of in situ data
was necessary. Below, the manipulations are described.

In Chapter VII, the spectrally invariant parameters of the soil model were detenqined over
seven spectral bands and a wide range of solar angles and moisture conditions. Hence, assuming the
reflectance anisotropy of the Dwight Series is representative of all FIFE soils, these parameters are
probably applicable to AVHRR data. In reality, large limestone outcrops create widely varying

"background" reflectance. Morever, the applicability of the MMR NIR (0.76-0.90 pm) @ to AVHRR
NIR (0.60-1.12 um) is not known. The temporal variability of fns was also not assessed. This may
be important since the mean MMR value was determined from reflectance data gathered in late July and
early August 1989, yet corrected AVHRR data extends from May through October, 1987. Since some
FIFE areas had burn residue on the surface in the early summer, ®; was probably lower during that
period. Nevertheless, a better estimate of ®s was not possible since in situ bidirectional reflectance

_data were not measured over the AVHRR NIR bandwidth. Thus, a value of 0.4 was used. (Recently, a
limited set of bidirectional reflectance data, collected with the SE590 spectrometer, became available
[Betty Walter-Shea, personal communication].)

Similarly, leaf optical properties were not measured with an instrument ‘having AVHRR
spectral sensitivity. However, high spectral resolution data, interpolated to 5 nm intervals, were
available. 'i'hese data were obtained for a select set of grasses and forbs; tree and agricultural leaf optical
properties were not measured. In this st'udy,' only data from big bluestem (Andropogon gerardii
Vitman) and little bluestem (Andropogon scorparius Michx) leaves were used since these were
predominate species. Data from 11 green leaves were available. Leaf reflectance data were convolved
with AVHRR spectral sensitivity functions and solar spectral irradi.ance data to obtain the effective
broadband reflectance. Leaf transmittance was found ﬁsing the linear relationship described above.

Since the AVHRR NIR band extends to longer wavelengths (1.08 pm) than those for which data were
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available (1.00 pm), the reflectance at 1.00 pm was used to represent \‘/alues at longer wavelengths.
The mean leéf reflectance and transmittance for AVHRR bahd 2 were thus estimated to be 0.4322 and
.0.4?;80, respe'étively. The ranges of values were [0.4022, 0.4652] and [0.4031, 0.4766}, respectively.
Finally, site-wide LAI estimation was achieved by weighting LAI estimates for 10
topographical classes by the fractional coverage by each class. Live biomass data for each
topographical class were available for the .ﬁrst day of each IFC (28 May, 29 June, and 13 August 1987)
[Schimel et al., 1991; Kittel et al., 1990; Turner et al., 1992]. October IFC data were not used since
very little green biomass remained by that time. Using the equations of Schi.mel et al. [1991], mean
live biomass data were converted to LAI estimates. Since neither biomass nor LAI data were available
for cropland and wooded classes, LAY estimates of 5 and 10 were used, respectively. A topographical
stratification was developed based on the results of Davis et al. [1992]. Classes included uplands,
bottomlands, moderate (3-7°) and steep (>7°; non-North and North facing) slépes for burned and
unburned prairie, cropland and wooded. Fractional proportions were 0.095, 0.096, 0.116, 0.023,
0.083, 0.116, 0.080, 0.128, 0.024, 0.084, 0.083, and 0.072, respectively. Although this stratification
considers only tdpography and burn treatment, these variables result in most of the spatial'variability.
Grazing is also a significant factor, however its extent is difficult to assess [Davis et al., 1992]. Upon
linearly summing the products of class LAI and class fractional coverage, a second order polynomial

was fit to the results such that LAI estimates were available throughout the summer.
F. Improving Inversion Accuracy via a Directional Sensitivity Method

As shown in Chapters V and VIII, some sun-target-sensor geometries are more beneficial to
model inversions than others. For instance, the most accurate estimates of LAI were achieved with
samples in the principal plane and at low SZA. While sampling geometries of ground-based sensors
can be arranged conveniently, those of AVHRR are determined by orbital and sensor characteristics. In

fact, while some AVHRR samples may be collected at more preferable geometries, others will be
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collected at less preferable geometries. Clearly, if an inversion scheme is to benefit from preferential
_sainpling geometries, a general method applicable to all geometriés must be developed.

| The charaicteristics of beneficial sampling geometries can be found by analyzing merit function
behavior. Based on results for MISR sampling (Chapter V), two different sampling geometries
(principal plane and orthogonal plane) were compared. Eleven equally-spaced VZA were used for each.
Synthetic reflectance data were generated for a ;en'es of equally-spaced parameter sets around the "true"”
set. The latter was determined by the mean FIFE parameter values. Only leaf reflectance/transmittance
and LAT were varied; ®; was held constant. Merit function values were determined for each parameter
set and both sampling schemes via Equation (2.5). In this case, the empirical data were represented by
the model reflectance for the true parameter set. Results (Figure 9.5) suggest that the merit function
for the principal plane data has a steeper gradient near the minimizer (i.e., closer contour lines). This

creates a steeper "bowl" shape which facilitates a more rapid and accurate inversion.
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Figure 9.5. Contour plot of merit function variability over select range of LAI and leaf reflectance.
Solid lines indicate merit function values for principal plane samples, dotted lines represent merit
function values for orthogonal plane samples. All reflectance values were determined through forward
modeling.
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Mathematically, a merit function gradient sirhply expressés the change in reflectance for a unit
change in parameter values. Hence, the results above are consistent with intuition: if the reflectance
does not change over a parameter space, the merit function remains constant and all solutions are
equally viable. Conversely, if the reflectance changes substantially for small parameter changes, the
merit function changes significantly and the minimizer is well cieﬁned.

This information was incorporated into a general, continuous scheme for weighting AVHRR
samples. Assuming quasi-linear behavior, determining the merit function gradient for a single sample
is equivalent to determining the partial derivatives of reflectance with respect to the parameters. These
derivatives will be referred to as "directional sensitivities” (in publication, we termed them "derivative
weights" fof better description). The results above, combined with those in Chapter V, reveal that
optimization is most accurate when the gradient is large. Therefore, if reflectance errors in the merit
functi&n are ‘weighted by the directional sensitivities of the respective geometries, then samples
gathered at geometries with greater directional sensitivity will exhibit more influence on the merit
function than samples gathered at geometries with less directional sensitivity. Hence, the merit
function gradients will increase.

In an effort _fo make this method practical, the scheme below was developed. If a merit -

function is,

. | .
€= [R; -R} 1%, ©.1)
A :
then
n
og2 z « OR}
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=
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is the partial derivative of the merit function with respect to parameter i. "The first factor in Equation
92) 2[R - R;-‘ 1) is the difference between the AVHRR-measured reflectance and model reflectance.
This factor is determined by the proximity of the minimizer estimate to the actual minimizer.

However, this factor already exists in the original merit function and hence provides no additional

information. The second factor, 31',1-—, is the partial derivative—i.e., directional sensitivity—of the
1 .

model reflectance with respect to parameter i. Although this factor cannot be analytically determined

for numerical models, it can be approximated with finite differences,

In a typical data set for model inversion, each sample will have been acquired at a unique SZA.

- Because bidirectional reflectance varies significantly with SZA, the directional sensitivity (S; j ) could

be normalized by the mean TOC reflectance, e.g.,

— L K )
where R* = LI_KZ ZR;;C cos(By k)
=1 k=1

K is the number of samples (Rl";c ) per SZA used to estimate the mean reflectance, L is the number of
SZA, and 8y is the VZA of sample k. To insure non-negative values, S;; may need to be squared.

S;; depends both on the sun-target-sensor geometry of the sample and position in parameter
space. If only positions near the solution are considered, then S;; can be assumed to depend on

geometry only. In this case, S;; may be determined before the inversion if reasonable estimates of

parameter values are available.




In opera;tion, Equation (9.4) requires two forward executions of the model for each parameter
) and.sample () in an inversion data set. For most numerical models, this'is co’fnputationally
cxpensivé. However, direCti;)nal sénsitivity infonhz;tion may be efficiently stored a priori i.n a look-up‘
table (LUT). In the present study, reflectance values were computed at every 5° of VZA between 0 and
75°, every 15° of view azimuth angle between O‘and 180°, and every 5° of SZA between 0 and 75° for
the "nominal” canopy conditions. Representative values of ¥ were used. The nominal conditions were
then perturbed by changing each variable parameter by 10% of its range, one at a time. The reflectance
was recomputed for each perturbation, and S;j was determined for each geometry according to Equation
9.4).

Directional sensitivity data for negative perturbations (-10%) of each parameter (LAI, leaf
reflectance/transmittance and @) are shown in Figures 9.6-9.8 for two SZA (20 and 65°). Despite
some spurious anomalies due to graphical interpolation, several observations may be made. First, the
retro solar direction is the most sensitive to changes in LAI and o4 (Figures 9.6 and 9.8). This occurs
because the hot spot formulation reduces the canopy optical depth, allowing parameters which
determine soil scattering (i.e., LAI and ;) to strongly affect TOC reﬂegtance. Second, low VZA
reflectance is more strongly affected by LAI and @ than is high VZA reflectance. Similar to the hot
spot situation, this results from smaller canopy path lengths at low VZA. At high VZA, the longer
path length decreases sensitivity to parameters affecting soil scattering. For analogous reasons,
changes in leaf reflectance/transmittance strongly affect reflectance at high VZA, but have
comparatively little effect at low VZA (Figure 9.7).

As SZA increases, the sensitivity of the hot spot decreases for LAI and wg (Figures 9.6b and
9.8b) and increases for leaf reflectance/transmittance relative to other directions (Figures 9.7b). The
average directional sensitivity increases with increasing SZA kfor leaf reflectance/transmittance and
decreases for @;. Changes with SZA are not significant for LAI. These results are consistent with
sensitivity results in Chapter VIII. Results for positive perturbations were qualitatively similar,

although the sensitivity to LAI was less invariant at low VZA (i.e., the surface was more curved) than
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for negative perturbations. Quantitatively, directional sensitivity was greater for positive perturbations

' ‘qf LAT and cos and for negative perturbations of LAL
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Figure 9.6a-b. Polar plots of directional sensitivity for 10% decreases in LAI. VZAs increase away
from center of plot. SZA = 20° (top) and 65° (bottom).
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G. Validation of Directional Sensitivity Method

The directional sensitivity method can be incorporated into the merit function via the

weighting variable wj , such that Equation (2.5) may be rewritten as

n
€= 5;i[R; - R} 1% (9.6)
=1

This formulation uses the directional sensitivity of just one parameter, denoted by the subscript i.
Presumably, this is the parameter for which the highest retrieved accuracy is desired. Still, all
parameters may be accurately retrieved regardless of i.

The validity of the 'directional sensitivity theory can be assessed by comparing the surface of a
two parameter merit function before and after the application of directional sensitivity weights. Using
the site-wide FIFE parameter values found above, reflectance data were generated at every 15° zenith (0 -
75°) and 45° azimuth (0 - 180°) angles (26 total). These were considered the "true" parameter and
reflectance values, respectively. As in Section E, the merit function (with w; = 1) was evaluated at
equally spaced positions in the parameter space around the true parameters.

Next, weights determined for LAI and leaf reflectance were applied separately. To emphasize -
differences, the fourth power of each weight was determined. The resulting values were normalized. A
comparison of the weights for the respective parameters (Figure.9.9) illustrates differences. The LAI
weights apply greéttest emphasis on hot spot errors. In addition, the LAT weights decrease substantially
for increasing VZA. In contrast, the leaf reflectance weights increase substantially for increasing VZA.
The weight for VZA = 75° is about 10 times larger than the analogous LAI weight. Although the leaf
reflectance weights also emphasize the hot spot direction, the emphasis was significantly less than for
LAI In general, both weighting schemes have decreasing values for increasing azimuth angle (where
0° azimuth is defined by the projection of the solar vector onto the horizontal plane) such that

backscatter errors are emphasized more than forward scatter errors.
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Figure 9.9. Weights used to compare effects of different directional sensitivity sets. Major ticks
represent VZA from 15-75° by 15° intervals. Minor ticks represent view azimuth angles, from 0-180°
by 45°, per major tick interval. '

The merit functions for. the different weighting schemes are shown in Figure 9.10. First,
several general trends unrelated to the weighting schemes can be noted. For example, the minimizer
"valley" sweeps from high LA low leaf reflectance to low LAL high leaf reflectance. This illustrates
the fact that increasing LAI has the same general effect as increasing leaf reflectance—it increases TOC
reflectance. Second, there is some ambiguity as to the correct minimizer position. Specifically, the
10-6 contour line spans about 0.2 LAI aﬁd 0.003 leaf reflectance. Since the gradient of the merit
function is small within this contour, an op_timi.zation algorithm would have difficulty determining the
true minimizer. If empirical reflectance data had been used, random errors would serve to lengthen and
broaden this valley. This would possibly result in smaller gradients and poorer inversion results (see

Chapter V).
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Figure 9.10. Variation in merit function due to dlrectlonal sensitivity weights from different
parameters. Weights are indicated in Figure 9.9.

Inspection of weighting effects reveals important differences. Application of the LAI weights
causes contours to become more perpendicular to the LAI (ordinate) axis. In effect, this increases the
gradient along lines determined by constant leaf reflectance. As noted above, steeper gradients allow
more computationally efficient riﬁnimization. Moreover, it decreases the ambiguity in the LAI
minimizer value since the lowest £2 contou; extends over a smaller LAI range. It also effectively
increases the range of leaf reflectance values spanned by the lowest €2 contour. Thus, greater errors in
leaf reflectance could be tolerated while still retrieving a correct LAI. In the limit of weighting effects,
the contour lines would be perpendicular to the LAT axis such that the correct LAI could be ascertained
for a large range of leaf reflectance estimates. In practice, however, such a severe change could not be
achieved since the angular regions over which the respective parameters influence reflectance are ‘not

independent.
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Likewise, when leaf reflectance weights are applied, contours become more perpendicular to

" the leaf reflectance axis (abscissa). This increases the gradient along constant LAI lines such that the

‘ Qpiimization algorithm can more‘efﬁciently detérmine leaf reflectance. Ag;iin, the range of leaf
reflectance spanned by the smallest contour line is reduced while the range of LAI is increased. This
suggests that larger errors could be tolerated in LAI without sacrificing accuracy in leaf reflectance
estimation,

These results show that the directional sensitivity method allows advantageous manipulation
of the merit function surface. While basic trends in merit function behavior are defined by the influence
of respective parameters on reflectance, more subtle yet distinct changes can occur by employing a
directional sensitivity weighting scheme. Although the fourth power of §;; was used here, other
exponent values would emphasize/de-émphasize reflectance differences at various geometries. Further
experimentation may reveal an optimal exponent. While future methods may have more direct impact
on the merit function shape, the directional senmsitivity method is reasonably simple and easily

implemented—important characteristics for operational use.
H. Application of Directional Sensitivity Method to AVHRR Data

Although S varies smoothly. over most directions (cf., Figures 9.6-9.8), it varies sharply
near the hot spot. Therefore, despite the relatively high angular resolution of the LUTs, the rounding
of sun-target-sensor angles to the nearest LUT element may produce errors in directional sensitivity.
To rectify this condition, a 2-D cubic spline>was fit to the Sj; data for each SZA. To eliminat¢
anomalous results near their edges, the splines were determined over angular ranges (-30 to 210°
azimuth, -30 to 75° zenith) larger than the necessary ranges (0-180° azimuth, 0-70° zenith). The
continuous splines allow the interpolation of §; ; for any view zenith and azimuth angle.

In operation, the SZA of an AVHRR sample is rounded to the nearest 5° interval. The
resulting value is used to determine the appropriate spline. With the viewing geometry of the sample,

the spline is used to interpolate Sj;. This method assumes that S;; varies relatively slowly in SZA,
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such that SZA differences of up to 2.5° have minor effect.. Qualitative inspection suggests this
assumption is reasonable.

The directional sensitj\"ity method also provides a convenient method for selecting an optimal
set of samples for inversion. Specifically, since the directional sensitivity indicates the relative
usefulness of a particular sample, it is reasonable to choose a sample set for which the mean directional

sensitivity,

JR— 1 n
S =~ ¥Sij» ©.7)
i

is maximum, where S;; is the directional sensitivity for a given sample and » is the number of samples
in the subset (n >p).
_In the present study, inversion of DISORD was attempted with FIFE AVHRR data from
1987. Although previous inversions (Chapters VII and VIII) utilized data from 1989, ground truth data
were more comprehensive in 1987. AVHRR data from both NOAA-9 (morning) and NOAA-10
(afternoon} were utilized. In an attempt to decrease sampling errors from subpixel heterogeneity and
georegisuaﬁon, mean site-wide AVHRR values were used. A filter eliminated passes for which the
FIFE area was cloudy. The resulting data were relatively sparse (68 reflectance values between 9 May
and 22 October 1987).
Because the number of samples collected over the FIFE area per satellite pass depends on the
VZA, the statistical significances of the "average" values differ. Moreover, the average value for a
given pass may not be the same as any measured value due to the large spatial heterogeneity at FIFE.
Specifically, large limestone outcrops are evident in high resolution images of the area. Other issues,
such as the varying amounts of overlap between adjacent pixels for different passes, or the differential
spatial weighting due to the sensor point spread function, further complicate the interpretation of a site-

wide average reflectance. These complicating issues were not addressed in this study.
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Because .canopy conditions changed throughout the summer, subsets of the 68 AVHRR

samples were used for inversjons. Although more samples can imprové the determination of the model

" parameters, all samples in a subsét must be gathered within a time frame for which the target
vegetation is likely to be invariant. In practice, this time frame depends on many variables including
vegetation type and condition, climatology, and soil moisture. Inspection of FIFE data suggests that
the tallgrass prairie may normally be regarded as invariant for 11-day- periods.

Optimal subsets were thus found as follows. First, the directional sensitivity of each cloud-
free AVHRR sample was determined. The S;; values for samples within every 11-day period were

sorted according to magnitude. The mean directional sensitivity (?) of the p samples with the

highest S;; was determined for each period. Results in Figure 9.11 clearly show that the logical

selection of periods can result in a substantially larger S compared to other periods. Thus, all periods

" with mean sensitivity values exceéding a user-defined threshold were used in inversions, while those
with values below the threshold were rejected. In using this strategy, inversions were conducted only
with the most promising 11-day periods (i.e., those identified via directional sensitivity to contain the

most information about the model parameters).
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Figure 9.11. Directional sensitivity values for 68 AVHRR samples from 1987. Diamonds represent
weights for individual samples, pluses (+) represent mean weights for three most highly weighted
samples per 11-day period.

I. Atmospheric Correction of AVHRR Data

The Local Area Coverage AVHRR data (Levei-2a) from FIFE were corrected for atmospheric
effects by Goetz (1995) using the 55+ model of Vermote et al. [1994]. 5S+, and it successor 6S, are
extensions to 5S and feature increased spectral, spatial, and angular resolution. The 58S+ model was
used to estimate surface reflectance given the atmospheric conditions and observed TOA reflectance.
The thermodynamic profile of the atmosphere was assumed to follow the US62 model, and the aerosol
distribution for mid-continental areas was used. The atmospheric precipitable water was estimated from
the brightness temperature difference between AVHRR bands 4 and 5 [Eck and Holben, 1994]. The
aerosol optical depth at 550 nm was fixed with the median value observed in 1987. Although this
parameter is not constant in nature, ;ensi;ivity studies [Tanré et al., 1992] suggest the AVHRR Band 2

reflectance is not highly sensitive to it.
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The correction scheme above yields an estimate of the TOC reflectance. Nevertheless,

DISORD still requires an estimate of ¥y, the ratio of direct-to-total irradiance. For the inversions

described in Chapters VII-VIII, 5S was used to estimate Y based on in situ data from sun photometer

(557 nm) and radiosonde measurements near the time of MMR sampling. However, these
measurements were not conducted throughout 1987. Thus, atmospheric data were determined as
described below.

| Aerosol optical depth data at 500 nm were .obtained from sun photometer observations. The’
data extended from 9 April 1987 to 31 October 1989. Using the FIS-supplied Angstrom exponent, the
optical depth at 550 nm was calculated for each observation. Mean morning (0800-1130 local time)
and afternoon (1230-1630 local time) values were then determined for each observation day. Fourth
order polynomials were fit to these data. Although the data are highly variable, results (Figure 9.12)
suggest that afternoon opticai depth exceeds morning optical depth. Moreover, both morning and
afternoon optical depths are greatest during the summer. These results are somewhat intuitive since
rural aerosols generally evolve from atmospheric convection. Convection varies with insolation and

hence season.
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Figure 9.12. Variation in aerosol optical depth with date during FIFE. Values were determined from |
sun photometers. Curves represents 4th order polynomial fits, and their confidence intervals, of
morning and afternoon values. :

Ozone abundance was available from High Resolution Infrared Sounder-Version 2 (HIRS-2)
data sets. HIRS-2 is part of the Tiros Operational Vertical Sounder (TOVS) system onboard NOAA-9
and -10. These data were available for 1 January 1987 through 31 December 1987. Agéin, a 4th order
polynomial was fit to the data. Results (Figure 9.13) suggest that ozone abundance is highest and v

most variable in winter and early spring.
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Figure 9.13. Ozone abundance estimates over FIFE from TOVS HIRS-2 data. Curve represents a 4th
order polynomial fit of the data.

Finally, column water vapor was available from the TOVS HIRS-2 (1987). It was also
determined from radiosonde data (1987 and 1989). Only data collected between 0700 and 17bQ local
time.were used. No appreciable differences were evident between morning and afternoon values. A 4th
order polynomial was again fit to the data. Results (Figure 9.14) suggest that column water vapor is
highly variable, especially during summer months. Moreover, summer values may be more than twice

the magnitude of winter values. This reflects the impact of temperature on the ability of the

atmosphere to hold water.
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Figure 9.14. Column water vapor estimates over FIFE from TOVS HIRS-2 and radiosonde data.
Curve represents a 4th order polynomial fit of the data.

The polynomial equations for these atmospheric properties were programmed into the 6S code.
This allowed determination of y directly from sun-target-sensor geometry and Gregorian Day.
Although this method relies on statistical fits, it is undoubtedly supérior to methods which assume
constant atmospheric properties thoughout the year. Assuming the data are typical for the FIFE area,‘

this modified model may be used to atmospherically correct FIFE AVHRR data for any date.
J. Comparison of Model Estimates to AVHRR Data

Before model inversions were attempted, the atmospherically corrected AVHRR data were
compared to DISORD estimates. Excluding LAI, the model parameters were fixed with the mean
values described above. LAI was determined individually for each date using polynomial interpolation

(also described above). While a comparison of AVHRR data with model estimates does not provide
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true validation of either data set, it does indicate the potential success of model inversions.

Spéciﬁcally, if the values match well, it is likely that the merit.function minimum will occur when

modc;.l parémeters assume reasonable values.

Results in Figures 9.15a-b reveal several interesting phenomena. First, the largest errors
occur during the early and latter parts of this period (Figure 9.15b). In those cases, the model
consistently underestimates the measured reﬂéctz'mce. While the general green up and senescence periods
are obvious in the modeled data, they are less obvious in the measured data. In specifying parameters,
however, the model was intended to simulate mature, healthy canopies. For example, only live
biomass data were used to calculate LAI, and only green leaves were used to determine leaf optical
properties. These conditions did not exist in late spring due to the prescribed burning of some areas on
or near 15 May 1987. Moreover, transect biomass data suggest that little or no live biomass was
present by 12 October 1987. Hence, it is probable that the canopy was progressively senescing during
the latter part of the AVHRR measurement period. Moreover, the model LAI was not permitted below
0.5 since the LAI polynomial was considered inaccurate in such cases. Thus, accurate modeling of

spring and autumn conditions should not be expected.
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Figure 9.15b. Errors, as a function of date, between measured and modeled reflectance of AVHRR.
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For mid-June through mid-August, the measured. and modeled vaiues agree reasonably well
' (Iﬂe'an of absqluté values of errofs = 0.022). Still, the mode] estimates vary less than the measured
A ‘v;cl.lues. The opposité was expectéd since modei estimates idepict the reﬂecta;lce per unit steradian,
whereas AVHRR measures reflectance over about 1.99 psr. Reasons for this inconsistency are not
clear. Figure 9.15c suggests no significant correlation of errors with VZA. This implies that the
turbid medium model is able to adequately represent the actual canopy. If this were not true, some
correlation would be expected since canopy gaps visible to the sensor would decrease with increasing
VZA. Figure 9.15d, however, suggests the reflectance errors are somewhat correlated with SZA.
Although SZA was higher during the early and later parts of the measurement period (where canopy
conditions were not suited for this model), it is possible that the atmospheric correction was less

accurate for high SZA. Improved modeling and atmospheric corrections will be considered in future

work.
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Figure 9.15¢. Errors, as a function of VZA, between measured and modeled reflectance of AVHRR.
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Figure 9.15d. Errors, as a function of SZA, between measured and modeled reflectance of AVHRR.
K. Inversions with One Adjustable Parameter

Due to the significant differences between data measured by groﬁnd-based and space-based
sensors, only one pﬁmeter was initially adjusted in the inversion. Since LAI is one of the most
useful parameters [Collins and Avissar, 1994] and the most difficult to obtain [Goel and Thompson,
1985], it remained adjustable. Leaf reflectance/transmittance and ®w; were held constant using the
values determined in Section G. The LAI directional sensitivity data were used to weight the
reflectance errors. Only ll-déy periods where 'S >0.11 were used. Inverse parabolic interpolation
(subroutine BRENT {Press et al., 1988]) was used to adjust LAL

Results are shown in Figure 9.16. Aithough errors are large for early June, this is not
unexpected based on results above. Specifically, the inversion increased LAI such that model estimates
would match the high reflectance data (cf. Figures 9.15a-b). Errors from mid-June through mid-August
are signiﬁcantly smaller. Indeed, the retrieved LAI matches the in situ curve (see Seétion E) relatively

well during this period. Of particular note is the decrease in retrieved LAI during the latter part of the
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period. The same trend is obvious in the measured data. This undoubtedly reflects the decrease in green

" " vegetation in late summer.
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Figure 9.16. Comparison of AVHRR-retrieved and measured LAI over FIFE during 1987. BRDF
model was inverted for one parameter. Measured data are discussed in Section E.

Inversions were also attempted by adjusting leaf reﬂectance/transmitténce. LAI was fixed at
2.8. The directional sensitivity weights for leaf reflectance/transmittance were used in the merit
function. Results in Figure 9.17 show the retrieved reflectance is higher than the mean measured vaiue
through mid-June, although it is ‘within the range of the measured data. From mid-June through early

September, differences between the retrieved and mean measured values are significantly smaller. By

mid-September, the retrieved leaf reflectance is consistently lower than the mean measured value for

green leaves. However, the differences between the retrieved and mean measured values for senescing
leaves is small. In all cases, the retrieved values are within the range of measured data. This suggests
that, given a reasonable value of LAI, inversion of DISORD allows an accurate estimation of mean leaf

reflectance throughout the tallgrass life cycle.
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Figure 9.17. Comparison of AVHRR-retrieved and measured leaf reflectance over FIFE during 1987.
BRDF model was inverted for one parameter. Measured data are discussed in Section E.

L. Inversions with Two Adjustable Parameters

Based on the success of the one parameter inversions, two parameter inversions were
attempted. In this case, the simplex routine described in Chapter VIII was used to determine LAI and
leaf reflectance. All other parameters were held constant at the values used in Section J. Assuming
LAI is the more useful retrieved parameter, the LAI directional sensitivity values were used. As noted
above, this choice presumably means that LAI can be determined more accurately despite possibly
larger errors in leaf reflectance.

Results with two adjusted parameters were clearly less successful (Figures 9.18a-b). Although
some retrieved LAI values near the middle df July and middle of August were in the range of the
measured LAI values, the remaining LAl estimates were too low. In contrast, the corresponding leaf

reflectance/transmittance were too high. The potential to overestimate leaf albedo and underestimate
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‘LAl is a result of the merit function behavior (cf. Figure 9.10). Indeed, in cases where the leaf

reflectance was Teasonably estimated (leaf reflectance error < 0.03), the canopy" LAI was more
» reasonably estimated (Figure 17a). These data (corresponding to reasonable p) correctly show the

decrease in LAI during the late summer.
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Figure 9.182. Comparison of AVHRR-retrieved and measured LAY over FIFE during 1987. BRDF
model was inverted for two parameters.
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Figure 9.18b. Comparison of AVHRR-retrieved and measured leaf reflectance over FIFE during 1987.
BRDF model was inverted for two parameters. ’

In an effort to decrease these errors, the period over which AVHRR data were collected per
inversion was extended to 18 days. In this case, consecutive 18-day periods from 26 April 1987 were
considered rather than every possible 18-day period. It was hoped that by increasing the number of
samples, the model parameters could be better determined and hence more accurate. In practice,
however, errors were significantly larger than for the 11-day cycles. In most casc;,s, the leaf alﬁedo was
estimated to be the theoretical upper limit (1.0). Due to the inverse relationship between retrieved leaf -

albedo and LALI, this resulted in low estimates of LAI. The increased errors probably resulted for two

reasons. First, since successive rather than all 18-day cycles were used, the magnitude of S was not -

considered. Thus, there was no discrimination between promising and non-promising data sets.
Second, by extending the data collection periods to 18 days, it is likely that all periods contained some

samples for which the measured and modeled reflectances were very different (cf. Figure 9.15a).
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M. Inversions with Three Adjustable Parameters

Despite the limited success with two parameter cases, inversions with three adjustable

parameters (LAI leaf reflectance/transmittance and ;) were also attempted. Again, an 11-day cycle
was used with the LAI directional senéitivity weights. Results in LAI and leaf albedo were similar to
those above (Figures 9.19a-c). Specifically, LAI was underestimated and leaf albedo was overestimated
in most cases.- When leaf albedo errors were less than 0.03, however, LAl errors were reasonable in all
but one case. There was no obvious correlation of g errors with errors in the other parameters. In
nearly half of the cases, ®; assumed the value of either the upper or lower limit (0.2 and 0.7,

respectively). This suggests that o of grasslands may be very difficult to retrieve from satellite data.
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Figure 9.19a. Comparison of AVHRR-retrieved and measured LAI over FIFE during 1987. BRDF
model was inverted for three parameters.
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Figure 9.19b. Comparison of AVHRR-retrieved and measured leaf reflectance over FIFE during 1987.
BRDF model was inverted for three parameters.
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N. Other Uses of Directional Sensitivity

in this stﬁdy, S;j was only found for NIR wavelengths. However, multispectral data could be
accommodated simply by adding another degree of freedom, e.g., S; ;. where k denotes the spectral
band. Additional degrees of freedom might accommodate other parameters, such as atmospheric
variables, model accuracy (if directionally depex;dent) and soil moisture.

To more explicitly emphasize the retrieval accuracy of one parameter over another, the
directional sensitivities of the two parameters may be ratioed, such as

_Suj
S2,_|

Wi
where the accuracy of parameter ¢y is deemed more important than the accuracy of parameter c,.
Moreover, one parameter inversions may be attempted sequentially. In this case, the directional
sensitivities of ¢; may be used initially to determine its value. Upon optimization, the problem could
be reconfigured by ﬁxing ¢y with the retrieved value. A second inversion could be conducted using the
directional sensitivities of ¢3. The cycle might be repeated to improve estimation.

Optimization routines relying on line minimizations (e.g., quasi-Newton routines) might be

most effective using variable weighting sets. In this case, the directional sensitivity could be uniquely

formulated for each line minimization. For example, the weight for sample j might be formed by a

simple vector product,
A hecd
§; =neS§j

where \o(n,") defines the unit vector in the parameter space direction of the current line minimization,

-
and §; =381 T+ Sz,jf + o+ 8 f)\ represents the gradient of canopy reflectance (R;) with respect to
the model parameters. The hat (*) denotes a unit vector, and f, JA, s f)\ are the standard unit vectors.

Equation (9.9) would weight merit function errors by the relative impact of each parameter on the merit
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function aloﬁg-the given line. The impact for a parameter would be determined by the parameter's
di_rectionél sensitivity and degree to which the line coincides with the parameter’s axis. Note that upon
minimizing each line for a giveﬁ iteration, the merit function would have to'be reevaluated at the final
position using a standard weighting function. In this manner, minima determined over multiple
iterations could be compared.

As shown in this study, optimal subsets of available isatellite data might prove most reliable
for inversion. Since the directional sensitivity method depends only on sample geometry, optimal
subsets may be determined well before the data are collected. The time frame over which reflectance
data can be collected is limited by the temporal variance of the surface. Surface variance may depend on
date, climatology, root depth, soil water capacity, canopy age and health, anomalous events (insect
infestation, disease, fire), etc. As stated in Chapter II, at least p samples must be available for
inversion. The number p depends on the inversion configuration. The ability to collect the samples in
a given.time i;'rame is a function of many variables, including the number and sampling strategy of the
sensor(s) and the cloudiness of an area. If large areas of homogeneous cover exist, sampleé from
different targets might be combined in the same inversion. Clearly, sampling strategies for most
environmental satellites (SPOT, Land.sat) were not designed to suit operationél BRDF model
inversions. Indeed, although AVHRR was not designed for this purpose, it is nevertheless most -

suitable.

The utility of the directional sensitivity method is significant. Still, the sets Sj; are unique
for each canopy. Therefore, in a global operation, a different set should be generated for each class
cover (e.g., coniferous forest, deciduous forest, grassland, tundra). Regardless of these issues, it appears
that in multiple parameter inversions, contending with the inverse relationship between LAI and leaf
albedo will be a significant challenge. Indeed, despite the directional sensitivity method, consistent
results were only retrieved in one parameter inversions. By confining the parameter space and reducing

errors in data, multiple parameter inversions should eventually be more successful.
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0. Conclusions

Based on its wide range‘of sampling geometries, global coveragé, and high temporal
resolution, AVHRR data was chosen for use in model inversions. Because satellite data contains
significant noise due to atmospheric and surface effects (topography, cover heterogeneity), a scheme
was developed for differentially weighting the empirical data. The écheme is based on the sensitivity of
TOC reflectance at a given sun-target-sample geometry to model parameters. Directions for which
reflectance is more sensitive to a given parameter has a larger weight than directions for which
reflectance is less sensitive. Simulations with synthetic data verified that merit function gradients
increased when this weighting scheme was applied. Steeper gradients were found to improve
optimization accufacy and efficiency.

Mean parameter values were determined over the entire FIFE site via various averaging

schemes. Using atmospherically corrected AVHRR data from 1987, the coupled soil and canopy model

was partially validated. Model estimates agreed reasonably well with empirical data from mid-June
through mid-August. Errors in data gathered before mid-June and after mid-August were attributed to
non-green surface conditions (burned and sene'scent canopies, respectively).

The model was configured for inversion by fixing LAD with the site-wide value. Moreover,
leaf transmittance was coupled to leaf reflectance using a regression equation determined from empirical
data. The remaining three parameters—LAl, leaf reflectance/transmittance, and soil single scattering
albedo—remained variable. Estimates of ¥ were determined using a radiative transfer model and
gmpirical—based equations for atmospheric properties. The weighting scheme was used to select
promising 11-day subsets of AVHRR data for inversions. Using the LAI and leaf
reflectance/transmittance weighting schemes, site-wide LAI and leaf optical properties were accurately
retrieved in one parameter inversions. Solutions from inversions with two adjustable parameters were
less accurate, but were acceptable in some cases. Finally, additional uses of the weighting scheme were

outlined.




Due to the limited bandwidths of AVHRR, fAPAR and shortwave albedo were not computed.
Myneﬁi ét al. [1992b] demonstrated that incomplete coverage of the solar spectruin by‘AVHRR could

result in albedo errors of up to 30%.
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CHAPTER X

CONCLUSIONS

.. The investigations in this study were conducted to determine the limitations of and an efficient
strategy for bidirectional reflectance model inversions. Both of these objectives were achieved. General
conclusions from this study are stated below.

Inversions can only retrieve parameters which substantially affect the top-of-canopy (TOC)
reflectance. A sensitivity study suggested that at very low optical depths (LAI < 1), only soil
parameters may be accurately retrieved. At moderate optical depths (I < LAI < 3), soil single
scattering albedo and canopy parameters may be retrieved, and at high optical depths (LAI > 3), only
canopy parameters may be retrieved. The accurate determination of LAI generally requires that the soil
affect TOC reflectance. Otherwise, the canopy is effectively semi-infinite and reflectance is not
sensitive to LAT perturbations. Parameters to which TOC reflectance is not sensitive may be fixed at
constant values (even if somewhat incorrect) with little pegative effect on results.

Inversions with noise-free, synthetic data suggest accurate estimation of surface Iparameters is
possible except for cases of high LAI (8), low SZA, and when the LAD was incorrectly specified.
Accurate inversions are difficult for low SZA since the azimuthal asymmetry of the TOC reflectance
decreases as SZA decreases. This reduces the information available to the inversion. In addition,
unless LAD is adjustable during inversion, some prior knowledge of the LAD is required. Inversions
using synthetic data collected under satellite sampling schemes (MISR and AVHRR) should permit the
accurate estimation of parameters. The only exception found in this study was for MISR viewing
geometries in the orthogonal plane. Indeed, results suggest samples in or near the principal plane are

highly advantageous to the inversion.




Surface state parameters—speCUal.albedo, absorbed radiation, and canopy photosynthetic
gfficiency (under known conditions}——may'be_ accurately determined despite relatively large errors in
retrieved model parameters. Since surface state parameters essentially des.c:ﬁi)e integrated radiati’op
quantities, determination of their instantaneous values is tantamount to accurately estimating
reflectance for non-data directions. Multiple solutions (some incorrect) may produce reasonable
| integrated quantities. However, if state parameters are to be predicted for times at which radiance data
are unavailable, accurate determination of model parameters is important. Otherwise, TOC reflectance
changes with SZA may be incorrect.

A model of anisotropic background (soil) reflectance appears necessary for canopy model
inversions with relatively high LAI values (<8). This is particularly true when samples near the hot
" spot are used. Lambertian backgrounds may be suitable for higher LAI conditions or when samples are
not near the hot spot. Visible bands are most susceptible to errors due to Lambertian approximations.

Inversions of the soil model of Jacquemoud et al. [1992], using field data from a ground-based -
radiometer, suggest the "invariant"_ soil parameters must be determined using a reflectance set
representing widely varying conditions (solar and viewing angles, spectral bands, and soil moisture).
However, the resulting solution for a prairie soil fit 580 data points with an average of 3.5% absolute
values of errors. This implies that a general solution which depends only on soil single scattering '
albedo can be used regardless of surface and sampling conditions.

A sensitivity study with DISORD, using the ar;isotropic soil background, showed that leaf
optical properties and LAI are the most influential parameters affecting TOC reflectance of typical
midwestern grasslands. This result was confirmed for different spectral bands and SZA. Inversions of
DISORD with principal plane samples from the ground-based MMR radiometer suggest LAI and LAD
are most'accurately retrieved at NIR wavelengths and at low SZA. Leaf optical properties are generally
retrieved more accurately at high SZA—probably since soil effects are decreased. For NIR bands, leaf
reflectance is more accurately determined at low SZA. Soil single scattering albedo appears to be

retrievable at low SZA since the canopy optical depth is lower.
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In practical terms, NIR wavelengths ai)pear to be most useful for inversions. Due to the
relapively low leaf absorption at NIR, the canopy re_:mains optically finite over a greater LAl range than
for vigible radiation. Hence, LAl may be determined over a greater range of cano.py conditions. If LAI ‘
< 3, red wavelengths may be equally suitable. However, atmospheric effects are greater at shorter
wavelengths.

Estimates of shortwave albedo were obtained by spectrally integrating the spectral albedo
values for each MMR band. Results were most accurate when canopy parameters retrieved at preferred
wavelengths and SZA were used to estimate spectral albedo. The mean absolute value of errors was
less than 4%. Estimates of fAPAR were less accurate, however this may be due to difficulties in
measuring transmitted radiation under a canopy, spatial heterogeneities at FIFE, errors in the soil model
' solution or the assumption that TOC and soil albedo are equal. Estimates of the total (soil + canopy)
APAR were highly accurate.

Finally, experiments suggested that the gradient of the merit function near the minimizer
largely determines the efficiency and accuracy of the optimization. To insure steep gradients, only
model parameters significantly affecting the TOC radiance should remain variable. This theory was
developed into a weighting scheme for the merit function. In this scheme, each reflectance error is
magnified by the directional reflectance sensitivity for the given sun-target-scanner geometry.
Reflectance errors for highly sensitive geometries therefore impact the merit function more than errors
for less sensitive geometries.

This weighting function was applied to model inversions with atmospherically-corrected
AVHRR data from the First ISLSCP Field Experiment (FIFE). Results demonstrate that 2-3
parameters (LAI, leaf optical properties, soil single scattering albedo) can be estimated from AVHRR
(during the Eos era, MODIS) over grasslands. However, the retrieval accuracies of different parameters
are not independent. Thus, accurate retrieval of LAI depends on tlr;e accuracy of the leaf optical property
estimates, and vice-versa. A consistent value of soil single scattering albedo was not retrieved.

Throughout this study, numerical vegetatibn BRDF models,irigorously based on physical

principles, were used. Naturally, numerical models are relatively computationally expensive. Hence,
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they may not be ideal for operational use. Nevertheless, CANTEQ and DISORD are based on turbid
medium theory. Although other modeling schemes may be more useful sonietimés,.tu’rbid medium
models are probably the inost generally abplicable for operational iﬁversions wifh saiellite data.. By
regarding results in this study as turbid medium benchmarks, inaccuracies resulting from inversions
with less rigorous models— e.g., those based on analytical solutions to a simplified transport
equation—may be understood and quantified. Moreover, by using rigorous models, the true potential of
the angular radiation signal can be assessed.

The success iq estimating grassland LAI and leaf reflectance/transmittance directly from
AVHRR data is encouraging. Although the remaining model parameters were specified with reasonable
values in these cases, estimation of their values may be possible for many canopies. Indeed, although
surface conditions varied over the 15 ki x 15 km FIFE area—sometimes signiﬁc;antly (e.g., highways
and buildings)—the use of .mean leaf optical data from just two species was sufficient to allow accurate
LAI estimation. The potential fd'r accurately estimating LAI over larger grassland areas appears
substantial.

The determination of surface data sets for process models is a difficult task at best. Many
methods have been proposed, yet few have been operationally applied with satellite data. Those that
were featured relatively poof thematic resolution (e.g., land cover classifications from NﬁW) in part
because of data behavior for which the simple statistical models could not account (e.g., reﬂectan_ce
anisotropy, effects of different background reflectance). The inversion scheme presented here is strongly
based on physical principles. Hence, accurate estimation of sohme grassland parameters was possible .
with a scheme that is not site or sampling condition dependent. At the very least, this method should
allow improved thematic resolution and the detection of more subtle canopy changes due to natural and
anthropogenic forces.

Much work remains to be done, including using multiple AVHRR bands simultaneously
during inversion, applying inversion methods to oiher canopy types, qﬁantifying effects of surface
heterogeneity, and improving atmospheric correction schemes. Some of this work is presently being

addressed elsewhere.
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Conclusions are presented in bullet format below.

2-3 parameters (LLAI, leaf optical_propérties, soil single scattering albedo) could be estimated
from AVHRR or MODIS data collected over grasslands. This requires reasonably accurate
estimates of other model parameters, however.

MISR sampling geometry should allow the accurate retrieval of the same parameters when the
ground track is close to the principal plane.

Retrieval accuracy for LAI depends on the accuracy in leaf optical property estimates, and vice-
versa.

LALI and soil properties can be accurately estimated only for thin canopy (LAI < 3) cases.

Leaf optical properties can only be estimated accurately for canopies of
LAI> 1.

NIR bands are superior for the determination of spectrally independent parameters of
grasslands. At very low LAI (<1), red bands may be superior.

LALI, soil properties and LAD are most accurately estimated with low SZA and VZA. SZA
should not be less than 10°, however, or azimuthal asymmetry is lost.

Leaf optical properties are most accurately estimated at high SZA and VZA.

Surface state parameters (fAPAR, albedo, etc.) may be accurately estimated for the time of
sampling even if moderate errors occur in the retrieved soil and canopy parameters.

Surface state parameters can only be accurately estimated at other times if errors are small in
the retrieved soil and canopy parameters.

An anisotropic soil model is required to accurately model relatively thick canopies (LAI < 8),
especially if reflectance near the hot spot is estimated. Inversions of the model of Jacquemoud -
et al. [1992] requires data from multiple spectral bands, at multiple VZA and SZA, and in
multiple azimuthal planes to produce generally applicable estimates of roughness and phase
function parameters. :

Optimization routines work best when the merit function surface is steep and does not contain
local minima. The slope of the merit function around the minimizer can be steepened via
weighting the merit function terms by the partial derivative of directional reflectance with
respect to model parameters. This increases the efficiency and accuracy of the inversion.
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