CONF-97/030-1

SAND97-0709C

CHARACTERIZATION OF SEPTIC AND DRAIN SYSTEM RELEASES AT SANDIA NATIONAL LABORATORIES, NEW MEXICO

by

M.R. Sanders and R.B. Galloway

RECEIVED

CDM Federal Programs Corporation and Sandia National Laboratories

MAR 2 8 1997

OSTI

Sandia National Laboratories/New Mexico (SNL/NM), located in Albuquerque, New Mexico, is operated by the Lockheed Martin Corporation, a prime contractor to the U.S. Department of Energy (DOE). SNL/NM has been involved in nuclear weapons research, component development, assembly, testing, and other research and development activities since 1945. The SNL/NM Environmental Restoration (ER) Project is tasked with performing the assessment and remediation of environmental releases resulting from the almost 50 years of engineering development and testing activities.

Operable Unit 1295, Septic Tanks and Drainfields, includes inactive septic and drain systems at 23 separate ER sites that were listed as Solid Waste Management Units (SWMUs) in the SNL/NM Resource Conservation and Recovery Act (RCRA) Hazardous and Solid Waste Amendments (HSWA) Module Permit. These sites were identified, based on process histories and interviews with facility personnel, as the subset of all SNL/NM septic and drain systems that had the highest potential for releases of hazardous and radioactive wastes into the environment. An additional 101 septic and drain systems not currently classified as SWMUs also have been identified as needing future characterization.

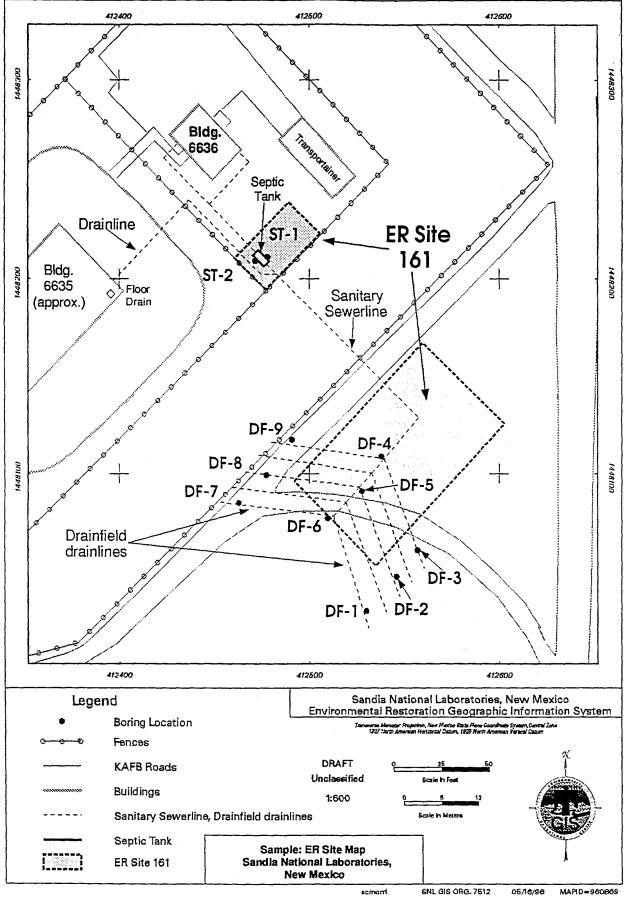
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This work was supported by the United States DOE under contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Sanitary and process wastes from activities at many SNL/NM test facilities were discharged to septic and drain systems. These systems typically consisted of septic tanks connected to drainfields or seepage pits, or of French drains, drywells or surface outfalls that received waste water discharges. Potential constituents of concern (COCs) include volatile and semivolatile organic compounds (VOCs and SVOCs), heavy metals, photoprocessing wastes, explosives residue, radionuclides, and other contaminants. All ER site septic and drain systems are now inactive; effluent from active facilities is now directed to the sanitary sewer system.

The climate at SNL/NM is typical of a high desert plateau. with wide temperature extremes and rainfall ranging between 8 and 12 inches in a typical year. Elevations at SNL/NM range from about 5,300 to 8,000 feet above mean sea level. The vadose zone beneath most of the sites consists of a thick package of unconsolidated alluvial fan deposits derived from the Manzanita Mountains which bound the east side of SNL/NM. Depth to groundwater ranges from approximately 200 to 500 feet below ground surface (bgs) at the majority of the sites.


Initial site screening activities included interviewing personnel familiar with the history and nature of activities at the various facilities, and sampling septic tank contents to identify the most likely COCs at each site. A phased assessment approach (described in a RCRA Facility Investigation Work Plan approved by the U.S. Environmental Protection Agency (EPA) and the New Mexico Environment Department [NMED]) was designed to quickly eliminate sites where COCs were not present, and to assess the nature and extent of contamination at sites where significant COC concentrations were identified.

The first phase of field characterization activities, completed in 1994, included surface radiation, geophysical, and passive soil-gas surveys around the most likely release points; backhoe excavation to locate buried septic system units and components; and additional sampling of residual liquid and sludge in septic tanks. The second characterization phase, completed in early 1995, consisted of collecting subsurface soil samples with Geoprobe TM drilling and sampling equipment. The attached sample ER site map shows a typical arrangement of boreholes used to characterize subsurface soil next to septic tanks and in drainfields. Soil samples were collected from one or two sampling intervals in each borehole at depths to 32 feet bgs. Both Global Positioning System (GPS) and conventional surveying techniques were used to map borehole locations once sampling was completed

Soil samples from each of the sites were typically analyzed for VOCs, SVOCs, RCRA metals, and selected radionuclides by both commercial and SNL/NM analytical laboratories. Sample analytical results were compiled into data summary tables (example attached) for inclusion in reports to regulators. As shown on the attached table, concentrations of COCs detected in soil samples were compared to SNL/NM site-specific background concentrations, proposed 40 CFR part 264 Subpart S, or other relevant risk-based action levels. If no action level was available for a particular COC detected at a concentration above background, then a risk assessment using established EPA methodology was completed to determine if the constituent posed an unacceptable threat to human health or the environment.

In general, relatively low levels of organic and inorganic hazardous constituents and radioactive materials were detected in residual septic tank contents, although VOC and metal concentrations as high as 2,200 and 372 milligrams per kilogram (mg/kg) respectively were detected in individual samples. Also, metal and uranium isotope concentrations were in general significantly higher in sludge than in liquid from the same tank. Analytical results of the soilgas survey and soil sampling indicate that COCs were not released to or are not present in the environment in concentrations above background or action levels at all but one of the sites where samples were collected. At one location, up to 1,430 mg/kg of high explosive residue was detected in subsurface soils near an explosives machining facility; additional sampling is planned to determine the extent of contamination in soils at this site.

Residual septic tank contents were removed and the systems were formally closed in late 1995 and early 1996. No Further Action (NFA) proposals for the sites are being prepared and submitted to EPA and NMED for approval. As of December 1996, one of these NFA proposals had been approved by the regulators.

Example of a Typical Analytical Data Summary Table Summarizing RCRA Metals and Hexavalent Chromium in Soil Samples Collected at a Septic System ER Site

	-	Units		mg/kg·	mg/kg		mg/kg	mg/kg	mg/kg	mg/L	mg/kg	mg/L	NA W	mg/kg	mg/kg	mg/kg																	
Other Metals:	Cr ⁶⁺	Method /196		Q	Q	S	ND	QN	QN	Q	QN	QN	Q	QN	Q	Q.	QN	QN	QN	QN	QN	ND		QN	ON	QN	NS	0.05 - 0.1	0.01	393	0.02-<2.5	<2.5	400 *
RCRA Metals, Methods 6010 and 7471	{	Ag		0.4 J	QN	QN	QN	QN	QN	40.8	10.5	13.3	1.3	24.6	QN	QN	Q	QN	QN	2	QN	ΩN		QN	QN	4.4	QN	-	0.01	2,302	0.0016-8.7	<1.0	400
	ú	Se	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ON ON	QN	QN	QN	Q	QN	QN	ON	QN	QN	QN	QN	QN	ND	QN	QN	QN	QN	QN		ND	ND	QN	ND	0.5	0.005	2,134	0.037-17.2	<1.0	400
	Ī	Нĝ		Q	Q	Q	ΩN	QN	QN	Q	QN	Q	QN	2	QN	ND	QN	Q	QN	QN	ND ND	NO		ΩN	QN	ΩN	ND	0.1	0.0002	1,724	0.0001-0.68	<0.1	20
	á	L L		2	3.6 J	3.7 J	5.5	Q	4.6 J	4.5 J	4 آ	3.9 J	4.4 J	QN	10.3	4 J	Q	5.5	Q	Ω	Q	4.8 J		5.1	2	2	QN	5	0.003	536	_		
	, c	CI, total		6.5	8.7	5.6	14.1	8.3	9.3	9.4	6.6	14.2	8.8	7.5	22	12.5	6.9	13.6	5.5	5.5	6.7	10.3		5	6.2	9.3	QN	-	0.01	647	0.5-31.4	15.9	* 000'08
	Č	P.O.		Q N	Q	Q N	ON	Q	QN	0.53	Q N	2	Q	ON.	<u>Q</u>	2	Q	2	QN	Q Q	ON	2		Q	Q.	Q.	QN	0.5	0.005	1,740	0.0027-6.2	6.0	80
	ď	Dd		86.8	39.1	67.8	87.4	62.8	172	88	162	60.2	84.3	81.1	104	107	09	144	56.3	56.3	42.8	113		101	64.5	85.2	QN	_	0.01	727	0.5-495	214	000'9
	Δο	25	-	4.3	2.9	5.6	2.8	2.2	2.6	2.5	2.8	1.8	2.7	2.6	က	2.4	2	3.2	7	1.6	2.8	2.6		2.6	2.3	2.2	QN	ı	0.01	15	2.1-7.9	7	0.50
Top of Sample	Interval (fhgs)	(shar)		9	50	9	20	9	2	9	20	19	20	9	20	9	10	70	9	20	9	20		7.5	7.5	7.5	AA						
	Sample I ocation	Lucaliui	1	DF-1	DF-1	DF-2	DF-2	DF-3	DF-3	DF-4	DF-4	DF-5	DF-5	DF-6	DF-6	DF-7	DFD-7	DF-7	DF-8	DF-8	DF-9	DF-9		ST-1	STD-1	ST-2	Site 161			nalyses		9	
	Sample	חשום		12/13/94	12/13/94	12/13/94	12/13/94	12/14/94	12/14/94	12/13/94	12/13/94	12/12/94	12/13/94	12/12/94	12/14/94	12/14/94	12/14/94	12/14/94	12/14/94	12/14/94	12/14/94	12/14/94		12/19/94	12/19/94	12/19/94	12/19/94			Sample A		th Percentil	or Soil
	Sample Tyne	i ype	Samples:	Field	Dupl.	Field	Field	Field	Field	Field	QA Samples	Field	Dupl.	Field	EB	mit For Soil	aboratory Reporting Limit For Water	kground Soi	nd Range	nd UTL or 95	tion Level Fc												
	Sample	Mathix ::	oil and QA	Soil	Soil	Soil	Soil	Soil	Sol	Soil	Soil and	Soil	Soil	Soil	Water	eporting Lir	eporting Lii	NL/NM Bac	Backgrour	Backgrour	ibpart S Aci												
	Sample	iadilina:	Urainfield Soil and QA Samples	018826-2	018827-2	018828-2	018829-2	018830-2	018840-2	018824-2	018825-2	018822-2	018823-2	018821-2	018839-2	018832-2	018834-2	018833-2	018835-2	018836-2	018837-2	018838-2	Septic Tank	018842-2	018843-2	018841-2	018844-3,4	Laboratory Reporting Limit For Soi	Laboratory R	Number of SNL/NM Background Soil Sample Analyses	SNL/NM Soil Background Range	SNL/NM Soil Background UTL or 95th Percentile	Proposed Subpart S Action Level For Soil

Notes:

As = Arsenic

Ba ≂ Barium

Be = Beryllium

Cr⁶⁺ = Hexavalent chromium Cd = Cadmium Cr = Chromium

Pb = Lead

Se = Selenium Hg = Mercury

Ag = Silver

EB = Equipment rinsate blank Dupl. = Duplicate soil sample

J = Result is detected below the reporting limit fbgs = Feet below ground surface

or is an estimated concentration.

mg/kg = Milligrams per kilogram

NA = Not applicable ND = Not detected

mg/L = Milligrams per liter

UTL = Upper Tolerance Limit

* 80,000 mg/kg is for Cr3* only. For Cr8*, proposed Subpart S action level is 400 mg/kg.

** No proposed Subpart S action level for lead in soil, EPA proposed action level for lead.