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Abstract

" The effects of the 4f shell of electrons and the
relativity on valence electrons are compared. The effect of
.4f shell (lanthanide contraction) is estimated from the
numerical Hartree-Fock (HF) calculations of pseudo-atoms
corresponding to Hf, Re, Au, Hg, T1l, Pb and Bi without 4f
electrons and with atomic numbers reduced by 14. The
relativistic effect estimated from the numerical Dirac-
Hartree-Fock (DHF) calculations of those atoms is comparable
in the magnitude with that of the 4f shell cf electrons.
Both are larger for 6s than for 5d or 6p electrons. The
various relativistic effects on valence electrons are dis-
cussed in detail to determine the proper level of the
approximation for the valence electron calculations of
systems with heavy elements.

An effective core potential system has been developed
for heavy atoms in which relativistic cffects are included
in the effective potentials (EP). The EP's are based on
numerical Dirac-Hartree-Fock calculations for atoms and on
the Phillips-Kleiuman transformation with other aspects
similar to the treatments of Goddard and Melius and Kahn,

Baybutt, and Truhlar. The EP's may be written
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where |¢jm> is a two-component angular basis function that
is a product of a two-component Pauli spinor and spherical
harmonics. The numerical functions Uf?(r) are approximated
as expansions in terms of Gaussian or exponential functions.
The use of these EP's enables ane to use the jj-coupling
scheme for subsequent applications in all-valence-electron
calculations on heavy atoms and their molecules.

A standard atomic SCF program has been modified to
accommodate these EP's and Gaussian and exponential basis
sets having the proper j-angular dependence. Energy levels
for many atomic states of Xe and Au were calculated. The
study of Xe excited states indicates that the spin-orbit
splittings are reasonably approximated and that the numerical
DHF calculations are adequately reproduced. Au has been
treated as an atom with 1, 11, 17, 19, or 33 valence elec-
trons to investigate the effects of re-definition of the core.

Application of EP to the molecular calculations is

also discussed.
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I. INTRODUCTION

The elements following the lanthanide series exhibit a
number of unusual properties in relation to trends from
lighter elements in the corresponding groups of the periodic
table. The main causes for these anomalies are prcbably the
introduction of a filled f-shell with 14 electrons and the
substantial increase of relativistic effects due to the
larger nuclear charges. Since results of electronic structure
calculations of atoms are available in various levels of
approximation with and without relativistic effects, it is
possible to compare these effects on atoms. These effects
on valence electrons are studied in the following chapter
from non-relativistic Hz-1rtree-Fock1'2 (HF)} and relativistic
Dirac-Hartree-Fock (DHF)3 calculations.

The results of the above study indicate that many
properties of molecules with heavy atoms may not be properly
calculated unless relativistic effects are included. All
electron self-consistent-field (SCF) calculations of those
molecules, however, have not made even without relativistic
effects due to the large number of two-electron integrals
that arise. With the exception of the H2+ molecular ion,4
relativistic effects on molecules have no% been calculated
in the full SCF level although the formalism has bkecn
developed by Malli and Oreg.5 Actual calculations including
relativistic effects have been performed using various levels

< . S 5 6,7
of approximations, such as single-center expansions,



perturbation theory,8 semi-empirical models,9 and a discrete-
basis-set method using a local exchange approximation.10

One of the promising ways to handle this problem is to

treat only the valence electrons explicitly using a frozen
core approximation. This usually involves the substitution
of the effect of the core electrons with some form of
pseudopotential. Many methods have been developed and we

11,12 to include the

modify one of ab initio approaches
relativistic effects in the effective core potentials (EP).
Our methods are based upon ab initio DHF calculation for
atoms and the Phillips-l(leinman13 transformation to effective
potentials.

Since the EP's developed in this thesis emphasize the
non-relativistic characteristics of valence electrons, the
applications to the atomic and the molecular calculations
can be done with either LS- or JJ-coupling scheme.

Practical applications are studied in later sections.



II. THE LANTHANIDE CONTRACTION AND THE RELATIVISTIC EFFECTS
ON VALENCE ELECTRONS

A. Calculation of the Lanthanide Ccntraction

The elements following the rare earth series have 14
more electrons in the filled 4f shell in add tion to elec-
trons in s, p and d shells compared with the previous
members in the group. The effect of these additional elec-
trons is commonly called the "lanthanide contraction"; it
arises from the incompleteness of shielding by 4f electrons
of the additional nuclear charge and yields a contraction
of the radii of outer electrons as well as other effects.
In order to estimate these effects, we made HF calculations

14

for pseudo-atoms without a 4f shell and with atomic

numbers less by 14. The pseudo-atom calculations were

performed using the numerical HF program of FischerlS

slightly modified by Bagus.l?

The Hamiltonian for n electrons15 is

R

. (%V'-E—)+ E_l_ 1)
1

1 i i>j Tij
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where Z is the nuclear charge, Ty is the distance between
the electron i and the nucleus and rij is the distance
between electrons i and j. The energies and wave functions
can be calculated if the total wave function of the system
is given by the antisymmetrized product of one-electron
wave functions. Calculations were made for the LS configu-

ration average for pseudo-atoms of Hf, Re, Au, Hg, Tl, Pb,



and Bi. Comparing these results with those of HF calculations
on the correspording real atoms, a reasonable estimate of
f-shell effect can be obtained. Some of the results are
summarized in Tasbles I, II, and III and Figures 1 and 2.
Discussions of the results in relation to the relativistic

effects are given in a later section.
B. Relativistic Atomic Calculations (DHF)

Relativistic effects on atoms may be observed by
comparing DHF with HF calculations. The relativistic
Hamiltonian, which is used for DHF calculations, is given for

n electrons by16’17

hp(1) + ] = (2)

when many-electron relativistic terms, usually approximated
by Breit interaction terms,17 are not included. In Equation
(2) hD is the Dirac one-electron Hamiltonian which may be
written as

= z-
hysca-prgc

(3)

Hies

where r is the distance from the nucleus of charge Z, p is
R

the momentum operator (-iv). Also Dirac operators a and g

o =

are given by

o
a = ~ (4)
0




with gp being a Pauli matrix and

I 0
g = (“ (s)
£\ 1

with I the 2 x 2 unit matrix. In atomic units, which are
uséd for all equations throughout this thesis, the velocity
of the light ¢ is equal to 1/a where a is the hyperfine
structure constant. This o should not be confused with
Dirac operator g of Equation (4).

The total wave function for a system with n electrons
may be approximated by the antisymmetrized product of one

R 17
electron wave function,

R

L TCR AR (6)

n

where { is an antisymmetrizer. In Equation (6) w?'s are

four-component Dirac spinors which may be expressed as

P ()2 (6,0)
1Qu (1)0_y 1 (6,0)

R
nkm

(7
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where

1 (e’¢) = 1., - m=-ag g
kn il COgiine,) IPe,0 47, (8

Y™9 is a spherical harmonic,
172 _ {1 172 _{0
¢1/2 (0) and ¢1/2 (1) are

Pauli spinors, C(l%j;m-c,c) is a Clebsch-Gordon coefficients,




andl=k=(j4%)ifj=2.-%—andk=-(k+1)=(j+—;—]
if 7 =2 + l. k is called the relativistic quantum number.
The radial compcnents Pnk and an are called the large and
the small comporents respectively. Pnk and an satisfy the
relativistic Hartree-Fock equations which have the form of
two coupled linear equations.17 The essential features of
these equations can be understood from the simple case of

a single electron in the central field of the nucleus.* In

this case the rzdial equatioas are”'18

dp kP
nk nk 2 -
ar T 0 G elVend) Qe = % (92
dQ kq
nk nk =
- " + alV - Enk] Pnk =0, (9b)

where V is the potential. 1In the non-relativistic limit,
é >> alVv - Enk" these two equations are reduced into the
familiar Schrddinger equation after eliminating the small
component, an.17'18 Therefore, by comparing the large
component, Pnk’ with the corresponding HF radial wave
functions, a reasonable qualitative picture of relativistic
effects may be obtained. For this reason radial wave
functions for several atoms have been calculated with the

numerical DHF program of Desclaux.16 The calculations have

®

The radial equations for many electron cases may be
found in the literature e.g., Equation (9.8) of Reference 17.
All the additional terms not present in Equation (9) come
from the cuvulomb and the exchange interactions among Dirac
spinors,



been performed with the assumption of point nuclei to
facilitate comparison with the publish.d HF calculations of
Mann.1 The effect of this approximation is small for the
valence electrons although it may be sub.tantial for ls
electrons. Table I shows that these effects for DHF
calcqlations on Pb are lsss than 0,1% for orbital energies.
The details of calculations are omitted since they are

available in the literature.3’16



Table I. Orbital Energies of Pb. {Average
Energy of LS Configurations)

Negative of Orbital Energies in a.u.

Point Nucleus Finite Nucleus?

1s 3258.3 3255.9

- 28 588.25 587.88
zPl/Z 563,50 563.49
Zp3/2 482.89 482.90
3s 143.84 143.75
5p1/2 132.81 132.80
51’3/2 114,59 114.59
3d3/z 96.807 96.811
3d5/z 92,967 92.970
4s 34.007 33.986
4p1/z 29,212 29.212
41:3/2 24,695 24.697
4d3/2 16.918 16,919
4d5/2 16.065 16.066
4f5/2 5.9:24 5.9332
4f7/2 5.7406 5.7414
Ss 6.1493 6.1450
sPl/Z 4.4404 4,4405
5p3/2 3.5933 3.5337
Sd:,,/2 1.138S 1.1388
5d5/2 1.0357 ) 15Q§60
6s .56701 .56651
6p1/z .27504 .27511
6p3/2 .21982 .21992

2 From Reference 3.



C. Relativistic and f-shell Effects on Valence Electrons

Orbital energies for 5d, 6s, and 6p levels are given
in Table II for Hf, Re, Au, Hg, T1l, Pb and Bi. Three calcu-
lations, HF1 and DHF3 calculations of atoms and HF calcula-
tions of pseudo-atoms, are comparable in accuracies and
levels of approximations. Thus, the differences among the
results are consequences of the different physical models
used.

Of the trends in orbital energies shown in Table II and
Figures 1 and 2, the simplest and most important is that for
s electrons. These orbitals penetrate deeply into the atom
and are subject to the largest relativistic effects. The
effect of f-shell is in the same direction with that of
relativity but the magnitude of the former is less than half
as large as that of the latter.

There is no unique trend in the f-shell effects for the
Sd electrons and these effects are very small. The incomplete
shielding of f electrons is probably compensated for by the
more effective shielding of the penetrating 5s and 5p elec-
trons, since 5d orbitals are relatively diffuse. In the
relativistic cases, 5s and 5p electrons are even more tightly
bound and both Sd3/z and Sds/2 orbitals become less bound
than in the HF atoms. )

The f-shell effects on the 6p electrons (Fig. 2) are
smaller but otherwise similar to those for 6s electrons.

The relativistic effect for the weighted average (% Pyyct

% p3/z) is very small, although the pl/z - p_..’/Z splitting is



Table I1. Orbital Binding Energies (Atomic Units)

5d : 6s 6p
(5d3,p) (5dg,p) (651, (6p,2) : (6p3,2)
pseudo Hf L3192 : .1805
Hf(HF)2@ .2992 L2104
Hf(DHF)b .2473 .2355 L2397
pseudo Re . 4660 L2031
Re (HF) Y .4538 .2347
Re (DHF) + 3972 L3661 .2783
pseudo Au 5372 .1905
Au(HF) .5210 .2208
Au(DHF) .4935 4287 .2917
pseudo Hg L7191 .2288
Hg (HF) .7142 . L2610
Hg (DHF) .6501 .5746 . 3280
pseudo T2 L9472 . 3162 .1836
T# (HF) .9683 L3611 .1924
Tt (DHF) . 8945 ., . 8062 .4492 .2114 .1765
pseudo Pb ©1.1772 .4025 .2268
Pb (HF) 1.2245 .4589 . 2398
Pb (DHF) 1.1388 1.0360 .5665 L2751 .2199
pseudo Bi 1.4131 .5006 .2693
Bi (HF) ’ 1.4874 .5582 .2862
Bi (DHF) 1.3894 1.2710 .6862 .3385 .2612

2 Reference 1

b Reference 3

01
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becoming substantial. This splitting, which is significantly
larger than the effect of f-shell, may play an important
role in bonding.

Table IIl and Figure 3 show the expectation values for
the radius of the valence electrons in these same atoms.

The lanthanide contraction (4f-shell) effects are now more
neariy comparable to the relativistic effects in magnitude.
The various differences can be understood on the sams basis
as that given for the energies. Here we note that <r> for
pseudo-atoms is always larger than the HF value for the real
atom indicating that the 4f screening is incomplete.

In summary, the relativistic effect is as important as
the 4f-shell effect for atoms considered. The proper account
of the relativistic effect is desirable for most calculation
of the systems including these atoms. Since the relativistic
effects are expected to increase several fold for the atoms
from 104 to 115 as compared te Hf to Bi, the predictions of
the chemical behavior should be based upon the DHF calcu-
lations for those atoms. These predictions, in some cases,
may deviate significantly from those based on the simple
extrapolation from the group trends.19

In order to determine what level of the relativistic
formation is required for the valence electron calculations,
a closer examination of the relativistic effect on valence
electrons is given. Although this topic has been already

discussed,zo’21 a slightly different approach is taken here.



Table I1I. Comparison of Radial Expectation Values <R>

4372 5d ds5/2 6s P1/2 b P3/2
pseudo Hf 2,5048 4.6934
Hf (HF) 2,2277 4.0684
Hf (DHF) 2.3376 2.4198 3.6939
pseudo Re - 2.0326 4.2162
Re (HF) 1.7999 3.6942
Re (DHF) 1.8301 1.9047 3.2770
pseudo Au 1.7228 4,2230
Au (HF) 1.5433 3.7006
Au (DHF) 1.5359 1.6185 3.0609
pseudo Hg 1.6040 3.7500
Hg (HF) 1.4327 3.3284
Hg (DHF) 1.4312 1.4987 2.8434
pseudo T2 1.5042 3.3294 4,2434
T2 (HF) 1.3412 2.9669 3.9262
T4 (DHF) 1.3387 1.3940 2.5792 3.5166 4.0123
pseudo Pb 1.4214 3.0475 3.7532
Pb(HF) 1,2671 2.7242 3.4569
Pb (DHF) 1.2641 : 1.3119 2.3616 3.0739 3.5162
pseudo Bi 1,3506 2.8336 3.4116
Bi (HF) 1.2046 2.5939 3.1366
Bi (DHF) 1.2012 1.2439 2.2429 2.7802 3.1862

LA}
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Radial wave functions of the valence orbitals of Pb and
U are shown in Figures 4 through 8. There are relatively
large contractions in 6s orbitals of Pb (Fig. 4) and 7s
orbitals of U (Fig. 6). These are due to the penetrating
nature of those electrons and less effective screening of
inner electrons with high angular quantum numbers (e.g., 5d)
as was discussed previously, The 6p1/2 orbital of Pb
(Fig. 5) is noticeably differemt from the non-relativistic
6p whereas the 6p3/2 is almost the same as the non-relativistic
6p. The 6d (Fig. 7) and S5f (Fig. 8) wave functions of U are
more diffuse in the relativistic case due to the more ef-
fective shielding of the nuclear charge by elect*rons with
smaller angular quantum numbers. For this reason, the roles
of 5f and 6d electrons in bonding are probably more important
than would be estimated from non-relativistic calculations.

Small components are relatively large near the nu-leus
and decrease rapidly as the radial distance increases. In
Table IV the electron densities represented by small compon-
ents are negligible compared with those by large components
for valence electrons of U (less than 0.03%) although 15% of
the electron density is due to the small component for the
1s electrons. Since small components become even less
important in the outer region (Table IV), it may be reason-
able to assume that small components can be neglected in
calculations that emphasize the description of valence

electrons.z1
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Table 1V, Normalized Electron Densities Represented by the Large and the Small C.mponents
of U Radial Wave Function

Orbital mﬁ?ﬂtei(’a;:ax %%:é—: Ougg;giogmax ‘E%Ef Rnax SL_‘;‘% (total)
1s .292 1.48 x 107} .708 1.46 » 101 _oosor  1.46 x 1071
2s 395 6.11 x 1072 .605 1.23 x 10°% 0485 3.10 x 1072
29y, .386 8.04 x 1072 .614 2.26 x 1073 0359 3.11 x 1072,
2p3,; .366 2.72 x 1072 .634 2.56 x 1072 0439 2,62 x 1072
3s .438 2.09 x 1072 .562 2.48 x 1073 138 1.04 x 1072
- 3Py .406 2.53 x 1072 .594 3.86 x 1074 .125 1.04 x 1072
3p3/2 .430 1.57 x 1072 .570 4.02 x 1073 146 9.00 x 1073
3d5,, ,395 2.11 x 1072 .605 1.02 x 1073 113 8.85 x 107°
335, .357 9.41 x 10°° .643 8.00 x 1074 113 8.50 x 1073
4s ,447 7.63 x 1073 .553 6.18 x 1074 308 3.74 x 1073
49y, .458 7.85 x 1073 .542 9.65 x 1075 .308 3.63 x 1073
4p3/, .452 9.14 x 1073 .548 5.87 x 1073 .341 3.14 x 1073
4d5,, .421 6.81 x 1073 .579 1.19 x 1074 324 2.93 x 1073
4dg,, .444 4.64 x 1073 .556 1.34 x 1073 341 2.80 x 1073
455, .348 6.11 x 1073 .652 4.85 x 107% 279 2.43 x 1073

(44



Table IV (continued)

o gmem gl mmie gl o el G
at; ), .378 3.02 x 107 .622 1.99 x 10°°  ,293 2.38 x 1075
5s .390 2.76 x 1073 .610 1.39 x 1074 .s21 1.16 x 1073
5Py /2 .412 2.56 x 1073 .588 2.28 x 1075 652 1.08 x 1073
5P3 /2 .411 1,92 x 1073 .589 1.96 x 1074 .721 9.05 x 10°%
5d5,, .418 1.69 x 1073 .582 1.74 x 10°° 797 7.16 x 107*
5dg .380 1.41 x 107% .620 2.26 x 1074 .797 6.76 x 107%
5fg, .337 8.30 x 10°% .663 2.93 x 10°° 1,08 2.99 x 107%
Sfrpp .318 6.22 x 1074 .682 1.29 x 10°% 1.08 2.86 x 107%
6s .416 C6.25 x 1074 .584 2.78 x 107° 1.38 2.76 x 107%
6Py /2 .360 6.19 x 10°% .64 3.24 x 1079 1.45 2.25 x 1074
603/, .392 3.90 x 1074 .608 3.10 x 10°° 1.69 1.72 x 1074
6ds,, -.319 1.87 x 1074 .681 2.17 x 1078 2.39 6.13 x 107
6ds/, 324 1.37 x 1074 .676 1.58 x 1075 2.52 5.50 x 1075
7s : .336 8.35 x 107° .664 2.57 x 1078 3.57 2.97 x 107°

€z
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The total relativistic effects or the difference
between results of DHF and HF calculations which we have
discussed so far, may be divided into two kinds, one due
tc the use of different Hamiltonians (direct effects) and
the other to rearrangement (indirect effects).20 The
relativistic character of valence electrons apparently
depends more on the magnitude of the former than the latter.
Although the exact separation of the two may not be possible,
the former can cften be reasonably estimated from the

perturbation theory.zz'23

From the Pauli approximation of the Dirac theory,zz’zs’24

the effective relativistic Hamiltonian, which is correct to

the order of 1/c2, may be expressed as

Hyeelr Ho(r) + H (r) + Hy(r) + H o (r) (10)

where Ho(r) is the non-relativistic Hamiltonian, Hm the

mass-velocity correction term given by
H( _ 2 o 2
(1) = -(a"/2) [E"-V(T)]", (11)
Hd the Darwin term
Hy(r) = -(02/4)[dV[r)/dr](d/dr), 12)
and H the spin-orbital coupling term
Hoo (1) = -fa’/4) (ke1) (1/T) [dV(r)/dr], 3)

where k is the relativistic quantum number. The corre-

spondiny matrix elements, or energy expectation values, may



be expressed as, E_ = Egl (non-relativistic energy eigen-

o
values of nl shell),

o

E = - “z) dr r2[R% (131° [E°, -v(r)}? 4

mn (e? 0 nl (Epp-V()1%, (s

By - -CE J ar o2 RO (0 (i by, s)
0

and

©
By, = -(‘—’;)(ku) I ar TP R (01? (B e
0

where Rnl is the radial wave function. Orbital energies of
Pb corrected by applying these perturbations to the Hartree-
Fock-Slater (HFS) calculations22 are shown in Table V. The
results of DHF, HF, and Dirac-Hartree-Fock-Slater (DHFS)25
are also given in the Table V. Within the Slater approxi-
mationzz’25 direct relativistic effects appear larger than
the total in the magnitude although some of the differences
are probably due to the different configuration (closed
6p1/z orbital) assumed in DHFS calculations. If we assume
that relativistic corrections from the perturbational method
are same for HF and HFS, the same is true with the HF and
DHF calculations since Ac[HFS(II)-HFS(I)] is larger than the
energy difference between DHF and HF results.

Therefore, s and p valence electrons for the atoms
following lanthanide series are substantially relativistic
although most relativistic effects are probably in the core

region. In order to clarify this point, the Equations (14},

25



Table V.

Orbital Energies of Pb Valence Electrons.
(All are negative and in a.u.)

DHE HE® pHFsP HFS(1)© HFS(11)¢7¢ Ae [HFS(11) -HFS(1)]
6s .5670 .4586 .5259 4444 .5883 .1438
60,7 L2750 .2376 .2847 .0724
.2398 .2123
“6p3,7 .2198 .2380 .0257

8 from Reference 1.

b from Reference 25 (The electrons were considered to occupy only the 6p1/z orbital).

¢ from Reference 22,
d

relativistic energy calculated from the perturbation theory.
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(15}, and (16) can be more carefully studied.

For valence electrons Rgl may be reasonably approxi-

1

mated by r~ Pnk for the qualitative studies. Then the

relativistic correction terms become

= uZ - d 2 v 2
B, = -G | arte)? (B -vim?, an
0
Ed * Eso # -(%) J dr Pnk an[ggé_l]' (18)
0

Equation (9a) has been used to derive Equation (18) and

the second term within the parenthesis [Eq. (9a}] is
neglected in comparison to 2/a. From the above expressions
it is easier to obtain the picture of the direct relativistic
effects since the derivative of the wave function is
eliminated inside the integral. We do not intend to cal-
culate above quantities exactly; instead we merely present
trends of all terms involved. Pb is used as an example with
similar trends expected for other heavy elements.

P and an appear in Figure 4 and Figure 5. Although

nk
V(r) can be obtained from HF or DHF calculations, the HFS
potential of Herman and Skillman22 is presented in Figure 9.
The choice of this potential is a matter of convenience and
should not introduce any serious error in this discussion.
A plot of dV(r)/dr is given in Figure 10.

Since V(r) is quite large near nucleus and rapidly

decreases as radius increase, most contributions to the ﬁm
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Figure 9. V(r) of Pb from Ref., 22.
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terms are from the core region, as expected on physical
grounds. dV(r}/dr behaves similarly and terms inside the
integral of Ed + Eso [Eq. (18)] decrease even more rapidly
due to the presence of Q.. Therefore, valence electrons
appear to be essentially non-relativistic in the valence
region in spite of the substantial magnitude of relativistic
effects already mentioned. This evidence as well as the
non-importance of the small components suggest that

treating the valence electrons non-relativistically, but

in the field of EP derived from a relativistic DHF

calculation for the atom, may be a reasonable approximation.



II1I. EFFECTIVE CORE POTENTIALS FRCM ATOMIC DHF CALCULATIONS

A. Theory

If we divide the antisymmetrized product of one-electron
Dirac spinors [Eq. (6)] into two classes, core orbitals and
valence orbitals, the wave function for many-electron atom

may be expressed as

R _ R ,R... R ,core R R, R yval ' g
¥ o= AL W, ¥n ) O wmv) ] (19)
for a single configuration. In Equation (19), m. is the
number of core electrons, and m, is the number of valence
electrons with separate indexing for core and valence wave
functions. Then the total energy may be expressed as the

sum of core, valence, and core-valence interaction energies

E+ER+ER. (20)

Since, in many respects, the relativistic formalism for the
many-electron atom is essentially the same as the non-
relativistic, when the Breit interaction and quantum electro-
dynamic effects are not included, many methods usea in the
non-relativistic theory are also valid here. For example,
the last two terms may be combined to obtain-an energy

expression

RyuR( 4R R, R
E, *+ E., = <wlev|wv>/<\vv|w v (21)

3]
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where

R _ R, R _,,R
¥, = Ay, i) (22)
and

R mV mC D D mV
Hy = 1 Iy + ] @) - KJaN1+ I g1 (23)
i J' J J i>il iil

In Equation (23), J?(i) and K?(i) are Coulomb and exchange
operators defined for the four-component Dirac spinors.17
In general, Hs is a sum of 4 x 4 matrices unlike the non-
relativistic case. Based upon Equation (23), the straight-
forward frozen-core calculations may be performed. The dif-
ficulty for this procedure is the large number of two-
electron integrals to be calculated as was discussed in the
non-relativistic case.lz The use of EP may be a solution to
this problem.

Our effective potentials are obtained from atomic DHF
calculations using a method that is essentially parallel to

11 and Kahn12 and their co-workers

that developed by Melius
for the non-relativistic case, although it was necessary to
introduce some modifications and approximations to accom-
modate the relativistic characteristics.

Effective potentials (EP's) have been most successfully
applied to one-valence-electron systems, and in these cases
the physical meaning of EP's can be rather well understood.
In this section EP's are derived first for the one-valence

electron atoms and later they are generalized to include

many-valence -electron atoms.



When an orthonormal set is used for valence and core
orbitals, the DHF equation for a single valence electron v

outside the closed-shell becomes

R R TR TR RE RS

where ¢ is the number and index for the core electrons
{Note the change of indices from Equation (23)], and the
€cv is an off-diagonal Lagrange multiplier which may be
written as

R R
fey = “hyltp * [ U - KD v (25)

Again, Equation (24) is essentially the same as that of HF
farmalism12 except that operators are 4 x 4 matrices
operating on four-component wave functions.

A core projection operator may be defined as
R__,R
&= E fwe><vcls (26)

where the bra <¢§| is a row-vector with four components and
the ket |W§> is a column-vector with four components. With
Equations (24) and (26) it is possible to follow the non-

relativistic formalism to obtain the relativistic version

of the generalized Phillips-Kleinman pseudopotential.ls’26
The complete derivation is omitted here sincé it may be
found in the noa-relativistic work.12 Several essential

parts, however, will be reproduced in the following to

clarify the development. Using Equation (26), Equation (24)



may be rewritten as

R R _ R
(1) Hy by = e, vy, (27
where
R _ R_ R
Hv = hD + z (JC-KC). (28)

If we define the relativistic pseudo-orbital, xs, as

Xz R I awh (29)
such that
R _ R
vy = -®) X, (30)
then Equation (27) becomes
(1-0 1Ra-a R =c -9 x.. (31)
v v v v

From Equation (31), one can define the relativistic

analog of the generalized Phillips-Kleinman pseudopotential,

RGPk _ _R R
v = oy - Hv@+aﬂ_\*}a s e P, (32)
where
GRS B A (33)
or

0

(hp + USOT%) xR = e x,, (34)

34
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if
ycoTe - h (Jc'Kc) . VRGPK. (35)
c

COTe in Equation (34) is again a

It may be noted that U
4 x 4 matrix operating on four-component spinars, xs's.
" To investigate the characteristics of the EP desired,

core .
is expanded in terms of an angular

we assume that U
basis set of Dirac spinors. The following equations are

then obtained for the radial pseudo-wave-function

k
o (PN [-F & + ate, -0\ (PP () .
T\ [ \-ale,-00()] ky QB3 (r)

r

where US(r) and Us(r) are radial components of ycore,

In theory, one may derive Us(r) and Ue(r) in Equation
(36) from any Pss(r) and st(r) satisfying Equation (31).
Relativistic effective core potentials obtained from these
pseudo-orbitals would not "2 continuous at points where
nodes of Pss(r) or st(r) occur. This difficulty may be
avoided if the transformation of Equation (29) can be carried
out in a manner to yield nodeless Pss(r) and st(r) functions.
However, nodes may not, in general, be removed simultaneously
for the large and small components.

Since the rcle of small components and direct relativ-
istic effects are assumed to be negligible in the valence
region, as discussed in the previous section, we develop a

method which does not include manipulations with small
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components. The Dirac Hamiltonian can be expanded after
substitution with the wave functions containing only lérge
components. The radial equation obtained this way may be

given a524

o (x) + Hy() + Hy(r) + By (1) + HIFED1I Py(x) = P (), (37)

where all terms have the same meaning as in Equation (11),
Equation (12), and Equation (13) and H[eTa4)] denotes the
higher order terms which are not included in the Pauli
approximation.

If higher order terms are neglected in Equation (37),

a Usore(r), which is correct within the Pauli approximation,
can be obtained from a nodeless Pes[r). This involves
solving a differential equation [Eq. (37)] for Usore(r).
Furthermore, it is correct only to order uz and all terms
of the Hamiltonian have to be included when the EP obtained
is applied in molecular calculations. It may be noted that
the EP from Equation (37) still contains higher-order
relativ’stic corrections, since €y is the solution of the
DHF equation.

However, for our purposes, it is of little importance
to have an accu;ate expiicit representation of relativistic
effects arising from the core region, where most of these
effects exist as shown in the previous section, since we are
mainly concerned with a reasonable representation of valence
orbitals in the valence region. Thus, all relativistic

effects may be incorporated into the EP,
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With these approximations, the radial equation becomes

‘() + UEP . :
[HI(x) + UL ()] PL(x) = € P (1) (38)

where Hé(r) denotes the absence of core potential terms from
the non-relativistic Hamiltonian. The EP in Equation (38)
contains all one-electron relativistic effects of the atom
being considered. When this EP is used for calculations on
molecules or excited states of atoms, the validity of the
results will depend on the difference between relativistic
effects of the molecule and its constituent atoms or between
that in ground and excited electronic states. This approxi-
mation appears to be reasonable since the most pronounced
relativistic effects are present near the nucleus, as was
discussed above.

The original form of Equation (38), before the reduction

to the radial equation, is

1 2 A EP T T
-39 - 5001 %y = eyxys (39)

where xs is a two-component pseudo-wave function containing
only the large radial component of Lquation (7).
When there is more than one valence electron, the wave

equation may be given aslt?

EP' A N .
+ Uv + W Xy = EyXyr (40)

L1

- 3 9% -

where W' includes all interactions between pseudo-orbitals
and between pseudo-orbitals and core orbitals. Since the

ultimate goal of this procedure is the reasonable and simple
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representation of the behavior of valence electrons in the
valence region, interactions between the pseudo-orbital and
the core orbitals may also be included in EP. Then

Equation (40) becomes

EP T T T
+ UEP w0 Xy s ek, (A1) :

N
N
<1
t
=Ny

where "(XE, xz,] is the sum of Coulomb and exchange inter-
actions of a giver pseudo-orbital, xz, with all other
pseudo-orbitals, xz,'s.

From Equation (41) it is seen that UEP will not be the
same for different pseudo-orbitals. Therefore, the EP may
be conveniently expressed as products of angular projection
operators.and radial functions, as are the EP's derived
from HF calculations.12 Since orbitals with different total
angular moments, j, but with the same orbital angular
momentum, %, are nondegenerate in DHF results, the EP is
expressed as*

EP o  £+1/2 % UEP

U= = s(r)fejm><gjm], (42)
220 j=2-1/2 m=-j *I

with the understanding that |g¢jm> and <¢jm| are two-component

angular bases that are eigenfunctions in the Pauli approxi-

mation of the Dirac Hamiltonian.24 It may be noted that -
the direct application of the EP of Equation'(dz) in atomic

and molecular calculations requires the use of jj-coupling,

*®
Two indices 2j of Equation (42) can also be expressed
as one index, k, the relativistic quantum number in Equation (7).
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instead of conventional LS-coupling schemes.
B. Calculations of EP

1. Pseudo-orbitals

In the previous section, it has been shown that EP's
can be obtained if suitable pseudo-orbitals in the form of
Equation (29) are found. Because of orthogonalities of
angular basis sets with distinct angular quantum numbers,
the radial part of the pseudo-orbitals may be separated and

expressed as
ps T
phR(r) = qgl gk Par(™)s (43)

where n is a principal quantum number, k is the relativistic
quantum number previously defined, and the qu's are the
large components of DHF radial wave functions.

For our purposes, the following properties are desired
for Pﬁ;(r); (i) the Pgi(r) should be nodeless and (ii) the
form of Pgi(r) should be similar to that of the original
valence wave function Pnk(r) in the valence region.
Property (i) is essential to prevent the occurrence of
singularities, since the derivation of UEg(r) from the
radial part of Equation (41) [Eq (46) of the following
section] involves division by Pgi(r), whereas (ii) will
hopefully prevent the generation of physically unreasonable

pseudo-wave-functions.
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Although many methods developed for the non-relativistic

casen'12 may be applicable, we pursue the following procedure
for finding the appropriafe coefficients, aqk' Initially,

the aqk's are obtained from a least square fit of a pseudo-
orbital of Equation (43) to a given Slater-type function
Czrge-cr. CC and z are selected so that the maximum of the

t e-cr

functio, C_r , coincides with that of the original

4
valence orbital Pnk(r). This choice of g and CC probably
satisfies our condition (ii) better than the procedure based

n For

on the arbital energy adopted by Goddard and Melius.
this choice of the standard function, the least square fit
is accomplished by minimizing the following function F

N
P n t TEry 2
F = izl w(ri) [qzl 2.k qu(ri) - C;ri e 1, (33)

where Np is the number of grid points for the numerical
radial valence orbital Pnk(r)16 and w(ri) is a weight of a
point r;.

The starting values of w(ri)‘s are unities. When nodes
are not eliminated with these weights, the w(ri)’s are
changed to [llPsz(ri)lz of the previous run and the minimi-
zation of F in Equation (44) is repeated until all nodes are
eliminated.

In DHF calculations Pnk(r) near the origin may be

expanded in terms of a polynomial

Po(r) = 1 K(py + pit + por? +..2) (45)
nk‘\" Pg * P P,



where Y ® /k2~(az) . Although Yy may be used as t in
Equation (35}, several integer and half-integer values are
tried and the one that appears to be most satisfactory in
terms of condition (ii) is selected. In the case of the 6s
orbital of Au (Table VI), t = 2.0 was chosen since this
value of t yields the largest Ags The other criterion
used in the selection of t is the smoothness of the orbital,
as judged by the presence or absence of oscillations, aqk's
obtained this way are summarized in Tables V1I(Ne), VIII(Xe)
and IX{Au). Typically, values of t range from 1,5 to 3.0
with larger values for orbitals with higher angular momenta.
Large and small radial components of the 6s valence
orbital and pseudo-orbital of Au are shown in Figures 11
and 12. It is interesting that the small component of the
pseudo-orbital becomes quite small compared with that of the
original valence orbital in the core region. This seems to
be the case for s and p orbitals for other heavy atoms; we
found it true also for Bi. Based upon this observation,
one may expect that the role of the small components is even
less important than that anticipated from the analysis of
Section II, which makes our approximation of eliminating
small components even more attractive.
Finally, it should be noted that the above procedure
of determining pseudo-orbitals is not unique since the

selection of t and ¢ is not,

41
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Table VI. k'S of 6s (Au) for Different Choices of t

%q

toony s s a3 345 ass a6

1.0 1 0.0031 0.0192 0.0634 0.1730 0.4650 0.8658
1.5 1 0.00060 0.0066 0.0331 0.1246 0,4303 0.8935

2.7 1 0.0001 0.0024 0.0176 0.0901 0.3976 0.9131

Nodes remain after 8 iterations.

2 n, is the number of iterations required to eliminate
all node% from qu(r).
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Table VII. aqk's for Ne

2 -1(s) 2.0 2 .2516 .9679

n. is the number of iterations required to
eliminatd all nodes from Pnk(r).



Table VIII.

aqk's for Xe

n k toomt Ay Ay 8z Ay agy
5 -1(s) .0 1 .0010 .0193 ,1275 .S030 .B546
5 l(pllz) .0 2 - .0032 .0550 .3952 .917¢0
5 -2(p3/2) 0 2 - .0031 ,0528 .3852 .9213
S 2(d3/2) .0 2 - - ,0060 .1162 .9930

a

all node§ from P k(r)

. is the number of iterations required to eliminate

44



Table IX, a xS of Au®

Pseudo-orbitals are obtained
the definition of the valence space

q

n k t g a1k a5 sy a5y agy a6k
5 -1(s) 2.0 1 .0018 .0318 .1809 .5872 .7884

6 -1(s) 2.0 1 .noo1 .0074 0176 L0901 .3976 913
5 l(pllz) 2.0 1 - .0230 .1598 .5762 L8013

6 l[pl/z) 2.0 2 - .0007 0062 .0381 .2168 .9921
5 -2(p3/2) 2.0 1 - .0222 .1493 .5436 .8257
‘6 -2(p3/2) 2.0 2 - .0007 .0057 .0355 L2064 .9756
S 2(d3/2) 3.0 1 - - 0406 .3536 ,9346

6 2((13/2) 3.0 2 - - -.0001 .0012 -.0596 .9977
5 —3(d5/2) 3.0 1 R - - L0375 .3388 .9401

6 -3(d5/2) 3.0 2 - - .0001 .0012 .0657 .9970
4 3(f5/2) 3.0 1 - - - .0007 1.0000

5 3(f7/2) 3.0 1 - - - .0005 1.0000

a

for more than one value of n for each symmetry 51nce
varies for different core sizes.

Sy
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Figure 11. Radial components of 65 orbitals
of Au (DHF calculation).
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orbitals of Au obtained with
t = 2.0 (Table VI).
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2. Effective potentials

The following radial equation for a closed-shell or
the average energy of an open shell configuration may be
algebraically solved for each term UEg(r) of the EP of

Equation (42):

2 2,(8,+1)

1d AYA EP Z
- + 2 A+ U, (ry) - &=|P,(r,)
[ z drz 2_1_12 Lpia 1 rll A1

-]
N,~-1
21 1 A .

+| (N,-D) p,(r,)" —dr, - > T o (2i,+1) T, .

[ A IO AY"2 T, 2 Z ZJA v>0 A Javia

= v o0
x p(r)"'_rf——dr+z N, | Pl oar e ()
A B AN P At T 9T Faln
o > [o]
v

-]
T
1 <
- 5 N T, . P,(r P r ———— dr_ P by
7 A.;A A é REIT IO A(T2) Pyo(r3) T 2 arfry)

= EAPA(TI) + AE*A NA' ﬁ(kA,kAv) PAv (r) EAAI! (46)

where lA’ jA’ kA and NA denote the orbital angular momentum,
the total angular momentum, the relativistic quantum number,
and the number of electrons, respectively, of the shells A
and A' with the understanding that PA(r) and PA,(r) refer te
pseudo-orbitals and € and éAA’ are diagonal and off-diagonal
Lagrange multipliers. The r_, and r, are the smaller and the
larger of Ty and T, respectively and v satisfies the

triangular condition,
le-jA'l SVSjA+jA1’ (47)

with the additional requirement of

48



jA + jA' + v =-even if a # a'
odd if a = a', (48)

where a and a*' are signs of relacivistic quantum numbers

kA and kA" FjA“jA' is defined in terms of 3j-symbols by
N . 2
JA v JAI
T. s = 2 . 49
AN 1 1 At
o -3

Equation (46) can be obtained from the similar equation of
DHF theory.17
In theory, an infinite number of calculations for
highly excited states is required to complete the expansion
of the EP given by Equation (42), since there are only a few
occupied valence orbitals in neutral atoms. This difficulty
also exists in the non-relativistic case and is resolved by
using the closure property of the projection operator with

the assumption that radial parts of TP are same for ail
orbitals having higher angular quantum numbers than are
present in the core. The same approximation is applicable
in our approach if relativistic effects are not too dif-
ferent for electrons in the highly excited orbhitals. We
expect that this is the case since those electrons spend
less time near the nucleus. If this assumption is valid,

the EP may be given by

L-1 g+l/2
UEP

220 j=£-1/2 m=-j

j
~upp) « 1] I (g5 (-0 0] {jmo<ein| (50)

49
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where L could be found by series of actual calculations.
The EP's of Ne (Fig. 13) indicate that the Uzj(r) fer p, d
and f are almost identical. EP's of Xe (Fig. 14) and Au
'(Fig. 15) are nearly indistinguishable for j = & + % and
j=9- % for f orbitals and those with higher angular
momenta. EP's of Au shown in Figure 15 are the results of
11 vélence electron caiculations. Based upon the above
observations, the reasonable choice of L appears to be that
of one plus, or the same as, the largest & present in the
core, as was concluded for non-relativistic EP‘s.n'12
Although numerical forms of the EP's can be used in
applications, it may be more convenient to have them expanded
in terms of M exponential (x=1) or Gaussian (x=2) functions

ig (51)

[ i<
o
b
'
-
-
-

EP
[Uy" (r)-2./r] =
A < i=1
where A represents the quantum numbers j and £ of Equation
(50) and ZC is the number of core electrons. By using the
polynomial expansion of Pnk(r) [Eq. (45)], the smallest ny;

necessary to satisfy Equation (46) can be obtained. If this

done, one finds min(nXi) = -2 with
M2
=1 -1)-k(k+1)] (52)
izl bki Vi [Yk(Yk I)-k( .
where M_, is the number of terms with n,; = -2 and vy and k

are previously defined. In practice, we use only one term

with n, = -2 and find the corresponding value of in by
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fitting Equation (51) for the region near the nucleus.
There is no guarantee that Equation (45) is strictly valid
after the transformation defined by Equation (43), but for
Xe and Au the b,; as obtained from the numerical EP agree
reasonably well with those given by Equation (52). After
the n,,; = -2 term is determined, the numerical EP's are

fitted with a number of n; = -1 and n; = 0 terms with the

asymptotic condition UEP(r) -+ Zc/r as r » ». This asymptotic
behavior is ensured by fitting [UEP(r) - Zc/r] instead of

uiP(r).



IV. ATOMIC HARTREE-FOCK EQUATIONS FOR j-j BASIS SETS

A. Theory

We éoive the Hartree-Fock self-consistent-field equa-
tions for the valence electrons of an atom assuming that the
core electrons are represented by an effective potential
(EP) desrived from numerical Dirac-Hartree-Fock (DHF} calcu-
Iations for selected states of the atom (Sec. III). It is
further assumed that the valence electrons may be Jescribed
non-relativistically in terms of only the large component of
the atomic orbitals as expressed in terms of expansions in
Slater- or Gaussian-type funcu.ions.

The Hamiltonian for the N valence electrons is

N 1
H= } h + [ —, (53)
p=r P pdv Tuy
where
z z
. | 2 v EP e
hy=-379, —ru+ U™ () T, (54)

in which Zv is the "shielded" nucléar charge (viz. the atomic
number minus the number of core electrons) and UEPkr) is the
"relativistic' EP operator of Equation (50).

The eigenfunctions of H are chosen to be in the form of

antisymmetrized products of the large components,

% an(r) Xxm(e'°)' of the atomic crbitals Yoam ©f Equation

(7). The radial functions are represented as expansions in

B basis functions
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B
1p,m = pzl Coap Pap(T)- (55)

The Rxp(r) are either Slater-type functions (STO's) or
Gaussian-type functions (GTO's). "
&

Atomic self-consistent field equations may be derived

27 for the non-

by analogy with those of Bagus and Roothaan
relativistic case and of Kagawazs for the Dirac Hamiltonian.
In addition to the overlap (Squ), nuclear attraction (prq)

and kinetic energy (T ) matrix elements, those due to the

Apq
EP are also required,

M © n,. -g,.ut
EP _ Al Al
Ukpq = -Z bxi [ du u e Rkp(u) RAq(u). (56)

i=1

]

In Equation (56) x=1 fui STO's and 2 for GTO's and we have
assumed that the EP of Equation (50) has been fitted by a
least squares procedure to an expansion of M terms as in
Equation (51). The one-electron matrices enter the SCF

iterative procedure as
h=T-2U+ Ul (s7)
R ; v . v
The required Coulomb Q»qu,urs) and exchange qvqu,urs)
matrix elements are collected into supermatrices

= 3° ! v
Pqu,urs J/\pq,urs z é Axuu Apq,urs (58)
and

v 1 v
a/\pq,urs = \): J/\uvy Apq,urs '2'\); K)\uvﬂ Apq,urs’ (59)

56
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(Closed-form formulas for the matrix elements are given by
Roothaan and Bagu527 for STQ's and by Huzinagazg for GTO's.
The EP integrals of Equation (56) are simple modifications
of the prq formulas.}) The allowed values of v are given by
Equations (47) and (48).

JAuv' and KAu

v

The vector coupling coefficients Axuv'

are chosen to give the proper total symmetry of the atomic
electronic state. The closed shell coefficients are given

9
in terms of Clebsch-Gordon coefficients"8

2
Ay = CUZIY 75 = P /v, (60)

whereas the open-shell coefficients are given by30

Tauo = 0 (61)
oo = E (LuI/NGN) (v#0) (62)
Kyro = Aaro - 2/, (63)
Ky = Ay * A5, 0L0/M 2 (vr0) (64)
KAuv = AMN + ng(l,u)/NANu (A#n) (65)

for NA and Nu open-shell electrons. The coefficients of
Slater integrals needed in Equations (62) and (63) are de-
rived31 from the, energy expression for the general open shell
interaction. Vector coupling coefficients for the cases
through f7/z and values of f (X,u) and gv(x,u) are given in
Appendix A for many electronic configurations. The one-
electron matrix elements of Equation (57) and the super-

matrices of Equation (58) are collected into closed and open
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shell Fock matrices, which are used to censtruct the SCE
equations using the coupling operator method exactly as
given in Reference 27.

1t should be noted here that the two differences from
the non-relativistic atoamic SCF equations as developed in
Reference 27 are that the vector coupling coefficients AAuv
of Equation (60) and the coefficients of Slater integrals
fy(A,u) and g, (A,u) of Equations (61) ~ (65) are chosen to
properly account for the jj-coupling scheme as required by
the form of our EP's. Thus, the basis functions Rxp(rJ
of Equation (55) represent the (n,%,j) set of quantum numbers
and are designated 151/2, 251/2, 2p1/2, ZPB/Z’ 3p1/2’
3p3/2, 3d3/2, 3d5/2, etc. for (n,%,j) values of (1,0,1/2),
(2,0,1/2), (2,1,1/2), (2,1,3/2), (3,1,1/2), (3,1,3/2),
(3,2,3/2), (3,2,5/2), etc. (The notation S1/2 = s, P12 =
P, P3/2 = P» ds/z = d, dS/Z = d etc. is often uscd.)

B. Results of Calculations

We have chosen the Xe and Au atoms to serve as test
cases for the application of the EP and atomic SCF formalisms
presented in the previous sections. Pseudo-orbitals and EP's
were generated for Xe through f7/2 and for Au through 972
and fits to exponential and Gaussian expansions were computed.
Tables of these fitting paramcters are collected in Appendix
B. These fits were used in atomic SCF calculations for the
eight valence clectrons of Xe and for choices of 1, 11, 17,

19, and 33 valence electrons for Au. In each instance ground,
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positive ion, and several excited electronic states were
investigated. Both average energies of configurations and

individual multiplet energies were computed.

1. Xemon

Table B2 contains the parameters necessary to describe
the Xe EP's in terms of Gaussian functions according to
Equation (51) for all symmetries through 57/2 (see also
Fig. 14). The EP's for S1720 P1s2e and Ps/p are given with
respect to a set of 13 functions and the EP's for dS/Z’
d7/2, f7/2 and fg/2 with respect to a different set of 11
functions.

Basis sets of GTO's for use in describing the eight
valence electrons of Xe are given in Table X. These were
determined by taking three term least squares fits of the
551/2, Spl/2 and 5p3/2 pseudo-orbital as initial guesses and
optimizing the ground state valence energy. To provide
adequate flexibility in the basis set to de'cribe the excited
(Rydberg) states of Xe two S1/2° pl/Z’ and p3/2 and three
d3/2, d5/2’ fS/Z and f7/2 GTO's were added to the basis and
the exponents were optimized to give the lowest average
energies cf respective excited electronic configurations.
Also shown in Table X are the atomic orbital expansion co-
efficients for the ground state as determined by the SCF
procedure and those derived by a least squares fit of the

same basis set to the numerical pseudo-orbitals.



Table X. Xenon GTO Valence Basis Set

Ground State Fit of
Type ¢ AO Coef's Pseudo-orbital
51/2 33.091 -.00956 -.00978
2.221 -.11806 -.11680
272 96220 .95847
.055 .15334 .16190
.021 -.03893 ~.00797
Zpl,/Z 3.191 .04373 .04505
.517 .44008 .43131
.186 .58198 .58852
.036 .10023 .10543
.013 -.03031 -.03703
2p3/2 3.080 .04097 .04230
.481 .42319 .41569
.174 .58843 . .59424
.036 .11816 .12197
.013 -.03315 ~-.03940
3d3/2,3d5/2 .310
.058
.014
4f5/2,4f7/2 .100
.010
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The valence basis set, as obtaincd from threce-term fits
to the respective pseudo-orbitals, showed Qighificant dif-
ferences from the set optimized by means of the SCF procedure
for the eight valence electrons with the EP. For example,
the fitted ¢'s for the P1/2 pseudo-orbital were 1.296,

0.417, and 0.134 as compared with the optimized values of
3.191, 0.517, and 0.186 (Table X). The ground state valence
energy resulting from the fitted basis set was 0.034 a.u.
higher tha. that of the optimized set. This implies that
merely obtaining the best fit to the pseudo-orbital does

not, in general, yield a valence basis set that is optimum
with respect to the valence energy. In particular it appears
that additional functions having larger g's are required for
describing residual core-like characteristics that may no<
have been totally removed by the EP. However, the use of

the energy optimized basis to fit the pseudo-orbital does
yield coefficients that are nearly the same as the SCF atomic
orbital coefficients (Table I}.

Results of atomic SCF calculations using the basis set
of Table X and the EP parameters of Table B2 are given for
the average energies of configurations in Table XI. The
excitation energies are compared with weighted averages of
the experimentally observed32 multiplet energies in Table
X"I. Results of selected numerical DHF calculations are
given in Tables XI and XI1 for comparison. In Table XII the
excitation energies have been adjusted to give the experi-
mental values for the lowest states arising from the promo-

tion of a Spl/2 or a SPSIZ electron. This adjustment was



Table XI. Xe and Xe' - Average Energies of Configurations (a.u.)

Valence Energy

Config. P gp 55 puF pp P pwF  Ep P o Ep R phE
gs25plspd  -.40s3 .997 1.010 .4R1 (493 .430 440

s5p36s -.2363 1.149 .643 .596 .133

5p6s -.1914 1.155 .673 .593 .134

sp6d -.1905 1.195 1.198 .691 688 .643 637 .087 .084
5p6p -.1434 1.204 724 .645 .085

spsd -.1643 1.201 1.179  .697 670 .649 .619 061 .065
5p35d -.1649 1.198 1.187 .694 675  .648 .628 061 .063
5psd -.1175 1.212 .733 .652 .059

5p5d -.1209 1.198 .718 .639 063

spiaf -.1344 1.279 773 .727 .031

sp34€ -.1344 1.279 1.2711 773 759 .727 709 .031 .031
Sp4f -.0889 1.285 .805 .725 .031

Spas -.0889 1.285 .805 .725 .031

5p3 -.1036 1.339 1.330 .833 .820  .787 772

Sp .-.0582 1.345 .865 .785

9



Table ¥U1. Xe and Xe' Excitation Energies for Averages of Configurations (cm'l)

Confi,. AEgqp BES AE‘;xp AEg p(adj) % Error MEpyr(adj) $ Error
5p6s 56853 67435 (67435)C

5p6s 66705 76938 (76938)9

sp36p 66902 72253 78484 77484 1.3 (77484)8

Spop 77251 88869 87454 1.6

sp3sd 72653 76474 81206 83235 -2.5 81705 0.6
5p35d 72523 76864 81206 83105 2.3 82095 -1.1
555 82922 92078 93155 -1.5

555d 82169 91622 92751 -1.2

sp34t 79213 83675 90893 89795 1.. 88906 2.2
Splaf 79213 90893 89795 1.2

Spat 89199 99432

Spa4f 89197 99430

5p3 85966 94741 97834 95618 2.3 99972 -2.2
Sp 95950 " 108371 106183 -2.0

2 DHF calculations correspond to freezing the core orbitals in their ground state
form and allowing the valence orbitals to re-adjust self-consistently.
b Reference 32,

3

¢ Configurations with a ﬁzp3 core are adjusted to give AEe( of 5p~6s.

P
d

Configurations with a ﬁp4 core are adjusted to give AEexp of 5p6s.

€ DHF results adjusted to give AEexp of 5p36ﬁ.

€9
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done to provide some estimate of the ability of the SCF
calculations to predict term values, since the absolute
excitation 2nergies are expectéd to contain large errors
due to the neglect of electron correlation.

The SCF multiplet energies for all of the possible
states of Xe involving the excitation of one electron from
the Spl/2 or Sp3/2 shell to all higher shells through 3d5/2
are tabulated in Table XIII (with the exception of those
arising from the Spl/z 6p1/z and 5p3/2 6p3/2 configurations,
which cannot be treated because of the presence of two open
shells of the same symmetry27). The excitation and ioni-
zation energies have been adjusted as in Table XII.

The results in Tables XI-XIII inc*:ute that the EP's
of Table Bl ard valence basis set of Table X are capable of
reproducing the DHF calculations to reasonable accuracy and
yield excitation energies that are of comparable quality to
all election SCF calculations. When adjusted to approxi-
mately account for the neglect of electron correlation the
excitation energies are generally within 1-2% of the observed
valves. Since the excited states of Xe are all Rydberg
states, an alternative procedure of using EP's derived from
Xe' DHF calculations may be desirable. However, since the
EP's are ultimately intended for use in molecular calculations,

those due to neutral atom DHF results are generally more

appropriate,



Table XIII,

SCF Results for Xe Multiplets?

Config. J -Eval-lé “Egg '655 -esp 'ERy AESCF AEadj AEexp
5p25p7 0 .49533 .9970  .4806  .4295
5p36s 1 .23237 1.1529 L5461 .5990 .1291 57713 (68046)P 68046
2 .23889 1.1469 L6402 .5944 1362 56282 66615 67068
5pés i .19373 1.1524 L6729 .5912 .1366 66194  (76197)€ 76197
1 .19066 1.1554 L6736 .5941 1332 66867 76870 77186
5p36p 1 .19100 1.1940 L6904 L6422 .0874 66793 77126 77270
2 .19021 1.1955 L6919 .6434 .0866 66966 77299 79213
Sp6p 1 .14384 1.2031 L7236 L6439 . 0858 77143 87146 88380
2 .14307 1.2046 .7242 L6453 .0849 77312 87315 89163
5p3s5d 0 .16077 1.2099 .7053 L6571 .0572 73427 83760 79772
1 .16292 1.2054 L7011 L6532 ,0593 72956 83289 79987
2 .16867 1.1860 .6829 .6359 .0653 71694 82027 80323
3 .16297 1.2052 L7009 L6531 .0594 72945 83278 82431
5p35d 1 .15741 1.2242 .7187 .6714 .0538 74164 84497 83890
2 .16788 1.1867 .6815 L6373 .0645 7,867 82200 81926
3 .16985 1.1820 L6768 L6335 .0665 71435 81768 80971
4 .16549 1.1944 L6891 .6438 .0620 72392 82725 80197
5p5d 1 .11532 1.2212 .7407 L6611 L0572 83403 53406 93619
2 .11071 1.2026 L7263 6427 L0617 82439 92442 91448
5p5d 2 .12176 1.1944 ,7154 L6358 .0638 81289 91992 91153
3 .12041 1.2005 L7204 L6416 .0624 82285 92288 91747
a

¢ states with a Xe' (§) core adjusted to give AEexp of 5p6s (J=0).

Eval and €’s are in a.u. and AE's are in cm

States with a Xe® (p3) core adjusted to give AEq,

1

P

of 5p36s (J=1).

S9
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2. Gold

As the nuclear charge increases, it becomes more diffi-
cult to intuitively specify the size of the core. In order
to gain some insight into this problem, Au has been studied
as an atom comprised of 1, 11, 17, 19, and 33 valence elec-
trons having cores of [Xe]4f145d10, [Xe]4fl4, [Kr]4d104f14552,
[Kr]4d104f14, and [Kr]4d10, respectively. Numerical EP's
obtained for each cese have been fitted with exponential and
Gaussian functions. The EP's for the ll-electron case are
plotted in Figure 15. The expansions in terms
of exponential and Gausgian functions are given in Appendix B.

Several atomic states have been calculated using the
modified atomic SCF program described in Section A and a
valence basis set of five STO's for each symmetry (Table XIV).
Results of the ground state calculations zre summarized in
Table XV. The original DHF results are reasonably reproduced
for most orbital energies except for 6s of 19- and 33-valence
electron cases. Since the 6s orbital for those caseg is
calculated as the excited orbital from the EP of S5s orbitals,
the magnitudes of valence interactions are expected to be
slightly different between those contained in Equation (46)
and those recovered from the atomic SCF calculations. The
differences between 17- and 19-valence electron cases are
likely to be the result of these valence-interaction differ-
ences. Several excitation energies of Au and A with ioni-

zation potentiiils of Au are shown in Table XVI. Since there



Table XIV. Au STO Valence Basis Set

Symmetry

251/2

12

23y

3/2

3d

5/2

5/2

4f7/2

3.4873
2.5973
1.1575
L3196
.0639

3.2186

2.493

1.1207
.3164
L0633

18.6706
10.3406
5.7646
1.2524
.2505

18.052¢9
10.1093
5.6835
1.2524
.2505
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Table XV. Ground State Calculations for Au([Xe) 5d5/24 sc17/26 65;,,)°

Orbital Emergies (-¢g)

energies are in atomic units.

-T.E. If7/2 4f§/2 551/2 Spl/2 Sb3/2 Sds/Z Sd7/Z 651/2
DHF 19018,1992 3.8675 3,7202 4,6873 3.1893 2.5588 0.4934 0.4286 0.2919
l-elec . 2912 .2912
11-elec 35,3827 .4932 L4254 .2936
. 17-elec 109.4704 3.2294 2.5473 .5106 L4368 .2985
19-elec 145.2199 4,6462 3.2661 2.5843 .4856 .4176 .3395
33-elec 610.9816 3.9555 3.8123 4,6494 3.2376 2,5760 L4972 L4254 .3438
2 pue to the EP's expanded in STF's and the valence basis set of Table XIV. All

89



Table XVI. Au Excitation Energies®

l-¢ 11-e 17-e 19-e 33-e Exp.

[Xe] 5d3/24 5d5/26— 6s 0.0 0.0 0.0 0.0 0.0 0.0
[Xe] 5d3/24 5dg/ 6Py .1500 .1442 .1309 .1799 .1854 1702
603/, .1646 .1553 .1499 .1986 .2026 .1876
. 6d5,, .2367 .2227 .2268 .2755 .2799 .2823
6dg, .2370 .2230 2273 .2757 .2801 .2826
565, .2599 .2463 .3075
5£,/ .2599 .2463 .3075
[Xe] 5d3/z4 Sdb/zb - .2919 .2776 .28290 L3301 .3386 .3390
Aut Excitation Energies o _
Q-e 10-e 16-e 18-e 32-¢ Exp.

sd,,.* sd4,.,.0 0.0 0.0 0

32 5452 . . .0 .0 0.0 0.0
5d3/24 5d5/25 65 (Av) .0689 0767 .0126 L0171 L0735
(1=3) 20519 10596 -0053 10097 10685
{J=2) J0920 -1000 .0228 -0273 -080%
5‘13/23 5d5/2.6 65 (Av) .1254 .1397 .0694 .0776 .1318
(3=1) 21087 11229 10628 0710 11265
(3=2) 1352 11496 L0734 S0815 ~1350

3 gee footnote a of Table XIII,

69
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is rather close agreement between 19- and 33-electron calcu-
lations, it appears reasonable that the 4f5/2 and 4f7/2
electrons may be included in the core without introducing
serious errors in Au valence electron calculations. The
discrepancy between 19- and 17-valence cases is caused by
the lowering of the ground state of the 19-valence electron
case (and the 33-valence electron case) due to the irre-
producibility of the valence interactions as mentioned above.

If these effects (about 0.05 a.u.) are taken into
account, 17- and 19-electron results are almost identical
as expected. Although there are some differences between
11- and 17-electron cases (especially for 6p1/2 states),
an 1ll-valence-electron model appears to be the most reason-
able one for Au. A l-electron representation of Au is the
most simple and may be useful in some applications, but
meaningful descriptions of chemical bonds involving Au are
not expected when the participation of 5d electrons is
completely neglected.

Table XVI1 gives the orbital energies and mean values
for the radius from a numerical DHF calculation for Au. It
is apparent that the orbital energies for the 5d levels are
not enough greater than that for 6s to justify the omission
of the 5d orbitals from the valence shell. With a 2 a.u.
difference for 5p from 5d, however, it seems clear that the
S5p electrons, and those more tightly bound, will be little
affected by valence shell changes. Arguments based on radii

are less clear cut bu® support the same conclusion. Since



Table XVII. Au Orbital Energies and Radial
fiom a DHF Calculation (a.u.)

Expectation Values

bs

445, 4€ ), 44/, 5s 512
13.17 3.87 3,72 4.69 3.19
.462 .492 .499 943 1.02
.557 .646 .655 1.100 1.21

1L
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the radius of the outer part of the distribution is of
primary interest, values of <r4>1/4 are more meaningful

than those of <r>, From Figure 11 one notes that ihe radius
of the outermost node in the 6s orbital is at about 1.1 a.u.
Hence one should include in the valence shell other orbitals
with effective radii substantially greater than this value.
Clearly the 5d orbitals should be included. While the case
for the 5p orbitals may be marginal, it seems reasonable to
omit them from the valence shell on this basis as well as

on the basis of orbital energies. Thus we believe that the
11-electron valence shell will be appropriate for gold, but

more definite conclusions will be possible after molecular

calculations have been carried out.
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V. PROSPECT OF APPLICATIONS OF EP TO MOLECULAR CALCULATIONS

The EP's developed here are for use in calculations on
molecules containing one or more heavy atoms. The interest
in these molecules is increasing due to their possible roles
in chemical lesers and the recent developments in various
spevtroscopic techniques. For these molecules, the effective
potential approach appears to be most promising at the pre-
sent stage.

The direct use of the EP's of Equation (50) in a
molecular calculation requires that the basis set be in
terms of functions appropriate for the jj-coupling scheme.
The molecular orbitals for valence electrons would be
approximated by linear combinations of two-component atomic
orbitals which are eigenfunctions of the EP calculation
described in the previous section. The molecular integrals
necessary for wave functions of this form are the special
cases of those which appear in molecular DHF theory as
discussed by Malli and Oreg.s They have shown that the
required two-electron integrals can be written in terms of
non-relativistic integrals. Molecular integrals requiring
projection operators can also be written in terms of non-
relativistic integrals.

The use of jj-coupling in the atomic basis sets has
the advantage of yielding the self-consistent molecular
orbitals which obey Hunds coupling case (c¢). Two-component

molecular orbitals based on our EP formalism will have the
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same structure as the four-component relativistic molecular
orbitals.33 They are quite different from the non-relativistic
orbitals as indicated by the correlation diagrams of diatomic
molecules (Figures 16 and 17). The spin-orbit coupling of
atoms is automatically transferred to molecules in this pro-
cedure.

'In many applications it may be reasonable to assume that
LS-coupling is dominant in the valence shell of the molecule.
In such cases the most important relativistic effects may be
due to the mass velocity and Darwin terms. Approaches bascd on

this preunise are being investigated by Kahn, Kay, and Cowan,:s'4

35

and by Das and Wahl. Our EP can be applied at this level of

approximation by taking the weighted average of the two EP's

having the same value of the quantum number £{£>0),

2UEP e (eenyuf?
22-

20+

A .
EP (1) <am =§, em> €z 130 <amj (66)

2

I jem>
2

AEP

where U,™" (r) denotes the averaged effective potential of Equa-

tion (42) and |&m><gm| is the angular projection operator de-

k.12 Ep of Equation (66) can

be applied in the same way as the non-relativistic EP'le in

fined in the non-relativistic wor

conjunction with standard non-relativistic molecular programs.
For the light atoms such as Ne, the relativistic effect

is almost negligible and the averaged effective core poten-

tials (AEP's)} of Equation (66) are expected to be almost the

same as the EP's obtained from the non-relativistic atomic
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calculation with the analogous methcd. Therefore, for light
elements molecular calculations with AEP's may be directly
compared with the non-relativistic all-electron calculations
to estimate the accuracy of the AEP result., This method of
the checking is most attractive at present, since the
relativistic (DHF) all-electron calculations are not avail-
able‘for the molecules with many electrons. Diatomic
Ne (Nez) with R = 2.0 a.u. is chosen as an exampl: and the
orbital energies are shown in Table XVIII. In order to
eliminate the possible basis set effect, an all-electron
basis set of Ne36 is also used for the AEP calculation,
although the smaller basis set may be good enough for the
AEP of Table Bl. 1In Table XVIII, the agreement between the
AEP and the all-electron caiculation is excellent. There-
fore, our method of obtaining EP appears to be quite
reasonable.

Several preliminary calculations for molecules with
Xe have also been performed with the average of the EP of
Table B3. Although the EP of Table B2 and that of Table
B3 differ in their expansions, they yield essentially the
same results in the atomic calculations. The differences
are less than 0.2% in the orbital energies. The use of EP
of Table B3 in ohtaining the AEP is merely a matter of
convenience in the actual calculations. The basis set used
in the calculations is the average of that given in Table X.
XeF, and XeF have been calculated for several internuclear
distances with the AEP. Among these calculations, the result
for XeF, at R - 2.0 R is given in Table XIX.
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Table XVIII. Orbital Energies of Ne, at R = 2.0 a.u.
(Energies are in a.u.)

AEP?:P  Apb
o, 2.314  2.330
30,  1.754  1.729
20, 1118 1.112
20, 1.024 1.023
1m, L7087  .7072
1n, .2945  .2806

2 valence electron calculation with the averaged EP
of Table Bl.

b Basis set us~d is the (9s5p) GTO of Huzinaga.36



Orbital energies of Xer from other calculation510’37

and the experiment38 are also summarized in Table XIX. The
results of the AEP calculation agree reasonably with those
of the all-electron (HF).37 All orbitals involving a
substantial amount of Xe atomic character (Snu, 100g and
908) are somewhat more tightly bound for che AEP calculation
than for the HF. One of the reasons may be due to the basis
set, since our basis set is probably more complete than that
used for the HF calculation as far as the valence space is
concerned. Most of the discrepancies in the Snu and 100g
orbitals may be due to this effect. The larger difference
for the 90 orbital is due to the relativistic effect on

the 5s orbital of Xe. This may also be seen from the Xa

calculations.10

Although an accurate estimate is not
possible, our calculation seems to predict larger relativis-
tic effects than the Xa method. Orbital energies from SCF
calculations (e.g., AEP and HF of Table XIX) are usually
poor approximations to the vertical ionization potentials
(Koopmans' theorem). However, reasonable agreement with the
experimental values can be obtained, except for the reversal
of the order of the Sﬂu and lﬂug orbitals, if the calculated
values are multiplied by the empirically obtained factor of
0.92.3% 1t may be noted that a similar but much better
improvement can be made for the Xa method hy using the

transition-state approximation.10
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Table XIX. Comparison of Calculated and Experimental
Orbital Energigs (in eV) of Xer,
R(Xe-F) = 2.0 A
a b Xa (DVS)© d
Orbital AEP HF Exp.
5w, (3/2)° 14.6 13.6 7.1 6.7 12.42
(/2)® 7.5 12.89
100g 13.5 12.8 10.1 10.3 13.65
Sﬂg 16.3 16.0 11.1 11.1 14.35
4r_(3/2)° 11.3 15.60
u 17.6 17.3 11.5
/¢ 11.4 16.00
Gou 18.4 18.4 13.5 13.3 17.35
968 30.4 27.4 17.9 19.2 ~22.5

2 Ep and basis set of F from Reference (12).

¢ Discrete Basis Set

From Reference 37,

10

d From the photoelectron spectra.

38

Value of the tota' angular momentum Q.
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Procedures for introducing the atomic-spin-orbit
splicting into the molecular results9 may be used after the
molecular wave functions based on the AEP have been
computed. Calculations or the ground and excited states
of Xez and Xe; using this approach are in progress and

appear to be yielding reasonable results.
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APPENDIX A,

OPEN-SHELL VECTOR COUPLING COEFFICIENTS
FOR jj-COUPLED ATOMIC CONFIGURATIONS
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Table Al. Open-Shell Vector Coupling Coefficients
" Required for Cases through f

¥ Configuration Required Coefficients
1 s KssO
_f, z“ EppD K
n pp0”’ "pp2
4 4 K3d0-Xad2
: ‘_fln Eddo , dez . iddd
n EFO- P2 EEa
7 f KegorKega o Kega Kege
8 spn Kepy * 12
9 spn KSpl +1,3
10 sdn stz + 1’4
11 sd Kegz * 1,5
12 si" Kogg + 1,6
13 sf" Keez * 1s7
14 pp" Kspz * 253
15 1:;&“ Ksqp * 24
16 ;_)d: Ksqz * 2,5
17 pf Kﬁfz + 2,6
18 lsfn K5f4 + 2,7
19 pﬁa: Jpd2 Kpd1 +Kpas *+ 344
20 pmdn Jpa2+¥pd1Kpas * 3+
21 pmfn JPEZ,KPEZ,KPf4 + 3,6
22 pmfn Jper-KpeaoKpga * 357
23 &mdn deZ’KddZ’K&M + 4,5
24 a f dez,del,Kafs + 4,6
25 &:ff: Jag2-K3es-Kaes + 4.7
26 dmfn JagzsJazesKaz1+Xar3rKags * 5,0
27 't JagarJagqrKag1-Kags Kags * 507
28 et JeearIzearXee2 KpparKepe * 647
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Table A2.

Coefficients of Slater Integrals for jj-Coupling

Configuration J Coefficients (v>0)

1 sQ 0 gpsl = -1/3
2 1 -1/9
3 sp 1 gps1 = 1/9
4 2 -1/3

2 -
5 P 0 'EPPZ = 1/5
6 2 -3/25
7 P S= -1

PP 1 Bpp2 /5
8 2 -1/2%

3
9 3/2 = -1/5

p / gppZ / 5
10 sp 1/2 851 = "1/3 7 p(J=0)
11 3/2 0+ pl(I=2)
12 _ 5/2 -5/9 + pl(J=2)

- 2 - 201a
13 PP 1/2 gPPZ = -1/5 +p Z(J-O)
14 3/2 8/25 + p~{J=2)
15 5/2 -3/25 + pP(J=2)

3 ~ 3

16 sp 1 Eps1 T -2/9 +p
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Table A2 (continued)

Configuration J Coefficients (v>0)
17 2 -2/3 + ps
18 pp° 1 8., = -2/5 + p3

pp2

19 2 -6/25 + p3
20 sd 1 8gs2 = -1/5
21 2 -1/125
22 sd 1 Bggp = 1/25
23 2 -1/5
24 pd 1 gap1 = 1/9
25 2 gaf)l = -1/3
26 pd 2 gd;"’:; = -1/7
27 3 -1/49
28 pd o £ap1 -06666667, g3 = -.25714286, £3., = .20000000
29 1 .04888889, -.15428571, .04000000
30 2 .01333333, -,05142857, -.12000000
31 3 .04000000, -.00734694, .04000000
32 pd 1 ggpy = 04000000, g4.5 = .06857143, f4,, = 16000000
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Table A2 (continued)

Configuration J Coefficients (v>0)
33 2 -.12000000, -.07510204, -.02285714
34 3 24000000, -.05795918, -.12571429
35 4 -.40000000, -.01224490, .05714286
36 at 0 g33; =  -04009000
37 1 .20000000
38 2 -.12000000
39 3 .04000000
40 a? 0 8442 = 22857143, gg.. = .09523810
41 1 .15020408, -.01360544
a2 2 .02285714, -.04761905
43 3 -.09469383, .04308390
44 4 -.11428571 -.01587302
45 S .08163265 .00226757
46 dd 1 844z ° -.01714286, 8434 = -.19047619, fd(lZ = .16000000
47 2 .03836735 -.08163265 -.02285714
48 3 -.03755102 -.02040816 -.12571429
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Table

A2 (continued)

55

Configuration J Coefficients (v>0)

49 a -.02448980 -.00226757 .05714286

50 p3a gap1 = --06666667. gg 4 = -.257143 £z, = .200000 + pd

51 1 .022222 -.257143 .040000 + p>

52 2 -.066667 -.257143 -.120000 + p>

53 3 -.066667 -.110204 .040000 + p>

54 p3d 1 Bapy = 400000 g, o = -.114286  £4, = .160000 + p3
2 -.400000 -.114286 -.022857 + p3

56 3 -.400000 -.016327 -.125714 + p>

57 2 -.400000 -.114286 .057143 + p3

58 as 32 ggg, = VS

59 a3 3/2 gy, = -.048980, g0 = -.115656

60 5/2 .000000 .000000

61 9/2 -.254694 -.068027

62 at 0 8442 = -000000  gg4, = .000000

63 z -.205714 -.142857

64 4 ..342857 101
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Table

A2 (continued)

Configuration J Coefficients {v>0)
65 a® 5/2 8447 = --457143, gaq, = -.190476
66 p’F 1 Bgpy = --057743, ggyq = --190476, f5, = -.160000 p3
67 2 011429 -.190476 022857 + p°
68 ’ 3 -.057143 -.190476 125714 + p3
69 4 -.057143 -.063492 .057143 + p>
70 piE 2 Bgpy = 154286, ge,y = -079365, £, = -.142857 P
71 3 -.257143 -.079365 047619 + p°
72 4 -.257143 -.008818 .123810 + p°
73 5 -.257143 -.079365 066667 « p>
74 pf 2 8§52 = 1/25
75 3 -1/5
76 pe 3 Bpq = 1/9
77 4 -1/81
'3 ads 1 e3,, - -2/5 + 30
79 2 -6/25 + a3
80 a°s 2 ggqp - 9/25 + &
81 3 -3/5 o+ d°
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APPENDEX B. TMBLES QF THE ANALYTEC EXPANSIONS QF EP: Ne,
Xe, and Au.

ALl tables are relative to Equatian (51} and in xtomic
units. ETF and GIF denote foar the expopential [x =L in
Equation (51)] and the Gaussian [n = 2 in Eguation (51} ]
type functions respectively. The weight Faor the fitting

is r{



Table BY. Gaussian Representatians af Ne Averaged
Effective Core Potentials

n T b(s) B(p) b(d)

a 29226.600 §7. 18520 -4263.92290 £32k. LOSEQ
Q 3733358 3935410 ~62.04250 101, 36990
] 356,363 33.50850 G isusn 27.377
¢ 19,600 227021210 -1 I5830 238. 36740
] 92.770 - 7363730 20. 27640 ~94. 31570
a 42,195 2L, 39190 384020 LE7.35170
Q 10,630 21, 85690 ~.58128 2Z.XISLS
Q 2,440 36783 ~-U81TY 1962
0 600 82330 ~.32930 Q2360
1 27069, 330 -.250%0 2271940 ~22.98020
L 41,292 ~2. 40847 ~-2.28060 - 12887
2 50000, 000 [UNL L -.10133 . LOLSS

7~
(%)



Table B2, EP of Xe (3 valence electrons) - GITE
L 4 LIS el L1t P blpy, o)
0 SI0K.08%  SIO0NEIZE  ~SEIAINTE LRUS.497S
0 I6SS.9WD  IR0S2WS 4TS 6850 S92, 3106
¢ 300.1800 H6.33E2 0020012 -638.3250
0 AR50 -952.3547 86§22 §52. 7408
0 1722200 15,3060 3603208 30 7SHZ
0 $.7250 HESTLT 19,4300 28,1550
0 S.3L70 51505 18,6829 ~31.6556
0 L.4510 7,348 L.5500 k2792
-1 13T.eTae ~77.5880 6. 2608 -70.8533
N1 185.2200 22,3396 ~50, 5578 A 5462
X 128100 s.au2s 1702 -3.2248
-1 L0300 21058 5.6172 10,0200
-2 50000.0082 2.0000 -.9650 a.00c0
n < bldgpd  Bldgl  BlEg)  b(Ey,y)
0 60,1000 -3W9.2853 -4I5.5637 -256.2I55 -247.5275
0 IS.0000  -Z3I88 -100.3286  ~TL.SI7T  ~7Z.6316
0 S4000 29,5463 563386 -I6.6257  ~35.1695
0 L3500 6.2886  S5.0261  -S.4857  -S.572L
0 3800 (205 dT0E -SSR -.3S
o (M6 -.008&  -.0I28  -.0032  -.0UAQ
-1 7257.5000 -3E2.5458 -95.30ST -3A0.5876  -7.6336
S1 S25.0000° 20B.584S 54,5265  Z3.81S¢  -9.71988
SI 100U.QU00  -SH.OIES  -39.0738  -26.0530 -5.5408
SI 217.0000 283855 ~17.S347  -32.7976  ~35.1078
-z 1§5000.0800  -1.8000  -.0800  -Z.7700  -.0800
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Table B5, EP of Au (11 valence clectrons) - ETF
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