

**TITLE: Analyzing Powers of $^3\text{He}(p,p)^3\text{He}$ Elastic Scattering
Between 30 and 50 MeV**

**AUTHOR(S): J. Birchall, W. T. H. van Oers, H. E. Conzett,
P. von Rossen, R. M. Larimer, J. Watson, Ronald E. Brown**

**SUBMITTED TO: Fifth International Symposium on Polarization
Phenomena in Nuclear Physics, Santa Fe, NM, August 11-15, 1980**

MASTER

DISCLAIMER

This work was performed under contract or agreement by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of the data or conclusions disclosed or represented in this report. This report is not necessarily a product of a process that assures quality control and is not subject to the same degree of editing and peer review as a journal article. Reference herein to any specific commercial products, process, or services, does not necessarily constitute endorsement by the United States Government. The views expressed in this report are those of the author and do not necessarily represent the views of the United States Government. The name of any specific company or manufacturer does not imply any recommendation by the United States Government.

University of California

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545
An Affirmative Action/Equal Opportunity Employer

ANALYZING POWERS OF ${}^3\text{He}(\vec{p},p){}^3\text{He}$ ELASTIC SCATTERING
BETWEEN 30 AND 50 MeV[†]

J. Birchall and W.T.H. van Oers

Department of Physics, University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada

H.E. Conzett, P. von Kossen and R.M. Larimer

Lawrence Berkeley Laboratory
Berkeley, California 94720, U.S.A.

J. Watson

Department of Physics, Kent State University,
Kent, Ohio 44242, U.S.A.

Ronald E. Brown

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545, U.S.A.

ABSTRACT

Analyzing power data have been obtained for ${}^3\text{He}(\vec{p},p){}^3\text{He}$ elastic scattering at seven energies between 30 and 50 MeV at laboratory angles between 20° and 160°. Errors are typically less than 0.01. These results supplement earlier differential and total reaction cross-section and analyzing power data and new data obtained with a polarised ${}^3\text{He}$ target.

INTRODUCTION

In a recent phase-shift analysis¹ of $p-{}^3\text{He}$ scattering data unusual behaviour of the ${}^1\text{S}_0$, ${}^1\text{P}_1$ and ${}^1\text{D}_2$ phases was observed in the energy range between 20 and 50 MeV. With a view to enlarging the data base and to obtain improved phase parameters, we have made measurements of the ${}^3\text{He}(\vec{p},p){}^3\text{He}$ analyzing powers at laboratory angles between 20° and 160° at proton energies of 32.4, 35.1, 37.6, 40.1, 45.0, 47.6 and 49.6 MeV. These angular distributions complement those² at 21.4, 24.8, 27.3 and 30.1 MeV and differential cross section³ and total reaction cross-section data⁴ as well as data obtained with a polarised ${}^3\text{He}$ target⁵.

EXPERIMENT AND RESULTS

The polarised proton beam from the 88" cyclotron of the Lawrence Berkeley Laboratory was transported to a gas cell containing ${}^3\text{He}$ gas at pressures between 1 and 2 atmospheres. Beam currents on

[†]Work supported in part by the Natural Sciences and Engineering Research Council of Canada and by the U.S. Department of Energy.

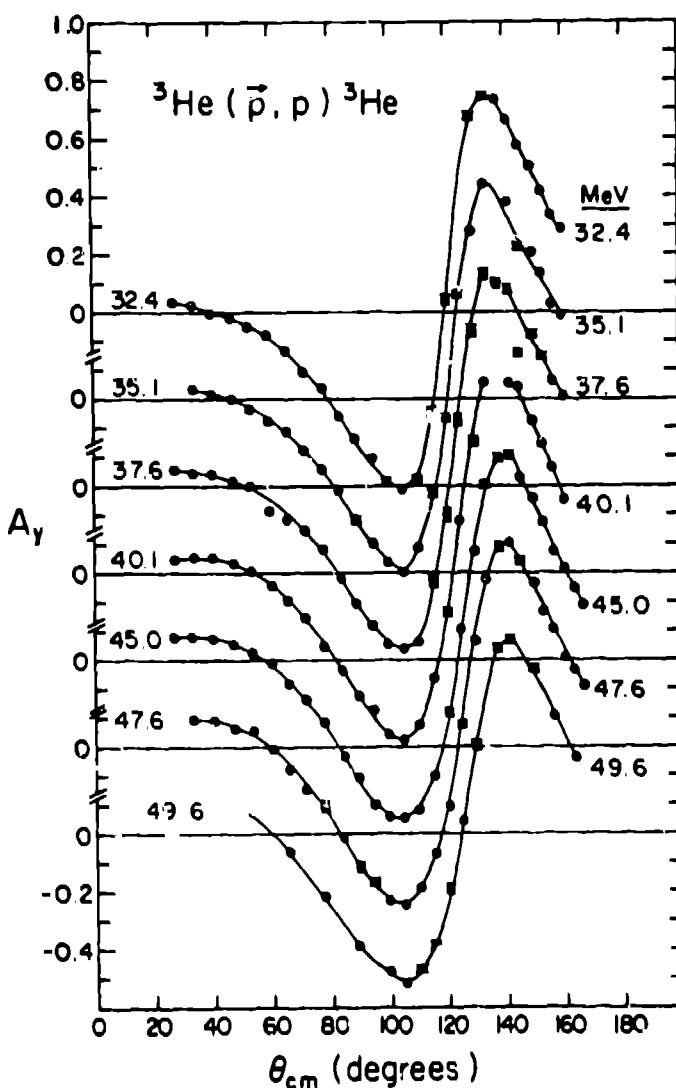


Fig. 1 Analyzing powers A_y for ${}^3\text{He}(\vec{p}, p) {}^3\text{He}$ between 30 and 50 MeV. The curves are to guide the eye.

wheel. One detector system at either side of the beam detected protons elastically scattered from the polarisation analyser, which was ${}^4\text{He}$ gas for the first and a ${}^{12}\text{C}$ foil for the second set of measurements. The ${}^4\text{He}$ and ${}^{12}\text{C}$ analyzing powers were taken from the data of Bacher et al.⁶ and Kato et al.⁷

Beam was collected in a Faraday cup and charge integrated. The beam polarisation was reversed at the source a few times per second on the basis of equal Faraday cup charge per spin state.

The results of the measurements are shown in fig. 1. Corrections for finite geometry were very small (usually less than 0.001) and have been incorporated into the data only at 32.4 and 35.1 MeV. The statistical error bars when not shown are smaller than the size of the dots.

target were varied between 10 nA and 100 nA while the beam polarization was typically 0.8.

The gas target was contained in a scattering chamber, at the entrance and exit of which collimation slits were fitted. Current falling on the left and right components of these slits was monitored and beam transport parameters adjusted to ensure that these currents were equalised. In the first series of runs (at 32.4, 35.1, 37.6 and 40.1 MeV) these adjustments were made by hand. An automatic control system was installed for subsequent runs.

The scattering chamber contained arrays of detectors placed symmetrically at either side of the beam. Four detector systems in the first and two in the second series of runs were used.

An absorber wheel downstream of the scattering chamber was used to reduce the beam energy to that appropriate for the beam polarimeter. The polarimeter was immediately downstream from the absorber

REFERENCES

1. R.E. Brown, B.T. Murdoch, D.K. Hasell, A.M. Sourkes and W.T.H. van Oers, Few Body Systems and Nuclear Forces, ed. H. Zingl, M. HafTEL and H. Zankel (Springer, Berlin, 1978), vol. I, p.292.
2. J.W. Watson, H.E. Conzett, R.M. Larimer, B.T. Leemann and E.J. Stephenson, Bull. Am. Phys. Soc. 22, 531 (1977).
3. B.T. Murdoch, D.K. Hasell, A.M. Sourkes, W.T.H. van Oers and R.E. Brown, (1980) to be published.
4. A.M. Sourkes, A. Houdayer, W.T.H. van Oers, R.F. Carlson and R.E. Brown, Phys. Rev. C13, 451 (1976).
5. R.H. McCamis et al. Contribution to this Conference.
6. A.D. Bacher, G.R. Plattner, H.E. Conzett, D.J. Clark, H. Grunder and W.F. Tivol, Phys. Rev. C5, 1147 (1972).
7. S. Kato, K. Okada, M. Kondo, A. Shimizu, K. Hosono, T. Saito, N. Matsuoka, S. Nagamachi, K. Nisimura, N. Tamura, K. Imai, K. Egawa, M. Nakamura, T. Noro, H. Shimizu, K. Ogino and Y. Kadota, Nucl. Instr. Meth. 169, 589 (1980).