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I. OBJECTIVE AND SCOPE OF WORK

The purpose of this program is to develop and apply, 
over three years, accurate and general computer models that 
will expedite the development and aid in the optimization 
and scale-up of reactors for coal gasification. Initial 
applications will be to fluidized bed gasification processes 
subsequently both entrained flow reactors and fast fluidized 
beds will be examined.

During the first year, work will be initiated on 
the fluidized bed model in the areas of multiphase fluid 
flow without chemical reactions, and chemical reactions 
without fluid flow. The models, developed to represent 
these aspects of gasification processes, will be combined in 
the second year of the program into a numerical model of 
reactive flows in fluidized beds. This model will provide 
a time-dependent field description of fluidized bed flows in 
two space dimensions. Calculations will be performed with 
the prototype code during the first and second years to 
verify the accuracy of the formulations employed and, in the 
second year, these calculations should provide preliminary 
results relevant to coal gasifications. During the second 
year a computer model for entrained flow gasifiers will be 
formulated and the chemistry defined; this model will pro­
vide a field description of entrained flows in two space 
dimensions. Nonreactive flow calculations will be performed 
for entrained flow processes at the end of the second year.

In the third year the application of the fluidized 
bed computer model to specific gasifier processes will be 
extended and a computational model which includes three- 
dimensional effects will be developed. Also, during this 
third year the coal chemistry will be combined with the en­
trained flow computer model and some calculations of such 
gasifier configurations will be performed.
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II. SUMMARY OF PROGRESS TO DATE

This was the third quarter in the second year of 
research to develop and apply computer codes, based upon 
continuum theories of multiphase flows, to the performance 
of fluidized bed and entrained flow coal gasification reac­
tors. Research was active in several areas.

The research on the fluidized bed model was directed 
to the continued development of the chemistry for steam- 
oxygen gasification and to the incorporation of that chemistry 
into the numerical formulation. In addition, theoretical 
studies were continued or initiated on compressibility 
effects in fluidized beds, mechanical interaction functions, 
constitutive relationships and particle size effects.

The work on the entrained flow model included a con­
tinued formulation of the equations for turbulent gas-solid 
particle motion, the examination of chemical kinetics and 
the successful completion of a model computer code appropriate 
to representing transient entrained flows. This latter code, 
which involves a finite element-finite difference formula­
tion has been applied to study swirling flows of a compres­
sible viscous gas.
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III. DETAILED DESCRIPTION OF TECHNICAL PROGRESS

3.1 TASK 00 - MANAGEMENT, DOCUMENTATION AND CONSULTING
A paper, "A Numerical Model of Gas Fluidized Beds,” 

was accepted for publication in the AIChE Progress Symposium 
Series. In addition, a preliminary abstract, "A Numerical 
Simulation Model for Entrained Flow Coal Gasification, the 
Hydrodynamical Model", was submitted to the Symposium on 
Alternate Energy Sources, Miami Beach, Florida, December, 
1977.

On January 6, 1977, Mayo Carrington visited La Jolla 
and reviewed the technical progress on the project. The 
incorporation of the steam-oxygen gasification chemistry 
into the fluidized bed code and the numerical formulations 
of both fluidized bed and entrained flow codes was discussed.

Professor C. Y. Wen of West Virginia University visited S^ late in February for two days of discussion on 
coal chemistry and fluidized beds. A subcontract to West 
Virginia University was approved by ERDA and signed in March. 
This subcontract, with Professor Wen as the Principal 
Investigator, provides for the development of a homogeneous 
reactor model of steam-oxygen gasification. The model will 
be used in studies of chemical parameters related to the 
description of such processes.

Professor Paul A. Libby, of the University of 
California at San Diego, continued his research on two sub­
jects related to entrained flows; the evolution of particle 
size distribution in dilute entrained flows and the coupling 
of transport phenomena and homogeneous/heterogeneous reac­
tions associated with combustion of individual char particles. 
In this latter study, the influence of volatiles transport 
and combustion in the gas layer adjacent to the particle, 
upon both the heterogeneous reactions and the transport of 
reactants, is being investigated.

3Consulting agreements between S and Professor Joseph 
Yerushalmi of the City University of New York and Professor 
Julius Siekmann of the Technische Hochschule, Darmstadt, 
were approved by ERDA.

3.2 TASK 01 ~ FLUIDIZED BED COAL GASIFICATION MODEL
The research on the fluidized bed model was primarily 

directed to the continued development of the chemistry for 
steam-oxygen gasification and to the incorporation of this
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chemistry into the numerical formulation. In addition, 
theoretical studies were initiated or continued on spatial 
averaging for compressible gas fluidized media, mechanical 
interaction functions, constitutive relationships and 
particle size effects.

The formulation of the chemistry for both gasifica­
tion and combustion of char was continued. A previous model 
[Blake, 1977] for the heterogeneous reactions, species trans­
port and homogeneous reactions for combustion of a char 
particle was extended to include the presence of ash. This 
was accomplished with a formulation based upon the concept 
of an unreacted-shrinking core model wherein the initial 
distribution of carbon and ash are assumed to be uniform 
throughout the particle. The oxidation of the carbon occurs 
at a reaction front which propagates into the particle, 
leaving an external layer of ash. When the carbon is con­
sumed, there remains a particle of ash which is, naturally, 
less dense than the char particle, but which has the original 
external particle radius. In addition to the rate controlling 
processes of the kinetics at the reaction front and mass trans­
port between the external particle surface and the ambient 
gas, the diffusion of reactants within the ash layer influences 
the reaction rate. Since we are using a single Arrhenius 
rate expression for the kinetics, where we assume adsorption 
dominance [Blake, 1977], this means that there are, three 
velocity coefficients associated with the overall rate expres­
sion for this shrinking core model. Within the context of 
the external ash layer and its tendency to inhibit transport 
we have further assumed that the heterogeneous reaction is 
essentially carbon and oxygen producing carbon dioxide. In 
Blake [1977], we discussed the homogeneous oxidation of 
carbon monoxide [c.f., Hottel, 1965]. However, this reaction 
should proceed to completion very close to the particle 
surface or within the porous matrix of the particle. Hence, 
for simplicity at this point, we consider that carbon oxidizes 
to carbon dioxide and this latter product enters the gas 
phase.

Again, the overall reaction rate (gms of carbon re- moved/cm^ or particle surface area/sec) for a single particle, 
when summed over all local particles, provides a mass source 
for the differential equations describing conservation of 
mass. Any homogeneous reactions are represented by volumetric 
source terms in the conservation of mass for the respective 
gas species. The influence of both heterogeneous and homo­
geneous reactions upon the energy conservation is implicitly 
contained in a combined energy balance equation for the solid 
and gas phases and is explicitly accounted for in a Lagrangian 
energy balance for individual particles. In the case of 
local temperature equilibrium between the solid particles and
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gas only the total energy equation is required to specify 
the energy conservation.

We have also formulated models for the heterogeneous 
gasification reactions: carbon-steam and carbon-carbon 
dioxide. For the temperature range appropriate to gasifica­
tion these reactions can be approximately described with a 
single Arrhenius expression which is first order in the 
partial pressure of the reactant species in the gas phase.
We are examining the application of a solid particle-gas 
exchange model to describe the interphase mass and 
energy exchange for these essentially volumetric reactions.

Within the context of the heterogeneous and homo­
geneous reactions for a single char particle we are examining, 
with a detailed theoretical analysis, these kinetics and 
also the transport of reactants and products in the neighbor­
hood of a single particle. This analysis, which is initially 
for the stagnation region of a particle, provides a descrip­
tion of the coupled diffusion, convection and chemical reac­
tions in the film around the particle. In particular, we 
are examining finite rate, equilibrium and frozen chemical 
descriptions for the homogeneous reactions and finite rate 
chemistry for the heterogeneous reactions associated with 
char oxidation. We wish to understand the relative influences 
of such heterogeneous reactions as carbon-oxygen and carbon- 
carbon dioxide in different ambient environments and to deter­
mine the effect of homogeneous reactions and species trans­
port upon the control of the rate of reaction.

The incorporation of the chemistry and the species 
transport into the numerical description of fluidized bed 
flows was initiated and continues. This introduction of 
chemical reactions and multiple species requires several 
modifications to the existing computer code [Blake, et al. , 
1976]. We have already noted that the heterogeneous and 
homogeneous reactions provide source terms in the con­
servation of mass relationships. Further, instead of a 
single gas species we must now consider n (where n rtay 
be six) species to represent the dynamics of gas flow. The 
mass of the char particles changes with heterogeneous reac­
tion; hence, the histories of the particle masses must be 
"remembered" by the numerical formulation. To model this 
flow, a finite difference implicit method, wherein conserva­
tion equations for species mass are solved simultaneously 
with the conservation of momentum and energy for the solid 
and gas phases, is being used. The initial application of 
this code will be to examine the combustion reactions and 
the associated mass transport. We expect that the fully 
implicit method for treatment of species transport is 
essential to describe such highly exothermic and rapid
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processes. We note, however, that the complete description 
of those processes, which like gasification, occur on longer 
time scales and which require the description of a large 
number of gas species, may require lengthy computer calcula­
tions with such a treatment. Within this context we are 
exploring other theoretical and numerical formulations of 
these coupled flows.

Theoretical work on the equations of fluidized beds 
continued. A formulation of the conservation equations 
based upon density weighting of the velocity and energy 
variables has provided important insight into the incorpora­
tion of higher order compressible effects into the conserva­
tion equations. Further, a formalism which describes the 
influence of dispersion upon the gas and solid stress tensors 
has been developed. This latter relationship should be use­
ful, for example, in providing a more complete description 
of the rheology of the solid phase in the continuum model 
of fluidized beds.

The theoretical formulation describing the relative 
transport of particles of different sizes in the fluidized 
bed was continued. We briefly discussed this formulation 
in the last Quarterly Technical Progress Report [Blake,
1977]; in essence, the properties of the fluidized bed which 
depend upon particle size and relate to the mechanical 
particle-particle and particle-gas interactions such as the 
solid phase viscosity, solid pressure and the solid particle- 
gas drag relationships are determined by the average of the 
particle size distribution. Then, the motion of each 
discrete particle size, with respect to the average bed, is 
calculated by dynamic relationships, which account for the 
interaction of this particle "bin" with the average bed.

3.3 TASK 02 - ENTRAINED FLOW COAL GASIFICATION MODEL
The research on the entrained flow model includes a 

continued formulation of the equations for turbulent gas- 
solid particle motion, the continuation of a theoretical 
description of particle size effects, initiation of an 
examination of chemical kinetics, and the successful comple­
tion of a model computer code appropriate to representing 
transient entrained flows. This latter code, which uses a 
finite element-finite difference formulation, was used to 
study swirling flows of a viscous compressible gas in two 
spatial dimensions. Subsequently (past seventh quarter), this 
code has been further developed to include particle motions.

In the fifth and sixth quarters of this contract we 
respectively developed balance equations for gas-particle

6



flows without turbulence and with turbulence. The closure 
of these turbulence equations has been partially considered 
[Blake, 1977] and in the present quarter we completed the 
derivation of the relationships which are necessary to in­
sure closure of the field equations for entrained flow.
This formulation of closure is based upon a second order 
(eddy viscosity) scheme which is a variation of that developed 
by Spalding and his coworkers for turbulence in fluids without 
particles (c.f., Launder and Spalding [1972]). Specifically, 
we base the closure upon the turbulent kinetic energies of 
the gas and solid phases and a single turbulent length scale , 
which, in turn, depends upon a turbulent dissipation rate. 
Differential equations describe the evolution of the turbu­
lent kinetic energies and the dissipation rate. These 
differential equations are to be solved simultaneously with 
the conservation equations of mass, momentum and energy for 
the solid and gas phases. With the associated constitutive 
relationships, these differential equations comprise the 
closure of the field equations for entrained flow processes.
A discussion of these equations is presented in Appendix A.
The complete mathematical specification of the appropriate 
initial-boundary value problem requires the establishment of 
a boundary and initial conditions. Some of these conditions 
are readily derived but care is required in the specifica­
tion of such conditions on the turbulent kinetic energy, 
the dissipation rate, etc. This formulation is being developed 
at the present time.

The study of the evolution of particle size distribu­
tion, in very dilute entrained flows, was continued. Most 
of the effort was devoted to modeling correlations which 
occur in the equation for particle size distribution with 
turbulence (c.f., Appendix D in Blake [1977]) and in develop­
ing more detailed representations of mass loss from a single 
particle of carbon which is experiencing oxidation reac­
tions .

We initiated studies of chemical kinetics and trans­
port related to devolatilization, oxidation and gasification 
of pulverized coal/char in an entrained flow environment.
We expect that our present studies of such processes in 
fluidized beds will be very useful with respect to both 
oxidation and gasification modeling. However, many aspects 
of devolatilization and subsequent combustion of the vola­
tiles must be considered with regard to the particular 
nature of entrained flow systems.

A rather advanced numerical code has been developed 
to treat transient multi-dimensional flow of a viscous 
compressible gas. This code uses both finite element and 
finite difference techniques. In particular, the geometric
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advantages related to zone size distribution and zone shape, 
which are peculiar to finite element techniques, are retained 
to provide a good description of the geometries, such as 
walls, channels and nozzles, which are important to internal 
flows in gasifiers. The finite difference techniques are 
used in the major numerical solutions of the differential 
equations; there is some finite element methodology applied 
in the definition of local variables in terms of the element 
and nodal values. Aspects of this numerical model together 
with some representative calculations are shown in Appendix 
B.

We have decided to use the basic numerical approach 
as represented by this finite element-finite difference 
code in the development of a code to model turbulent en­
trained flows. To this end we have since added the conserve 
tion equations for the solid phase and have performed some 
preliminary test calculations with this modified code. The 
turbulence model will be included in this numerical formula­
tion subsequent to the use of the code in representing some 
exact solutions of gas-solid particle flows.
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IV. CONCLUSIONS

In summary, we note the following aspects of our 
modeling effort.

• The chemistry and species transport associated 
with steam oxygen gasification processes is 
being incorporated into the numerical model 
for fluidized beds. This formulation includes 
a fully implicit solution of the coupled 
species transport and conservation of momentum 
and energy for the two phase continuum model. 
We are also investigating other theoretical 
and numerical formulations of these coupled 
flows.

• A preliminary version of a numerical model for 
entrained flows has been developed. This 
model incorporates both finite element and 
finite difference methodology to represent 
transient multidimensional flows.
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APPENDIX A
DERIVATION OF EQUATIONS FOR TURBULENT ENTRAINED FLOWS

In Blake [1977], a derivation of the turbulent form 
of the conservation equations for the solid particle-gas 
flows appropriate to entrained processes was presented. In 
many of the equations derived there, terms involving turbu­
lent fluctuations arose. While several of these terms were 
discussed and then either modeled or discarded, others re­
mained. In order to effect closure of this set of turbulent 
equations, one must deal with these remaining terms.

We have elected to use a second-order (eddy viscosity) 
turbulence closure scheme which is a variation of the k-e 
model developed by the Spalding group at Imperial College, 
London (see, for example, Launder and Spalding [1972]). We 
now turn to applying it to the turbulence terms remaining in 
the mean conservation equations.

In the conservation of mean gas momentum equation (Eq. 
C.3b of Blake [1977]) one turbulence term, representing the 
net diffusion of mean momentum by the turbulence field (i.e. , 
the divergence of the Reynolds' stress), remained. We 
model the gaseous Reynolds' stress by:

p ^v! ' v'. ' = f i l - Vtf
3v.k ^ — r.

tf 3x,
) ‘ii

(A. 1)

where V*_.e = turbulent (eddy) dynamic viscosity coefficient 
and k^ = (p^vV )/(2p^) = Favre-averaged fluid turbulent 
kinetic energy. One should note that the first term on the 
RHS of Eq. (A.l) is the classical Navier-Stokes shear 
stress but with replacing the laminar dynamic viscosity 
coefficient. The latter two terms appear so that the first 
invariant of the Reynolds' stress tehsor and the modeled 
form for it are identical and represent the turbulent
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analogues of bulk viscous stress (with = 2/3 Vtf) and 
pressure, respectively.

Dealing with the solid Reynolds' stress term in Eq. 
(C.4b) of Blake [1977] in the same manner, we have:

p u! 1 u1P i 3 tp
9u.__i
9xj

3u
9x
f)*M' 3uk . —

tp 9xk (A. 2)

where y and k^ are the solid analogues of yfc^ and k^.
The conservation of gaseous species mass equation (Eq. 

C.5b of Blake [1977]) contains a term which represents the 
net diffusion of the mass of species a by the turbulence 
field. We model the flux in a Fickian manner so that:

P*F f arTvTr =
y. - 3F tf __a

9x. F i
(A.3)

where a = turbulent Schmidt number (for species diffusion)r
which will be assumed constant and applicable for all a.

The combined energy equation (Eq. C.14b of Blake 
[1977] ) contains two turbulent terms representing the net 
diffusion of gaseous and solid internal energy, respectively, 
by their respective turbulence fields. We model these terms 
analogously to species mass so:

n o ' 1 v' 1 —pf f i o 9x. (A.4a)

) e''u!' =p p i
y. 9e - —£ 
a 9x. e i

(A. 4b)

where a = turbulent Prandtl number (for energy) which is e
assumed constant and applicable for all gaseous and solid 
materials.
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Equations (A.l) - (A.4) permit elimination of the 
remaining turbulent correlation terms but closure is not yet 
complete since Utf/ ^tp' an<^ remain to be specified.
It is known that the eddy viscosity can be characterized by 
the use of suitable scales of turbulent intensity and turbu­
lent length. Prandtl [1945] and Kolmogorov [1942] suggest 
the turbulent kinetic energy as a suitable scale for turbu­
lent intensity, but the specification of the turbulent length 
scale has been somewhat more elusive since, unlike kinetic 
energy, it is not a conserved quantity. Consequently, a 
search was conducted for a conserved property which was pro­
portional to both turbulent intensity and length so that it 
and turbulent kinetic energy would constitute linearly inde­
pendent quantities from which the turbulent length scale could 
be deduced. Harlow and Nakayama [1968] and others suggested 
the turbulent dissipation rate, e, and Jones and Launder 
[1972] determined that it gave better results than others 
investigated. Thus, we take

ytf = Cy (A*5)

where

Favre-averaged (A.6) 
fluid turbulent 
dissipation rate

and, = fluid laminar dynamic viscosity coefficient. In 
writing Eq. (A.5), we have implicitly set the gaseous turbu­
lent length scale, as:

lf * k^/2/e (A.7)

We will now assume that the solid turbulent length scale, 
is identical to the gaseous one. The rationale is that
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if the particles are much smaller than they "see" only
a sea that is the gaseous turbule of scale, and move
about with it except that they lag somewhat in acceleration. 
Thus, the solid turbulent length scales are identical.
This is, of course, an approximation that only subsequent 
experience will confirm or deny. If we now take l =

tp = utf (Cj/Pf) <kpAf) 1/2 (A.8)

This leaves only kf, k , and e unspecified. We now turn to 
developing model conservation equations for these three 
quantities. Since the starting points for these model equa­
tions are Eqs. (C-l)-(C-4) of Blake [1977], we reproduce those 
here (except that in Eq. (C.3) we have added back the laminar 
viscous shear term previously discarded):

3t
4-L = S
dX . (C.l)

3p 3(p u )+ __.P-.J— = - S3t- 3x.3
(C. 2)

9(p4rV.) 3 (p^v. v.)'f vi
3t

0-11 = 
3x .

sp
3x7 - G(>JJl'r)0p(vi-ui>+Pf9i 

1

3x . 
3

3v. 3v.
yil l 3x. + lx1 

\ 3 i
(C.3)

3(p u.) 3(p u.u.)+ 3 - G<Mrr)p g,
3

(C. 4)

Let us multiply Eq. (C.l) by v^ and subtract the result 
from Eq. (C.3) to yield:
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3v. 3v.
f 91 f j 9Xj

gp - G(ut,r)pp(v.-u.)

+ p^g. - Sv. + t:— f3i i 9x. ■\3xj
3v.
9x. 

i

(A.9)

Now , multiply Eq. (A.9) by vV and recalling that
+ '/ we get

v!'2 v! ' 2
9 (-|—) 9 (-^—) 9v

pf “9t--- + pfVj 9x ■ + pfVi 9^ + pfVi,Vj 977
J 1 1

3v.

v! • ---G(y„,r)i 9x^ &
p v!'(v.-u.) + p v!,2 
p i i i P i

p u!'v!• P i i

+ v! ' 3x. 
3

+ p£v!'g. - Sv.v! Kf i ii

9v.

I I

/ 3vi 
yJl \¥x7 + 9x. (A.10)

Multiply Eq. (C.l) by vV2/2, add to (A.10), and time 
average the result to get:

3(pk) 9(pv.k) _____
9t dxi Pf i j 9x. 3P_

i" v-' 377

- y Jl \ 9x
9v!,\/9v!' 9v!'\gT^j^ITT- + 3x7“) ” G (yJl'r)

+ 2 p k^-p u!'v!1Kp f Kp i i - Sk£ + vi

p v!'(v.-u.)p i i i

/2vi 3v. \ ^ (BT + 3^)

3 97f' + .9

1—••m>
ct>

KK

1_

3Xj yjl 9x.
3 J SXj KJl ’i 9x.i (A.11)
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Note that the gravity term has disappeared so that in 
the Favre-averaged formulation, bouyancy does not directly 
affect the turbulent kinetic energy. Let us expand the 
second term in Eq. (A.11), recalling the definition of 
and rearrange to get:

3(pfkf)
at

a (pfvkf) 
ax. ~D

a (Pf'v'^' k^1)
3x .

av.
n V1 'v' 1 __—pf i j ax.

- y,
/av^wav^' av*. •

g p v!' (v.-u.) + 2 p kp i xi p f

p u!'v!'pi i - v! ' —---Ski 3x^ i

+ 3 a ^fl
3x .3

i--
- -e K + ^)J + ax.3 ax.L 3 J

+ a
ax.3

av*.1 
-..13x. (A.11a)

Equation (A.11a) represents the full, unmodeled gaseous 
(mean) turbulent kinetic energy conservation equation. 
Operating on Eqs. (C.2) and (C.4) in an analogous fashion 
yields the analogous solid equation:

a(p k ) a(p u.k ) a(p„uVk ) au_.___P- P- + ___E-J.-E—  ----E_J—E---- p ur'uT' —-at 3x. 3x. Mp i ] 3x.
3 3 3 (A.12)

+ G(y^,r) p u!'v!1 - 2 p k P i i P P + Sk
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The turbulent correlation terms in Eqs. (A.11a) and (A.12) 
must now be discarded or modeled.

Consistent with our previous assumptions [Blake, 1977],
we believe the solid-gas mass exchange will be relatively
small so the associated turbulent kinetic energy exchange
should be negligible. Thus, we discard Sk^ and Skp. We
previously discarded the P 8vV/9x^ term from the mean
energy equation (Blake [1977]) and, for the same reasons,
will discard the vT'1 9P/3x^ term from Eq. (A. 11a). The last
three terms in Eq. (A.11a) represent mechanical work and
diffusion terms by laminar viscous action. Similar terms
will appear involving the turbulent viscous action which is
usually about 100 times larger, thus we shall discard all
three terms. A comparison between the third term on the RHS
of Eq. (A.11a) and Eq. (A.6) shows that it is really pi"
which we shall approximate as ~p~e/<i> = = P£» Note that
the production terms contain the appropriate Reynolds' stress
which has already been modeled in Eqs. (A.l) and (A.2).
Similarly, if we simply consider kl', k'' as turbulent fluctua-^ Ptions in scalar quantities, the diffusion terms are completely 
analogous to species mass fraction and specific internal 
energy and can be modeled in analogous fashion. Thus, we 
have:

^7v!"rk’rTf i f (A. 13a)

3k_
p-uT,kr'r = - (A. 13b)pip ak 3xi

where = turbulent Prandtl/Schmidt number for turbulent 
kinetic energy and is assumed constant and applicable to 
both solid and gas. The only terms remaining to be modeled 
arise from the Stokes' drag law. Examination of the origin 
of these terms reveals that they are all part of a
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Thus, they represent portions of the dissipation into heat 
due to interactions between the gas and solid, mean and 
turbulent fields. According to the entity (e.g., solid 
mean kinetic energy, gas turbulent kinetic energy, etc.) 
equation being considered, the terms appearing represent the 
kinetic energy being gained or lost by transfer between that 
entity and the other three as well as that lost due to 
dissipation into heat. The first term in the [] of Eq. (A.11a) 
represents an interaction between the mean and turbulent 
velocity fields; an analogous term would appear in the [] 
of Eq. (A.12) except that it vanishes identically in the 
Favre-averaged form because p^u^1 = 0. For this reason we 
suspect the term in Eq. (A.11a) may be very nearly zero and 
so have decided to discard it. The remaining terms represent 
interactions between the solid/gas turbulence fields with 
some transfer and some dissipation. The fluctuation phase 
relationship between the two fields is important here. We 
have chosen, at least temporarily, to assume no phase shift 
which yields nearly the correct dissipation but may apportion 
the turbulent kinetic energy incorrectly between the solid and 
gas. Further analysis is continuing in an attempt to quantify 
the phase shift, but, in the interim, we have chosen to model 
the term as:

p k_ = p k_ (which assumes p k*' = 0) p f p f p x (A.14a)

(A.14b)
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Substituting all of the modeled terms into Eq. (A.11a)
yields

vtf 3kf 3v. 3v3(Pfkf) a(pfvikf} _ 3
3t + 3x. ~ 3x. \ ct. 3x. / 3 3x. \Htf 3x.

i i\ki/ j \ j

pf£f)

3v. /3v. 3v. \
+ ^tf 3x. \3x• + 3x. / T ' 3 if

P e

- 2G(y£,r) p k - p (k^-k ) f Kp f p
1/2 (A.15)

while substitution into Eq. (A.12) yields:

3 (P k ) 3 (puk)P P + PiP3t 3Xi
„ /u. 3k \ 3u. /3u. 3u.8 * liE _E 1 + u  i. / i. + -1

.ak 3xi/ tp 3xi \3xi 3xi3x.i
3u 3u.

3 3x. \Utp 3x. + ppkPi

+ 2G(vip/r) tPp(kfkp) 1//2 - p_k_] (A. 16)
P P

We now only need a model equation for e to close the 
set. Unfortunately, we have been unable, so far, to derive 
an exact equation for e that seems conveniently modelable. 
Consequently, we have chosen to follow the analogy with the 
other equations between the Favre-averaged form of the com­
pressible equations and the incompressible form of the standard- 
averaged equations. This approach has been used recently by 
Kent and Bilger [1976] with quite reasonable success. Thus, 
we model the conservation equations for e as:

3(pire) 3(pfv.e)--- i— + --- ±—J—31 3Xj ae + Kf l8xjA3xj +

C2P£S2
(A.17)



where a£ = turbulent Prandtl/Schmidt number for dissipation 
rate and is assumed constant and C^, C2 are empirical 
constants (may vary at low turbulence Reynolds' number).

The models presented in this appendix complete the 
turbulent closure of the field equations for entrained 
flow processes. With appropriate boundary and initial condi 
tions, the system is properly specified and can be solved 
numerically. The specification of boundary and initial 
condition is, unfortunately, non-trivial and, therefore, 
will be left for the next report.
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APPENDIX B
A FINITE DIFFERENCE/FINITE ELEMENT SOLUTION OF COMPRESSIBLE

VISCOUS FLOW

The finite difference/finite element technique for 
solving the Navier-Stokes equations, described in the pre­
vious quarterly report [Blake, 1977], has been modified 
and implemented in a working computer code. The modifica­
tions consist of a change in the way in which velocity is 
updated and yield a finite difference treatment of the 
momentum equations. (We note that the numerical formulation 
in that previous report already contains a finite difference 
representation of the conservation of mass.) The finite 
element flexibility in zoning is retained.

The compressible Navier-Stokes code has been used to
compute transient swirling flow in a circular vessel,
shown in Figure B.l. The outer radius of the vessel is
30.48 cm, and an outlet at the center is modeled by a pres-

6 2sure boundary condition of 1.012 * 10 dynes/cm (760 mm/Hg)
applied on a circle of radius 7.62 cm. The air in the vessel

. . -3 3is initially at density p. = 1.213 x 10 gm/cm and
" 6 2temperature 18°C, with pressure = 1.012 x 10 dynes/cm ;

the air is assumed to be an ideal gas with an adiabatic
equation of state

p = p0 (p/e0)Y

where y = 1.40. The inlets are 7.62 cm wide, the inlet 
velocity is of magnitude 2038 cm/sec (Mach number 0.596),
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and the velocities are directed so as to be tangent to the 
inner circular boundary.

The computational grid used in the calculation is 
shown in Figure B.2; it contains 720 elements, at which the 
fluid density and pressure are centered, and 780 nodes, at 
which velocity is centered. Figure B.3 shows the velocity 
vectors at time = 0; the inlet velocities are maintained 
at their time = 0 values throughout the calculation.

The development of the flow to near-steady state is 
shown in Figures B.4-B.8. In the early time flow pattern. 
Figure B.4, the fluid velocities at the outlet region are 
very uniform, and directed radially. Also, a small vortex 
region has developed to the left of each inlet. At t = 21.2 
msec. Figure B.5, the effect of fluid advection has perturbed 
the velocity distribution in the outlet region, and the vor­
tex regions have migrated somewhat toward the outlet.

By time = 41.2 msec. Figure B.6, the flow in the 
outlet region has reversed direction and is beginning to form 
a swirling pattern. The early-time vortex regions have 
migrated out of the grid. At time = 79.6 msec. Figure B.l, 
the steady state is nearly attained; the velocity pattern is 
very close to that at time = 147.4 msec, Figure B.8. At 
these late times, large recirculating flow regions have 
developed between the inlets. At time = 147.4 msec the 
time rate of angular momentum leaving the system is 14 per­
cent greater than the time rate of angular momentum injected, 
but this "overshoot” is declining. This inequality is 
associated with shear stresses, numerical in origin, at the 
no-slip boundary of the vessel.
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Figure B.l. Two-dimensional circular vessel.
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Figure B.2. Computational grid for swirling flow problem.
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Figure B.3. Velocity vectors, swirling flow problem, time

0.
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Figure B.8. Velocity vectors, swirling flow problem, time 
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