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I. OBJECTIVE AND SCOPE OF WORK

The purpose of this program is to develop and apply,
over three years, accurate and general computer models that
will expedite the development and aid in the optimization
and scale-up of reactors for coal gasification. 1Initial
applications will be to fluidized bed gasification processes;
subsequently both entrained flow reactors and fast fluidized
beds will be examined.

During the first year, work will be initiated on
the fluidized bed model in the areas of multiphase fluid
flow without chemical reactions, and chemical reactions
without fluid flow. The models, developed to represent
these aspects of gasification processes, will be combined in
the second year of the program into a numerical model of
reactive flows in fluidized beds. This model will provide
a time-dependent field description of fluidized bed flows in
two space dimensions. Calculations will be performed with
the prototype code during the first and second years to
verify the accuracy of the formulations employed and, in the
second year, these calculations should provide preliminary
results relevant to coal gasifications. During the second
year a computer model for entrained flow gasifiers will be
formulated and the chemistry defined; this model will pro-
vide a field description of entrained flows in two space
dimensions. Nonreactive flow calculations will be performed
for entrained flow processes at the end of the second year.

In the third year the application of the fluidized
bed computer model to specific gasifier processes will be
extended and a computational model which includes three-
dimensional effects will be developed. Also, during this
third year the coal chemistry will be combined with the en-
trained flow computer model and some calculations of such
gasifier configurations will be performed.



II. SUMMARY OF PROGRESS TO DATE

This was the third quarter in the second year of
research to develop and apply computer codes, based upon
continuum theories of multiphase flows, to the performance
of fluidized bed and entrained flow coal gasification reac-
tors. Research was active in several areas.

The research on the fluidized bed model was directed
to the continued development of the chemistry for steam-
oxygen gasification and to the incorporation of that chemistry
into the numerical formulation. In addition, theoretical
studies were continued or initiated on compressibility
effects in fluidized beds, mechanical interaction functions,
constitutive relationships and particle size effects.

The work on the entrained flow model included a con-
tinued formulation of the equations for turbulent gas-solid
particle motion, the examination of chemical kinetics and
the successful completion of a model computer code appropriate
to representing transient entrained flows. This latter code,
which involves a finite element-finite difference formula-
tion has been applied to study swirling flows of a compres-
sible viscous gas.



III. DETAILED DESCRIPTION OF TECHNICAL PROGRESS

3.1 TASK 00 - MANAGEMENT, DOCUMENTATION AND CONSULTING

A paper, "A Numerical Model of Gas Fluidized Beds,"
was accepted for publication in the AIChE Progress Symposium
Series. In addition, a preliminary abstract, "A Numerical
Simulation Model for Entrained Flow Coal Gasification, the
Hydrodynamical Model", was submitted to the Symposium on
Alternate Energy Sources, Miami Beach, Florida, December,
1977.

On January 6, 1977, Mayo Carrington visited La Jolla
and reviewed the technical progress on the project. The
incorporation of the steam-oxygen gasification cheéemistry
into the fluidized bed code and the numerical formulations
of both fluidized bed and entrained flow codes was discussed.

Professor C. Y. Wen of West Virginia University
visited S3 late in February for two days of discussion on
coal chemistry and fluidized beds. A subcontract to West
Virginia University was approved by ERDA and signed in March.
This subcontract, with Professor Wen as the Principal
Investigator, provides for the development of a homogeneous
reactor model of steam-oxygen gasification. The model will
be used in studies of chemical parameters related to the
description of such processes.

Professor Paul A. Libby, of the University of
California at San Diego, continued his research on two sub-
jects related to entrained flows; the evolution of particle
size distribution in dilute entrained flows and the coupling
of transport phenomena and homogeneous/heterogeneous reac-
tions associated with combustion of individual char particles.
In this latter study, the influence of volatiles transport
and combustion in the gas layer adjacent to the particle,
upon both the heterogeneous reactions and the transport of
reactants, is being investigated.

Consulting agreements between S3 and Professor Joseph
Yerushalmi of the City University of New York and Professor
Julius Siekmann of the Technische Hochschule, Darmstadt,
were approved by ERDA.

3.2 TASK 01 - FLUIDIZED BED COAL GASIFICATION MODEL

The research on the fluidized bed model was primarily
directed to the continued development of the chemistry for
steam-oxygen gasification and to the incorporation of this



chemistry into the numerical formulation. In addition,
theoretical studies were initiated or continued on spatial
averaging for compressible gas fluidized media, mechanical
interaction functions, constitutive relationships and
particle size effects.

The formulation of the chemistry for both gasifica-
tion and combustion of char was continued. A previous model
. [Blake, 1977] for the heterogeneous reactions, species trans-
port and homogeneous reactions for combustion of a char
particle was extended to include the presence of ash. This
was accomplished with a formulation based upon the concept
of an unreacted-shrinking core model wherein the initial
distribution of carbon and ash are assumed to be uniform
throughout the particle. The oxidationm of the carbon occurs
at a reaction front which propagates into the particle,
leaving an external layer of ash. When the carbon is con-
sumed, there remains a particle of ash which is, naturally,
less dense than the char particle, but which has the original
external particle radius. In addition to the rate controlling
processes of the kinetics at the reaction front and mass trans-
port between the external particle surface and the ambient
gas, the diffusion of reactants within the ash layer influences
the reaction rate. Since we are using a single Arrhenius
rate expression for the kinetics, where we assume adsorption
dominance [Blake, 1977], this means that there are, three
velocity coefficients associated with the overall rate expres-
sion for this shrinking core model. Within the context of
the external ash layer and its tendency to inhibit transport
we have further assumed that the heterogeneous reaction is
essentially carbon and oxygen producing carbon dioxide. 1In
Blake [1977], we discussed the homogeneous oxidation of
carbon monoxide [c.f., Hottel, 1965]. However, this reaction
should proceed to completion very close to the particle
surface or within the porous matrix of the particle. Hence,
for simplicity at this point, we consider that carbon oxidizes
to carbon dioxide and this latter product enters the gas
phase.

Again, the overall reaction rate (gms of carbon re-
moved/cm< or particle surface area/sec) for a single particle,
when summed over all local particles, provides a mass source
for the differential equations describing conservation of
mass. Any homogeneous reactions are represented by volumetric
source terms in the conservation of mass for the respective
gas species. The influence of both heterogeneous and homo-
gencous reactions upon the energy conservation is implicitly
contained in a combined energy balance equation for the solid
and gas phases and is explicitly accounted for in a Lagrangian
energy balance for individual particles. 1In the case of
local temperature equilibrium between the solid particles and



gas only the total energy equation is required to specify
the energy conservation.

We have also formulated models for the heterogeneous
gasification reactions: carbon-steam and carbon-carbon
dioxide. For the temperature range appropriate to gasifica-
tion these reactions can be approximately described with a
single Arrhenius expression which is first order in the
partial pressure of the reactant species in the gas phase.
We are examining the application of a solid particle-gas
exchange model to describe the interphase mass and
energy exchange for these essentially volumetric reactions.

Within the context of the heterogeneous and homo-
geneous reactions for a single char particle we are examining,
with a detailed theoretical analysis, these kinetics and
also the transport of reactants and products in the neighbor-
hood of a single particle. This analysis, which is initially
for the stagnation region of a particle, provides a descrip-
tion of the coupled diffusion, convection and chemical reac-
tions in the film around the particle. In particular, we
are examining finite rate, equilibrium and frozen chemical
descriptions for the homogeneous reactions and finite rate
chemistry for the heterogeneous reactions associated with
char oxidation. We wish to understand the relative influences
of such heterogeneous reactions as carbon-oxygen and carbon-
carbon dioxide in different ambient environments and to deter-
mine the effect of homogeneous reactions and species trans-
port upon the control of the rate of reaction.

The incorporation of the chemistry and the species
transport into the numerical description of fluidized bed
flows was initiated and continues. This introduction of
chemical reactions and multiple species requires several
modifications to the existing computer code [Blake, et al.,
1976]. We have already noted that the heterogeneous and
homogeneous reactions provide source terms in the con-
servation of mass relationships. Further, instead of a
single gas species we must now consider n (where n may
be six) species to represent the dynamics of gas flow. The
mass of the char particles changes with heterogeneous reac-
tion; hence, the histories of the particle masses must be
"remembered" by the numerical formulation. To model this
flow, a finite difference implicit method, wherein conserva-
tion equations for species mass are solved simultaneously
with the conservation of momentum and energy for the solid
and gas phases, is being used. The initial application of
this code will be to examine the combustion reactions and
the associated mass transport. We expect that the fully
implicit method for treatment of species transport is
essential to describe such highly exothermic and rapid



processes. We note, however, that the complete description
of those processes, which like gasification, occur on longer
time scales and which require the description of a large
number of gas species, may require lengthy computer calcula-
tions with such a treatment. Within this context we are
exploring other theoretical and numerical formulations of
these coupled flows.

Theoretical work on the equations of fluidized beds
continued. A formulation of the conservation equations
based upon density weighting of the velocity and energy
variables has provided important insight into the incorpora-
tion of higher order compressible effects into the conserva-
tion equations. Further, a formalism which describes the
influence of dispersion upon the gas and solid stress tensors
has been developed. This latter relationship should be use-
ful, for example, in providing a more complete description
of the rheology of the solid phase in the continuum model
of fluidized beds.

The theoretical formulation describing the relative
transport of particles of different sizes in the fluidized
bed was continued. We briefly discussed this formulation
in the last Quarterly Technical Progress Report [Blake,
1977]; in essence, the properties of the fluidized bed which
depend upon particle size and relate to the mechanical
particle-particle and particle-gas interactions such as the
solid phase viscosity, solid pressure and the solid particle-
gas drag relationships are determined by the average of the
particle size distribution. Then, the motion of each
discrete particle size, with respect to the average bed, is
calculated by dynamic relationships, which account for the
interaction of this particle "bin" with the average bed.

3.3 TASK 02 - ENTRAINED FLOW COAL GASIFICATION MODEL

The research on the entrained flow model includes a
continued formulation of the equations for turbulent gas-
solid particle motion, the continuation of a theoretical
description of particle size effects, initiation of an
examination of chemical kinetics, and the successful comple-
tion of a model computer code appropriate to representing
transient entrained flows. This latter code, which uses a
finite element-finite difference formulation, was used to
study swirling flows of a viscous compressible gas in two
spatial dimensions. Subsequently (past seventh quarter), this
code has been further developed to include particle motions.

In the fifth and sixth quarters of this contract we
respectively developed balance equations for gas-particle



flows without turbulence and with turbulence. The closure

of these turbulence equations has been partially considered
[Blake, 1977] and in the present quarter we completed the
derivation of the relationships which are necessary to in-
sure closure of the field equations for entrained flow.

This formulation of closure is based upon a second order

(eddy viscosity) scheme which is a variation of that developed
by Spalding and his coworkers for turbulence in fluids without
particles (c.f., Launder and Spalding [1972]). Specifically,
we base the closure upon the turbulent kinetic energies of

the gas and solid phases and a single turbulent length scale,
which, in turn, depends upon a turbulent dissipation rate.
Differential equations describe the evolution of the turbu-
lent kinetic energies and the dissipation rate. These
differential equations are to be solved simultaneously with
the conservation equations of mass, momentum and energy for
the solid and gas phases. With the associated constitutive
relationships, these differential equations comprise the
closure of the field equations for entrained flow processes.

A discussion of these equations is presented in Appendix A.
The complete mathematical specification of the appropriate
initial-boundary value problem requires the establishment of

a boundary and initial conditions. Some of these conditions
are readily derived but care is required in the specifica-
tion of such conditions on the turbulent kinetic energy,

the dissipation rate, etc. This formulation is being developed
at the present time.

The study of the evolution of particle size distribu-
tion, in very dilute entrained flows, was continued. Most
of the effort was devoted to modeling correlations which
occur in the equation for particle size distribution with
turbulence (c.f., Appendix D in Blake [1977]) and in develop-
ing more detailed representations of mass loss from a single
particle of carbon which is experiencing oxidation reac-
tions.

We initiated studies of chemical kinetics and trans-
port related to devolatilization,oxidation and gasification
of pulverized coal/char in an entrained flow environment.
We expect that our present studies of such processes in
fluidized beds will be very useful with respect to both
oxidation and gasification modeling. However, many aspects
of devolatilization and subsequent combustion of the vola-
tiles must be considered with regard to the particular
nature of entrained flow systems.

A rather advanced numerical code has been developed
to treat transient multi-dimensional flow of a viscous
compressible gas. This code uses both finite element and
finite difference techniques. 1In particular, the geometric



advantages related to zone size distribution and zone shape,
which are peculiar to finite element techniques, are retained
to provide a good description of the geometries, such as
walls, channels and nozzles, which are important to internal
flows in gasifiers. The finite difference techniques are
used in the major numerical solutions of the differential
equations; there is some finite element methodology applied
in the deéfinition of local variables in terms of the element
and nodal values. Aspects of this numerical model together
with some representative calculations are shown in Appendix
B.

We have decided to use the basic numerical approach
as represented by this finite element-finite difference
code in the development of a code to model turbulent en-
trained flows. To this end we have since added the conserva-
tion equations for the so0lid phase and have performed some
preliminary test calculations with this modified code. The
turbulence model will be included in this numerical formula-
tion subsequent to the use of the code in representing some
exact solutions of gas-solid particle flows.



IV. CONCLUSIONS

In summary, we note the following aspects of our
modeling effort.

The chemistry and species transport associated
with steam oxygen gasification processes is
being incorporated into the numerical model
for fluidized beds. This formulation includes
a fully implicit solution of the coupled
species transport and conservation of momentum
and energy for the two phase continuum model.
We are also investigating other theoretical
and numerical formulations of these coupled
flows.

A preliminary version of a numerical model for
entrained flows has been developed. This
model incorporates both finite element and
finite difference methodology to represent
transient multidimensional flows.



APPENDIX A

DERIVATION OF EQUATIONS FOR TURBULENT ENTRAINED FLOWS

In Blake {1977}, a derivation of the turbulent form
of the conservation equations for the solid particle-gas
flows appropriate to entrained processes was presented. In
many of the equations derived there, terms involving turbu-
lent fluctuations arose. While several of these terms were
discussed and then either modeled or discarded, others re-
mained. In order to effect closure of this set of turbulent

equations, one must deal with these remaining terms.

We have elected to use a second-order (eddy viscosity)
turbulence closure scheme which is a variation of the k-¢
model developed by the Spalding group at Imperial College,
London (see, for example, Launder and Spalding [1972]). We
now turn to applying it to the turbulence terms remaining in

the mean conservation equations.

In the conservation of mean gas momentum equation (Eq.
C.3b of Blake [1977]) one turbulence term, representing the
net diffusion of mean momentum by the turbulence field (i.e.,
the divergence of the Reynolds' stress), remained. We
model the gaseous Reynolds' stress by:

av. v, ) v, _ .
PEVi Vi T T Mg %, Yaxg ) 3\ Mes oy g ke ) 85y (AL

where u = turbulent (eddy) dynamic viscosity coefficient
- tf — —

and kf = (pfvi' )/(2pf) = Favre-averaged fluid turbulent
kinetic energy. One should note that the first term on the
RHS of Eq. (A.l) is the classical Navier-Stokes shear
stress but with Meg replacing the laminar dynamic viscosity
coefficient. The latter two terms appear so that the first
invariant of the Reynolds' stress tensor and the modeled

form for it are identical and represent the turbulent

10



analogues of bulk viscous stress (with Xt = 2/3 utf) and

f
pressure, respectively.

Dealing with the solid Reynolds' stress term in Eq.
(C.4b) of Blake [1977] in the same manner, we have:

. Bu,  du, 2 du, .
[} = e — ! ol -
ppui uj utp ij + axi + 3 utp Bxk + pp P Gij (A.2)

-~

where utp and kp are the solid analogues of utf and kf.

The conservation of gaseous species mass equation (Eqg.
C.5b of Blake [1977]) contains a term which represents the
net diffusion of the mass of species o by the turbulence

field. We model the flux in a Fickian manner so that:

u ai
—rrorr = _tf o
pfFa Vi Op X, (A.3)
i
where Op = turbulent Schmidt number (for species diffusion)

which will be assumed constant and applicable for all «a.

The combined energy equation (Eq. C.1l4b of Blake
[1977]) contains two turbulent terms representing the net
diffusion of gaseous and solid internal energy, respectively,
by their respective turbulence fields. We model these terms

analogously to species mass so:

u 3e
SerToTT = - _tf £
Pgee Vi 5 3%, (A.4a)
e i
u oé
S ev g’ = - _EP _ P
0 u: (A. 4b)
PP 1 O Bxl

where Og = turbulent Prandtl number (for energy) which is
assumed constant and applicable for all gaseous and solid

materials.

11



Equations (A.1l) - (A.4) permit elimination of the
remaining turbulent correlation terms but closure is not yet

complete since u ’ k_ and ip remain to be specified.

tf’ Yep f

It is known that the eddy viscosity can be characterized by
the use of suitable scales of turbulent intensity and turbu-
lent length. Prandtl [1945] and Kolmogorov [1942] suggest
the turbulent kinetic energy as a suitable scale for turbu-
lent intensity, but the specification of the turbulent length
scale has been somewhat more elusive since, unlike kinetic
energy, it is not a conserved quantity. Consequently, a
search was conducted for a conserved property which was pro-
portional to both turbulent intensity and length so that it
and turbulent kinetic energy would constitute linearly inde-
pendent quantities from which the turbulent length scale could
be deduced. Harlow and Nakayama [1968] and others suggested
the turbulent dissipation rate, €, and Jones and Launder
[1972] determined that it gave better results than others

investigated. Thus, we take

_u2~
Uy g Cu pfkf/e (A.5)

where

PgE 1 vt \/ov!! ovi'
<bu2 1 I 4 J = Favre-averaged (A.6)

g€ — = =—
5. o x5 3%y 9%y fluid turbulent
dissipation rate
and, My = fluid laminar dynamic viscosity coefficient. 1In

writing Eq. (A.5), we have implicitly set the gaseous turbu-

lent length scale, 2% as:

f’

~3/2 ,~
e v kY O/E (A.7)

We will now assume that the solid turbulent length scale,

lp, is identical to the gaseous one. The rationale is that

12



if the particles are much smaller than 2 they "see" only

’
a sea that is the gaseous turbule of scage, lf, and move
about with it except that they lag somewhat in acceleration.
Thus, the solid turbulent length scales are identical.

This is, of course, an approximation that only subsequent
experience will confirm or deny. If we now take lp = lf,
we have:

_ - ~ o~ 1/2
Ve = Heg (pp/Ef)(kp/kf) (A.8)

tp

~

This leaves only if, kp, and ¢ unspecified. We now turn to
developing model conservation equations for these three
guantities. Since the starting points for these model equa-
tions are Egs. (C-1)-(C-4) of Blake [1977], we reproduce those
here (except that in Eq. (C.3) we have added back the laminar

viscous shear term previously discarded):

apf a(pr11
+

3T x-S (C.1)
3
dp 9 (p_u.)
P P i - -
at. + 9X. S (C.2)
3
3(pov,) d(p.v.v.)
£fi £fi49° _ _ 3P _ -
T 5%, g Glugsr)p (vi=u;)+0e9;
3 avi av.
Tl L ST T (C.3)
J J 1
d(p_u.) d(p u.u.)
p 1 P1] _ - .
5t + T G(ul,r)pp(vi ui)+ppgi (C.4)

J

Let us multiply Egq. (C.l) by vy and subtract the result
from Eq. (C.3) to yield:

13



Now, multiply Egq. (A.9) by vi' and recalling that v, = v
+ vi', we get

Vi'z vl!.lz - -
A S A S AL SN
b ot £3 axj £f'1i 9t £'i 73 ij
= = v¢ OP - VY (S 1y 112
=- v —;I G(uz.r)[ppvi (v,-u,) + PoVi
- 1] T - ()
ppui vy J + pfvi 95 Svivi
e 2 (T, (A.10)
i 9x. 2\ ax, ax, *
J L ] 1

Multiply Eq. (C.1l) by vi'Z/z, add to (A.10), and time
average the result to get:

8 logke) . 3logv.ke) ¢ TYTTTT Vi _ g1t 9P
ot X4 £'i 'j axj i 5xi

av!'\/av!? avl!'?
- i 1 J - LY
My (axj )(ij t X ) G(uz,r) ppvi (Vi ui)

i
3 [ aei ov
+ 2 pp f-ppui Vi ]‘ Ske * Vi ax; Mo \3x, t Ox
i 3 1
ok av'!
3 £ 9 - j
+ 5%5 [“z akj] 7 [“z i 3% ] (A.11)



Note that the gravity term has disappeared so that in
the Favre-averaged formulation, bouyancy does not directly
affect the turbulent kinetic energy. Let us expand the
second term in Eq. (A.ll), recalling the definition of k

£
and rearrange to get:
- 1\ - o —TvLrT i
B(kaf) . 3(pfvjkf) _ a(pfyj kf ) s avi
ot X, X, £'i J 9x,;
J J J
(Bvi')(avi' ij')
L ij axj Bxi
—STT (5 .3
= Guy,r) [ppvi (V,-8,) + 2 opﬁf
_ v ovT] - e 8P
ppui Vi Vi 3x. S £
i
3 [ 861 V. 5 SEf
+ Vl X, ul 3X. + X, + 9X. ul X,
i | j i j j
3 av!?
rw [“z vi' Kl‘] (A.1la)
j i

Equation (A.lla) represents the full, unmodeled gaseous
(mean) turbulent kinetic energy conservation equation.
Operating on Egs. (C.2) and (C.4) in an analogous fashion
yields the analogous solid equation:

3(p k 3(p u.k alp u''k'" 31,
(ogkp) | (ppuskp) - 2lepuy a)_——n-r-rpu.u. i
ot 0X . 9X ., pi 3 9x,
J J J
(A.12)
—TrorT _ - v + Sk
+ G(ul,r) ppui Vi 2 ppkp Skp
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The turbulent correlation terms in Egs. (A.lla) and (A.12)
must now be discarded or modeled.

Consistent with our previous assumptions [Blake, 1977],
we believe the solid-gas mass exchange will be relatively
small so the associated turbulent kinetic energy exchange
should be negligible. Thus, we discard §F; and §E;. We
previously discarded the §_551773§I term from the mean
energy equation (Blake [1977]) and, for the same reasons,
will discard the vi* 8P76xi term from Eq. (A.lla). The last

three terms in Eq. (A.lla) represent mechanical work and

diffusion terms by laminar viscous action. Similar terms
will appear involving the turbulent viscous action which is
usually about 100 times larger, thus we shall discard all
three terms. A comparison between the third term on the RHS
of Eq. (A.lla) and Eg. (A.6) shows that it is really pe
which we shall approximate as E;E/$ = EfE/E = pe. Note that
the production terms contain the appropriate Reynolds' stress
which has already been modeled in Egs. (A.1l) and (A.2).

£
tions in scalar quantities, the diffusion terms are completely

Similarly, if we simply consider kl', ké' as turbulent fluctua-

analogous to species mass fraction and specific internal

energy and can be modeled in analogous fashion. Thus, we

have:
Hef a~f
PVITKLIT = = —= = (A.13a)
£fif Oy 9x,
i
e 9k
pul 'k’ " = - B _P (A.13b)
P1L P Gk 0X
i
where ok = turbulent Prandtl/Schmidt number for turbulent

kinetic energy and is assumed constant and applicable to
both solid and gas. The only terms remaining to be modeled
arise from the Stokes' drag law. Examination of the origin

of these terms reveals that they are all part of a

16



—G(uz,r) pp(vi—uiyj-term in a total kinetic energy equation.
Thus, they represent portions of the dissipation into heat
due to interactions between the gas and solid, mean and
turbulent fields. According to the entity (e.g., solid

mean kinetic energy, gas turbulent kinetic energy, etc.)
equation being considered, the terms appearing represent the
kinetic energy being gained or lost by transfer between that
entity and the other three as well as that lost due to
dissipation into heat. The first term in the [] of Eq. (A.lla)
represents an interaction between the mean and turbulent
velocity fields; an analogous term would appear in the []

of Eq. (A.12) except that it vanishes identically in the
Favre-averaged form because E;EIT = 0. For this reason we
suspect the term in Eq. (A.lla) may be very nearly zero and
so have decided to discard it. The remaining terms represent
interactions between the solid/gas turbulence fields with

some transfer and some dissipation. The fluctuation phase
relationship between the two fields is important here. We
have chosen, at least temporarily, to assume no phase shift
which yields nearly the correct dissipation but may apportion
the turbulent kinetic energy incorrectly between the solid and
gas. Further analysis is continuing in an attempt to quantify
the phase shift, but, in the interim, we have chosen to model

the term as:

ppkf = Eéif (which assumes ppk%' = 0) (A.l4a)
—rroTT o - > = y1/2
ppui vi 2 pp (kfkp) (A.14Db)
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Substituting all of the modeled terms into Eg. (A.1lla)
yields:

B(pfkf) .\ B(pfvikf) _ 0 Meg ka 2 v, ) v, . SR
i 3 tf £f'f

at 9X. 3x. \o 9xX 09X . o0x.
i k j J
2%, (aGi an) .
+ U + - P E
tf ij ij Bxi
- = - > > . 1/2
- 2G r [ kK - k _k ] A.15
(Wgrx) pp c pp( £ p) ( )

while substitution into Eq. (A.12) yields:

+ 26 (uy,r) [, (kek )1/2 sk (10

We now only need a model equation for € to close the
set. Unfortunately, we have been unable, so far, to derive
an exact equation for ¢ that seems conveniently modelable,
Consequently, we have chosen to follow the analogy with the
other equations between the Favre-averaged form of the com-
pressible equations and the incompressible form of the standard-
averaged equations. This approach has been used recently by
Kent and Bilger [1976] with quite reasonable success. Thus,
we model the consérvation equations for € as:

2Bgt) | 3GHE (utf ) ) . Cl“tfe(al’_i_)(fi’_i . ?__i)
- - . Nax. T 3x,
3t 3x 8%y o 3%y ke IX5/\9%; i
_ 2 = =2
) pfe(avl) ) 2Clutfs (BV.) ) C,o¢ (a.17)
3 3xj BEf .axj if



where o, = turbulent Prandtl/Schmidt number for dissipation

rate and is assumed constant and C C., are empirical

’
constants (may vary at low turbuleice ieynolds' number) .

The models presented in this appendix complete the
turbulent closure of the field equations for entrained
flow processes. With appropriate boundary and initial condi-
tions, the system is properly specified and can be solved
numerically. The specification of boundary and initial
condition is, unfortunately, non-trivial and, therefore,
will be left for the next report.
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APPENDIX B

A FINITE DIFFERENCE/FINITE ELEMENT SOLUTION OF COMPRESSIBLE
VISCOUS FLOW

The finite difference/finite element technique for
solving the Navier-Stokes equations, described in the pre-
vious quarterly report [Blake, 1977], has been modified
and implemented in a working computer code. The modifica-
tions consist of a change in the way in which velocity is
updated and yield a finite difference treatment of the
momentum equations. (We note that the numerical formulation
in that previous report already contains a finite difference
representation of the conservation of mass.) The finite
element flexibility in zoning is retained.

The compressible Navier-Stokes code has been used to
compute transient swirling flow in a circular vessel,
shown in Figure B.l. The outer radius of the vessel is
30.48 cm, and an outlet at the center is modeled by a pres-
sure boundary condition of 1.012 x 106 dynes/cm2 (760 mm/Hg)
applied on a circle of radius 7.62 cm. The air in the vessel
is initially at density Po = 1.213 x 10-3 gm/cm3 and
temperature 18°C, with pressure Po = 1.012 x 106 dynes/cm2;
the air is assumed to be an ideal gas with an adiabatic
equation of state

P = P, (p/oo)Y

where y = 1.40. The inlets are 7.62 cm wide, the inlet
velocity is of magnitude 2038 cm/sec (Mach number 0.596),
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and the velocities are directed so as to be tangent to the
inner circular boundary.

The computational grid used in the calculation is
shown in Figure B.2; it contains 720 elements, at which the
fluid density and pressure are centered, and 780 nodes, at
which velocity is centered. Figure B.3 shows the velocity
vectors at time = 0; the inlet velocities are maintained

at their time = 0 values throughout the calculation.

The development of the flow to near-steady state is
shown in Figures B.4-B.8. In the early time flow pattern,
Figure B.4, the fluid velocities at the outlet region are
very uniform, and directed radially. Also, a small vortex
region has developed to the left of each inlet. At t = 21.2
msec, Figure B.5, the effect of fluid advection has perturbed
the velocity distribution in the outlet region, and the vor-
tex regions have migrated somewhat toward the outlet.

By time = 41.2 msec, Figure B.6, the flow in the
outlet region has reversed direction and is beginning to form
a swirling pattern. The early-time vortex regions have
migrated out of the grid. At time = 79.6 msec, Figure B.7,
the steady state is nearly attained; the velocity pattern is
very close to that at time = 147.4 msec, Figure B.8. At
these late times, large recirculating flow regions have
developed between the inlets. At time = 147.4 msec the
time rate of angular momentum leaving the system is 14 per-
cent greater than the time rate of angular momentum injected,
but this "overshoot" is declining. This inequality is
associated with shear stresses, numerical in origin, at the

no-slip boundary of the vessel.
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Figure B.1l. Two-dimensional circular vessel.
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Figure B.2. Computational grid for swirling flow problem.
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Figure B.3. Velocity vectors, swirling flow problem, time =
0.
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Figure B.8. Velocity vectors, swirling flow problem, time =
147.4 msec.

29



REFERENCES

Blake, T. R. [1976], Energy Research and Development Administra-
tive Report FE 1770-109.

Blake, T. R. [1977], Energy Research and Development Administra-
tion Report FE 1770-23.

Blake, T. R., S. K. Garg, H. B. Levine and J. W. Pritchett
[1976], Energy Research and Development Administration
Report FE 1770-15.

Harlow, F. H. and P. I. Nakayama [1968], Los Alamos Scientific
Laboratory Report LA-3854.

Hottel, H. C., G. C. Williams, N. M. Nerheim and G. R.
Schneider [1965]), Tenth International Symposium on
Combustion, pp. 111-121.

Jones, W. P. and B. E. Launder [1972], Int. J. Heat Mass
Transfer, 15, p. 301.

Kent, J. H. and R. W. Bilger [1976], University of Sydney,
Charles Kolling Research Laboratory Technical Note
F-82, Sydney, Australia.

Kolmogorov, A. N. [1942], Izv. Akad. Nauk SSR Ser Phys. VI,
No. 1-2, p. 56.

Launder, B. E. and D. B. Spalding [1972], Lectures in Mathe-
matical Models of Turbulence, Academic Press, New
York.

Prandtl, L. [1945], Nachrichten von der Akad. der Wissenschaft
in Gottingen, Germany.

30

*.S. GOVERNMENT PRINTING OFFICE: 1978-740-094/1239



