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Abstract 

To reduce the plasma arc-drop, thermionic energy 

conversion is studied with both analytical and numerical 

tools. Simplifications are made m both the plasmadynamic 

and lonization-recombination theories. These are applied to 

a scheme proposed presently using laser irradiation to 

enhance the ionization kinetics of the thermionic plasma and 

thereby reduce the arc-drop. It is also predicted that it 

IS possible to generate the required laser light from a 

thermionic-type Cesium plasma. The analysis takes advantage 

of theoretical simplifications derived for the 

lonization-recombination kinetics. It is shown that large 

laser ionization enhancements can occur and that collisional 

Cesium recombination lasmg is expected. To complement the 

kinetic theory, a numerical method is developed to solve the 

thermionic plasma dynamics. 

The effects of the complete system of electron-atom 

inelastic collisions on the lonization-recombination problem 

are shown to reduce to a system nearly as simple as the 

well-known "one-quantum" approximation. As a consequence 

the effects of other processes such as recombination lasmg, 

resonant atom-atom collisions, and resonant radiation 

enhanced ionization can be analyzed simply, analytically, 

and quantitatively. A number of well-known 
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lonization-recombmation approximations are limiting cases 

of this theory. The resonant radiation ionization 

enhancement process is analyzed and it is shown why large 

enhancements are possible. A Cesium recombination laser is 

predicted and the magnitudes for the population inversion 

and the laser efficiency are derived. 

To combine the above analysis of 

lonization-recombmation kinetics with the plasma dynaunics 

of thermionic conversion, a finite difference computer 

program is constructed. It is capable of solving for both 

unsteady and steady thermionic converter behavior including 

possible laser ionization enhancement or atomic 

recombination lasmg. 

Using the above developments, a proposal to improve 

thermionic converter performance using laser radiation is 

considered. In this proposed scheme, laser radiation 

impinging on a thermionic plasma enhances the ionization 

process thereby raising the plasma density and reducing the 

plasma arc-drop. A source for such radiation may possibly a 

Cesium recombination laser operating m a different 

thermionic converter. The possibility of this being an 

energy efficient process is discussed. 



I Introduction 

The principles of operation and possible methods for 
improvement of thermionic energy conversion (T.E.C.) are 
explored m this study. A number of unusual or unexpected 
results are found. Two tools were developed for the 
consideration of the plasma dynamics. One is an isothermal 
model which features closure with simplicity. The other is 
a numerical computer program which is capable of examining 
unsteady as well as steady modes of operation. A motivating 
factor for this work is interest in possible improved 
performance using laser irradiation of the plasma. This 
involved two parts. The first is studying the effect of 
such radiation on T.E.C. operation. The second part 
involved finding a not too inefficient source for such 
radiation. For lonization-recombmation, standard methods 
are supplemented with a new theory that simplifies the 
problem without loss of quantitative accuracy. 

Using both analytical and computational methods, some 
unintuitive conclusions have resulted. For one, energy 
infection into a thermionic plasma actually causes a lower 
electron temperature. This is true for laser energy 
injected -for absorption by the atomic levels. To some 
lesser extent, it is also true for direct heating of the 
electron translational modes. Another unintuitive result is 
that even though energy injection lowers the electron 
temperature it also simultaneously causes an increase m the 
electron density. A further counter-conventional result is 
that the double sheath which obstructs electron emission 
from the emitter does not reduce but rather improves T.E.C. 
performance. Suppression of this obstruction increases the 
arc-drop. These conclusions appear as immediate 
consequences of the analytical isothermal model that is 
developed presently. The trends predicted by this theory 
are verified by computational solution of the governing 
differential equations. 

Towards a maximum of insight with a minimum of 
mathematical complexity, an isothermal model, built 
upon[5,6], IS developed and closed. The roles of various 
physical processes and how they interrelate are clarified. 
A picture of the plasmadynamics is developed wherein the 
arc-drop is determined by an energy balance and the electron 
temperature is governed by an ignition condition. Physical 
causes of the results, even the unintuitive ones, are 
apparent. The consequences of this analysis and its 
application to the laser enhancement scheme are thoroughly 
discussed in chapter II. 
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To verify the conclusions drawn from analytical theory, 
a numerical algorithm has been created to solve the system 
of unsteady or steady thermionic converter differential 
equations. The present method of solution which uses a 
predictor-corrector relaxation scheme differs greatly from 
previously employed marching or shooting methods. In 
addition to allowing the study of unsteady situations, the 
exponentially growing error terms of shooting schemes are 
avoided. 

Because of the importance of ionization and 
recombination on thermionic conversion and because these 
processes can be sensitive to inelastic collision 
cross-sections, the subject of these cross-sections is 
reviewed. In light of recent studies, cross-sections used 
in earlier studies with Cesium are found to be of poor 
accuracy. A set of cross-section formulas which appear to 
have the present backing of theory and experiment are 
selected for use in the present study. 

A development which significantly simplifies the 
collisional transition network while retaining quantitative 
accuracy is presented herein. This is done by taking 
advantage of a property that the cross-section formulas 
selected as above have. The resulting model is nearly as 
simple as the well-known one quantum model. As a 
consequence, many otherwise subtle effects can be analyzed 
and explained with unlabored algebraic formulas. A number 
of examples are given. Many previous 
ionization-recombination theories are shown to be limiting 
cases of the present one. In particular, the process of 
laser ionization enhancement is made clear. It is shown to 
be a very energy efficient way to ionize. Recombination 
lasing is also discussed with this model. 

A motivation for this work is interest in the 
possibility of improving T.E.C. behavior by altering the 
ionization kinetics. This is to be done by subjecting the 
plasma to light resonant with some atomic levels. For a 
given electron temperature, this causes a very large 
increase in the ionization rate constant. In contrast with 
other proposals, laser enhancement has the advantages of 
being a volume process and the energy used goes directly 
into ionization. As a consequence, the arc-drop is reduced. 
In principle, this process can be energy efficient overall. 
In practice, it is limited by the energy cost of producing 
such light. Steps towards removing this obstacle are taken 
by the present theoretical development of a thermionic 
Cesium recombination laser. A rapidly cooled Cesium plasma 
may have a population inversion on the infrared 7p-7s 
transition. The plasma dynamic studies indicate that this 
rapid cooling may be obtained in a thermionic type plasma by 
varying the current flow. 
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The laser ionization enhancement process developed 
herein appears to be similar to the opto-galvanic effect 
which has received much attention in the literature, e.g. 
[103-111]. While optogalvanic theories[103,106,110,111] 
have tended to be qualitative in nature, the present 
investigation proceeds from first principles in hopes of 
attaining quantitative accuracy. 

These subjects and others are discussed in detail in 
the chapters to follow. Chapter II reviews the development 
of the governing equations, discusses the present isothermal 
model, and applies it to various problems of interest. 
Since the Cesium laser prediction is sensitive to inelastic 
collision cross-sections, available theories and experiments 
on this subject are discussed in chapter III. The elements 
of ionization-recombination theory are reviewed in chapter 
IV and some of the subtler implications are discussed with 
little mathematical complication. The new equivalent 
circuit ionization-recombination theory is presented in 
chapter V. The results of the computer solution of the 
T.E.C. plasma equations are given in chapter VI to verify 
earlier conclusions. Chapter VII summarizes and concludes 
this work. From this work a number of avenues for improving 
converter performance appear suggesting that much fruitful 
future work is possible. 



II Introduction to Thermionic Energy Conversion Theory 

Thermionic energy conversion involves a large number of 
physical phenomenon which interact in very complex ways. If 
the performance of thermionic converters is to be improved, 
it must be determined which effects dominate and how they 
can be controlled. It is the purpose of this chapter to 
outline the fundamental equations governing thermionic 
converter performance and discuss the concepts developed in 
simplified approximate models. 

The isothermal theory of thermionic converter operation 
developed in Lam[6] culminated in relationships determining 
the arc-drop and electron temperature in terms of the plasma 
resistance and the ratio of output current to emitted 
current. This has shed much light on the determination of 
T.E.C. performance. In this chapter, the theory is further 
extended. First, it is shown how the plasma resistance can 
be determined a priori. Secondly, an a priori determination 
of the emitted current even in the double sheath regime is 
found. This closes the model and allows quantitative 
prediction of T.E.C. behavior. 

Sections A through E and section G are largely reviews. 
They develop the general conservation equations, their 
boundary conditions, and their scaling laws. The fifth 
section, E, then develops simple approximate analytic 
models. This includes a discussion of the ignition 
condition and determination of arc-drop. This is based on 
Lam[5,6] but differs in emphasis which is placed here on 
approximating converter behavior subject to 
ionization-recombination kinetics rather than the concept of 
the ideal screwed-down-ion converter. Section G develops 
the physical basis of the Lam transformed energy equation 
theory[9]. This theory has important implications for the 
development of numerical methods for thermionic plasmas. 

The remaining sections extend the simplified theories 
to conditions of present interest. Section F explains how 
the well known faster-than-Boltzmann voltage rise can occur 
in a one dimensional T.E.C. This is done by extending the 
concept of an ignition temperature to nonlinear conditions. 
Section H discusses how laser enhanced ionization can reduce 
the plasma arc-drop. Section I discusses unsteady 
thermionic converter behavior with application to the 
possibility of creating a thermionic Cesium plasma 
recombination laser. These theories will be used to explain 
the numerical results presented in a later chapter. 
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II.A Conservation Equations 

The conservation equations to be used in this work are 
cast m a form somewhat different from those commonly used. 
This form, developed m Lam[5] and Lam[9], simplifies the 
equations by uncoupling the electrostatic potential from the 
momentum and energy equations. These equations will, with 
the continuum approximations to be made m section II.B, 
lead to the ambipolar diffusion and Lam[9] energy equations. 
The usual energy equation, the one which explicitly includes 
the electrostatic field, will also be discussed here. 
Further formal simplification of the usual energy equation 
IS shown when the total as opposed to the sensible enthalpy 
IS considered. 

These equations are presently developed from a 
fundamental point of view. The derivation proceeds starting 
with the mass, momentum, and energy moments of the Boltzmann 
equation. This is done mainly for two reasons. First, it 
IS desired to emphasize what assumptions and approximations 
are and are not necessary to develop the ambipolar diffusion 
equation. This will lead to results which differ from some 
conventional conclusions, particularly with regard to the 
role of electron-ion momentum transfer effects on ambipolar 
diffusion. Secondly, this procedure provides an alternative 
but fully equivalent derivation of the Lam[9] energy 
equation. Again, to emphasize where approximations are and 
are not made, the collisional source terms are left in a 
general unspecified form m the present section. The usual 
approximations for them will be given m II.B. Because 
thermionic converters are typically one-dimensional and 
planar, the present derivation will be m one dimension. 
This avoids the complications of tensor notations. 

To begin, the continuity equations for electrons and 
for ions may be stated: 

, 2zi ^^"_ iJl . 'ilk- <r^"L ^ 

where: Q = 7^Z/^ - ELZ'^TK<:>N F-:̂ X̂ 

And S ' IS the chemical source term, n^ and n̂- are the 
electron and ion number densities, respectively. Since ions 
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are assumed to exist only in the singly ionized form, the 
electron and ion source must be identical. 

An immediate consequence of the mass conservation 
equations is the conservation of total current J: 

Because of this conservation property, it is convenient to 
formulate T.E.C. theory as if the converter were placed in 
a constant current circuit. Thus, J may be considered 
given. 

It is a definition of the term plasma that 
quasi-neutrality hold as a good approximation. In the 
present situation this means that, outside of the sheaths, 
the electron and ion densities must be very nearly equal. 
Thus from here on, the explicit distinction between these 
densities will be dropped, their densities simply denoted by 
n. Note however that electrons and ions may have quite 
different temperatures. 

Next, the momentum equation may be considered. Thus: 

Where zZ. ,S^/ ,3̂ *̂  are source terms for momentum caused by 
electron-atom, electron-ion, and ion-atom collisions 
respectively. Here pg and pjj are the x-x components of the 
electron and ion pressure tensors, respectively, m and M 
are electron amd ion masses, respectively. f^ is the 
electron motive. e is the elementary charge. D^ /Dt and 
D̂  /Dt are, respectively, the electron and ion substantial 
derivatives. 

Asymmetries may be immediately noted between the 
electron and ion momentum equations: both the electric 
field and electron-ion momentum transfers appear in each 
equation with equal magnitude but opposite signs. By adding 
these two equations both of these effects exactly cancel and 
disappear from the result: 

Where: P = P + P 
e i 

The above when combined with the continuity equation and 
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assumed behaviors for the source terms becomes the well 
known ambipolar diffusion equation, as will be shown later. 
Again, it is to be noted that in addition to eliminating the 
electric field, the electron-ion momentum transfer also 
cancelled. Furthermore these cancellations occurred using 
no approximations other than quasi-neutrality and the 
Boltzmann equation. 

Energy conservation is considered next. For ions under 
T.E.C. conditions, it is generally adequate to replace 
their energy equation with the approximation that their 
translational temperature is the same as that of the 
neutrals. The situation for the electrons however is quite 
different. Determination of the electron temperature turns 
out to be quite complex and has a dominating effect on 
T.E.C. performance. Taking the appropriate moment of the 
Boltzmann equation for electrons results in the energy 
equation: 

f\.G 

Where € and h are the stagnation energy and enthalpy defined 
by: 

/}./ € - iVlU^ -f 'ik (e 

f\.9 A = '^•^V^M 

(B) 
and where S is a collisional energy source term. In 
principle, this should include both elastic and inelastic 
collisional effects but, under T.E.C. conditions, the 
inelastic effects dominate. The quantity q^ is the heat 
conduction flux. The inelastic energy source, or sink, 
occurs only under disequilibrium conditions such as may be 
caused by ionization-recombination or radiative energy loss 
or absorption. 

In the usual development of the T.E.C. energy 
equation, integration by parts of the electric field term 
followed by application of the continuity equation is used 
resulting in: 

-fre-^e^)S c-^j 

In steady state with the collisional source terms neglected, 
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a first integral is obtained: 

which is probably the most common form for the T.E.C. 
energy equation. In a next better approximation, a part of 
the energy source is written as being the energy into 
ionization-recombination. thus, let: 

All ^^^^=-^o^"S^ 

Where Eo is the ionization energy and R is the remaining 
contributions that are often neglected. The energy equation 
can then be rewritten as: 

^ / 

where, when steady-state is assumed and R neglected, the 
equation still has a first integral: 

The quantity (h+Eo) is often called the total as opposed to 
sensible enthalpy. 

The above equations explicitly include the electric 
field or electron motive. This creates some difficulties. 
To remedy this, there is an alternative formulation that has 
been developed in Lam[9]. That theory eliminates the 
explicit appearance of the electric field from the energy 
equation. Thus this energy equation when combined with the 
ambipolar diffusion equation will allow for the T.E.C. 
behavior to be solved without reference to the electric 
field. The problem is reduced from a system of simultaneous 
equations with three unknown variables to a system with just 
two. The development in Laan[9] proceeded from the usual 
T.E.C. transport equations. Here, an equivalent 
development is given which starts with the moments of the 
Boltzmann equation as above and before the additional 
approximations for the collisional source terms are made. 



Chapter II Page 6 

The elimination of the electric field term from the 
energy equation is done simply. Taking the momentum 
equation and multiplying through by the electron speed, 
there results: 

Note that the term involving the electric field here has the 
same form as in the energy equation. Eliminating this term 
between the two equations there results: 

(IP/ (rf) 

Now, the only unknowns in this energy equation are the 
density and temperature. As will be apparent later, the 
plasma dynamics of the T.E.C. can be solved now without 
reference to the electric field at all. With this the 
number of equations involved is of course less and thus the 
whole problem is much simpler. 

These equations cannot be solved without a model to 
quantify the collisional source terms. This will be 
remedied in the next section. With section D to discuss 
non-dimensionalization and section C to describe the 
boundary conditions, the equations will be complete. 
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II.B Approximations for a Weakly Ionized Plasma 

The conservation equations stated in the last section 
are quite general. Before such equations can be used rules 
for determining the various unknowns such as the collisional 
source terms must be specified. For this to be done in a 
practical way, more approximations are necessary. The end 
result of this section will be the plasma 
convection-diffusion equations. The approximations to be 
made, the usual ones for a T.E.C. plasma, are mostly based 
on a small mean free path assumption. This is reasonable 
since there are typically at least ten mean free paths 
between the electrodes. The specific approximations are 
listed below: 

1). Viscous components of the pressure tensor are 
neglected. Thus, the x-x component of the pressure tensor, 
which is the one which appears in the conservation 
equations, can be given by the ideal gas law: 

B.l P.O = n . kTe 

B.2 p. = n . kTn 
A. 

Where Te is the electron temperature and Tn is the heavy 
particle temperature, k is Boltzmann's constant. 

2). The momentum source terms are approximated to first 
order by a small mean free path or continuum assumption as 
linear in the relative speed of the two interacting species. 
Thermal diffusion is heglected. The constant of 
proportionality is written as a product of the mass of the 
target particle and a momentum transfer collision frequency: 

p 2 Sea = -m 2 ^ 4 
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3). The unsteady terms in the momentum equations will be 
neglected. This is based on the assumption that the time 
scales under consideration are much longer than particle 
mean free times. Since mean free times are typically the 
order of ten nanoseconds or less, this will generally be a 
good assumption. 

4). Terms in the momentum equations involving the 
convection of momentum are neglected. This is based on the 
assumption that the momentum transfer collisions occur 
sufficiently often to keep the Mach numbers small. 

5). The term q^ is given by Fourier's law of heat 
conduction: 

B.6 
97? 

'Je = "^ ax 

With these approximations, the plasma conservation 
equations may be written. First, the electron-ion momentum 
equation, A.5» using approximations 2 and 4, is rewritten 
as: 

B,7 

where is called the ambipolar flux and is defined by: 

(?.^ / 

and where the quantities //. and /^es^ ^'^^ called mobilities 
and are defined by: 

U.̂  

Combining the above relations for the ambipolar flux with 
the mass conservation equation A.l yields the ambipolar 
diffusion equation: 

'?11 
C-n) 

0,-̂  {i^^m-^i^/M-o^^j^^^-i'rm^ 
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Turning to the energy equation A.15, by using approximations 
1 through 5 there results: 

Employing conservation of mass A.l and rearranging yields 
the energy equation: 

a/̂  . Jt ^p H. 

To complete the energy equation, expressions are needed to 
determine the electron and ion fluxes, /J and Q. The ion 
flux can be determined from conservation of mass, A.l: 

From the above and the definition of total current J, the 
electron /lux can be found: 

m Q-?^Pi 
where, again, J is a conserved quantity determined by 
factors outside of the thermionic converter. Since electron 
mobility is much larger than ion mobility, it is often the 
case that: 

p.is ^ = f ;• f;«Q 
The limits of this approximation will be discussed later. 
When it is valid, it can be used to replace B.14 and 
simplify equations B.IO and B.12. This is often very 
useful. 

The remaining unspecified functions are the mass emd 
energy source terms. The mass source tern is to be given by 
detailed consideration of the ionization-recombination 
kinetics of the plasma. This term is generally written in 
the phenonemological form: 

B,̂  ^'"^= (^H,-0c)77e 
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where No is the neutral Cesium ground state density and 
where ex is called an ionization coefficient and (3 is 
called the recombination coefficient. Both these 
coefficients are generally strong functions of temperature 
and possibly density as well. They may also depend on 
radiative disequilibria. If the time scales were 
sufficiently short, they would also depend on the time 
history of the plasma. These considerations will be 
discussed in chapters IV and V. 

The electron collisional energy source term can be 
accurately modeled as being due to inelastic electron-atom 
collisions. This includes effects of the energy of 
formation of ions as well as of the excited states of the 
atom and radiative gains or losses. A quantitative model 
for these effects will be developed in chapters IV and V 
also. 

As appropriate for this type of plasma, the ion 
temperature will be assumed to be the same as the neutral 
temperature for all regions not near the sheaths. Further, 
it is a good approximation that the neutral temperature near 
the electrodes is the same as the electrode temperature and 
that it varies linearly in the gap between the electrodes. 

To summarize, the governing equations of the thermionic 
converter are the ambipolar diffusion equation B.IO and the 
energy equation B.12, as supplemented by relation B.14 and 
either B",13 or B.15. For sections II.D and onward, B.15 
will be assumed. The next section will present the boundary 
conditions for these equations. Following that, they will 
be scaled and nondimensionalized. the remaining sections 
discuss analytical methods to simplify and clarify the roles 
of the various physical processes involved. 
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II.C Sheaths and the Plasma Boundary Conditions 

To solve the plasma equations developed in the previous 
sections, it is of course necessary to have boundary 
conditions. The electrode walls are characterized by their 
behavior as sources or sinks of ions, electrons, and energy. 
Their behavior determines the boundary conditions for the 
problem. These conditions cannot be applied directly to the 
plasma convection-diffusion equations, however, as the 
quasineutral assumption generally fails in a small region 
near the boundaries. While the non-neutral regions, 
sheaths, are typically quite small being the order of ten 
microns or smaller in width typically, they have a major 
effect on the overall T.E.C. performance. Analyzing a 
sheath is a difficult problem in itself. In the present 
work, the sheath theory of Lam[5] is employed. The 
assumptions used in this theory will be outlined presently. 
In particular, the relationship between the mono-energetic 
approximation and the presumably more precise 
half-Ma^cwellian distribution is discussed. Also, the Bohm 
criterion matching between the sheath and the outer plasma 
will be compared with the more common ad hoc approximations. 
Using this sheath analysis, the plasma boundary conditions 
will then be stated. 

The assumptions of plasma sheath theory are discussed 
presently. The results are not derived; they are merely 
stated. For the derivations and more detailed discussions, 
the reader is referred to Lam[5]. 

Since a goal of the present work is to further 
understanding of thermionic conversion, simple models are 
used to describe the wall behavior. To this end: 

1). The walls are perfectly absorbing, no reflection. 

2). The collector is assumed to emit nothing. 

3). The emitter is assumed to emit only electrons. 

These assumptions reduce the number of phenomena involved. 

To solve Poisson's equation for the potential drop in a 
sheath, it is necessary to know the charge densities. To 
start, consider the electrons emitted from the emitter. 
They have a current density: 
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'B- e n> / 2 - ep 
E 

Where ng- is the emitted density, and v"̂  is the mean thermal 
speed of electrons at the emitter temperature. The emitter 
sheath may or may not have a potential peak as shown in 
figure two. If it has no peak, then the emitted density is 
given by the Richardson density, possibly as modified for 
the Schottky effect. Otherwise, it must be solved for as an 
unknown in the sheath theory. The density of these emitted 
electrons varies as they travel through the sheath as a 
function of the potential, V. If one assumes the usual 
half-Maxwellian form of the distribution function for 
emitted electrons at the potential peak, the density of 
these electrons as they fall down the peak towards the 
plasma is given by an error function: 

C.2 n^(V) = n^ exp( e(Vg-V)/kT^ ) erfc( Ve(%-V)/kT£ ) 

where V^ is the total voltage drop of the sheath and V is 
the potential in the sheath with respect to the potential at 

Tcr is the emitter the sheath-quasineutral region interface, 
wall temperature. At large potential 
behaves like: 

drops, the above 

r/. OJ r-oR ev'̂ E-(V,- \/J»/ 
ATE 

It is found moreover that the the whole function, C.2, is 
well approximated by the simple form: 

C.3 r/^(v) — 
rjf. 

747r4^ 
Which is exactly the density one would find if the 
mono-energetic assumption for the emitted electrons had been 
made to begin with. Considering now the density of the ions 
which are accelerated into the sheath and making the 
mono-energetic approximation, their density is given by: 

c.H \M= ^c /V l+2o<gV/>c7^ 

where n̂ , is the density at the emitter sheath-quasineutral 
region interface. The subscripts 0 and 1 will be used to 
indicate that a plasma variable should be evaluated near the 
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emitter and collector sheaths, respectively. The parameter 
alpha in the ion density function is determined from the 
speed with which the ions enter the sheath. If it is 
assumed that the ions enter with a speed associated with the 
neutral particle temperature, it follows that: 

CS cv̂  = r/ 2 

A common correction to account for non-Maxwellian effects is 
to assume that the ions arrive at the sheath with twice the 
mean Maxwellian speed. This would make alpha one quarter of 
the value above. 

There is a more precise method for determining alpha. 
Detailed analysis indicates that ions must arrive with at 
least a certain speed or else Poisson's equation is 
ill-behaved. This speed is determined by Bohm's criterion. 
See Lamt5]. 

In contrast to ions and emitted electrons, the plasma 
electrons entering the sheath generally face a potential 
barrier. It is assumed that the barrier, V^, is 
sufficiently high that a near equilibrium density 
distribution is obtained: 

Where Ne is the ratio of the density of near equilibrium 
electrons at the sheath-quasineutral region interface to the 
density of ions there. Ne must be less than one if there is 
emission of electrons from the wall. 

At this point there are four unknowns: Ne, the ion 
speed parameter o>^ the emitted density n̂ -, and the sheath 
height itself V^. These can be solved for, as in Lam[5], 
with the following four conditions: 

1). Charge neutrality must exist at the sheath-quasineutral 
region interface. 

2). The emitted density must be given by the double-sheath 
or Richardson conditions. 

3). The Bohm criterion must be satisfied. 

4). The net current flow must match that of the plasma. 
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Information about the sheath heights can be obtained by 
examining the conservation of current conditions. For 
emitter and collector, the total current is J. Evaluated at 
the emitter sheath-quasi-neutral region interface, it is 
found that: 

Here, Jg is the emitted current. Similarly, at the 
collector plasma-sheath interface it is found that: 

e\/c 

where Ne has been set to one since collector emission is 
assumed negligible, n, is the plasma density at the 
collector sheath-quasineutral region interface, and v, is 
the electron mean thermal speed. 

In the plasma equations it is often accurate to assume 
that the ion current is negligible compared to the electron 
current. This will be true when: 

With the ion current neglected, the above equations when 
solved for the sheath height result in: 

V^^ e Mc p^— 
n, is the ion density in the quasi-neutral region near the 
collector sheath. TQ and T, are the electron temperatures 
evaluated near the emitter and collector sheaths, 
respectively. The above equations for the sheath heights 
will be useful in later sections. 

Turning attention now to the implications of the plasma 
sheath on the boundary conditions for the plasma equations, 
the mass and energy boundary conditions will be stated. 
Using the above mass flux equations, the ambipolar diffusion 
boundary condition at the emitter can be written: 

cjo Q- ;/.- 'S i - - r^.M 0^^) ^^ f 
The corresponding condition at the collector is: 
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Under some circumstances, an approximation to these 
boundary conditions can be used to advantage. By analyzing 
the orders of magnitude for the variables in these 
equations, it is found that the densities at the walls are 
typically of the order of a Knudsen number. This is 
typically a small number, as was assumed to derive the 
plasma diffusion equations. Thus, it is often a reasonsible 
first approximation that: 

n^ = 0 ; n, = 0 

While the above can be quite reasonably accurate for many 
purposes, it is inadequate for use in the T.E.C. electric 
field or electron energy equations since all of these are 
singular as density goes to zero. 

The energy equation boundary conditions are found by 
considering the fluxes of energy through the sheath. At the 
emitter, it follows that[5,63: 

Using the approximations of section B for the electron heat 
flux Qe, it follows that: 

And, at the collector: 

CIS Q,'(^f^^l/c^^^7;)J^ 
euid Similarly: 

In summary, the boundary conditions on the T.E.C. 
plasma equations have been stated. For the eunbipolar 
diffusion equation these are C.l^and C.//. For the energy 
equation, cWand otf are used. The sheath heights and ion 
acceleration parameters are determined from the sheath 
theory of Lam[53. 
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II.D Scaling and Nondimensionalization 

The equations presented in sections II.B and II.C 
contain many quantities which are of uncertain magnitude. 
This makes it difficult to judge the importance of each and 
the sensitivity of the solutions of the equations to each of 
them. To alleviate this problem, the equations can be 
non-dimensionalized. When this is done the number of 
uncertain problems will be reduced to a smaller number of 
dimensionless parameters which are just groups of the old 
parameters. A further benefit of non-dimensionalization is 
that scaling laws obeyed by these equations will be 
apparent. 

Reference quantities should be chosen so that the 
resulting non-dimensionalized variables have easily 
estimated magnitudes. Electron temperature, Te, and heavy 
particle temperature, Tn, are non-dimensionalized by the 
emitter temperature, Tg-. Thus: 

The voltages and sheath heights are scaled similarly by the 
emitter temperature: 

The mobilities are scaled by reference, or characteristic, 

The ratio of the ion to electron mobilities is expected to 
be the order of the square root of the mass ratio. Thus 
define: 

where, according to kinetic theory, -Ac is the ratio of the 
ion to electron mean free paths. 

The x-location of a point is scaled by the distance 
between the plates: 

T = x/̂ e 
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The density is scaled by some fixed value n̂ -: 

Sometimes for steady-state analysises, n̂  may be chosen to 
be the maximum density in the field. More commonly it will 
be chosen to be a fixed value like 1(14) cm-3». The 
currents are scaled by an expected diffusion current: 

I = J / Jp ; Ig = e /e / Jp 

I; = e (? / Jp Ĵ  = 0^ /J-̂  

Where: J— = e n̂  //{̂ ^ kT^ / d 

The ambipolar flux is also nondimensionalized: 

The time is scaled by a reference characteristic time for 
electrons to diffuse across the gap: 

— cS^ 

In the boundary conditions, a group of parameters occurs 
repeatedly: let it be called Kn since it is related to a 
knudsen number: 

The remaining nondimensionalizations are listed here: 

--On; 

—M __ =̂  

K = —^ 

* The notation 1(14) signifies one times ten to the 
fourteenth. 
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With these definitions above, the conservation 
equations can be written. The ambipolar diffusion equation 
is: 

The Lam[9] energy equation is: 

Equations can be closed by setting the electron current 
equal to the total current. Otherwise, the continuity 
equations are needed: 

For completeness, the usual energy equation will also be 
given here: 

Since this equation introduces the additional variable of 
the electric potential, it must be used in combination with 
another equation such as the electron momentum equation: 

The mass and energy boundary conditions are written: 

where the subscripts 0 and 1 refer to conditions in the 
quasineutral region near the emitter and collector, 
respectively. The approximate sheath heights are written: 

This summarizes the T.E.C. equations as written in 
nondimensional form. 
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lI.E Some Fundamental Concepts in Thermionic Conversion 

The system of equations that has just been developed is 
quite complex. The variables interact with each other in 
peculiar ways and even the qualitative behaviors of some 
variables in response to others is controversial. Yet, it 
has been found that there are some guiding principles 
capable of at least qualitatively describing overall 
thermionic converter behavior. Principally these are the 
concept of an ignition temperature and the isothermal theory 
[5,6]. As these will be of great use in later sections, 
they will be reviewed here. 

Each of these concepts is developed by dividing the 
T.E.C. problem into two parts. One of these is to find 
what the response of the density is to some given 
temperature. This leads to the ignition temperature 
concept. The second is to find the temperature given a 
density distribution. This will lead to a simple 
relationship between temperature and arc-drop. These will 
be combined only at the end to determine the overall 
characteristics of the T.E.C. 

The essential assumption of isothermal theory is that 
the electron temperature varies little across the thermionic 
plasma, this assumption is justified only empirically, 
while it is known to be somewhat inaccurate, it is extremely 
useful since it eliminates unnecessary mathematical 
complexities. In light of Lam[9], however, an additional 
assumption generally associated with isothermal theory has 
to be abandoned. This assumption is that the gradients of 
temperature are small, and is invalid even when the first 
assumption is accurate. Thus, in this thesis, the theory is 
formulated so that only the first assumption is used. 

Let us first consider the ignition temperature concept. 
For this purpose the electron temperature is regarded as 
being imposed upon the problem and the response of the 
density to this temperature is studied. To avoid the 
obscurational effects of unnecessary mathematical detail, a 
simple case will be analyzed. Suppose that the densities 
under consideration are sufficiently low that recombination 
can be neglected. assume constant nobilities and neglect 
ion current. Prom D.l, the steady state density equation 
is: 

E.I ^ . +fi-p-'0 

Where A, the non-dimensional ionization coefficient is 
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defined by the dimensional quantities: 

£ _2 A = No d c< / Da 

Where *< is the ionization coefficient (cm3/sec), No is the 
cesium density, d is the inter-electrode distance, and Da is 
the ambipolar diffusion coefficient: 

For the present purposes, the simple density boundary 
conditions <Z.I2. are quite adequate (use of more precise 
density boundary conditions would change the results a small 
amount but would add much complication and not alter the 
general conceptual result.). 

The above equation is an eigenvalue problem for A. 
From WKB analysis, the only solution with positive density 
occurs when: 

o 
If A were too small to meet this condition, the density 
would decrease to zero. If it were too large, the density 
would increase until recombination became important (thus 
invalidating an assumption of the equation). 

Thus, the coefficient A must at least meet a minimum 
value of -ff^ somewhere in the interval or else the density 
will go to zero. A, through c<, is exponentially sensitive 
to the electron temperature, ^ . The electron temperature 
at which A is pi squared is called the ignition temperature. 

The qualitative behavior of the maximum density n^as a 
function of temperature for the isothermal case can be 
summarized by: 

Density is thus strongly dependent on temperature. Further, 
this theory imposes strict limitations on how low the plasma 
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electron temperature may be in a thermionic converter. 
Implications of this on the reduction of the arc-drop will 
soon be apparent. 

Let us turn attention now to the question of what 
determines the electron temperature. By integrating the 
electron energy conservation equation across the gap, and 
applying the boundary conditions a very important but simple 
overall energy conservation equation results: 

Where: ^(g-' f ' fj^'L l.f^^Ij^f 

and vd is the voltage at the top of the collector sheath 
less the voltage at the peak of the emitter sheath. The 
subscripts 0 and 1 refer to conditions in the quasi-neutral 
regions near the emitter and collector, respectively. Other 
useful voltage differences will be defined later. This 
equation is exact. This relates the electrical power loss 
in the gap, -Ivd, to the various inflows, outflows, sources, 
and sinks of energy. In fact, this equation could have been 
derived by thermodynamic analysis of the T.E.C. as a 
system. This simple relationship has many uses. Because 4f 
its simplicity, it enhances understanding of the loss 
mechanisms in thermionic conversion. More will be said on 
this below. It is also useful numerically to compute the 
arc-drop from a simple well-behaved equation. 

For present purposes, let us consider a steady state 
situation. It is useful to rewrite the arc drop equation, 
E.7, as: 

Considering the currents and cQ as known, this equation has 
three unknowns: the emitter electron temperature, the 
collector electron temperature, and the arc-drop itself. 

A second equation for the arc-drop can be found by 
integrating the electron momentum equation across the gap: 

Where R is the electrical resistance of the thermionic 

converter defined by.: ^^f^ a>HUE C^'//^^ 

* this definition differs from that of [5] wherein the 
density was normalized additionally be the emitted density, 
77.. 
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Even With the final integral ignored, R considered given, 
and the sheath heights considered as known functions of 
temperature, this equation still has three unknowns, the 
same ones as the previous equation. Thus we now have two 
equations m three unknowns. 

It is possible to obtain valuable qualitative results 
with a simple ad hoc model: the isothermal model. Lam [6]. 
The electron temperature is thus assumed independent of 
position. By virtue of its simplicity, this model accents 
the mam features of the fundamental physical processes 
occurring m the T.E.C. 

The first of the equations above, E.8, which expresses 
gross energy conservation changes m the isothermal form to: 

£j / -r\/A- ^x,C^^i) -^<^ 
o 

Again, this equation is expressing a balance between the net 
electrical power out and heat input. The second of the 
above equations, E.9, which details the mechanisms by which 
the electrical energy is lost to heat simplifies greatly 
under the isothermal assumption. Using the expressions for 
the sheath heights, D.7, many cancellations occur and there 
results: 

The dependence of the sheath heights on the plasma density 
has cancelled with the "ambipolar motive drop" (Lam[6] 
p.10). As shown above, two terms remain on the 
nght-hand-side of the equation. The first of these is the 
plasma ohmic arc-drop. The second is due to the difference 
m sheath heights. The quantity Ne which appears above 
comes from the sheath theory and may be set to one as a 
first approximation. The two equations above may be equated 
and solved for the electron temperature: 

£/2 ^ = ^r^f^^/ . /x . ~^% 
This indicates how temperature behaves as a function of the 
currents and the resistance. From the above it can be seen 
that, for fixed current, temperature rises as density 
decreases. This is because resistance, R, is inversely 
proportional to density. This contrasts with the well-known 
behavior along a steady-state I-V characteristic where 
temperature and density rise and fall together as current 
varies. 

With the above information the approach to steady-state 
operation of a thermionic converter can be described. 
Suppose the output current is held constant by some 
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constant-current load. The initial density distribution, 
whatever it is, determines a resistance and through sheath 
theory an I^. This then determines a temperature by 
equation E.13. Two conditions are then possible. (1) if 
the temperature is high, more ionization occurs, the density 
rises, and hence the resistance declines and the thus the 
temperature declines. Or, (2) the temperature is low and 
recombination occurs. Thus the density falls, the 
resistance rises, and hence the temperature will rise. It 
is apparent that in either case an equilibrium density and 
temperature will be approached. This temperature then 
determines the arc-drop through equation E.ll. 

vd was defined as the voltage drop from the peak of the 
collector sheath to the peak of the emitter sheath. Some 
other voltage drops are also in common use. One such, to be 
called Mp here, measures the voltage at the collector-sheath 
interface less the voltage at the emitter-sheath interface. 
This differs from vd only if a double sheath exists, as 
depicted in figure 2. Generally a double sheath can exist 
in a T.E.C. ̂  only at the emitter sheath. Denoting its 
magnitude as i^, it follows that: 

E.14 1/ r 1/̂  ̂  A ^ 

The magnitude of the double-sheath height can be expressed 
in terms of the emitted and Richardson currents so that: 

E.15 Vr - VA "^ y^l " ^ OuHBUE ^ iSTHB î<̂ /i«r̂ c?A/ Cŷ -ztf/Zr 

The output voltage, v, seen at the terminals is obtained 
from v.p by adding the collector work function and 
subtracting the emitter work function. A third common 
measure of the converter performance is the difference 
between the actual voltage drop and that which would occur 
in a converter with an interelectrode spacing so small that 
the free electron space charge would be negligible. Such a 
converter is called a vacuum ideal converter and has a 
voltage drop: 

E.16 t^ - ^ ^ 

this is a consequence of the Msucwell-Boltzmann distribution 
of the emitted electrons. The difference between the actual 
drop, v ^ and the ideal drop is denoted as: 
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Vs5 Ur-lAr^ ^ck-^jJ 

where j is the ratio of the net current to the emitted 
current, l/lg. All these drops will be referred to later 
during discussions of T.E.C. performance. Note that all 
drops have been defined so that the more positive^ or less 
negative, the voltages are the better the performance is. 

There is also some terminology associated with the 
behavior of the voltage drops. Consider discharge current 
plotted as a function of voltage for a given thermionic 
converter. The plot of the vacuum ideal voltage drop, v_j-, 
is called a Boltzmann line. Sometimes over some over range 
of current, v.,, the difference between the actual drop and 
the ideal drop, is roughly constant. Such a range is said 
to have a Boltzmann-like rise. If v^ decreases as current 
increases, this is said to be a faster than Boltzmann rise. 
As the current level is increased to near the level of the 
Richardson current, v^ may start to increase rapidly. This 
range where v^ increases rapidly is called the 'knee' of the 
current-voltage curve. These behaviors are illustrated 
qualitatively in figure 58. 

In sum, the fundamental concepts of thermionic 
converter operation have been discussed. It was shown that 
the density is exponentially sensitive to temperature and 
that there is a minimum temperature below which the 
discharge collapses and the density goes to zero. It was 
also shown that the arc-drop is determined by thermal energy 
losses at the sheaths which in turn are dependent on the 
temperature of the electrons near the walls. Finally, it 
was shown that the conversion of electrical energy to 
thermal energy occurs through ohmic losses in the plasma as 
well as differences in the sheath heights. While these 
results were developed under the convenient and ad hoc 
isothermal approximation, it is apparent that the concepts 
that result have validity even in the general non-isothermal 
case. 
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II.F The Faster-than-Boltzmann Rise 

It is an experimentally well-known fact that the T.E.C. 
current voltage characteristic in the region below the knee 
rises much faster than the vacuum ideal Boltzmann curve 
rises. Past one dimensional theories have not been able to 
explain this. For an explanation, it was considered 
necessary to invoke two-dimensional phenomenon, and there 
has been some experimental evidence to indicate that 
two-dimensionality may be important. It is shown herein 
that this faster-than-Boltzmann rise can be explained even 
in one dimension. In fact, there are a variety of phenomena 
which can cause it. The analysis here will be confirmed by 
numerical results to be presented later. 

To complete this analysis it will be necessary to 
extend the theory discussed in the previous sections. The 
isothermal theory as developed so far has left two important 
parameters undetermined: the plasma resistance R, and the 
nondimensional current j. Examination of double sheath 
theory, energy conservation, and the ignition condition will 
lead to an a priori determination of R and j. This then 
makes possible quantitative predictions using isothermal 
theory of not only the arc-drop but also the the densities 
and sheath parauneters. While a full computer calculation of 
the differential equations gives presumably more accurate 
results, this theory explains the interconnections among the 
many variables and parameters in a fairly simple and 
straightforward manner. 

It is suggested herein that for one dimensional 
T.E.C.s, the cause of the faster-than-Boltzmann rise is in 
the ionization kinetics. The ionization kinetics contribute 
to this rise in three ways. First, the existence of 
spontaneous radiation alters the ionization rate consteint so 
that it varies with density as well as temperature. 
Secondly, non-Maxwellian free electron distributions also 
cause the rate constant to vary with density. In both cases 
the rate constant declines as density declines leading to a 
faster than Boltzmeuin rise. The third effect is that 
spontaneous radiation becomes increasingly important as an 
energy loss mechanism as density decreases. Attention in 
this thesis is restricted to the first of these effects. 

This effect will be studied quantitatively in later 
chapters, but the effects they have on T.E.C. performance 
can be analyzed in isothermal theory as below. The analysis 
herein is thus based on some simplifying assumptions. The 
value is that it illustrates the essential features of the 
real equations with minimum mathematical complication. 
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Presently the density equation will be considered for 
ionization rate constants that vary with density. Although 
the equation is now nonlinear, an ignition temperature 
concept can be recovered. This new ignition temperature 
will depend on the density level, as parameterized by, say, 
the maximum density. This will then be combined with the 
previously presented isothermal result relating temperature 
and ohmic drop. This will determine the T.E.C. density and 
temperature. From the other isothermal relation, this 
temperature implies a level of the plasma arc-drop. 

As a note on mathematical technique, determination of 
the ignition temperature requires solution of a nonlinear 
eigenvalue problem. Standard methods yield approximate 
solutions to an equivalent calculus of variations problem. 
Under the isothermal assumption, it is shown that the 
solution can be found directly by quadratures. Thus the 
shape of the solution need not be assumed as in standard 
methods but can be determined explicitly. 

To begin, let us write the steady-state density 
conservation equation: 

F.I - - ^ •' — ^ -

The source term is left in its general functional form, but 
the problem is assumed isothermal to eliminate unnecessary 
mathematical detail. In particular, by virtue of the 
isothermal assumption the solution of the above equation can 
be found by quadratures. The first integral, found by 
standard means, is: — 

Where p ^ , the constant of integration, is the maximum 
pressure, i.e. the pressure when the first derivative df/d^" 
is zero. The above can be integrated again to find: 

Where p^ is the pressure at the emitter wall, i.e. j =0. 
Since this value is typically much less than the maximum, it 
can be taken to be about zero [see section II.D]. The above 
integral gives a relation between pressure and position. 

There is an additional boundary condition that the 
above integral must satisfy: the pressure at the collector 
wall (;f̂ l) must be a number, pj , determined by the collector 
boundary conditions as in section II.D. Again, p is also 
about zero. It follows that: ~ r-'I 
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For this to be satisified, p ^ and the source function 
obviously cannot both be specified independently. 

At this point let us consider a form for the source 
function. For example: 

For (̂ =1» this function is linear in density as the one 
discussed in section II.E was. For p>l however, this form 
illustrates the behavior of an ionization rate constant 
which declines as density declines, like a real rate 
constant does due to the spontaneous radiation effects 
mentioned previously. While the eibove form will not 
represent the actual form accurately over a wide reuige of 
data, it does have the appropriate general shape and 
suffices to illustrates the points to be considered here 
without great mathematical complications. 

When this form of the source function is substituted 
into the integral, it becomes apparent that the values of 
the density at the walls may be set to zero with little 
resulting error and a relationship between "A and n^appears: 

where: 

and where the function c^ is given in terms of the gamma 
(factorial) function by: 

F.7 
If the standard methods of calculus of variations had been 
employed, C/> could not have been determined explicitly as 
above. 

If p=l, as in section II.E, then, also as before, n^ 
disappears from the above equation and the condition is 
solely a condition on "K. Even for the present more general 
form, % is still well approximated by an exponential in 
temperature: 

With this form, the ignition temperature, now a function of 
the maximum density, can be found: 

f.^ ^ ^ ^ ^ a + H > ^ 
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Let us now discuss the significance of this 
temperature. First, if the density distribution is given by 
the above solution with the same n̂ M, then the density will 
be in steady state. Let us suppose this temperature remains 
fixed but the density is for some reason perturbed. The 
steady-state assumption made in this section will cease to 
hold but the physical unsteady behavior that would occur is 
apparent. First, if the density were perturbed to a lower 
value, the rate constant decreases, the ignition condition 
is no longer satisfied, and the density declines even 
further till it reaches zero. If on the other hand the 
density were perturbed to a greater value, the ignition 
condition would be more than satisfied, and the density 
would increase still further. In the physical problem, this 
increase in density would be stopped only when 
recombination, neglected here, became important. In 
summary, the steady-state solution found above is an 
unstable one for fixed temperature. 

The temperature is not in reality fixed. As was shown 
in the discussion on isothermal theory, it itself is 
determined by density through, for example, the plasma 
resistance. To repeat the isothermal result of section 
lI.E, the temperature is determined by: 

Where j=I/Ig.. 

Consider how temperature changes with density for a 
fixed current I. To do this it is necessary to know how R, 
j, and Q behave as functions of density and current. The 
value of R declines as density rises. The exact form of the 
integral for R is written: 

, r ^— 

This can be integrated analytically without further 
approximation. It is however simpler to use the quite good 
approximation that the density at the walls, though finite, 
is small compared with the maximum density. Employing the 
density boundary conditions of D.6 and using the preceding 
analysis of this section to determine the pressure gradients 
at the walls, the wall densities are given as: 
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It follows that, 
given by: 

to a good approximation, the resistance is 

F.l^ r^ irs^fLVt \ ^ TTI 

.me 
•V 

rrc ^^ '^(^K^D^V •^U -r^^J^C/t-^Jj 
This relation for R with the information on the character of 
j then shows how the isothermal temperature varies as a 
function of density. Note that, typically, the first 
natural log term dominates over the second. 

By combining sheath theory with isothermal theory it is 
possible to determine j even when a double-sheath exists. 
For a single sheath with Schottky neglected, I and j can be 
considered known. For the double sheath case, Î  is a 
variable. Î- shall now be determined as a function of 
current and maximum density for the double-sheath case. In 
terms of the nondimensional emitted density, N̂ -, I^ is given 
by: 

F.15 X^= A/, 

where: 
A/^= -7/^/74 

From the sheath theory of Lam[5], Ng. is a function of only 
two parameters: 

F.16 Ai =H ("^./K^ J ^ / 

Iterative solution of the sheath system of equations has 
been performed over a wide reuige of the parauneters. 
Figure 7 displays a graph of Ne against fwith IKn/i^ as a 
pareuneter. It is seen that N^is only weakly dependent on T. 
For present purposes, the following functional fit is 
adequate: 

F.17 A4 = 0.3^ + 

Now, using the results of isothermal theory, it is 

terms of 1 and K̂  
»>f • 

possible 

F.18 X = {O.(. + OM<^^)T^IO.<^J^KV^S^I;^ 

Thus Ig- eind j may be considered known functions of I and n-nr 
Furthermore, it is seen that j is an increasing function of 
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the reduced variable I/n̂ j. 

Two of the three functions necessary to determine 
temperature from the isothermal energy balance have now been 
evaluated. The third and remaining function is AQ. While 
this function is not dominating, it does have a noticeable 
effect on the results and is important for evaluating the 
laser schemes to be discussed later. In steady-state and 
assuming the energy source model of A.11 with R=0, it 
follows that: 

I 

F.19 ,^ . -4 y ^""^f 

Then, eliminating the mass source term using the density 
equation D.l, an exact integral results: 

Evaluating the pressure gradient at the walls as before 
yields: 

F.21 AC^ = - (^-rrSpD^jl^Eoi'^Jr/^, 

For typical numbers*: 

It is now possible to show how temperature and density 
are determined in a thermionic converter under the present 
model. First, let us consider the density-independent 
ionization rate constant case, i.e. P ~^' Under this 
assumption, the ignition temperature, '^j- / is a constant. 
Thus on a plot of temperature versus maximum density, "n̂ , as 
shown in figure 3, the ignition temperature is a straight 
horizontal line. The ignition temperature is shown in this 
figure for two values of the collisional rate constant, 
C-p=0.31 and 0.46. These values will be discussed in 
chapters III and IV. The plot of the isothermal 
steady-state temperature, ^ , on the same graph would 
however be a curve. This is also shown in figure 3 for 
three different levels of current, 1=0.02, 0.5, and 0.7. 
The two lower currents are in the double-sheath regime while 
the higher one is in the single-sheath regime. Steady state 
solutions for both temperature and density can exist only at 

^^=1/3; Da=3; Eo=30.17 
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crossing points of these curves, '̂ ^ and "Ta:- As is obvious 
from the above discussions, the steady-state solution at the 
crossings of these curves will be a stable solution only if: 

This condition is satisfied for all crossing points shown in 
figure 3. 

Let us turn to the case of the variable rate constant. 
Now, the ignition temperature, ^ , varies with density 
according to the natural log behavior derived in the 
formulas above. A plot of the ignition temperature versus 
density, nm, is shown in figure 4 for the case /^>1. This 
plot is based on the ionization coefficients to be derived 
in chapter IV. As in figure 3, the isothermal steady state 
temperatures are also plotted on this graph for three 
different levels of current. The crossings between these 
graphs have quite a different character here than they did 
in figure 3. As the current decreases from 1=0.5 to 0.02, 
the temperature is increasing. According to the isothermal 
analysis of section lI.E, this means that the arc-drop 
increases with decreasing current. This is a cause for the 
faster-than-Boltzmann rise discussed earlier. In fact an 
additional arc-drop of 0.90 (llOmV) occurs in this way. 

Some other interesting effects occur also. For one, 
from this analysis, it is apparent that suppression of the 
emitter sheath obstruction is undesirable. This obstruction 
reduces thermal energy losses at the emitter and is thus 
beneficial. These calculations show that its suppression at 
1=0.5 would increase the arc-drop by about 0.5 (60 mV). 

Another unexpected result is that energy addition to 
the plasma does not increase the electron temperature but 
rather lowers it. The effects of energy addition by laser 
ionization enhancement will be discussed in a later section. 
Direct heating of the electron translational mode can be 
considered here. Such heating means that there is a reduced 
need for plasma arc-drop to maintain the ignition 
temperature. As a consequence the density must rise. An 
increase in density, however, means that radiative loss is 
just slightly less important in the ionization process 
causing a small decline in the ignition temperature. As a 
consequence of this reduced temperature, the arc-drop is 
reduced. Under conditions tested presently though, this is 
not an overall energy efficient process. 

In summary, a simple isothermal model has been 
developed which highlights the important physical processes 
and is sufficiently simple so as to allow solution by hand. 
This model was derived from the analysis in section II.E by 
finding expressions for R and j thereby closing the model. 
The model was also extended to allow for density dependent 
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ionization-rate constants. This led to conclusions that (1) 
the emitter sheath obstruction is beneficial since it 
reduces thermal energy losses, (2) energy addition to the 
plasma reduces the temperature, and (3) the 
faster-than-Boltzmann rise can be explained as being due to 
reduced ionization rate constants at lower densities. 
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II.G A Study of the Complete Energy Equation 

The determination of the electron temperature 
distribution may be the most involved ajid complex part of 
the T.E.C. For operating efficiency, it also may be the 
most important part. While the ignited mode of operation 
has been actively researched for two decades, even just the 
general shape of this distribution is still controversial. 
One question has been the existence or not of 'hooks' in the 
temperature near the electrode walls. A hook is a rapid 
change in the electron temperature that occurs near one or 
the other of the electrodes. The calculation of 
A. T. Yen [8] was the first to indicate the possible 
existence of hooks. Since it is the temperatures near the 
walls which dominate the determination of arc-drop , the 
existence of such hooks is of significant practical import. 
The following year Lam produced an analysis that explained 
much about the behavior of temperature in T.E.C, and in 
particular, why hooks can exist. This theory also indicates 
why numerical schemes can run into difficulties solving the 
energy equation. These implications will be discussed in 
this section. 

To review the Lam [9] theory, there are two concepts to 
be introduced. First, there is the thermal resistance of 
the plasma. Rather than measure distance in the plasma in 
centimeters, it is found more useful to measure it in terms 
of the thermal resistance. How this is done will be 
discussed below. The second concept is that of a 
pseudo-temperature distribution for which the effects of 
convection have been removed mathematically. This will also 
be discussed below. 

A major feature of this analysis is that it locates 
which phenomena cause which effects. In particular, the 
cause of the temperature hooks will be found to be the ohmic 
and ambipolar arc-drops. These phenomena become large at 
near the walls because they are inversely proportional to 
the magnitude of the density. This theory shows the 
ambipolar arc-drop to emerge as a dominate process 
determining the shape of the temperature distribution. 
Notice that this occurs in contrast with the isothermal 
theory where the ambipolar arc-drop quietly cancelled out 
from the overall arc-drop equations. 

To begin, consider thermal resistance. If K is the 
thermal conductivity, then 1/K is the thermal resistivity. 
In a distance aTt there is a thermal resistance (1/K)d5'. 
Let y be the total thermal resistance between the emitter 
and a position y. Thus: ^ / 

G.I ? = J ~K(rJ 
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Rather than consider the temperature as a function of the 
distance, "T, consider it as a function of the thermal 
resistance, '̂ . With this idea, the energy equation D.2 can, 
assuming B.15, be rewritten: 

In this form many of the rapidly varying coefficients that 
appeared in the original energy equation are gone. Apart 
from the unsteady term the only explicit appearance in the 
equation of the thermal conductivity, K, is in a ratio with 
the electrical conductivity, C°". This ratio is related to 
what is called in gas dynamics a Lewis number, Le, and 
generally varies little from a value of one for gases: 

K 

This equation is thus much better behaved and numerical 
solutions of this equation are more likely to be accurate. 

It is possible to determine when hooks are likely to 
occur just be considering this equation and its boundary 
conditions. Written in the thermal resistance coordinate, 
the boundary conditions become: 

G.S HI, = -liK,-'^'/^] 
Since the temperature generally declines from the emitter to 
the collector, a hook is expected to exist if the boundary 
condition indicates a rising temperature leaving the emitter 
or a rise in the temperature as it approaches the collector. 
As can be seen from the above, this will occur on the 
emitter side when: 

Likewise, a hook will occur on the collector side when: 

G 7 -::p~ < ̂  

The numerical computations, which will be discussed in 
greater detail later, appear to indicate that both emitter 
and collector hooks will commonly occur, though the emitter 
one is typically more pronounced. 

While the transformed energy equation above is an 
improvement over the original form, it is still possible to 
make one more change to simplify it. While this change is 
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not necessary, it facilitates solution by analytical methods 
such as WKB. The explicit mathematical goal of this 
transformation is to eliminate the convective 
(first-derivative) term from the equation, leaving only a 
second derivative term and a term proportional to the 
transformed temperature. To do this a transformed 
temperature, G, is defined: 

With this substituted into the energy equation and 
steady-state assumed, there follows: 

G.7 0= ip ̂  ̂ "^ 
Where: a;- :r[T(iu-^). i^:} 

c^Y 
At this point one thing should be apparent: the above 
G-equation has an extremely simple form. 

First, considering the general behavior of w which is 
a function of position, note that on the emitter side of the 
T.E.C. where density is rising, w^ is positive. This 
indicates that G has a sinusoidal character, and therefore 
the temperature has a growing sinusoidal behavior. 
Somewhere shortly after density peaks, w-'-will generally go 
through zero and become negative. This indicates that G 
will have an exponential type behavior with both growing and 
decaying components possible. 

The goal of this work, as stated earlier, was to work 
to behavior of the temperature distribution as a function of 
a given density distribution. For a number of special 
density distributions, which look more or less realistic to 
some varying degree, it is possible to have exact analytic 
solutions of the temperature equation. Sinusoidal or 
parabolic type behavior could result respectively in Mathieu 
or Airy function type temperature distributions. If the 
density were about linear then w could be a constant and 
the temperature solution would be sinusoidal or exponential. 
The sample solution discussed in Lam[9] was based on a 
two-piece linear density distribution and this was shown to 
contain the essential features of the problem. It should be 
remembered, of course, that for a general density 
distribution the solution can be obtained by WKB 
approximation with a turning point. 
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A notable feature of this steady state energy equation 
is that there are some values of current for which there is 
no acceptable solution of temperature. In particular, there 
will be no solution unless the current level, and therefore 
w*̂ , is small enough that the following inequality is 
satisfied[9]: ^ 

S 00J7 < 7r 
o 

Where 'y*' is defined as the location where w^ becomes zero. 
Failure to satisfy this would result in unphysical negative 
temperatures. 

This limitation has physical significance. It 
indicates that when the current is too large there is more 
heat generation in this region between "7=0 and'7 ='7^ than can 
be conducted out. Thus there is no steady state solution, 
but rather an unsteady solution wherein the temperature 
grows rapidly. The question arises: what is generating 
this heat and why is it generated only in the specified 
region? the answer is that this is the heat generated by 
the ambipolar arc-drop. Such heat is generated only on the 
emitter side of the T.E.C. since, on the collector side, 
there is an ambipolar arc-rise not drop and this is actually 
causing a cooling not a heating. 
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II.H Laser Ionization Enhancement 

In previous sections theories have been developed to explain 
thermionic converter behavior. The implication of these 
developments would seem to be that there are some 
fundamental limits to thermionic converter efficiency due to 
the ignition condition and the nature of the arc-drop. It 
is hoped presently to alter these limits by altering the 
ionization rate constants with laser radiation. As will be 
discussed in detail in later chapters, laser radiation can 
enhance ionization rate constants at a fixed temperature by 
a large factor. In fact, this factor is generally the order 
of a Boltzmann factor in the photon energy. Thus, laser 
ionization enhancement has an effect on T.E.C. performance 
similar to reducing the ionization potential of the atom. 
With this ionization enhancement it is hoped that density 
can be increased thereby increasing electrical conductivity 
and thus reducing the ohmic losses. 

This scheme is quite different from other ionization 
enhancement schemes. In particular, laser ionization 
enhancement puts energy directly into ionization in an 
efficient manner. In fact, the energy cost of an ion 
produced by a laser enhanced T.E.C. plasma is generally the 
same as or less than if the ion was produced by collisional 
processes. Further, laser enhancement is a volume process. 
This contrasts with the various third electrode techniques. 

There are several practical questions concerning laser 
ionization enhancement that should be discussed. One such 
question concerns the need for a source of laser light 
resonant with the atoms in the plasma. One such source 
could be a dye laser. A technique to develop a relatively 
efficient laser suitable for ionization enhancement is the 
subject of the next section, 11.1. A second question 
concerns the absorption length for the laser light. 
Obviously, a plasma that is optically thick to the laser 
light prohibits absorption of such light in the volume of 
the plasma and is thus unacceptable. On the other hand, if 
the plasma is too optically thin, it may not be possible to 
absorb enough light to enhance the ionization. By checking 
the orders of magnitude it immediately becomes apparent that 
practically all optically allowed radiation involving the 
ground state are absorbed in extremely small distances. 
This does not affect the present discussion though since the 
ground state makes a relatively inefficient lower level for 
ionization enhancement anyway, as will be shown in later 
chapters. To obtain an absorption length that is not too 
short, the laser light must be absorbed by an excited level 
of the atom. 
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Using the isothermal theory, it is possible to analyze 
the effects of a reduced ignition temperature on T.E.C. 
operation at a given current level. From equation II.E.11, 
it was found that the isothermal arc-drop would be: 

For simplicity, consider only the high density regime 
wherein the variation of ignition temperature with density 
may be neglected. With laser ionization enhancement 
reducing the ignition temperature, the above equation 
indicates that the arc-drop would also decline provided that 
j did not also drop significantly. For the case of a single 
emitter sheath and Schottky neglected, j would not change at 
all. For a double-sheath, j will generally decline at least 
slightly when declines. Thus laser ionization enhancement 
will be especially effective in the single sheath regime. 

Consider an example. For reasons to be presented in 
the next section, laser ionization enhancement resonant with 
the Cs 7s-7p transition is particularly interesting. This 
transition is infrared, hVP:o.41eV. The photon energy is 
thus much less than the Cesium ionization potential, 3.89eV. 
Nevertheless, a substantial increase in the ionization rate 
constant is found. For pd=10 torr-mill, irradiation on this 
transition frequency can reduce the ignition temperature by 
i.T=0.08 (120K) from T=2.12 (3200K) . For the single sheath 
regime, and taking a typical value for j, say 0.66, this 
implies an arc-drop reduction of: 

H-2 ^Vj^^ 0.2^ 

For the double-sheath regime, again, it is necessary to 
evaluate the change in j for a given drop in temperature. 
This is done using equation II.E.13: 

As is seen in figure 4, this curve is very steep. As a 
result a small change in ignition temperature means only a 
very small change in density and thus in j. In the present 
example with the original j of 0.66, the final j will be 
0.65. combining this with the arc-drop equation implies 
that laser excitation of the 7s-7p transition can reduce the 
arc-drop by: 

HM ^Vj( ̂  o.^o 

which is only slightly smaller than the reduction for the 
single sheath case. 
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The important question for any T.E.C. enhancement 
scheme is how the energy cost of operating the scheme 
compares with the energy saved by enhanced performance. As 
with the various proposals for third electrode and microwave 
enhanced converters, the answer is not Immediately apparent. 
As will be shown in chapter V, ionization by absorption of 
laser radiation is a very efficient process. The 
combination of laser energy absorbed and electron energy 
lost in inelastic collisions needed to produce an ion is 
generally less than it would be without laser enhancement. 
However, the generation of laser light is not usually an 
efficient process. For laser ionization enhancement to be 
aji energy producing process, the losses incurred during the 
generation of the laser light must be less than the gain in 
output of the T.E.C. The minimum laser production 
efficiency needed for this to be true can be estimated. For 
the 7s-7p transition emd over the pareuneter range of 
interest, roughly two photons or 0.82eV of energy is 
absorbed for each ionization. Thus the required laser 
power, L, is: 

H.5 L=^J'^^ COHERE s ^ ' ^ f s ' V r 
o 

Suppose the laser production efficiency is (5*. Thus the 
power cost of producing the light is: 

L/0 
For T.E.C. laser ionization enhancement to exhibit a net 
energy gain, it is required that: 

Examination of the numbers for the 7s-7p transition indicate 
that the laser cannot be too inefficient. Most lasers 
however are very inefficient. The value of © indicated is 
30% to 40%. To obtain such efficiency would require a 
special laser. A possible technique for creating such a 
laser will be discussed in the next section, II.I. 

In sum, it is presently proposed that laser light can 
improve thermionic converter performance by enhancing the 
ionization rates. It is important to remember that the 
energy loss to ionization is typically a small fraction of 
the total energy loss in the converter. The majority of the 
T.E.C. energy loss occurs as heat transfer by the free 
electrons to the walls. This technique works by injecting 
energy directly into the ionization process. It is thus 
possible to operate the converter at lower free electron 
temperatures and thus at lower loss rates of heat to the 
walls. For the example of 7s-7p resonant laser light, the 
arc-drop was shown to be reduced, though by a small amount. 
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II.I The Cs Recombination Laser 

The idea of plasma or recombination lasers is receiving 
much attention m the literature, e.g.[11,95,112-7]. This 
IS because recombination lasers have the potential for 
tremendous power output, and some may operate at short 
wavelengths. A major challenge in this field is obtaining 
the necessary plasma cooling rates. This thesis presents 
the first prediction of a Cs I plasma recombination laser. 
It IS shown not only that cesium is probably capable of 
recombination lasmg, but that the cooling can be obtained 
quite conveniently m a thermionic converter type of plasma. 
The kinetics of recombination lasmg are discussed in later 
chapters. The question of plasma cooling is analyzed m 
this section using isothermal theory. 

The principle behind a plasma recombination laser is as 
follows. The plasma is initially at some high temperature. 
It IS then suddenly cooled. There will then be rapid 
electron ion recombination. During this recombination, the 
excited levels of the species will be m disequilibrium. If 
it occurs that some excited level has a population 
sufficiently greater than a less excited level, lasmg may 
be possible. 

Many methods for cooling recombination lasers have been 
proposed[ll]. They include gas dynamic expansion, elastic 
energy transfer to heavy particle diluents, and radiative 
energy loss. It has been noted before that cooling be 
obtained by conduction of heat to walls, but it is generally 
observed that this can be significant only for plasmas with 
very high surface to volume ratios. It is found presently 
that thermionic converters are such plasmas. In fact 
cooling of thermionic plasmas can take place quite rapidly. 
Furthermore this cooling can be obtained conveniently by 
just reducing the T.E.C. output current. 

The predicted thermionic Cesium recombination laser has 
some peculiar features. First, most lasers use electricity 
as an input and produce heat as a byproduct. In the present 
scheme, the input energy is heat, and electricity is 
produced as a byproduct. Further, as will be shown m later 
chapters, the Cesium recombination laser can scale to higher 
electron densities and higher power densities because it is 
a collisional rather than a collisional-radiative 
recombination laser. 

Simple theories of cooling will be presented in this 
section. The present results will be compared with 
numerical results m later chapters. The general behavior 
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of a recombination laser thermionic converter plasma 
dynamics can be illustrated in the isothermal model. 
Recalling the isothermal result for unsteady thermionic 
converters: 

It is supposed that the T.E.C. is operating at steady-state 
at some current, I, and some temperature.Tf*-)- If the current 
were suddenly reduced, then the ohmic heating term, I'̂ R, and 
the ambipolar-sheath term would both drop. If the current 
were reduced sufficiently or actually set to zero, both 
these terms may be neglected. For this case the unsteady 
isothermal energy equation can be rewritten: 

Let us consider the two terms on the right-hand-side of 
the above equation. The first represents cooling by loss of 
hot electrons to the walls. It is generally of order one. 
The second term is the collisional source term. This is 
generally dominated by inelastic energy transfers. For 
present purposes this can be written as the sum of two 
processes. The first is the energy released by depopulating 
the atomic excited levels, and to a good approximation this 
can be modeled by a single atomic level of excitation energy 
g'p, which has a density V^ in Boltzmann equilibrium with the 
ground state. The second process is the actual 
ionization-recombination heat release. Under present T.E.C. 
circumstances, this latter may actually be negligible as a 
heat source as this occurs on a longer time scale. Other 
loss mechanisms, such as the escape of radiation, are 
neglected. The energy source can thus be written: 

Tie 
A 

r.3 S = -i^o^ -i^.i'J^ 

and where g^ and ĝ  are the ground and excited level 
degeneracies, respectively. With such a source term the 
energy equation can be written: . , 
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where: 

Again, since recombination occurs on a longer time 
scale than that for the relaxation of temperature, it is an 
adequate approximation to consider electron density constant 
during the decay of temperature. It also follows that the 
emitted current is approximately a constant even in the 
double-sheath regime. With these assumptions, the above 
energy equation can be solved by quadratures. With the 
initial condition of'̂ =t'(0) at t=0, then: 

and hence: 

-h 

where Ei(x) is the exponential integral: 

X 

F.(.j^ J e'f 
Examination of the orders of magnitude indicates that 

the cooling of a T.E.C. occurs in two regimes. In both 
cases energy is lost dominantly by exchange of electrons 
with the cooler walls. The distinction between the two 
regimes is in from where the energy was lost. In the first 
regime it is the decay of excited atomic levels which 
dominate the release of energy. In the second regime, the 
excited atomic levels have a negligible population and the 
energy release is dominantly from the translational modes of 
the free electrons. 

The relaxation for the first regime can be estimated, 
the initial energy stored in the excited levels is: 

^., Nf(r(^)] 
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Thus, this energy is lost to the walls in a characteristic 
time of: 

This time is exponentially sensitive to the initial 
temperature through the Boltzmann population function. For 
the conditions to be studied presently though, it is the 
order of one half of a microsecond. 

After the excited state populations become small, the 
second regime occurs. This regime, dominated by the decay 
of the free electron translational modes, is generally much 
shorter. For this regime, the energy conservation equation 
becomes: 

Thus in this regime, the temperature decays on a time scale 
of: 

A 

This is typically the order of twenty nanoseconds. 

To summarize, it is found that when the current flow 
through a thermionic converter is suddenly reduced, the 
electron temperature will decay rapidly towards the wall 
temperature in, typically, less than one microsecond. 
During the initial stage of the decay, energy is transferred 
from the atomic excited states to the walls. After the 
excited populations are depleted, the free electron 
translational energy decays, again by loss to the walls. 
Following the decay, the free electron temperature remains 
roughly the same as the emitter wall temperature. As will 
be shown in later chapters this decay is sufficiently rapid 
to produce the required recombination lasing. 



Ill Collisional Rate Constants 

Reliable inelastic cross-sections are essential to much 
of atomic laser theory. While ionization-recombination 
rates may be forgiving to some large errors, laser 
calculations can be quite sensitive to rate constants for 
one or two transitions. Towards selecting rate constants 
and assessing the uncertainty in them, available 
experimental and theoretical informatibn will be reviewed. 
The rates selected as most appropriate to this problem are 
due to Mansbach and Keck[51]. In section III.B, the formula 
they suggest is analyzed and improved. 

The impact energies of present interest are low, 
generally much less than the binding energy of the target 
atom. The cross-sections at such impact energies are 
unfortunately much less well known than those for high 
impact energies. This is true from the viewpoints of both 
theory and experiment. As the experimental information 
available is quite limited, the use of theory to provide 
information on unmeasured cross-sections is essential. The 
theories available are based on widely differing physical 
approximations. As a result, some controversy can arise 
over the choice of cross-section values for this regime. 
The present discussion will focus on the physical 
significance of approximations made in the available 
theories and on which experiments the theories should be 
tested against. 

Two criteria are particularly important when 
categorizing cross-section theories. First, over what range 
of collision paraimeters does the method yield reasonably 
accurate values? Secondly, is the method practical for 
calculating the large number of values that are needed for 
engineering application? While cross-sections have been 
studied for some time and many theories have been proposed, 
few can claim positive answers to both the questions over 
the conditions of present interest. Thus for example 
theories as diverse as close-coupling, Bethe-Born, and 
binary encounters may claim to meet one or the other of the 
above criteria, but they generally cannot meet both. 

Classical approximations have proved quite useful in 
this field. This usefulness is both because of the relative 
simplicity of classical theories which allows their 
employment in practical engineering calculations and because 
of their success in producing fairly accurate estimates of 
cross-section values. This success is an indication of the 
close relationship between quantum mechanics and the 
classical approximation. They are of course related not 
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only through Ehrenfest's theorem but also, and for present 
purposes more importantly, through the similarity of 
classical mechanics to the WKB-Jeffreys approximation to the 
Schroedinger Equation. Thus despite such difficulties as 
lack of formal validity at low quantum numbers euid 
uncertainty of correct low energy correspondence principles, 
classical dynamics appears to be a valuable first 
approximation. 

Some numerical classical solutions have been 
performed, typically using Monte-Carlo integration 
techniques. These have been valuable for engineering 
calculations. Some limitations remain though. For one, the 
results have not been computed over as wide a range as 
desired. This thus has led to some uncomfortable 
extrapolations. Section III.B considers this question. 
Further the calculations have been done for hydrogenic atoms 
only. Extrapolation to such nonhydrogenic atoms such as 
Cesium is discussed in section III.A. While such 
uncertainties do remain, the progress that has been made 
over cross-section estimates used in earlier 
ionization-recombination calculations is quite significant. 
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III.A Summary of Available Theories 

The theory of electron-atom inelastic collision 
cross-sections has received much attention over a long 
period of time. This subject has been well reviewed. 
Reviews of quantum theory include[66-78] and for classical 
theory[79-84]. With so many thorough reviews, the present 
discussion will be in the nature of a survey and avoid 
technical detail. For present purposes it is important to 
consider the types of models that have been developed and 
how they are interrelated. The Born approximation will be 
mentioned first along with some of the many models which are 
closely connected with it. Higher quantum mechanical 
approximations starting with distorted wave and leading to 
close coupling will be considered next. A different series 
of models based on the binary encounter concept is then 
discussed with both quantum and classical formulations 
cited. Following this, models will be discussed which 
attempt to combine the. better features of two models. 
Lastly, some classical numerical solutions will be 
discussed. While this overview is necessarily incomplete, 
it serves to outline the types of methods that have been 
used and their usefulness for cross-sections of present 
interest." 

Probably the best known quantum mechanical model is the 
Born approximation. This model considers the effects of the 
collision to be a perturbation on the otherwise independent 
motion of the incident electron and the atomic electron. 
This perturbation expansion is called the Born series. This 
subject is reviewed in[71]. The first term in this series 
is called the first Born, or simply the Born, approximation. 
Although the first Born is among the simplest quantum 
mechanical approximations its evaluation is still quite 
laborious. 

The Born approximation is valid at very high impact 
energies. Because of its relative convenience, however, it 
is often evaluated at low energies and even near threshold. 
Furthermore, much effort has been devoted to improving its 
performance at these low energies. One group of such 
efforts has focused on applying indistinguishability 
considerations[20,21,44,76]. Other approaches to 
improving the Born approximation attempt to include some 
effects of the interaction potential in the lowest order 
approximation. An example is the Coulomb-projected Born 
approximation[22,23]. This includes the nuclear potential 
for the ihelastically scattered electron. An different 
approach was developed by Glauber[24]. This allows for 
phase distortion of the incident electron as it passes 
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through the atom. 

There are other approximations which simplify Born. 
Probably the best known of these is the Bethe-Born 
approximation which expands the interaction potential into 
multipole moments. This is valid when the inelastic 
cross-section is dominated by long-range collisions. This 
is true at very high impact energies. Evaluation of 
cross-sections in the Bethe-Born approximation is 
sufficiently simple that it is practical for use in 
engineering calculations. Unfortunately the values at low 
energies are not very accurate. They are generally much too 
large. Moreover, the functional dependencies are quite 
questionable when used at low energies. Bethe-Born 
cross-sections depend prominently on the dipole moment of 
the transition. This seems to be in strong disagreement 
witb experiment over the parameter range of interest[49]. 
This dependence is also theoretically suspect since low 
energy collisions are dominated by short-range interactions 
for which multipole moment expansions are usually not 
useful. Some confirmation for this suspicion is provided by 
the Born approximation. Thus while the Born approximation 
does seem to prefer dipole connected transitions at large 
impact energies, the preference ceases close to threshold as 
seen in the calculations of [25]. As the dipole moment 
dependence is so often assumed in engineering calculations, 
this question as to their importance needs further 
investigation. 

Because of its valuable simplicity, the Bethe-Born 
approximation has inspired many variants. One is the 
semi-classical model of Seaton[26]. This uses an impact 
pareuneter formulation which allows unphysically high 
transition probabilities to be located and corrected for in 
a somewhat ad hoc fashion. There is also a fully classical 
dipole moment interaction theory developed by Percival and 
Richards[45,46]. These and other theories have led to some 
semi-empirical formulas such as[47,48]. All work 
excellently over some ranges of parameters but conditions of 
present interest appear to be outside these ranges. 

There are a series of approximations that are more 
complex than that of Born. The first of these is the 
distorted wave approximation which is similar to Born except 
that the lowest order approximation includes the effect of 
elastic scattering. By including more terms of the 
interaction potential, the strong coupling approximation is 
found. This can be interpreted as allowing the atomic 
electron to be in any linear combination of the initial and 
final levels, but in no other level at any time during the 
collision. Finally there Is the close coupling 
approximation. This extends the strong coupling 
approximation by allowing the atomic electron to occupy 
additional atomic levels during the collision. The set of 
atomic levels that can be included is limited only by 
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computational requirements. This can be a fairly severe 
limitation, however. Close coupling has been used most 
successfully only in the lowest atomic energy levels and 
only when few open channels exist. Even under these 
conditions, to obtain convergence it is sometimes necessary 
to create pseudo-state functions and/or functions to 
simulate correlation effects. While it is of value to know 
of theories more advanced than Born, these, at least in 
their quantum formulation, are much more laborious to 
calculate and thus most likely impractical for application. 

A completely different approach to inelastic 
collisions is exemplified by the many, varied, and often 
controversial binary encounter theories. While quantum 
mechanical versions of these theories are the subject of 
current research[63,64,65], this physical model predates the 
Schroedinger equation. It was first used to model atomic 
excitation by Thomson[27] in 1912. The basic concept of 
this approach is that the collision between the incident and 
atomic electron can be modeled neglecting the atomic core. 
This is thus a simple two-body coulomb interaction which is 
described by Rutherford scattering[28]. In the Thomson 
model the atomic electron is assumed to be initially at 
rest. This model is fairly successful at predicting 
ionization cross-sections. Several years later this model 
was improved by Thomas[29] to allow for motion of the atomic 
electron prior to the collision. Further additions to the 
theory were proposed to partially account for the presence 
of the nucleus. Thomas[29] proposed that the nucleus would 
have the effect of accelerating the incident electron prior 
to its encounter with the atomic electron. Webster[31] 
further proposed that the nucleus would also focus incident 
electrons. Both of these additions though are 
controversial[81]. 

With the introduction of quantum mechanics by 
Schroedinger in 1927, work in binary encounter theory lapsed 
until 1959 when Gryzinski[32] published his binary encounter 
theory and found agreement with experiment that was superior 
to many complex quantum mechanical calculations. This 
provoked a series of papers[33-43] and much discussion. As 
a result of this some uncertainties in the formulation of 
binary encounter theory became apparent, but its agreement 
with available experiments remained impressive nonetheless 
and comparable to many quantum mechanical results. 
Considering the simplicity with which binary encounter 
cross-sections can be calculated, the degree of agreement 
achieved with experiment was quite astonishing. 

Binary encounter theories are probably the most widely 
used for engineering application. However as more 
information was found, it appeared that some of the 
agreement with experiment that binary encounter theory 
achieved was misleadingly reassuring. The problem was that 
most of the experimental data available was for a limited 
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variety of cross-sections. In particular, most experimental 
cross-sections were for excitation from the ground state. 
By the nature of atoms, this generally means that the energy 
transfer was of comparable size to the ionization potential. 
Binary encounter theory, it turns out, works quite well for 
such large energy transfers. When, however, the energy 
transfer is smaller these theories can give serious errors. 
This is illustrated in[49] by comparison with some recent 
experimental results. It is further confirmed by comparison 
with the classical exact solutions to be discussed later. 
Compared to the magnitude of this error, the differences 
between the various binary encounter theories is quite 
small. 

Explanations have been advanced for the failure of 
binary encounters for these small energy transfer 
collisions. The most apparent problem is that binary 
encounter theories predict that large contributions to such 
cross-sections may occur from large impact parameter 
collisions for which binary encounters is an inadequate 
approximation because the nuclear potential shields the 
electrons from one another. 

The success of binary encounters at large energy 
transfers and of dipole theories for small energy transfers 
has naturally led to symbiotic theories. Burgess[36] 
suggested an impact parameter scheme with small impact 
parameters treated by binary encounters ajid large ones by a 
semi-quantum dipole approximation. Vriens[37] suggested 
using momentum transfer to determine the crossover point. 
He proposed using binary encounters for large momentum 
transfer and a quantum theory, e.g. Born or Bethe, for 
small transfers. A fully classical treatment was developed 
by Percival[50] to combine dipole theory at large impact 
parameters with binary encounters at small ones and a smooth 
transition in between. These approximations have achieved 
some success but are limited by the Importance of that 
region for which neither binary encounters nor dipole 
theories are valid. 

One of the valuable features of the classical 
approximation is the ability to find exact solutions 
numerically. This has been done by several Investigators. 
Mansbach and Keck[51]r using the theory of classical phase 
space to reduce computation, calculated thermally averaged 
transition rates. Percival[50] has calculated 
cross-sections for atomic excitation at various impact 
energies. He used classical scaling laws to generalize his 
results. Other such calculations also exist but were done 
for limited- parameter ranges, e.g.[52-55]. Both 
calculations averaged and Summed over atomic angular 
momentum distributions. Since the Mansbach and Keck[51] 
calculation was thermally averaged and an empirical fit was 
provided. It has found more application to practical 
problems. Its agreement with experiment appears quite 
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good[49]. 

While these numerical computations have been 
performed over a wide range of parameters, their great value 
has led to a need for calculations over an even wider range. 
Extrapolation of the Mansbach and Keck[51] results is needed 
in ionization-recombination calculations and was used for 
comparison with experiment in[49]. While such extrapolation 
is easily done, theoretical analysis of the Mansbach and 
Keck empirical fit suggests that it is possible for large 
errors to result. This will be discussed further in section 
III.B. 

Attempting to apply these theories to engineering 
calculations, an important gap emerges. There is limited 
information on nonhydrogenic effects. These effects take 
two main forms. First, the kinetic energy distribution of 
bound electrons in nonhydrogenic atoms is different and 
approximate theories have shown this to be an important 
effect[43,56]. Secondly and more importantly, the subshells 
of nonhydrogenic atoms often must be treated individually. 
This contrasts with hydrogenic atoms for which the subshells 
are approximately degenerate and thus their populations may 
be assumed to be related by statistical equilibrium as per 
theories such as[57]. For atoms with such large quantum 
defects as Cesium or other alkali metals that are commonly 
used in engineering, the assumption of approximate 
degeneracy is invalid over most important levels. Thus 
cross-sections for simultaneous energy and angular momentum 
are needed for nonhydrogenic atoms. 

As this question of subshell to subshell 
cross-sections must be resolved before calculations can be 
performed, this has led to the use of some unsatisfying 
assumptions. One common approach has been to borrow theory 
from high impact energies, Bethe-Born theory and thus assume 
a dipole moment dependence. As discussed above however, 
this is highly questionable. Upon observation of the 
available experimental data and the near threshold behavior 
of theories such' as Born, it appears that all final 
subshells of the same energy have cross-sections of similar 
magnitude. Present calculations thus assigned equal 
probability to such subshells. While this seems to be 
superior to the assumption of a dipole moment dependence, it 
is likely to be accurate to only a factor of two. The 
results of these assumptions are compared in later chapters. 

There is one uncertainty that all classical theories 
have in common. That is the present ambiguity over 
correspondence principles for use under conditions of 
present interest. A number of such principles have been 
suggested and used successfully but not without 
controversy[81,58,59]. The ionization-recombination 
calculations presented in later chapters were performed 
under a variety of such principles and few qualitative 
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changes resulted. Where changes did occur, they are of 
course noted. 

To summarize, a large number of cross-section 
theories have been developed over many years. There are 
quantum mechanical theories ranging from Born to 
close-coupling. There are classical mechanics theories 
ranging from impact parameter to Monte-Carlo numerical 
solutions. For the type of collision of present interest, 
it appears that only the classical Monte-Carlo calculations 
combine the required calculational simplicity with 
reasonable accuracy. 
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III.B Analysis of Mansbach-Keck Results 

The Classical Monte-Carlo calculations of electron-atom 
inelastic collision rate constants performed by Mansbach and 
Keck are very useful. A consequence of this usefulness is 
the desire to extrapolate the results beyond their range of 
validity. To improve the accuracy of the Mansbach and Keck 
empirical fit both within and without its range of validity, 
it IS presently analyzed on a theoretical basis. Some 
deficiencies are found and an improvement is suggested. 

First it IS shown how the inelastic electron atom 
cross-section can be found from the Mansbach and Keck 
thermal rate formula. While because of the simplicity of 
the Mansbach and Keck fit to the thermal rate constants this 
cross-section formula is necessarily simple, it is possible 
to examine the scaling properties of such a formula. This 
examination yields four discrepancies with available theory. 
It is then found that by altering one of the empirical 
constants m the Mansbach and Keck fit that two of these 
four discrepancies can be eliminated. This modified fit is 
then compared with the Mansbach and Keck Monte-Carlo data. 
Careful interpretation of their data indicates that most of 
the difference between their fit and the present suggested 
modification is due to a systematic error they made m 
analyzing their results.' Further, eliminating from 
consideration some points for which the form of the fit is 
not expected to apply explains the small remaining 
difference. Finally, a classical scaling law is invoked to 
obtain the temperature dependence of the rate constants. 
This dependence will confirm what Mansbach and Keck inferred 
on limited computational evidence. 

Mansbach and Keck considered energy transfer to a 
classical hydrogen atom from a bath of Maxwellian free 
electrons. The initial atomic energy is Ei and the final is 
Ef. The rate constant for transition from Ei to Ef per unit 
final energy is written K(Ef,Ei,I^. This thus has units of 
volume per time and per unit energy. The thermal rate is 
an average of the cross-section over the Maxwellian electron 
energy distribution. The cross-section for an impact energy 
E to cause a transition from energy Ei to Ef per unit final 
energy is denoted by cr(E,Ef,Ei). Thus: 

oo 

K(£f,E-,rJ = I cr(^t,Ef, B.J ir-f(<f,%)Iir 
where U=Ef-Ei is the threshold energy, v is the electron 
speed, f (v,Te) is the Maxwellian distribution, and m is the 
electron mass. E=mv*/2 is the impact energy. For present 
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purposes it is more convenient to change the variable of 
integration from speed to impact energy. This results in 
the exactly equivalent form: 

Where E'=E-U is the impact energy above threshold, k is 
Boltzmann's constant, and v is the mean thermal speed of the 
free electrons. 

Mansbach and Keck provided a formula for the rate 
constant K. To find the cross-section implied by such a 
formula, the above integral equation, B.I, will need to be 
solved. This is conveniently done by rewriting the above 
integral in terms of a Laplace transform. Thus: 

_ _ U 

where fd/kO^ i s the Laplace transform of F(E') 

.. . _ . . _ . . . . -^A-^t , _ < _ 

o 
^Ck)= S^FCB'}e'^''jiB'^^l¥(^9l 

and where F is given by: 

irq FCB') = <r(E*E', e^j^J (O^^'^ 

The solution of the Integral equation can now be 
easily done. The Mansbach and Keck empirical formula for 
rate constant K for excitation is: _ ^ iJ 

Where tp is a Thomson radius defined by: 

The quantities al and a2 are empirical constants which 
Mansbach and Keck choose to be; 

6.̂  al=5.75 ; a2=2.33 

Equating the expressions B.2 and B.5 shows that the Mansbach 
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and Keck fit implies that the function f is given by: 

Thus the Laplace transform f behaves as a power law. Such a 
transform is easily inverted to find F. It follows that the 
Mansbach and Keck implied cross-section is: /% n 

Naturally, this formula applies only to impact energies 
above threshold, i.e., E>U. Below threshold, the 
cross-section must be zero. 

This Can now be examined in light of theoretical 
knowledge of such cross-sections. Such knowledge is 
available for large and small energy transfers U, and large 
and small impact energies E. 

First for small energy transfers U, dipole theories, 
such as Bethe-Born or Percival[46], can be employed. The 
classical theory yields the ln(U)/U behavior. It can be 
seen however that the Mansbach and Keck implied 
cross-section does not follow this rule. According to the 
results of [50], though, this is not always a serious 
limitation. The region over which dipole theories apply 
seems to be quite small, restricted to impact energies at 
least the order of the atomic binding energy, -Ei, and 
energy transfers much less than that. 

Secondly, the behavior at large energy transfers can 
be compared with the predictions of classical binary 
encounter theories which have been found applicable in this 
range[51,55]. For large energy transfers, this binary 
encounter theory predicts an inverse U squared dependence. 
This also disagrees with the Mansbach and Keck formula. 

Thirdly, consider large impact energy. In this 
regime a l/E dependence is expected. This is predicted by 
classical Binary encounters. (The ln(E)/E dependence of 
quantum theory can be found from classical theory if 
correspondence principles are carefully applied[81].) Again, 
this is at variance with the Mansbach and Keck fit. 

Fourthly and finally, consider small impact 
energies. While this is a very important regime, it is also 
somewhat controversial. The well-known Wigner threshold 
theory implies a rise of the cross-section proportional to 
the square-root of the energy above threshold. Recent 
theory and experiment appear to indicate that this has a 
very limited range of validity. The Wigner theory assumes a 
smoothly varying integral of the wave-function. The limited 
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usefulness of the resulting cross-section law appears to be 
because the wave function is poorly behaved near threshold, 
given to resonances. Thus other sources must be consulted 
for practical threshold laws. The Monte-Carlo classical 
calculations of Percival[50] seem to imply a cross-section 
which is finite at threshold. This threshold law is In 
disagreement with the Mansbach and Keck fit. 

Many experimental and quantum-mechanical results show 
cross-section which are not finite at threshold. It is 
however a well-known result of quantum cross-section 
theory[102] indicates that cross-sections may be effectively 
finite at threshold when the final state is nearly 
degenerate with some other state. Atomic states in 
classical mechanics are always degenerate. It is thus not 
surprising that Percival[50] should find classical 
cross-sections to be apparently finite at threshold. 

Of these four objections to the Mansbach and Keck 
fit, two can be easily removed. These two are the last two 
which deal with the behavior as the impact energy E varies. 
It is seen that if the coefficient a. Is changed to: 

proper asymptotic behavior with respect to E results. At 
large impact energies, the cross-section decays like l/E 
which is proper for a classical cross-section. Near 
threshold, the cross-section is finite which agrees with the 
Percival[50] Monte-Carlo computations. Below threshold, the 
formula B.7 does not apply and the cross-section is zero. 
With this change the Mansbach and Keck fit should be better 
suited to extrapolation. 

It is beneficial to ask why, if the above suggested a 
is an Improvement, did not the Mansbach and Keck empirical 
fit find It? The answer will be shown to be that there were" 
systematic errors In the method of least squares fitting 
used by Mansbach and Keck. To find this answer. It is 
necessary to examine the organization of the Mansbach and 
Keck data. Mansbach and Keck counted transitions rates from 
a range of initial energies within some q/2 of the energy Ei 
to a range of final energies within q/2 of Ef, q varies 
from one half to twice k^ Thus MansbeK:h and Keck did not 
measure K but rather: 

To find K, Mansb̂ ach and Keck approximated the above integral 
by: 



Chapter III Page 13 

This introduced a systematic error of typically over 10% but 
sometimes up to 80%. 

This approximation and the resulting error are 
unnecessary. Eliminating it, and re-doing the least-squares 
fit gives new values for the correlation coefficients: 

BJl ^, - S.3J ; <^:z" ^-lO'l 

This is closer to the theoretical suggestion above. 
Moreover, with the ill-suitedness of the formula for small 
binding energies and small energy transfers as found in 
comments 1 and 2 above, it is suggested that the three data 
points which most violate this region be eliminated from the 
least-squares fit process. These three are the ones with U 
of one half and an upper state binding energy less than 
three, both in units of kT̂ - Having removed these points, 
the least squares fit can be performed again yielding: 

3.1:1 a, ^ ^.37 ] a^ = ^.00 r 
This is now impressively close to the value of a2 expected 
from theory as above. 

It is thus concluded that a better fit to the 
Monte-Carlo data of Mansbach and Keck is given by formula 
B.5 using coefficients B.12. For application to hydrogenic 
atoms, it is useful to apply the density of states 
correspondence principle to find the the rate constant for a 
transition from a principle quantum number 1 to a principle 
quantum number u: 

where again excitation, i.e. u>l, is considered. By 
detailed balance, the de-excitation rate from u to 1 would 
be: 

According to some Monte-Carlo computer calculations, 
Mansbach and Keck found evidence that an integral of the 
rate constant K over atomic states varied insignificantly 
with respect to temperature, T. From this they concluded 
that the temperature dependence of their empirical fit was 
correct. By virtue of classical scaling laws, however, the 
temperature variation of the rate constant K can be 
determined exactly, and conforms to the Mansbach and Keck 
formula. This classical exact scaling is: 
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This implies that K scales by: 

Which agrees with the Mansbach and Keck empirical results. 

In summary, modifications to the results of Mansbach 
and Keck is proposed. This was done as follows. First, it 
was shown that their thermal rate constant empirical fit 
formula implies a cross-section fit. This fit is found by 
inverting a Laplace transform. With the theoretical 
information available, a modification of the empirical fit 
was suggested which gave it some of the correct asymptotic 
behaviors. This modification was verified by the Mansbach 
and Keck data as modified to remove systematic errors in its 
interpretation. The agreement was further improved as 
points which are expected to be influenced by long range 
collisions were removed. In the present thesis, both the 
original and the modified Mansbach and Keck formulas are 
employed. 



IV Theory of lonization-Recombination 

The lonization-recombination process is essential to 
ignited mode thermionic energy conversion. It is well known 
that under conditions of present interest ionization and 
recombination occur through a multi-step process. The 
present chapter introduces the theory of how the rate 
constants for elementary processes combine to form the 
overall lonization-recombmation rate constants. While the 
essentials of the theory of lonization-recombmation have 
been known for nearly twenty years, some of the more subtle 
implications are sometimes unappreciated. Among these is 
the location of the rate-limitmg steps, known as the 
'bottleneck'. Detailed analysis shows its location to be 
contrary to some oft applied rules-of-thumb. The reasons 
for this will be explained qualitatively m this chapter, 
and analyzed quantitatively m the next. Also discussed are 
the conditions under which recombination lasing may occur 
and what role if any spontaneous radiation will play m 
generating the requisite population inversion. Further, 
there is a quasi-steady assumption often made in the 
conservation equations whose justification and limitations 
have commonly been arrived at intuitively. This assumption 
IS analyzed presently and is found to work as expected m 
most cases, but not all cases. This chapter, while 
reviewing the theory of ionization-recombination, will 
address these questions. 

In the first section to follow, the conservation 
equations for each of the atomic level populations will be 
set up. This will be a system of many ordinary differential 
equations. It will then be shown advantageous to introduce 
some reduced variables. Eigenvector analysis will indicate 
that a quasi-steady assumption is often accurate. The 
limitations on this assumption will be discussed and shown 
to be quite contrary to some previously published 
limitations. Finally some sample results of this theory 
will be discussed. 
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IV.A The Conservation Equations 

As in other kinetic problems, conservation equations 
for each species present should be written. In the regime 
of ionization-recombination of present interest, the 
'species' are atoms in each electronic state and ions. The 
present development follows Bates, Kingston, and 
McWhirter[13]. 

Discussions of ionization-recombination generally 
involve reactions such as the following three: 

Here Ai is an atom in some excited state i. Aj is another 
atomic state. A+ is an atomic ion and A2+ is a molecular 
ion. e is an electron and hv is a photon. Of the three 
reactions above, the third is molecular 
ionization-recombination. The cross-section for this 
reaction and similar molecular reactions are quite uncertain 
which makes them difficult to treat. Fortunately there is 
as yet no conclusive evidence that they are important*. The 
second reaction above is radiative ionization-recombination. 
For electron densities of present interest, this is known to 
be negligible. It is the first of the reactions above, 
ionization-recombination by electron impact, that is 
believed to be the fastest under T.E.C. conditions. 

In a kinetic sense however, none of the aibove reactions 
is important. The important, that is rate limiting, step 
Involves not ionization nor recombination but rather the 
production and destruction of the atomic states which will 
be ionized or were formed by recombination. Even though the 
vast majority of the atoms may be in the ground state, it is 
the high excited levels which dominantly participate in the 
actual ionization and recombination reactions. The rate 
limiting steps thus Involve transitions between the ground 
state and these excited levels. This Is generally a 
multi-step process for which collisional and radiative 
transitions must be considered: 

• However, see[97]. 
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To study these, conservation equations for the atomic levels 
are written. In phenomenological form: 

A.6 — — = {collisions}i + {radiation}i + {external}i 

for all levels i 

where t refers to time and Ni is the population density of 
level i at some point in space. The following paragraphs 
discuss the terms on the right hand side. 

In the conservation equations, advantage is taken of 
three approximations. It is assumed that under thermionic 
converter conditions molecules play a negligible role and 
that ions exist only in their ground state. The latter 
assumption is quite accurate at these temperatures. The 
former, however, is a matter of controversy but must be made 
until quantitative information on the relevant molecular 
cross-sections is established . Spatial diffusion of these 
species is also neglected as this is generally much slower 
than the inelastic collision rates. 

There are four types of radiative processes that may 
play a role: (1) spontaneous emission, (2) stimulated 
emission, (3) absorption, (4) radiative ionization, and (5) 
radiative recombination. Under T.E.C. conditions, 
radiative ionization and recombination are quite small since 
at these electron densities collisional ionization and three 
body recombination dominate[ll]. This leaves processes (1), 
(2), and (3). They are simplified further by dividing the 
atomic levels into two types. This first is the levels 
whose absorption length is so small that all spontaneously 
emitted radiation is reabsorbed. For such levels the 
spontaneous radiation coefficient can be replaced by an 
effective coefficient of zero. The absorption then need not 
be considered explicitly. Under T.E.C. conditions, 
transitions into the ground state fall into this category. 
The other group of transitions are those for which 
re-absorption of radiation can be neglected. Generally all 
transitions into excited levels fall into this latter 
category. The exception however is when a transition is 
subjected to intense radiation as might be produced by some 
external source or generated by laser action, then 
absorption and stimulated emission of this radiation must be 
considered explicitly. 

There are four types of inelastic collisional processes 
which must generally be considered: (1) excitation from one 
atomic level to another, (2) the reverse process, 
de-excitation, (3) direct ionization, i.e. collisions that 
result in an electron and ion being formed, (4) direct 
collisional three-body recombination. It will be apparent 



Chapter IV Page 4 

later that it is quite rare when these processes can be 
completely neglected. All are explicitly included in the 
present theory and calculations. 

With the above approximations, the conservation 
equations can be written: 

where Ni ̂ nd Nj are the population densities of levels i and 
j, Kji is the collisional rate constant for a transition 
from level i to level j, Kij is the reverse rate constant, 
Aji is the Einstein A-coefficient, as modified for possible 
trapping. 

The conservation equation for the free electron density 
can also be written; 

fi.S # ^ ̂* ? Ŵ A6 - ̂e % K,-en^ 
The first summation above represents the actual ionization 
rate. The second represents the actual recombination rate. 
Both of these rates are quite large and much cancellation 
occurs between the two summations. This is a result of the 
approximate local thermodynamic equilibrium between the free 
electrons and the highly excited levels. When the words 
ionization rate and recombination rate are used in practice, 
though, they do not refer to the terms in the above 
equation. They refer rather to the terms on the right hand 
side above which scale as an elementary single-step 
ionization or recombination reaction would. This will be 
elaborated upon later. 

Estimating the relative sizes of the terms in the above 
system of conservation equations is a natural first step for 
studying the system. It is common to focus attention on the 
relative magnitudes of excitation and de-excitation terms. 
This question is often answered with one of two 
contradictory arguments. The first is to conclude that 
de-excitation can be neglected as the populations of upper 
levels are always much smaller than those of lower levels. 
The other is to conclude the excitation can be neglected 
since its rate constants are typically much smaller than 
that for the reverse process. While there are some fields 
of study where one or the other of these conclusions may be 
valid, generally neither of these is good to even an order 
of magnitude for the present system even during extremes of 
strong ionization or recombination. To emphasize this and 
also provide a systematic method for estimating the relative 
sizes of terms in the above system, it is convenient to 
introduce some well-known[13,85] reduced variables. First, 
define a reference Boltzmann population for each atomic 
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level: 

Where Ei is the binding energy of level i, g •* is the 
degeneracy of level i, and Nref is an arbitrary constant. 
With this a reduced population is defined: 

f\.\o î --- A/-/A// 

A reduced electron density is defined similarly based on 
n=,(T) , the Saha electron density corresponding to the chosen 
Nref: 

A/1 ^e= r?^/^s 
In thermodynamic equilibrium, the magnitudes of all the 
reduced populations are equal. Thus the variation in these 
populations gives a measure of the disequilibrium. 

To accompany the reduced populations, reduced rate 
constants are defined: 

The forward reduced collisional rate constants, Wij, are 
equal to reverse reduced collisional rate constants, Wji. 
This is by virtue of macroscopic detailed balance. 

As a result of this symmetry, analogies can be made 
between this system and an electrical circuit or fluid 
mechanical system of pipes. Rewriting the conservation 
equations in the reduced variables: 

'^n^ K/-,r^-^-y 

To clarify the analogy, let us consider a single term. 
The collisional net transfer rate into level i from j is: 

AA/ K^M'Kn^i' Hs(^s-y.-) 
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This is similar to an electrical Ohm's Law. (The fluid 
mechanical analogy will be discussed in the next paragraph.) 
The current in a resistor is a net transfer rate. It is 
proportional to the difference on voltages at the resistors 
ends. The reduced populations can be seen to be analogous 
to voltages. The constant of proportionality between the 
current and the voltage difference for a resistor is its 
conductance. The reduced rate constant, Wij, is thus 
analogous a resistor's conductance. The collisional terms 
in the conservation equations can thus be drawn as a network 
of resistors interconnecting the levels which are 
represented as terminals. This concept is illustrated in 
figure 5. Further discussion of the electrical analogy can 
be found in Bates[14]. 

The collisional terms in the atomic level conservation 
equations can also be thought of in a fluid mechanical 
analogy. Referring back to equation A.14, an analogy 
between the collisional net transfer rate and the mass flow 
through a pipe can be made. The mass flow through a pipe is 
proportional to the difference in pressures across the ends 
of the pipe. The reduced populations can thus be seen to be 
analogous to pressures. In fluid mechanics the constant of 
proportionality is a function of the size and shape of the 
pipe and also the kinematic viscosity of the fluid. Here 
the constant of proportionality is the reduced rate constant 
Wij. The collisional terms of the conservation equations 
can thus be represented by a network of pipes which meet at 
terminals- representing the atomic levels. This is shown 
schematically in figure 5, though using electrical notation. 

In chapter V, it will be shown how the circuit of 
figure 5 reduces to that of figure 6. 

In addition to the above analogies, there are two more 
important advantages of the reduced variables. One is that 
it is possible to determine the direction of the net 
collisional transition flux between two levels just by 
looking at a graph of the reduced populations. The 
direction is always from higher reduced populations to lower 
reduced populations. Such information cannot be so simply 
deduced from a graph of ordinary dimensional populations. 
Secondly, reduced populations have the advantage of being 
more slowly varying as temperatures change than dimensional 
populations. This makes interpolation between tabulated 
values simpler. 

These analogies can be extended further to include more 
than just the collisional terms. The time derivative of the 
level densities can be represented by water storage towers 
in the fluid analogy or capacitors in the electrical system. 
Unless the radiation field is in black body equilibrium at 
the seune temperature as the free electrons, the radiation 
terms have no simple analogies. 
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To summarize, a system of simultaneous ordinary 
differential equations has been stated which describes the 
ionization-recombination process of atoms subjected to 
inelastic collisions with electrons and various radiative 
processes. Each equation described the conservation of 
number densities of the excited levels of the atom and of 
the ion or free electron density. Reduced variables were 
introduced to create symmetry between forward and reverse 
rate constants. It was shown that the collisional and 
unsteady terms are analogous to electrical and fluid 
systems. While these equations can be solved as they stand, 
the results of eigenvector analysis discussed in the next 
section will provide much simplification. 
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IV.B Eigenvector Analysis and the Quasi-Steady Theory 

The implications of the conservation equations 
developed in the previous section are not obvious. It is 
found however that an approximate analysis can lead to some 
important physical insights. The dynamics of the atomic 
level conservation equations can be greatly simplified using 
an eigenvalue analysis. As is typical of many reactive 
systems, the atomic level conservation equations include 
phenomena which are characterized by widely disparate time 
scales. For present purposes only the most slowly varying 
of these need be considered. This approach leads to what is 
known as the quasi-steady assumption. Under this 
approximation, simple formulas characterize the ionization 
and recombination results as well as determine the excited 
state populations. As a result the time history of these 
variables is explained. 

The quasi-steady assumption has been used at least 
implicitly for many decades as in for example[12]. It was 
explicitly discussed and used on the atomic level 
conservation equations of the form discussed in section IV.A 
by Bates, Kingston, and McWhirter[13]. Published 
justifications of this assumption have tended to be 
intuitive in nature. The invocation of eigenvector 
analysis, as is done presently, provides a rigorous basis 
for it. The implications of this are mentioned herein. An 
important result of this analysis is the ability to assess 
the limits of validity of the quasi-steady assumption. It 
is found in one case that the limit of validity is the 
opposite of that commonly suggested in the literature. 

To obtain the simplification, the atomic level 
conservation equations are rewritten. Separating positive 
from negative collisional and radiative terms, write: 

B.l —-'' = {in}i - {out}i + {external}i 
AT 

where: 

{out}i = 7/^ Z ]f\J..V. 4 2105.- ^ 

The unsteady behavior of such an equation can be described 
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by eigenvectors. The more common heuristic approach will be 
described here with its limitations noted. It is observed 
that for i belonging to the excited levels: 

B.2 <=^1^^« {out}i 

When this is the case, equation B.l can be valid only if: 

B.3 {out}i '̂  {in}i + {external}! 

where this approximation is known as the quasi-steady 
approximation. Since the collisional terms on the right 
hand side of B.2 grow linearly with electron density, it is 
often stated in the literature that this inequality will be 
valid for sufficiently large electron density. This, as 
will be discussed later, is not the complete story. This 
approximation will be shown to be invalid for large electron 
density. Assuming that quasi-steady is valid, the solution 
to the equations can be seen to have the form: 

E,</ H- V.V^ -^H'H 

Where v.' and v^ are functions of the electron temperature 
and, if radiation is significant, also the electron density. 

The quasi-steady assumption applies to the conservation 
equations for the excited levels. The conservation 
equations for the free electrons and the ground state still 
remain to be considered. These equations, rewritten using 
the quasi-steady excited level populations, are: 

1 . 

B.S 

As a further consequence of the quasi-steady assumption, it 
can be shown that the coefficients of the reduced ground and 
free electron populations in the each of the above equations 
are the same as in the other. These are thus written: 

Where these coefficients are now identified as the effective 
ionization and recombination coefficients. It is 
interesting to note that the actual ionization and 
recombination rates do not correspond to the terms in the 
above equation. They are given by the terms in equation A.8 
which are quite different. 
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The ionization and recombination coefficients are often 
written without benefit of reduced variables. In this form: 

Where: p^ 1^ htj^ 

and: o< = T/ N^^^ 

At this point the limitations of the quasi-steady 
approximation can be discussed. Knowing the form of the 
ionization-recombination rates from B.6 and the excited 
level population from B.4, it is possible to return to B.2 
and consider its validity. It is seen that in recombining 
plasmas, the excited state populations are proportional to 
the cube of the electron density. By contrast, the term 
{outli rises no faster than linearly with large electron 
density. Thus from B.2, the quasi-steady approximation will 
fail for large electron densities. With eigenvector 
analysis, this limit can be quantified. It is found that 
for the quasi-steady approximation to be valid in Cs, the 
electron density must be much less than some number n* where 
n* is a function of the electron temperature T: 

T (K) 

1500 
2000 
2500 
3000 

A second limitation of the quasi-steady approximation is 
that if the electron temperature changes suddenly, an 
adjustment time is required for the new quasi-steady state 
to be reached. This time, as found from eigenvector 
analysis, is typically the order of 0.1 microseconds or less 
under T.E.C. conditions. 

When the electron density is high enough that 
collisions dominate over radiation, some interesting and 
well known symmetry properties exist. This is due to the 
reduced rate constants being symmetric for this case and 
thus the Boltzmann distribution is a solution of the 
conservation equations. First, there is a relation between 
the excited state population coefficients, thus: 

n» 

8 
1 
3 
7 

= (cm-

CIS) 
(16) 
(16) 
(16) 

•3) 

I?.=? V/'l-V;, 
A second relation, between the reduced ionization and 
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recombination rate coefficients, indicates that steady state 
occurs when the free electrons have a Saha density with 
respect to the ground state: 

Again these equations hold only when all the reduced rate 
coefficients are symmetric. Under typical T.E.C. 
conditions, this occurs only when the effect of radiation is 
negligible with respect collisions. This is typically true 
for n > 1(14) cm-3. 

To summarize, it is found that the excited level 
populations can be determined by approximately quasi-steady 
conservation equations. These populations are thus 
functions of the ground state density, the electron density, 
the electron temperature, and the elementary rate constants. 
By virtue of the quasi-steady approximation, they are not 
functions of time history of these variables but only of 
their present values. Expressions were also written for the 
effective ionization and recombination rate constants. The 
conditions for validity of the quasi-steady approximation 
were found using eigenvector analysis. It was explained why 
the quasi-steady assumption may fail at high electron 
densities. 
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IV.C Some Quasi-steady lonization-Recombination Results 

In the this section, the results of some calculations 
using the quasi-steady ionization-recombination theory just 
stated will be discussed. This will illustrate the general 
features of ionization-recombination behavior without 
additional abstraction. The theory developed in the next 
chapter will further explain the results. Results both with 
and without the effects of laser irradiation will be 
considered. 

Calculation of the quasi-steady ionization amd 
recombination behavior has been performed presently for 
Cesium. Such calculations have been performed before for 
Cesium[85,87], as well as for other 
atoms[e.g.13,93,98,99,100]. The present calculations in Cs 
have the advantage of over ten years of development of 
collisional rate constants. As discussed in chapter III, 
recent theory and experiment indicate that cross-sections 
from binary encounter theory, used by Norcross and 
Stone[85], or from Bethe-Born theory, used by Abramov[87], 
have large errors. 

The - present results are collisional-radiative 
computations involving over thirty-seven levels. These 
levels and the radiative rate constants are as tabulated by 
Norcross and Stone[85]. Resonance radiation is assumed 
completely trapped. Doublets and other nearly degenerate 
orbitals were each compressed to single levels. A Grotrian 
diagram for this scheme of levels is shown in figure 34. 

Tabulated results of these calculations appear in 
figures 8 to 32. These cover the range of electron 
temperatures from 1500 to 4500K in 250K steps and of 
electron densities from 1(12) to 1(15) cm-3 in logarithmic 
steps. (The tables indicate powers of ten using the 
computer E-notation.) Figures 8 through 12 show the 
ionization and recombination rate constants in various 
forms. Figures 13 through 32 can be used to determine 
excited state populations. In each of these, a column 
represents the results for some electron density and the 
rows for the indicated electron temperatures. Figures 34 
through 39 show graphs of excited state populations for 
various conditions and some different rate constant 
theories. These and more results will be discussed herein. 

As discussed in the last section, two coefficients are 
needed to determine the excited state populations. These 
are v and V . As per equation B.4, the v coefficient 
indicates how strongly the level population is affected by 
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the reduced free electron population and the V coefficient 
indicates how strongly the population depends on the ground 
state density. Generally, low lying levels have large V 
coefficients and small v coefficients. Conversely high 
lying levels have large v coefficients while having small V 
coefficients. This means low lying levels may be nearly m 
equilibrium with the ground state population while high 
levels may be nearly m equilibrium with the free electrons. 
With respect to the high lying levels and their use in 
experimental measurements, more will be said later. The 
transition range between such low levels and high levels is 
called the bottleneck. When collisions dominate, as at high 
electron densities, the bottleneck is located among levels 
with binding energies of about 3.5 times the electron 
temperature, as found earlier by Mansbach and Keck[51]. 

An important point to note is that there is generally a 
local thermal equilibrium between the ground state and the 
first excited level. This is because this level is below 
the bottleneck as verified by figures 13 and 14. This is 
contrary to what incautious application of a common 'rule of 
thumb' might imply. Many would say that since this 
transition has such a large energy gap that it would be 
'slow.' Also transitions among higher levels in the atom 
which often have smaller energy spacing would be relatively 
'fast.' This would indicate the the first excited state 
would be in equilibrium with levels above it which would be 
m equilibrium with the free electrons. Only the ground 
state wou.ld not be m such equilibrium. Such models have 
been called block-of-excited-states models. The reasoning 
behind them is as follows. Let us consider the ground to 
first excited state transition and, for example, the first 
to second excited transitions: 

c I <:s (6i) ^e ^ C. (6TP) ->-e 

To make the first reaction above go, the free electron needs 
an impact energy of over 1.43eV while in the second reaction 
only 0.37eV is needed. For Boltzmann distributed electron 
energies and the temperatures of interest, the former 
electrons are much rarer than the later. By 'rule of thumb' 
analysis, this observation is used to indicate that the 
first reaction is likely to be much slower than the second. 

The above 'rule of thumb' reasoning fails because it 
misses a fundamental if subtle point about reactions among 
excited states. This point is that the populations of 
different excited states differ greatly. Looking again at 
the above reactions, it is apparent that in thermal 
equilibrium the collision frequency of 6s atoms with 1.43eV 
electrons is going to be higher than for 0.37eV electrons 
and 6p atoms since the former are at a lower total energy 
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level. The actual relative reaction rates are the opposite 
of the 'rule of thumb' predictions. 

For the quite highly excited levels, the same type of 
reasoning can be applied. However, as the energy 
differences between these levels are small while their 
degeneracies are rapidly rising, this means that the 
transition rates start to increase in the highly excited 
levels eventually becoming fast enough that a local 
equilibrium is established between these levels and the free 
electrons. 

The experimental determination of electron temperature 
from measurements of highly excited level populations must 
be done with caution however. While a sufficiently high 
level will be in equilibrium with the free electrons, the 
number of such levels and their experimental visibility may 
vary. First, these levels are defined by: 

Which means that they have populations in equilibrium with 
the free electrons. Using the results of section B and 
equation B.4 in particular, it is seen that this condition 
is satisfied only if the following two criteria are met: 

CV ^ ; - \ 

The first of these is met by a generally plentiful number of 
levels above the bottleneck. The second condition is more 
stringent and not always appreciated. This is because 
electron densities in experiments are often well below Saha 
so that criterion C.5 becomes hard to satisfy. This is 
illustrated in figure 39 where the populations of excited 
Cesium levels is plotted against their binding energy for a 
ground state density of 1(16) cm-3, an electron temperature 
of 3000K, and various electron densities. For an electron 
density of 1(15) cm-3, which is very close to Saha, a 
Boltzmann line is seen indicating the correct electron 
temperature. For lower electron densities, the highly 
excited level populations indicate a distinctly wrong 
temperature because condition C.5 is failed. 

Experimentally, an additional complication occurs: 
even if a level is sufficiently highly excited that it meets 
both criterion, it may not be experimentally observable. 
this is due to the significant electron densities typical of 
thermionic converter conditions. The radiation from such 
levels is reduced and finally disappears for sufficiently 
high levels because of Stark broadening as explained by 
Inglis and Teller[101]. 
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In any event, the region between the levels in near 
equilibrium with the ground state and the upper levels in 
near equilibrium with the free electrons there is a 
transition known as the 'bottleneck.' It is this region 
whose slow rates dominate the ionization-recombination rate 
constants. This region exists even if radiation were 
negligible. The existence of a collisional bottle-neck in 
the excited states of the atom has been apparent since 
detailed solutions of the simultaneous system of equations 
such as in Bates, Kingston, and McWhirter[13], became 
possible twenty years ago. Confusions about this point 
though have been perpetuated by interpretations of a paper 
by Byron, Stabler, and Bortz[l5]. 

Let us turn attention now to the recombination rate 
constants. By dimensional analysis on Newton's laws of 
motion for an electron plus classical hydrogen atom system, 
it is found that the recombination rate may be written: 

C.6 /3= ^ri^ ^'^ 
— . — • 1 

^- - eVVcl^ 
And <C-f is a constant. This formula, which correlates 
experimental and theoretical data very well, was found using 
different reasoning by Thomson[16], although his assumptions 
would today be of questionable validity. The quantity Cj 
can vary only if radiation or quantum effects are included 
invalidating Newton's laws. 

Surveying various determinations of Gfii-t is found to 
be of order one as expected from the dimensional analysis. 
Many of the experimental determinations have such large 
scatter, as seen in e.g. [19,51], that while this order of 
magnitude is verified, nothing more can be deduced. A more 
recent experiment, by Sayer et. al.[19], claims to use 
improved measurements of electron temperature and thus have 
superior consistency and accuracy. They found values of C-j-
between 0.2 and 0-3. This is a factor of five to ten less 
than some previous experiments. Theoretical values tend to 
lie between these two. Use of Mansbach and Keck rate 
constants, as is done presently, yields a value of about 
0.46. The calculations of Norcross and Stone[85] give 
results in the range of 0.4 to 0.7 between 1500K and 3000K. 
The theory of Sayer and Pascale[86] implies a value of 0.37. 
Abramov[87] calculated values ranging from 1.3 to 4 which 
are large because he used Bethe-Born cross-sections. In the 
T.E.C. calculations to be presented in Chapter VI, values 
of 0.31 and 0.46 were tried. There was little difference in 
the overall results. 
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Examining now how Cx varies when radiative or quantum 
effects become important, the results of the present 
calculations for this quantity are shown in figure 8. First 
consider the result for high electron density, say 
1(15) cm-3, for which collisions dominate. If the atom were 
classical, Cj- would be a constant in this region for all 
temperatures. The fact that Cesium is not classical but 
does in fact have discrete levels is seen to have little 
effect. C^ varies only from a low of .45 to a high of .48 
over the entire temperature range. As density declines, 
radiation becomes more important and C-,- does vary. It 
becomes larger. How much larger depends on the temperature. 
At low temperatures, the bottleneck is in higher levels 
where radiation is weaker and the the increase in C^ is 
smaller than for higher temperatures. 

By detailed balance, the theory of Thomson[16] caji also 
be used to predict ionization rate constants. Thus one 
writes: _ __ , c 

C.7 ^-^ ^^ Co 
Tic, is the Saha density and is exponentially sensitive to 
temperature. A correction factor f^ has been introduced. 
If collisions dominate, then detailed balance is valid and 
a^ would have to equal one. If the loss of spontaneous 
radiation occurs, ̂  will be greater than one. This factor 
is determined also from the solution of atomic level 
conservation equations described earlier. When ionization 
and recombination are in balance, /̂  takes on a special 
significance. When this balance occurs, it can be seen from 
equation 6.(5" that: 

eg î e-- >^//g 
Thus /g determines how far below Saha the electron density 
will be when the balance exists. ^ is tabulated in figure 
11. It is seen that a substantial departure from Saha 
occurs at low densities. Curiously, ^ is only weakly a 
function of temperature. 

The entire nondimensional constant of C.7, Cf/^ , is 
shown in figure 12. A substantial reduction from the 
collision dominated values is seen at low densities. 
Additionally, the dimensional ionization rate constemt, o<., 
and the dimensional recombination rate constant, G, are 
tabulated in figures 10 and 11 respectively. 

The special application of the ionization-recombination 
theory which is of interest in the present thesis is the 
determination of the nature of the interaction of resonant 
radiation and the excited levels of a recombining or 
ionizing atom, particularly of Cesium . The case of a 
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strongly recombining plasma will be discussed first. For 
sufficiently strong recombination, terms involving V^, can be 
neglected. When this is true, it follows that: 

Under these conditions it is quite possible that there may 
be population inversions among the atomic excited levels. 
This means that: 

IT ^ 
Where 1 and u are atomic levels with u higher than 1. 
Naturally, if transitions between these two levels are 
optically allowed and the difference in there populations is 
greater than the threshold inversion then laser action is 
possible. As the above equations indicate, two levels will 
invert if the reduced population coefficients satisfy the 
inequality: 

If spontaneous radiation is negligible, then all the 
quantities in the above equation are functions only of 
temperature. If the inequality is satisfied the two levels 
will invert for large enough v^. Otherwise, they will not 
invert no matter how large "L̂ . 

A sample population distribution for Cesium under this 
condition of strong recombination is shown in figure 34. 
This is a semi-log plot of level population against level 
energy for and atomic density of 1(16) cm-3, an electron 
density of 1(14) cm-3, and an electron temperature of 1500K. 
There is a clear population inversion between the 7p and 7s 
levels. This graph was made using Mansbach and Keck 
collisional rate constants. The same type of results occur 
using various binary encounter theories. This is 
illustrated in figure 35 which shows Cesium populations 
under the same conditions as in figure 34 but computed using 
Stabler[34] theory collisional rates. Although the reasons 
not to apply dipole moment rules to collisional 
cross-sections were discussed in chapter III, some 
calculations have been performed using them and the result 
seems to be that the 7p-7s inversion disappears. Thus for 
example, Norcross and Stone[85] did this and obtained no 
inversion. Also calculations have been done presently using 
Bethe-Born rates which use these rules and the 7p-7s 
inversion also disappeared, as shown in figure 36. Note 
however that the Bethe-Born rates predict another inversion 
instead, a 7s-5d (optically forbidden) inversion. 
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Additional calculations have been performed using 
Gryzinski[42] collisional rates. This is a variation of 
binary encounter type rates and was also discussed in 
chapter III. These are the same rates as used by Norcross 
and Stone, except dipole moment rules were not applied. 
Assuming 1^/1% sufficiently large and an electron 
temperature of 1500K, the excited state populations are 
plotted in figure 37 for various electron densities. Again 
a 7p-7s inversion is seen. More of the effects of 
recombination lasing can be explained in the next chapter. 

More population inversions are sometimes predicted to 
exist in the higher levels of Cesium. Some of these can be 
seen in the figure 34. Oettinger[17] has found some 
experimental evidence that such inversions may exist. 
Unfortunately, theoretical prediction of such inversions is 
sensitive to the particular rate constants used in the 
calculations. Different rate constant theories predict 
different inversions. This being the case, such inversions 
are not amenable to theoretical study at the present time 
and shall not considered here any further. 

If the recombining plasma discussed above were put in a 
laser cavity, it is predicted that laser action may occur. 
Calculations indicating the effects of such radiation on the 
excited state kinetics have been performed. Since this 
inversion is so far above threshold, it is a good 
approximation that the laser action saturates the 
transition. The population distribution both without 
radiation and with radiation of sufficient intensity to 
saturate the transition is shown in figure 38. This data 
was obtained using the same rate constants and conditions as 
figure 37. In addition to altering the excited state 
distributions, the presence of laser radiation changes the 
recombination rate of the plasma. This change in Cesium for 
the 7p-7s transition is small. 

Laser radiation can produce profound changes in the 
ionization process. Under normal discharge conditions, i.e. 
when the plasma is not rapidly recombining, there are no 
population inversions. Thus when laser radiation is 
introduced,there will be a net absorption of such and thus a 
net excitation of the atomic levels. When the radiation is 
chosen to be resonant with the proper levels, this can 
result in tremendous increases in the ionization rate 
constant. This increase can be like lowering the ionization 
potential of the atom by the eunount of the photon energy. 
This will be elaborated upon in chapter V. Further, if the 
radiation were chosen resonant with a transition that 
straddled the bottleneck, then the increase in the 
ionization rate is given nearly by the net absorption rate 
of photons, as predicted in the theory of Oettinger and 
Dewey [18]. 
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The present theory differs from the theories employed 
m the opto-galvanic literature[103,106,110]. Herein the 
complete set of simultaneous equations governing the atomic 
level populations were written and solved. Although limited 
by the accuracy of the inelastic collision cross-section 
data, these results are expected to be quantitative. 

To summarize, this section has presented results of 
numerical computations on the excited state populations and 
lonization-recombmation rate constants of a Cesium plasma. 
The bottleneck was found to be m the excited levels even m 
the collisional dominated regime. This was explained by a 
more detailed examination of chemical rules of thumb for 
excited state kinetics. Recombination rate constants were 
computed and found to be m good agreement with recent 
experiments. It was found that for low temperatures and 
moderately high electron densities there was a population 
inversion m the Cs excited levels. This prediction 
survived through calculations employing a variety of 
elementary rate constants. A calculation under lasing 
conditions was performed. The inverse process of laser 
ionization enhancement was also studied. By this method, 
large increases m the ionization rate are possible. All 
these computational results will be further explained by the 
analysis presented in the following chapter. 



V Analysis of lonization-Recombination 
and, 

the Equivalent Circuit Concept 

While it is possible to solve the 
ionization-recombination problem on modern computers using 
the techniques of the last chapter, the results are not 
always self-explanatory. The results for recombination 
lasing and ionization enhancement in particular are 
unintuitive. Why the results of such computations behave as 
they do and how they can be optimized is not always clear. 
Because of such conceptual difficulties, it would be 
advantageous to reduce the system of conservation equations 
to new equations wherein the interactions aunong the various 
levels were represented more simply. Herein such a 
simplification is found for the collisional terms. 
Furthermore this simplification is obtained without loss of 
quantitative accuracy. 

Many processes have been suggested to affect 
ionization-recombination rates in thermionic converter 
conditions. Examples include possible resonant 
molecule-cesium inelastic collisions, wall deactivation of 
excited atoms, atomic impurities, and resonant absorption or 
emission of laser light. The present simplified 
conservation equations can be easily applied to such 
questions. As will be apparent, calculations which would 
otherwise require use of large modern computers can be 
performed 'on the back of an envelope* using this technique. 

Many of the previously published approximate models of 
ionization-recombination can be obtained from the present 
model by specialization of the coefficients. Among these 
are the block of excited states[88], bottleneck[15], 
one-quantum[89], diffusion[90,91], and Mansbach-Keck[51] 
models. The regions of validity of these models can be 
assessed. 

The form of the present simplification is easily 
understood in terms of the electrical or fluid mechanical 
analogies discussed in chapter IV. The present theory will 
transform the atomic circuit of figure 5 to the relatively 
simpler circuit of figure 6. The analogy, we remember, 
related collisional transfer rates to fluid flow through 
pipes or to electrical current flow through resistors. The 
atomic level populations became analogous to fluid pressures 
or electrical voltages. This was introduced after 
expression IV.A.14 in the previous chapter. This reduction 
to a Circuit nearly as simple as that for the one-quantum 
model will be applied to many sample situations. 
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V.A Equivalent Circuit Derivation 

The conservation equations shall presently be 
simplified to their equivalent circuit form. This will 
start by using the separable form of the collisional 
transition rate constants that was discussed in a previous 
chapter. With such rates, the conservation equations will 
be manipulated. The result will the equivalent circuit, as 
shown in figure 6, and simple expressions for the values of 
the new resistors in the equivalent circuit. 

The present simplification deals with the collisional 
terms of the conservation equations. It is thus convenient 
to denote the other effects, radiation, unsteady, or 
external, all together as a single symbol. The conservation 
equation for each level i is written: 

J 
The first term represents the net collisional transfer rate 
into level i. This is a completely general equation as the 
source term. Si is left arbitrary. Thus Si can include any 
effects a researcher may wish to add such as, radiation 
resonant collision rates, radiation, resonant inelastic 
collisions, and/or unsteady effects. Even corrections for 
presumed non-separable features of the electron-atom 
collision rates could be so included. The present theory 
will make no assumption concerning the magnitude of the 
terms Si. 

In chapter III, the collisional rate constants were 
discussed. The ones which were selected as having the 
greatest experimental and theoretical support were written 
mathematically in a separable form. Advantage will be taken 
of this form. In the separable form, the collisional rate 
constants are written as a product of a function of the 
lower level and a function of the upper level. Thus: 

Substituting the separable rates into the conservation 
equation, there results: 
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This new quantity has the units of a reciprocal rate 
constant. That makes it analogous to an electical resistor. 

Taking the difference between this equation for level i 
and the equation for level (i-1), and after performing some 
algebraic manipulation, it results that: 

where two new terms, Ri and Ji, are Introduced. The 
function of the collisional rate constants Ri is defined by: 

A.5 I?. = yz^ jn,., (Li U;., - 4:,, t̂ . ) 

And where the other new quantity Ji is defined by: 

A.6 7 - (5^^-^^^.^^->^l)^^X^-'^-^^ 
This is an unknown as it depends on the unknown populations. 
The physical significance of Ji is apparent when it is 
rewritten as: 

"' ^ " ^ I] "̂^ ^̂ '̂ " ^ 
Thus Ji is the net collisional flow rate from levels i and 
above to all levels below i. This makes Ji analogous to an 
electrical current or fluid mass flow. In the absence of 
other effects, Ji is the net recombination rate. 

While the values of the resistances Ri and J ^ can be 
easily calculated, the current Ji is still unknown as it 
involves all the unknown population variables in its 
definition. This difficulty can be remedied. In the 
general case, an expression for Ji can be found by studying 
the quantity (Ji-J. ). After some algebra it is found 
that: '"' 

^ - , - ^ = ^ -
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Thus, it follows: 

A.9 or = z z _>; 
/ .^- ^ 

With this information, it becomes possible to interpret 
equation A.4 in the electrical and/or fluid mechanical 
analogies. It says that the difference in voltage between i 
and i-1 is the sum of the voltage drops across three 
resistors[«]. The first is the resistor Ri which has the 
current Ji flowing through it. The latter two are the 
resistors i and i-1 which have currents Si and -Si-1 
respectively. It can be seen that this corresponds to the 
circuit as sketched in figure 6. 

At this point it is possible to write down a complete 
solution for the populations as a function of the source 
terms. This is done by applying A.9 to A.4 and simplifying. 
Thus: 

A.10 v.-^-^ji.s: -^,s^-£^,,Sj 
Where the quantity Rij is defined as the sum of all 
resistances between levels i and j: 

A.11 \ ^— i^!h ^-^^ 

To illustrate the use of this theory, some examples 
will be discussed. First, the solution of the simplest 
collisional ionization-recombination problem will be 
performed. This will be followed by two numerical examples 
of the calculation of the equivalent circuit resistances. 

Comparison of the quasi-steady conservation equations 
for collisional ionization-recombination in section IV.A 
with the equation A.l of this section shows that the source 
terms are given by: 

A.12 s;^o <^<x<e 
:^e " -y^e c^ f 

* . students of fluid mechanics should substitute the word 
pressure for voltage and so forth according to the 
explanation of the analogies as given in section IV.A. 
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From this and A.8 it follows that the current Ji is 
independent of i. Thus define J by: 

A.13 -J- :^ J7 ^ < ^ < ^ 
•A 

It follows that: 

A.14 Ĵ ~ 3fp - '.IX, 

Using the solution A.10, the quasi-steady populations can be 
written: 

Thus the net recombination rate can be written: . 

/^J^ tT ^ ^^-ti^tsi^ 
This is just the difference in voltages between ground and 
continuum divided by the sum of the resistances between 
them. Thus for this case the ionization and recombination 
coefficients are found to be: 

A.17 X -K -
-rZo-i- ^ + - ^ 

They are of course equal because the present model has no 
radiation. Cases involving various tyi>es of radiation will 
be discussed in later sections. 

A couple of simple numerical examples will show how the 
resistances are calculated. First, consider the 
(unphysical) case where all the collisional transition rate 
constants are equal. Thus: 

Wij = 1 for -all i,j 

This can be rewritten in separable rate form as: 

Li «= Ui = 1 for all i 

It follows immediately that the resistances are given by: 
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Rij = 0 -JXX = 1/N 

Where N is the number of levels in the system. In the 
quasi-steady collisional ionization-recombination problem, 
this distribution of resistances would mean the all the 
excited levels would have the same reduced populations and 
this population would be the average of the ground and 
continuum populations. 

As a second numerical example, consider a system with 
six levels. Suppose the separable rate constants are as in 
the table: 

i= 0 1 2 3 e 

Li= 1 2 3 4 5 

Ui= 5 4 3 2 1 

From this it follows that the resistances are: 

^; 

In this case the reduced populations of the excited levels 
would change monotonically between the ground and continuum 
levels. 

To summarize, the general atomic level conservation 
equations have been manipulated so as to be reduced to a 
much simpler system for analyzing collisional transition. 
If N is the number of levels in the system, each original 
conservation equation involved N(N-l)/2 resistors, one for 
each distinct pair of levels. Under the assumption of 
separable rates, this was reduced to an equivalent circuit 
involving only 2N-1 resistors. This is often orders of 
magnitude simpler. As will be shown in the following 
sections, calculations that would have involved large modern 
computers can be reduced to back-of-an-envelope type 
simplicity. 
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V.B Distribution of Resistance and Limiting Cases 

The behavior of the resistances in the equivalent 
circuit will be discussed. The be the distribution of 
resistance for the Mansbach-Keck collision rate constants 
will be compared with the assumed distribution of 
resistances used in a variety of well-known 
ionization-recombination models. These models, such as the 
one-quantum, diffusion, bottleneck, and 
block-of-excited-states, are of at least qualitative value 
for some ranges of parameters. The degree of quantitative 
accuracy can be assessed by comparison with the equivalent 
circuit resistances. 

The equivalent circuit resistances, Ri and jT-i, in 
Cesium and at various temperatures are tabulated in figures 
41 through 51. These cover the temperature range of 500K to 
20,000K and give-fU, Ri, Rie for 37 Cesium levels. 

In the block-of-excited-states model it is presumed 
that the collision rate constants for transitions between 
excited levels are very large while rate constants for 
transitions between ground and the excited levels is rate 
limiting. This approximation is similar to the 'rule of 
thumb' discussed in section IV.C. To compare this model 
with the Mansbach-Keck rate constants, it shall be analyzed 
using equivalent circuit theory. The rate constants for 
this model are given in separable form by: 

U-'K/.r 3 h^ I / - 'o> I i- O 

From this it follows that the equivalent circuit resistances 
are given by: 

^,'-0 
Ki = o 

J2l 

y^l 
/ ^ 2 

This is as one would expect: the resistances among the 
excited states are zero in the block-of-excited-states 
model. Only the resistance between the ground and first 
excited states is finite. Comparing this with the tables of 
resistances, it is seen that this is rarely a valid 
approximation under conditions of present interest. 
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In another model, it is assumed that the rate limiting 
transitions occur in the excited levels. This is usually 
case. For mathematical simplicity it is further assumed 
that the rate limiting processes are so sharply defined that 
they occur across just one level. Let that level be k*. 
This is called the bottleneck and the following model is 
called the bottleneck model[15]. All rate constants for 
transitions between levels which are either both above k* or 
both below k* are considered fast. The separable rate 
constants that correspond to this model are given by: 

Lj large for j>k* 

Uj large for j<k* 

The remaining Lj and Uj are defined by: 

Li'Uj = Wij for i<'k«ij 

It follows that the equivalent circuit resistances are given 
by: 

This implies a two tiered population structure. Levels 
above and below the bottleneck are each in local 
thermodynamic equilibrium. Thus: 

Even though the actual bottleneck is not as sharp as in this 
model, qualitatively correct behavior can often be predicted 
in this approximation. The above two models are similar in 
that both assume large rates in some region(s) of the atom 
so that the resistances are negligible almost everywhere. 
The difference is that the block-of-excited-states model 
assumed the important resistance to be between the ground 
and first excited states while the bottleneck model 
postulated that the important resistance was somewhere among 
the excited levels. The following model differs from both 
of the above by not a priori assuming fast rates anywhere 
among the atomic levels. 

Early work on inelastic collisions indicated that the 
cross-sections were strongly dependent on the energy gap 
between the levels, with transitions between closely spaced 
levels much more likely than less closely spaced levels. 
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This leads to an approximation in which transitions are 
neglected unless they occur between adjacent levels. This 
is called the one-quantum model and has received 
considerable attention in the literature. While it is now 
known that the approximation used to develop this model is 
not quantitative, the resulting model is often useful and 
instructive. While one quantum rate constants can be 
incorporated into the separable rate form many ways, the 
following system has the virtue of simplicity. If the 
separable rate constants are given by: 

Where the a are constants and X is an arbitrary large 
number, then these rate constants display one-quantum 
behavior in the limit of large X. It is apparent that the 
rate constant between adjacent levels is given by: 

As X approaches infinity, all other rate constants go to 
zero, as they should in the one quantum approximation. In 
this limit, it follows that the resistances are given by: 

Ri = 1 / Wi,i-1 : -^i = 0 

Thus a consequence of the one-quantum model is that the 
resistances -<tj. are all zero. As can be seen from the 
tables, this is not always a good approximation. 

The above models have all made assumptions about the 
relative sizes of collisional rate constants for various 
transitions. An alternative approach is to make assumptions 
about the levels themselves. In particular, it has been 
found to be advantageous in some instances to neglect the 
discrete nature of the levels and assume rather that the 
atom has a continuum of bound levels, as a classical atom 
would . Two applications of this approximation will be 
mentioned. The simpler is the diffusion model which results 
from applying the atomic levels continuum approximation to 
the one-quantum model. The other is the Mansbach and 
Keck[51] model. This model starts with the full system of 
separable rates and develops the resistances Rij under the 
atomic level continuum approximation. Their model is 
similar to the present equivalent circuit model with the 
additional level continuum approximation. There are 
distinct differences though in the treatment of the 
resistances J'i-i, and source terms Si are not considered by 
Mansbach and Keck. Also when the continuum model is found 
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as a limit of the present theory, it becomes apparent that 
the Mansbach and Keck, model contains a small error due to 
neglecting a delta function term in the conservation 
equations, this delta function arises from the atomic level 
continuum limit of the term SO. Further for their model as 
extended to include spontaneous radiation, there is an error 
due to ignoring the resistances j^ i. 

This concludes the review of simplified 
ionization-recombination theories. It is shown that each of 
them can be formulated as some limit of the present 
equivalent circuit theory. This re-formulation has allowed 
the limits of qualitative and quantitative accuracy for 
these models to be assessed by comparison with the actual 
resistances as given by equivalent circuit theory. 
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V.C Sensitivity Analysis 

For systems of many simultaneous equations, 
determination of their sensitivity to changes in the value 
of parameters or introduction of new effects is often a 
tedious process. The simplicity of equivalent circuit 
theory however allows the this to be done for the 
ionization-recombination process quite easily. Several 
examples will illustrate this. First, sensitivity to 
changes in the collisional rate constant for the ground to 
first excited state will be considered. Next the importance 
of resonance radiation loss will be analyzed. This will be 
followed by a discussion of the effects of de-activation by 
heavy particle collisions. While this nowhere near exhausts 
the list of possible effects that one might want to include 
for one or another reasons, these discussions will 
illustrate application of equivalent circuit theory to such 
problems. 

It is sometimes suggested that there may be 
circumstances under which separable rate constants may not 
be adequate. It might for example be suggested that such 
rate constants should fail for the Cesium 6s-6p transition 
because it is strongly resonant. Write this 6s-6p rate 
constant as a sum of that given by some scheme of separable 
rates and a correction that will account for the supposed 
special nature of 6s-6p. Thus: 

With this, it follows that the source terms are given by: 

This can be solved to give the net recombination rate: 

C.3 

By examining the tables of resistance, it is seen that even 
if the correction Qĝ j were to go to infinity, its effect 
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would be negligible on the ionization or recombination rates 
for conditions of interest in thermionic conversion. This 
is of course because the 6s-6p rate is fast to begin with, 
and thus kinetically unimportant. 

Cesium has a large radiative rate for the resonance 
6s-6p transition. While most of this radiation is trapped, 
the effect of that which escapes will be analyzed. Defining 
a reduced radiative rate constant: 

1? 
C.4 ao\= <S N, Ao, 

where AOl is the Einstein A-coefficient and Q is the escape 
factor. For this case, the source terms are written: 

L > "̂  -77.-^^L.^ ' J '^e i^" 

It follows that the net recombination rate is given by: 

^7?p•^^,J^, J 

The coefficient of V^ is the recombination rate constant 
while the coefficient of -j?̂  is the ionization rate constant. 
Assuming a one per cent escape of this radiation as is 
typical for thermionic converters, the loss of resonance 
radiation does not affect the recombination rate constant 
significantly for Cesium , though it may affect the 
ionization rate constant at low electron densities. 

Another process that may occur is the quenching of 
excited atoms by collision with some heavy particle. It has 
been suggested that this may be used to help clear the lower 
levels in a recombination laser [17]. Without pursuing the 
possibility of lasing. The analysis of such heavy particle 
interactions will be set up to indicate the important 
parameters. It has sometimes been suggested that such heavy 
particles as noble gases be included in the thermionic 
plasma to improve the current transport processes. This 
analysis will also indicate when such additional gases may 
alter the ionization-recombination kinetics. There is a 
significant amount of data available on quenching 
cross-sections for first excited levels of atoms. For 
nitrogen-cesium collisions there is data on quenching of the 
first two excited levels. The effect of quenching 
collisions on the first two excited levels will be 
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considered. Antonov, Korchevoi, and Lukashenko[92] 
estimated damping cross-sections of Cs 6p and 5d levels by 
collision with molecular Nitrogen. The 5p cross-section was 
found to be 6.0(-15) cm2. While the 5d cross-section was 
larger, 6.6(-15)cm2, it will be shown to be typically less 
important. 

Writing the quenching coefficients for 6p and 5d as a 
and b respectively, __ P* / 

where "vj, is the mean relative speed of Nitrogen and Cesium, 
and N/v is the molecular Nitrogen density. The source terms 
are: / .. , 

The corresponding excitation terms for the molecular 
collisions are neglected due to the low temperature of 
neutrals. From this it follows that the 5d population is 
given by: 

^ ' / - ^ ^ - ^ : i 

The 6p population is: 

Lastly the net recombination rate is: 

L' ^ -^^sjr\^* »i^r 1^j^^" 

Using the Antonov et al. cross-sections, it is found that 
the N2-Cs(6p) collisions are at least an order of magnitude 
more important than the 5d collisions. 

It has been shown here that a wide variety of effects 
can be easily analyzed using equivalent circuit theory. 
Specifically, resonance collisions, resonance radiation, and 
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molecular deactivation were considered as examples. The 
simple algebra required in these analyses contrasts with the 
large computational efforts that would be required without 
the equivalent circuit. 

Commonly, sensitivity analysis is limited to 
determining merely a partial derivative of some result with 
respect to a parameter given numerical values for all the 
parameters. The present theory found the behavior of the 
result over the whole possible range of the changing 
parameter. This was done moreover in a general analysis 
that was not restricted to given numerical values of all the 
remaining parameters. These results are thus far more 
useful. 
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V.D Computation Techniques 

One of the features of equivalent circuit theory is the 
ease with which solutions can be computed. If N levels are 
under consideration, the populations and rate constants can 
be computed in time proportional to N for collisional 
recombination. For collisional-radiative problems, 
computation can be performed in time proportional to N 
squared. This contrasts greatly with the order of N cubed 
needed for the usual solution by Gaussian elimination. The 
procedures for these calculations will be outlined here. 

For both the collisional and collisional-radiative 
problems the equivalent circuit resistances must be 
calculated. First the sums 

fir .^'-^ OS© 

Are calculated for successive i. This requires 0(N) 
operations. With these sums, the resistances can be 
calculated: 

^yir- U.fil-^Li^ji 

This again requires only 0(N) operations and provides all 
the numbers necessary for solution of the collisional 
ionization-recombination problem. 

If spontaneous radiation is included, more calculations 
are necessary. The spontaneous radiation source terms are: 

3: ̂-^/f^.^-,f>-^-j 
Note that the source term for each level i depends only on 
the level populations of that and higher levels. This fact 
can be used to advantage. Calculations start at the free 
electron level and proceed to lower levels via the 
population difference equation V.A.4 and the current 
equation V.A.9. In this way, only 0(N squared) operations 
are needed to complete the calculation. 

In summary, it has been shown how computation times of 
ionization-recombination problems can be reduced by what is 
typically one or more orders of magnitude using equivalent 
circuit techniques. Comparison with usual Gaussian 
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techniques will also show a large reduction in necessary 
computer storage. These reductions could be very important 
if such ionization-recombination calculations were necessary 
at, say, every grid cell of some larger numerical problem. 
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V.E Highly Excited Levels 

The system of atomic level conservation equations 
should, in principle, include one equation for each atomic 
level. As there are a very large number of atomic levels, 
in particular highly excited levels, this can cause 
computational difficulties. Many ionization-recombination 
calculations have simply truncated the number of levels 
under consideration and sometimes altering the direct 
ionization and recombination coefficients to account for the 
missing levels. It is still often necessary to include up 
to one hundred levels in such calculations. Sometimes 
researchers have approximated the highly excited levels with 
a level continuum and then solved an integral equation for 
them simultaneously with the system of equations for the 
discrete levels. Burgess and Summers[93] used a system of 
interpolation to reduce the numbers of equations involved 
for these levels. With equivalent circuit theory applied to 
the highly excited levels, however, a much simpler approach 
results. It is found that the effect of the highly excited 
levels on the remaining excplicitly considered levels can be 
represented by effective rate coefficients. These 
coefficients are of two types. The first is effective 
direct ionization and recombination coefficients. Such 
effective rate constants was anticipated by previous direct 
ionization and recombination rate constant fudging schemes* 
The second type are effective inter-level rate constants. 
These are conceptually new. 

Suppose m is the highest excited level to be considered 
discretely. The goal of the present analysis is to 
eliminate the terms in the conservation equations involving 
all levels higher than m in favor of terms involving lower 
level populations as well as the free electron population. 
The conservation equation for any such lower level i is 
written now as: 

where Hi is the net transfer rate into any level i of the 
discrete levels from the highly excited levels: 

The present goal is to express Hi in terms of the free 
electron population and the lower level populations thus 
eliminating the highly excited levels altogether from 
conservation equation E.l. This is done using the present 
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separable rate-equivalent circuit theory. While other 
processes such as radiative recombination could be included 
without much complication, assume the simple, and for 
present conditions accurate, model that only electron-atom 
collisions are important for the highly excited levels. 
From equation V.A.IO the populations of the highly excited 
levels are: 

where J is an unknown that must be determined. With J 
evaluated at level m using the definition V.A.7, and 
eliminating the highly excited level populations as above, 
it follows that: 

and where Am and Bm are defined by D.l. With this 
substituted into the net transfer rate, the final result is: 

H 

7 

A x '̂ ^ A , > 

where the rate constants Wej and Wij are defined by: 
^7 ^ 

E.^ 

Substituting the above expression for Hi into the 
conservation equation E.l, it is found: 

1^ , A \ / \ /. , , A 

5. - O^ fi (W;,-^VJj:j)[V--y,) AH;^Wej:)('^e-Vs) 
/ J=C> 

+ 5> 
The goal of eliminating the highly excited levels from this 
conservation equation has thus been achieved. 

The above equation can be interpreted as follows. The 
above equation indicates that the net transfer between the 
highly excited levels and any other lower level j can be 
replaced by effective net transfer rates between j and the 
continuum and between j and other levels m and below. The 
coefficient involving j and the continuum can be thought of 
as an effective ionization-recombination rate constant. It 
represents 'indirect' ionization-recombination caused by 
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transfers passing from j or the continuum through the highly 
excited levels eventually to its continuum or j destination. 
The formula above gives a systematic method for calculating 
such effective coefficients replacing earlier approximate 
schemes. The coefficients involving j and other levels k m 
indicate a new phenomenon. They are additional effective 
rate constants for transitions between the discrete levels. 
This indicates that transfers between two levels j and k can 
occur not just directly but also indirectly, passing through 
the highly excited levels. Such effective rate constants 
had not been included in earlier approximate schemes. 

Essential to the present model is the assumption that 
the highly excited levels are quasi-steady. Because of the 
small populations and fast transition rates of these levels, 
this is generally a very accurate assumption. Also because 
the populations of these levels are so small, energy storage 
in them can be neglected. 

Thus, an analytic scheme, exact within the context of 
separable rates, has been found which reduces the system of 
conservation equations to a finite number. This eliminates 
the need to solve integral equations for such levels, or to 
retain very large numbers of equations in the system. This 
can greatly reduce precision and computational time 
requirements that can be associated with solving up to one 
hundred or more simultaneous equations. This scheme 
introduced effective ionization-recombination rate constants 
and a new type of effective inter-level transfer 
coefficient. 
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V.F Spontaneous Radiation 

The loss of spontaneous radiation from the plasma can 
significantly alter the plasma dynamics. While escape of 
such radiation is a power loss mechanism, the more important 
effect is often the alteration of the ionization and 
recombination rate coefficients. These coefficients become 
dependent on the electron density and Saha detailed balance 
relations may fail by one or more orders of magnitude. 
Simple analytic models given here will explain this 
behavior. 

The nature of these effects can be well illustrated by 
supposing that there is just one radiative transition. This 
will be from an upper level u to a lower level 1. The 
source terms for this situation are given by: 

e 

Applying these source terms to the equivalent circuit, the 
equations may be solved. The net recombination flux is seen 
to be: 

, -V^ _ jbi 

The recombination rate constant increases with the loss of 
spontaneous radiation while the ionization rate constant 
decreases. Moreover it is apparent that the importance of 
such radiation to either coefficient depends on the 
positioning of the upper level on the resistance ladder. If 
level u is below the bottleneck, then: 

-n., -f (^axA « /c'̂ ,̂  -^^ 

and the radiation will never have a significant effect on 
the recombination rate. It may however have a dominating 
effect on ionization. Conversely, if level u is well above 
the bottleneck, such radiation would have its dominant 
effect on the recombination rate and possibly only a small 
effect on ionization. 
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If the electron density were large enough that 
radiation had negligible effect, the reduced ground and 
continuum populations would have the same value in steady 
state, indicating Saha equilibrium. When spontaneous 
radiation is important, however, Saha equilibrium will not 
be achieved. The actual steady state values are found by 
setting J to zero. Thus from the above equation: 

_ V^o 

The steady state electron density becomes smaller and 
smaller as the contribution of radiation increases. 

The above model indicates how the excited level 
populations and ionization-recombination rates behave as the 
contribution of spontaneous radiation increases. For most 
purposes, the above one-radiative-transition model is only 
qualitative. Greater accuracy is achieved by including more 
transitions but, this is done at the expense of simplicity. 
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V.G Laser Ionization Enhancement 

The possibility of increasing ionization in a plasma by 
subjecting it to radiation resonant with excited atomic 
levels is of importance. Under some conditions this may be 
used as an experimental technique[94,103-111]. It may yield 
schemes for improved thermionic energy conversion[18]. The 
behavior of such radiation enhancement will be considered 
using the tools of equivalent circuit analysis. 

Under consideration here are the consequences of 
letting some radiation, probably of narrow bandwidth, 
impinge on a plasma. If the frequency corresponds to a 
transition between two levels of the atom, such radiation 
may be significantly absorbed and can alter the 
ionization-recombination kinetics. The two levels that the 
radiation is resonant with will probably be both excited 
levels as radiation connecting with the ground state often 
may have short absorption lengths and be unable to penetrate 
into the bulk of the plasma. This is currently the case for 
thermionic converters. This light need not necessarily have 
a short wavelength. It will be shown that even infrared 
light can have major effects on the ionization of Cesium. 

For collisional ionization-recombination subjected to 
radiation enhancement, the equivalent circuit analysis 
proceeds to a simple and powerful result. Suppose the laser 
radiation were to be absorbed by a transition between a 
lower level 1 and an upper level u. The source terms for 
this situation are: 

r in*-

Where A is the net rate of photon absorption. By applying 
Kirchhoff's laws and the principle of linear superposition 
it is quickly found that the voltage drop between the 
continuum and ground is: 

Solving this for the net ionization rate yields: 

- , , cH-^f _ ^^ y^-'p? + ^a 
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'\S-o. 
Where: ^ — — 

Thus the increase in the ionization rate over the unenhanced 
case is directly proportional to the net photon absorption 
rate. For every photon absorbed, ^ electrons will be 
ionized. 

A previously published formula can be derived as a 
special case of this. A special case can be considered for 
which the radiative transition spans the bottleneck. This 
means: 

Which leads to the approximation: 

cr.<^ ^^ i 
With this last approximation substituted into the equation 
G.4, the model of Oettinger and Dewey[18] is found. 

An important practical parameter for this process is 
the energy efficiency. This shall be defined as the ratio 
of the light energy that must be absorbed to ionize an 
additionaJL atom to the atomic ionization potential. Thus: 

G.7 -T-- - F ~ 
It is apparent from this formula that the efficiency so 
defined need not be less than one. By choosing a transition 
1-u in the midst of the bottleneck it is easy to obtain 
efficiencies greater than one. The additional energy, of 
course, is supplied by the inelastic collisions of atoms 
with the free electrons. 

The net absorption rate of photons can be related to 
the radiation intensity by examining the level 1 and u 
populations. The quantity A is given by: 

where I is the intensity,<r is the absorption cross-section, 
and g ^ and g^^ are the atomic level degeneracies. Upon 
solving the equivalent circuit equations, this is written: 

Where ^AT is the population difference if no radiation were 
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And the saturation intensity is given by: 

-r -^ 

By examining the magnitudes of these terms from the 
tables of resistances, it is apparent that absorption of 
radiation can tremendously increase the ionization rate. 
Further, it does so in an energy efficient manner. This 
efficiency can be unintuitively large: each additional 
ionization may occur even if the absorbed photon energy is 
less than the atomic ionization potential. Kinetic analysis 
also yielded a relation between laser intensity and the net 
absorption rate. It was found that the full enhancement 
effect can be obtained even at quite practical low 
intensities. 

It should be remembered that even though the results of 
the present section are quite simple, they do constitute a 
complete solution of the quasi-steady collisional 
ionization-recombination problem. This contrasts with 
previous theories of the optogalvanic effeet[103,106,110]. 
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V.H The Recombination Laser 

Recombining plasmas have great potential as a laser or 
light amplification medium. The possibility that excited 
state kinetics in recombination can cause population 
inversions has received much attention in the literature 
e.g. Gudzenko, Shelepin, yakovlenko[ll], Silfvast 
et. al.[112-117], and Campbell, Jahn, von Jaskowsky, and 
Clark[95]. This is both because of the higher power 
densities available in plasmas, as opposed to solids, 
liquids, or gases, and because, in some systems, ultraviolet 
lasing may be achievable. Herein the recombination kinetics 
of such plasmas will be considered. Use of equivalent 
circuit concepts allows a simple but general analysis. 

The principle of recombination or plasma lasers is as 
follows. Starting with a hot plasma, the temperature is 
suddenly lowered. At the new lower temperature the 
electrons and ions rapidly recombine. This causes 
dis-equilibrium among the excited levels and population 
inversions may often occur. Thus, provided with a suitable 
optical cavity, lasing can result. 

The questions to be answered here are when the 
recombination kinetics allow a population inversion to be 
established and how much power can be produced. A 
population inversion is defined by: 

^ / 

In the form of reduced variables this becomes: 

This inequality is most likely to be satisfied only when the 
electron density is much larger than its equilibrium value. 
As was discussed previously, for sufficiently large electron 
density the ground state contributions to the excited state 
populations may be neglected yielding: 

Where again vl and vu are the free electron quasi-steady 
population coefficients. Assuming collisional 
recombination, these coefficients can be expressed in terms 
of the equivalent circuit resistances so that the inequality 
simplifies to: , 
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It is possible that this condition for purely collisional 
recombination lasing may be satisfied. In other words, it 
is not always necessary to have additional mechanisms to 
depopulate the lower level, such as spontaneous radiation or 
heavy particle collisions. 

Such an inversion is predicted to occur in Cesium. The 
7p-7s transition is found to be invertible at low 
temperatures, e.g. 1500K, This is an infrared transition. 
As the 7p level is a doublet, lasing is predicted on two 
lines, 3330 and 3411 cm-1. Threshold inversions for this 
laser, as is typical of electronic lasers, is the order of 
1(7) to 1(8) cm-3[96]. These are very small compared with 
the population densities under consideration here. It is 
thus reasonable to assume that the transition saturates. In 
this case the laser efficiency approaches a constant. It is 
useful to be able to describe the efficiency of a plasma 
laser. A variety of efficiencies could be defined that 
would depend on the plasma dynamics-. Here an efficiency is 
defined to reflect the recombination kinetics. This 
efficiency, let it be called the photon efficiency, is the 
ratio of the rate at which laser photons are produced 
divided by the net recombination rate. Thus: 

4^ ^ ^ 
where A is as defined in the previous section. This number 
depends on the light intensity in the laser cavity. This 
number is 0(1/3) for the Cs 7p-7s laser predicted here. 

The energy efficiency of the recombination laser may be 
defined as the ratio of the photon energy out to the to the 
total energy available, i.e., the energy released by 
recombination. This is simply the product of the quantum 
efficiency and the photon efficiency. 

The power output that can be produced by plasma lasers 
is quite large. Neglecting distributed losses, the laser 
power output is the net rate at which photons are produced 
times the photon energy. Thus: 

This is strongly dependent on the electron density. Upon 
substituting some typical numbers, output powers of one watt 
per cc to possibly one kilowatt per cc can be produced in a 
plasma under thermionic converter conditions. 

The total laser output energy per pulse can also be 
estimated. Assuming all electrons recombine and produce 
photons each, the energy output is: 

€Av^^^ 
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Under thermionic converter conditions, this number is fairly 
modest, on the order of say tens of millijoules. This is 
consistent with the energy in ionization in thermionic 
converters being a small fraction of the overall energies 
involved. While the thermionic laser may produce very large 
powers, these powers last only a short time, maybe a few 
microseconds. 

The above formulas assume that spontaneous radiation 
loss is negligible. If spontaneous radiation loss were 
included in the model, the laser performance may either be 
improved or reduced. Spontaneous radiation between levels 
both above the lasing levels would improve performance by 
increasing the recombination rate. Loss of spontaneous 
radiation from a transition between two levels both below 
the laser levels also increases performance. This is 
because it helps clear the lower laser level. In fact such 
radiation reduces the resistance ratio requirements for the 
purely collisional laser (V.H.4). Unfortunately the 
remaining type of spontaneous radiation loss, that from a 
transition which straddles the laser levels, reduces laser 
performance. This is because it depopulates the upper level 
and populates the lower level. The Cs 7p-7s inversion 
suffers from such radiation. It cannot maintain the 
inversion at electron densities below about 1(13) cm-3. 

To summarize, employing equivalent circuit theory, the 
efficiency, power output, and energy output of recombination 
lasers can be characterized. A Cesium 7p-7s population 
inversion is predicted. This is expected to have a photon 
efficiency of about one third. The criterion for obtaining 
a purely collisional recombination laser was established in 
terms of equivalent circuit resistances, and the effects of 
spontaneous radiation were discussed. 



VI Unsteady and Steady Numerical Solutions 
of 

Thermionic Converter Plasmadynamics 

Although one dimensional, numerical solutions of the 
thermionic converter plasma equations challenge even modern 
computers. A new computer program is developed here to 
solve . the thermionic converter plasma equations. The 
present method uses a relaxation or unsteady formulation. 
This contrasts with the shooting schemes that have been used 
previously. Special differencing techniques developed for 
this study have increased accuracy while decreasing 
computational requirements. The results of these 
computations will be discussed for the normal and laser 
enhanced ignited mode operation as well as the unsteady 
recombination laser mode. The results of these computations 
confirm the trends predicted by the simple 
ignition-isothermal theory discussed earlier. 

The computer program that has been developed is capable 
of including a wide variety of effects. These include 
microwave electron heating and thermal diffusion. The 
present study, however, concentrates on the 
faster-than-Boltzmann rise, proposed laser enhanced 
ionization mode and the possibility of a thermionic plasma 
recombination laser. 

For steady-state T.E.C. operation, a detailed account 
of the source of the arc-drops is given. This is done from 
two points of view: (1) an energy balance, and (2) 
Kirchhoff's Law. For the various modes of operation 
studied, the information from these viewpoints is organized 
in the form of short tables. From these, it is apparent 
that most of the arc-drop is due to plasma heat losses at 
the electrodes and that the sheaths play a major role in 
adjusting the plasma to different operating conditions. 
This confirms the predictions of chapter II. 
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VI.A Formulation and Methods 

The equations solved and the method for solving them 
are discussed here. The numerical method benefited from 
tests against special case exact solutions and these will be 
described. The numerical method used presently is quite 
general and may be modified to include many additional 
effects if so desired. 

There are a number of reasons why computational 
solution of thermionic conversion has been so difficult. 
One is that in either spatial direction, there are error 
terms which tend to grow exponentially. Secondly, the 
problem is a boundary value problem, and the interactions 
among the boundary conditions make it very difficult to 
obtain shooting algorithms that converge. Since the present 
method involves no shooting, neither of these problems 
occur. 

The differential equations solved are those of section 
II.D in the form with ion current neglected. There are thus 
two parabolic quasilinear differential equations to be 
solved. _ One is for temperature and the other is for 
density. There is an additional equation to determine the 
arc-drop. This is the Integral equation developed in 
section lI.E, equation II.E. . These equations differ from 
those used by yen[8] who neglected diffusion by temperature 
gradient in comparison with diffusion by density gradient 
and obtained convergence by assuming a thermal conductivity 
five times the physical value. The present study obtained 
convergence without making assumptions about the thermal 
conductivity.' Further, more recent work[9] Indicates that 
the neglect of temperature gradients near the walls is not 
valid. 

The time dependent form of these equations is 
progreunmed. Solution proceeds by updating the variables in 
time using the a predictor-corrector method described 
in[60]. Since this Is a diffusion dominated problem, the 
time step must be no greater than the order of the square of 
the spatial distance between mesh points. This implies that 
the major source of errors will be from spatial not temporal 
differencing. 

Analytical tests of the -numerical method proved 
valuable. Testing of the present method against' the special 
case analytical solutions of the energy equation [9] 
revealed that special care should be taken when differencing 
the .terms in the' energy equation. This Is due to the 
rapidly varying thermal conductivity. Taking advantage of 
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the information gained in these tests has greatly reduced 
computational requirements. As yet, no other numerical 
scheme has been tested against such analytical solutions. 

The main result of the comparison with the Lam[9] 
theory has been that careful numerical treatment of the 
thermal conductivity term is very important. This term is: 

3-? 1^ 3T 
By normal differencing techniques one would approximate this 
as: 

'/<;-. ^^. )^- t : - - i 
a. y ^ T 

which is accurate through second order. This formal 
accuracy however is misleading. According to [9], the 
derivatives of temperature with respect to x or "fare nearly 
singular near the walls of a small knudsen number converter. 
In such a case Taylor series expansions are of limited use 
and thus neither is 'second order accuracy.' Following[9], 
the solution to this is found to be a change of variables. 
Using the thermal resistance coordinate '7' the derivatives 
of temperature become well behaved. To take advantage of 
this, the thermal conductivity term re-written in the 
mathematically equivalent form: 

By expanding'^ in a Taylor series and using the values of 
temperature at locations i-l, i, 1+1, the second derivative 
is found to be: 

I 

KU 
where t^- can be found to sufficient accuracy by assuming a 
linear variation in thermal conductivity between mesh 
points. Thus: 

Using this method of differencing, an order of magnitude 
fewer mesh points were needed. 

The first derivative of temperature was likewise 
differenced using the '*y coordinate: 

^ > . - ^ . . ^ '^r-^-H 
r_,-4f >^. j^y-

d^ ' 
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Mesh points were also placed at the walls*. Thus no 
differencing was required to find the first derivatives at 
the walls. These were found from the boundary conditions 
using the values of temperature and density at the walls. 
The second derivative of temperature is thus found: 

where point 1 is on the wall and point 2 is next to the 
wall. This is accurate to first-order. 

The remaining differencing techniques used are common. 
These are documented in the program listing of Appendix A. 
The program is written in the PLl language and was run on 
Princeton's IBM 3033 computer. 

• Actually, of course, they were not located precisely at 
the wall but rather at the plasma-sheath interface where the 
sheath is accurately assumed to have negligible thickness. 
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VI.B Ignited Mode Operation 

Thermionic converter performance will first be 
considered under steady conditions, with and without laser 
enhancement. Most attention will be focused on operation 
below the knee. The difference between the 
classical-kinetics similarity operation and real kinetics 
behavior will be emphasized. The prediction of the 
faster-than-Boltzmann voltage rise will be discussed. This 
section uses terminology defined earlier in I I.E. Lase'r 
enhanced performance is then considered. Finally, rapid 
cooling of the electrons is demonstrated and found 
sufficient for possible recombination lasing. 

The operating conditions chosen to be studied herein 
correspond to a pressure-distance product of pd=l0 torr-mil. 
Further, the pressure was taken to be one torr and thus d 
was ten mill (0.254 mm). The ion-atom momentum transfer 
cross-section was 1(-14) cm2 and the electron-atom 
cross-section was assumed to be one third of that. The 
Richardson current was chosen to be 20 Amps/cm2 which 
corresponds to a Richardson density of 1(13) cm-3. The 
emitter temperature was 1500K. The collector temperature 
was lOOOK. These are fairly typical operating parameters 
for thermionic converters. 

Referring to the nondimensionalization"of section II.D, 
the above stated conditions imply that the parameter Kn is 
given be 0.061 while the characteristic time, t , is 0.017 
microseconds. The electron density was scaled by the 
reference quantity 1(14) cm-3. The nondimensional current I 
is given by the actual current J divided by 24 Amps/cm2. 
The nondimensional Richardson current is thus 0.81. Actual 
temperatures are divided by 1500K to obtain the 
nondimensional temperature T. 

To simplify the interpretation of these results, some 
approximations have been made. As the ionization fraction 
under conditions of present interest is low, electron-ion 
momentum transfer collisions have been neglected. Ion 
emission from the emitter and all emission from the 
collector are neglected. The effect of radiation on the 
energy balance is neglected. As the region above the knee 
of the current voltage curve is not of major interest here, 
the Schottky effect is ignored. The thermal diffusion ratio 
is neglected. Again, these simplifications are made to 
clarify the results. There is no reason why future studies 
should not or could not include such effects if they were of 
interest. 
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For the chosen converter parameters, recombination is 
generally negligible at the knee and below. If also the 
ionization rate constant is assumed independent of density, 
i.e. radiation loss neglected, then the 
colllsional-kinetics similarity holds. The temperature 
distribution becomes independent of the current level in 
this regime. The density is linearly proportional to the 
current. The density rises to a maximum value of about 
twice I, both non-dimensional. The temperatures are near 
3000K. The temperature distribution has hooks at the 
emitter and collector. This distribution of versus is 
shown as the lower graph of figure 50. 

A notable feature is the small size of the collector 
sheath height. It is ̂ c=0.15 (=0.02eV) or less than a tenth 
-Of the electron temperature at the collector sheath edge. 
Such a small sheath height would invalidate approximations 
made in the sheath theory. It would also Indicate that the 
plasma flow near the collector had a significant Mach number 
calling into question some of the plasma approximations. 
Yen [8] found similarly low collector sheath heights using 
an entirely different numerical method. 

In the collisional kinetics ' similarity regrme, the 
arc-drop vd is a constant. this means that the current 
voltage curve rises like a Boltzmann curve. The 
responsibility for the arc-drop can be divided among the 
energy losses at the emitter, at the collector, and to 
Ionization-recombination as discussed In section II.E. 
Computations show that ionization-recombination contributes 
only 0.53 (0.07eV) to the arc-drop. The thermal energy 
exchange between the emitter and the plasma in net adds 
energy to the plasma thereby reducing the arc-drop by 0.83 
(O.lleV). The major responsibility for the arc-drop rests 
on therm&l energy loss at the collector amounting to an 
arc-drop of 3.6 (0.47eV). This gives a total arc-drop of 
-vd=3.3 (0.43eV). In an alternative view, the arc-drop can 
be characterized according to where in the plasma It occurs. 
In this way, most of the arc-drop, 2.4 (O.Blev), is due to 
the difference between emitter and collector sheath heights. 
Only 0.93 (0.12eV) occurs In the plasma itself. 

All this information about the sources of the arc-drop 
can be organized. As found in section VI.E, there are two 
ways of accounting for the arc-drop. One looks at It from 
an energy conservation point of view and locates the energy 
sources and sinks. This Is manifested by equation II.E.7. 
The other is to look at it from the point of view of 
Kirchhoff's law, that is, add the arc-drops from one side to 
the other. As in double-entry accounting, this cem be 
written in two columns which must sum to the Seune total. In 
symbolic form: 
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T.E.C. voltage accounting 

Energy Conservation Kirchhoff's Law 
gain from emission a/j 
less emitter plasma loss -:i.('/jiJ%collector sheath 0(c 
less collector plasma loss -2?{ less emitter sheath -'Xf 
plus volume source A5?/X plasma gain ^'^f 

total: Vo v^ total: v,̂  \^ 

Applying this the the specific case just discussed: 

T.E.C. voltage accounting 

Energy Conservation Kirchhoff's Law 
gain from emission 3,0 1 
less emitter plasma loss -2,1? collector sheath OJ^ 
less collector plasma loss -z.(3 less emitter sheath -:2S7 
plus volume source -o.SJ plasma gain -of]Z 

total: v« -3.33 total: Vr -J.J3 

From this, it is seen that the major energy loss is the 
electron flow into the collector. The major voltage drop is 
the emitter sheath. The total above, v , is the difference 
between the voltage at the top of the collector sheath and 
at the top of the emitter sheath. With the assumed 
Richardson current, this implies an electrode to electrode 
voltage difference, v , which is lessened by the amount of 
the double sheath rise,A^, yielding an overall voltage drop 
of -3.25. The vacuum ideal voltage rise for this case is 
V =0.41 and thus the real converter is 3.74 (0.48 V) less 
than this. Because of the classical-kinetics similarity, 
the values in the table above remain unchanged throughout 
the double-sheath regime. 

These results compare well with the isothermal-ignition 
theory presented in sections lI.E and II.F. This theory 
predicted a temperature of 2.21 (3300K) while the numerical 
results indicate that the electron temerature varies from a 
peak of 2.22 on the emitter side to a minimum at the 
collector of 1.81 (2700K). This theory predicted an 
ionization voltage loss,i^>Q/I, of 0.48 while the computer 
solution gave a value of 0.53. The nonisothermal computer 
solution gave a superior voltage performance, Vj=-3.33 
against -3.58 for isothermal theory. This improved 
performance is principally because isothermal theory 
overestimates the electron energy loss rate at the 
collector. The maximum density predicted by isothermal 
theory was 0.6 (6(13) cm-3) and this is similar the computed 
result of 0.9 (9(13) cm-3). 
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Under the present assumptions, the collisional 
ionization kinetics similarity solution will fail for one of 
two reasons as current is increased. Both of these happen 
because the density rises with rising current. For one, 
this failure can occur if the density rises to a level for 
which recombination becomes important. It could also fail 
if the plasma density rises to a level where the 
double-sheath is suppressed. Which failure occurs first 
depends on the relative sizes of the Saha density at the 
ignition temperature and the emitter Richardson density. At 
the pressure-spacing product, pd, chosen for the present 
study, the double-sheath is suppressed first. This occurs 
at I=.54 (13 A/cm2). Above this the arc-drop rises rapidly, 
the sheath heights rise, and ion current eventually becomes 
more important. For a sample case of 1=0.7 (17 Amps/cm2), 
the voltage accounting is: 

T.E.C. voltage accounting 

Energy Conservation 
gain from emission Z1.3H 
less emitter plasma loss -0.7S' 
less collector plasma loss-3 7'/ 
plus volume source -2.f7 

total: ^̂  'S.o5 total: v̂;; -S^.oS 

Again, t^is is for the case where collisional kinetics is 
assumed and C7.sO.3i. It is seen that there are major 
changes between this single sheath case and the - preceding 
double sheath case. First, the ionization voltage drop has 
increased six-fold and is now a major portion of the overall 
arc-drop. Secondly, the sheath drops are much larger. In 
fact, if they were any larger, ion current would become 
important. The total voltage difference is -5.05 (0.65 V ) . 
The vacuum ideal voltage difference is 0.15 (0.02 V) and 
thus the actual drop is poorer by 5.21 (0.67 V ) . These 
numbers agree well with the trends given by isothermal 
theory as before The major difference however is that 
isothermal theory underestimates the density by a factor of 
two in this case. As a result it underpredicts the 
ionization voltage loss. As this term is a significant part 
of the energy loss in this single sheath regime the 
predicted voltage difference, v«, is too small, being -4.4 
versus -5.05 as shown above. 

The above calculations were all done with collisional 
kinetics for ionization-recombination. If (real) 
collisional-radiative kinetics are used some different 
behavior results. First, the similarity behavior ceases. 
As discussed earlier, as the current decreases, the density 
decreases, the ignition temperature rises, and thus the 
arc-drop rises. This causes the faster than Boltzmann rise 

Kirchhoff's Law 

collector sheath 3-5/ 
less emitter sheath --*7. /1 
plasma gain Q <^q 

http://C7.sO.3i
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of the current voltage characteristic. This manifests 
itself through decreased energy inflow at the emitter and 
increased energy loss at the collector. This appears both 
as increased sheath loss and increased plasma drop. 

This effect appeared in the numerical calculations done 
using real ionization and recombination rate constants as 
described in chapter IV. Again consider the case of 1=0.5. 
With real collisional-radiative kinetics, the voltage 
accounts become: 

T.E.C. voltage accounting 

Energy Conservation Kirchhoff's Law 
gain from emission 3.<52 
less emitter plasma loss -2.15 collector sheath O.// 
less collector plasma loss '3.53 less emitter sheath -ii.SO 
plus volume source -o.5"S plasma gain -C. ̂*7 

total: v̂  ' 3.-3 I total: v^ -3.^1 

This case has a voltage drop 3.54 (0.46 V) greater than the 
vacuum ideal case. Now, as the current level is reduced, 
the ignition temperature rises and reduced performance is 
found. For the case 1=0.02, again with real kinetics, there 
results: 

T.E.C. voltage accounting 

Energy Conservation Kirchhoff's Law 
gain from emission s!^^ 
less emitter plasma loss -'X'2H collector sheath 0.3 5 
less collector plasma loss-3.'?'7 less emitter sheath -2.'1M 
plus volume source -OSH plasma gain -|.22 

total: VQ -3-6̂ 1 total: v^ -3.'^ \ 

This voltage drop is 4.20 (0.54 V) greater than the vacuum 
ideal voltage. This is seen to arise from increased energy 
outflows from the plasma to the walls as well as reduced 
energy inflow from emission at the emitter. The sheath 
heights and the plasma voltage drops are all larger. 

All these results compare well with the 
isothermal-ignition theory predictions. For 1=0.5, the 
predicted temperature was 2.16 (3240K) while in the computed 
solution the temperature ranged from 2.18 to 1.77. The 
predicted voltage difference, w=-3.46, was larger the the 
actual drop of -3.21 due to overestimation of the collector 
temperature in the isothermal model. As the current is 
reduced from 1=0.5 to 1=0.02, the isothermal predicted 
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temperature rises greatly to a value of 2.54 (3800K). The 
numerical temperatures were close to this prediction, having 
a maximum of 2.46 and a minimum of 1.98. The predicted 
arc-drop was 4.56 (0.59 V), again larger than the numerical 
calculation of -3.81 for the same reason as before. 

Thus, the faster-than-Boltzmann rise predicted in 
chapter II is verified in the numerical calculation. While 
the two dimensional effects to which this rise is commonly 
attributed may or may not be significant, they are not the 
only possible cause. The rise is explained presently by the 
deterioration of ionization rates at lower electron 
densities, and the magnitude of this effect is the same 
order as seen experimentally. Note though, that additional 
effects may also contribute to this rise but have been 
ignored here. For one, radiation power loss, commonly 
neglected as small at high electron densities, can have em 
observable effect at the low electron densities discussed 
here. Secondly, as the density decreases further, 
non-Kaxwellian electron energy distribution effects start to 
play a role. Again, these are all effects which degrade 
performance and become significant at lower electron 
densities. 

The performance of laser enhanced thermionic conversion 
can be analyzed with the present computer program. The 
important factor to be considered here is how much 
additional power would a laser enhanced thermionic converter 
produced over an unenhanced converter, and how does this 
power compare with the laser input power used. The question 
of how efficiently the laser light can be produced will be 
considered subsequently. 

One laser enhancement frequency is considered here. 
This corresponds to the Cs 7s-7p infrared transition. It is 
supposed that the thermionic plasma is subjected to strong 
radiation on this wavelength. From the 
ionization-recombination theory discussed in chapter IV, new 
rate constants are calculated and employed in the present 
plasma solution. 

The counter-intuitive result of isothermal theory for 
laser enhancement is confirmed. The act of injecting laser 
energy into the plasma lowers the electron temperature. 
Since it lowers the electron temperature, it lowers the 
arc-drop. 

For numerical study of 7s-7p enhancement, it was chosen 
to study a current near the knee, 1=0.5. With the 
enhancement, the temperature dropped about 0.09 (120K) while 
the density rose eOsout 7 per cent. The temperature 
distributions with and without the enhancement are shown in 
figure 53. The density distributions with and without 
enhancement are displayed in figure 54. The overall effect 
that this had on the arc-drop Is shown in the voltage 
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accounts for the enhanced converter: 

T.E.C. voltage accounting 

Energy Conservation Kirchhoff's Law 
gain from emission 3.0^ 
less emitter plasma loss -3,|(̂  collector sheath 0.2P 
less collector plasma loss -3.35 less emitter sheath -2-3^ 
plus volume source -Q'/'? plasma gain -o.s7 

total: v̂  -25V total: Vo -a.'̂ S 

Comparing this with the results given previously for the 
unenhanced case, a reduction of the energy loss at the 
collector is seen. There is also a slight reduction in the 
ionization energy loss. Further, the collector sheath 
height has increased while the emitter sheath height has 
dropped. Overall, y^ has declined by .19 (24 mV) and the 
total arc-drop, v-̂ , declines by about the same amount. To 
obtain this arc-drop some laser power had to be supplied. 
This power is appropriately measured by the size of the 
voltage drop through which the output current of the 
thermionic converter would need to pass in order to create 
it. This voltage drop is called the Rasor equivalent drop. 
The Rasor equivalent drop for the laser power supplied to 
the plasma is 0.03 (8 mV). Thus three times as much power 
is produced by laser enhancement as is consumed by it. This 
unfortunately means that the production of the laser light 
need to be fairly efficient 

No common laser would be sufficiently efficient to make 
this an overall energy producing process. For this purpose, 
however, an uncommon laser has been designed. Unlike common 
lasers which use electricity and produce heat as a 
byproduct, the presently proposed laser uses heat and 
produces electricity as a byproduct. The principal behind 
this laser is to use a thermionic converter operating at 
some high current level and suddenly reduce the current. 
When this happens the electron temperature is quickly 
decreased so that strong recombination occurs and a 
recombination laser becomes possible. A system of 
thermionic converters can thus be imagined wherein some 
would be acting as recombination lasers while others would 
be benefiting from laser enhanced operation. 

The overall efficiency of this recombination laser will 
be determined by factors other than the characteristics of 
the laser. As was discussed in chapter II the laser power 
is only a small fraction of the power into ionization. 
Further, the power into ionization is a fraction of the 
other powers involved. Thus the efficiency of a 
recombination laser using an unsteady thermionic converter 
will be determined by the behavior of an unsteady thermionic 
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converter and not the behavior of the laser. The efficiency 
of an unsteady thermionic energy conversion cycle is a topic 
of current research and not addressed here. 

To demonstrate that an unsteady thermionic converter 
can produce conditions under which recombination lasing is 
possible, a time dependent simulation of T.E.C. performance 
was computed. In the sample case chosen, the thermionic 
converter is initially in steady state at a current of 
1=0.5. This is reduced to 1=0.1 and held constant. It is 
found, as expected, that the temperature drops much more 
rapidly than the density. Also, the temperature drops to a 
level very close to the emitter wall temperature. This is 
illustrated by the plot of centerline,T=0.5, temperature 
and density versus time shown in figure 55. According to 
the results of chapter IV, most of the plasma is suitable 
for recombination lasing during this decay. A sample 
population distribution of the atomic levels in Cesium for a 
time 0.5 microseconds after the current decreases is shown 
in figure 56. A 7p-7s population inversion is indicated. 
Thus the ability of an unsteady thermionic converter to 
produce the conditions necessary for recombination lasing is 
confirmed. A difficulty in the computation occurs at 3.1 
microseconds after the current is reduced. This is seen in 
figure 57 where the sheath heights are plotted against time. 
The emitter sheath height is seen to decline initially, 
reach a minimum at 0.5 microseconds and then rise. The 
collector sheath height behaves differently. It quickly 
rises to a peak after the current is dropped and then 
declines steadily. It is still steadily declining when it 
reaches"zero'signifying that the electron density at the 
collector plasma-sheath interface is insufficient to supply 
to required current without invalidating the underlying 
assumptions of the differential equations developed in 
chapter II. Thus further computation cannot be performed 
within the context of the present physical model. 

In summary, computational solution of the thermionic 
converter plasma equations has been presented herein for 
steady and unsteady operation. These results give density 
and temperature distributions within the thermionic 
converter as well as the overall current-voltage 
characteristics . The faster-than-Boltzmann rise predicted 
in Chapter II has been verified. Overall, the results agree 
quite well with the trends predicted by simple 
ignition-isothermal theory. Further, laser ionization 
enhancement of thermionic converter operation has been 
verified. The ability of unsteady thermionic converter 
operation to generate the condition necessary for 
recombination lasing is confirmed. 



VII Summary and Conclusion 

Many aspects of thermionic energy conversion are 
examined in the preceding chapters. The ionization arid 
recombination kinetics of Cesium are studied and computed. 
A new result, the equivalent circuit, was obtained. The 
effects of ionization and recombination kinetics on 
thermionic converter plasma dynamics are considered using 
two methods. A simple isothermal model is developed in 
Chapter II. This explains thermionic behavior and predicts 
trends. To verify such predictions, a numerical computer 
code is developed which is capable of solving for unsteady 
as well as steady thermionic converter behavior. All these 
techniques are applied to the study of laser ionization 
enhancement and the possibility of a Cesium thermionic 
recombination laser. 

Towards a maximizing physical insight while minimizing 
unnecessary mathematical complications, a simple isothermal 
model is developed. This model which combines simplicity 
with closure highlights the physical features on the 
thermionic converter plasmadynamics. A number of 
interesting results were obtained. For one, the double 
sheath obstruction at the emitter was found to be beneficial 
to thermionic performance. This is a result of the 
obstruction's reducing thermal losses. Secondly, energy 
addition to the plasma is shown to reduce the electron 
temperature. The main features of this model are the 
generalized ignition condition, II.F.6, the energy balance 
condition, II.E.13, and the arc drop equation," II.E.11. As 
discussed in section II.F, this model can be closed and 
solved graphically. 

One of the immediate implications of the isothermal 
model is that the faster than Boltzmann rise of the current 
voltage characteristic can be explained in a one-dimensional 
model. This was shown to be due to lower ionization rate 
constants that exist at lower electron densities due to 
increased radiative loss. 

Because of the importance of elementary electron-atom 
inelastic collision cross-sections on the overall 
ionization-recombination rate constants, these were studied. 
As summarized in Chapter III, it is found that cross-section 
theories used in earlier calculations had serious flaws. 
Using recent experimental evidence, a different set of 
cross-sections was chosen. Thus an improved set of Cesium 
ionization and recombination rate coefficients could be 
computed and were tabulated. 
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The effects of the complete system of electron-atom 
inelastic collisions on the ionization-recombination problem 
are shown to reduce to a system nearly as simple as the 
well-known "one-quantum" approximation. This reduction is 
shown to be exact for collisional rates of the type chosen 
in Chapter III. The reduced system is illustrated in terms 
of an equivalent circuit in figure 6. As a consequence the 
effects of other processes such as recombination lasing, 
resonant atom-atom collisions, and resonant radiation 
enhanced ionization can be analyzed simply, analytically, 
and quantitatively. A number of well-known 
ionization-recombination approximations are limiting cases 
of this theory. These include the one-quantum, diffusion, 
bottleneck, and Mansbach-Keck models as well as others 
discussed in section V.B. The resonant radiation ionization 
enhancement process is analyzed and it is shown why large 
enhancements are possible. A simple expression for the 
photon efficiency of this process is derived in section V.G. 
A Cesium recombination laser is predicted and the magnitudes 
for the population inversion and the laser efficiency are 
derived. 

To verify the trends predicted by isothermal theory, a 
finite difference computer, program is constructed. It is 
capable of solving for both unsteady and steady thermionic 
converter behavior including possible laser ionization 
enhancement or atomic recombination lasing. This method of 
solution.contrasts with previously used marching or shooting 
schemes which suffer from exponentially growing error terms. 

The contrast between the results of the complex 
computer program and the simple isothermal theory is great. 
The predicted trends from both approaches agreed for the 
cases studied herein. It is tempting to conclude that the 
complications of a complete numerical solution of the 
governing differential equations is unnecessary since 
isothermal theory works nearly-as "well. However, there is 
as yet no method for estimating the error in the isothermal 
approximation. Lacking such an estimate, isothermal theory 
cannot stand on its own. It does remain useful as an 
explamatory tool-. 

Using the above developments, a proposal to improve 
thermionic converter performance using laser radiation is 
considered. In this proposed scheme, laser radiation 
impinging on a thermionic plasma enhances the ionization 
process. The consequences of this are that the ignition 
temperature is reduced and that implies that the ohmic 
losses will decline since less heating is required to 
maintain the new lower electron temperature. For the ohmic 
losses to decline, the density will need to rise. The 
reduced electron temperature means a reduced arc-drop and 
thus superior performance. A source for such radiation may 
possibly a Cesium recombination laser operating in a 
different thermionic converter. 
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It appears that such a system may be energy, efficient 
overall. Laser ionization enhancement was found-to be quite 
energy effective, as discussed in sections II.H, V.G, and 
VLB. The increase in electrical power output is at least 
twice the laser power input. It was also found that the 
necessary laser light could be produced during unsteady 
operation of a thermionic converter, as considered in II.I, 
V.H, and VLB. This laser is infrared with a photon energy 
of 0.41 eV. The efficiency of this laser, which operates on 
the Cesium 7p-7s transition, could not be "established under 
the present physical model. Ionization enhancement on the 
7p-7s frequency unfortunately saturates when the reduction 
on the arc-drop is" only the order of ten millivolts. This 
effect is likely too small to be of commercial importance. 

Although the effect of the 7p-7s laser studied is not 
large, these studies do indicate however that laser 
enhancement has a great potential for . reducing or 
eliminating the plasma arc-drop. To realize such gains, 
higher frequency resonant laser sources are needed. Thus 
further studies should be directed towards finding superior 
laser sources. 
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Fi9ure is This diasram (not to scale) illustrates the 
components of a thermionic converter. Shown are two 
electrodes* the emitter and collector. Thev are subjected 
to a Cesuim sas environment in a bell Jar. Heat is supplied 
to the emitter which emits electrons thermionical1 v. In the 
narrow 9^f between rhe emitter and collector these electrons 
are transported throush a plasma to the collector. In part. 
the electrons are transporting heat which is rejected from 
the collector as shown. The traversal of electrons also 
indicates that a current is flowing. Due to the work 
function difference between the electrodes* this current 
shows UP as a power output. The electrodes are typical1Y 
one sqaure centimeter in area but less than one millimeter 
apart. 
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Figure 2s Shown are the voltages in a thermionic converter. 
The upper diagram gives the voltages in the dimensional form 
jhile the lower diagrams contains their nondimensional 

nterparts. 
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Figure 3: Shown are plots of ignition temperature and 
energy balance temperature against maximum electron density 
in units of 1(14) cm-3. For this plot of ignition 
temperature. collisional kinetics were assumed. The lower 
line for the ignition temperature was computed usins 
C •=0.46. The upper assumed a value of 0.31. The energy 
balance temperature is shown for three current levels. 
Ie0.02. 0-5. and 0.7. This figure is discussed in section 
II.F. 



Figure 4: Shown are plots of ignition temperature and 
energy balance temperature against maximum electron density 
in units of 1(14) cm-3. For this plot of ignition 
temperature. collisional-radiative kinetics were assumed. 
The energy balance temperature is shown for three current 
levels. 1=0.02. 0.5. and 0.7. This figure is discussed in 
section II.F. 
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Figure 6! The equivalent circuit for collisional 
transitions between atomic levels is shown. This is based 
on the theory developed in chapter V. 
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FIGURK 9I THE THOMSON RECOMBINATION RATE COEFFICIENT IS SHOWN FOR ELECTRON 
TEMPERATURES RANGING FROM i500K TO 4500^ AND FOR ELECTRON DENSITIES FROM 
1.0^^12 TO 1.0=15 CM-3 !••< LOGARITHMIC STEPS, THIS TABLE IS THE RESULT OF 
A COLLISIONAl RADIATIVE CALCULATION FOR CESIUM INVOLVING 37 DISCRETE 
LEVELS AND EMPLOYING MANSBACH-KECK COLLISIONAL RATE CONSTANTS, 
THIS TABLE IS DISCUSSED IN SECTION IV.C OF THE TEXT. 
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I 

FIGURE 9: THE RECOMBINATION RATE CONSTANT 3, IN CM^/SEC, IS SHOWN FOR VARIOUS ELECTRON 
TEMPERAUTRES AND DENSITIES, THIS TABLE IS DISCUSSED IN SECTION^ IV,C, 



5;S^B"i?ii?g5.'^io2^SSSSf"sx=i3i7ISi gri x;5?IA5rS!vS^Xof!35t;5g!-SSi :OT B«n... 

I 
6-38'fr 6-38 *t' 6-33*17 6-a3*ir 6-30 "fr 6-3^*8 6-33*8 6-a9*3 6-aZ.*l 6-3l*ll0091r 

....... I 
6-36*3 6-38*3 6-38*3 6-3^*3 6-39*3 6-3fr*3 6-a0*3 6-39*1 6-30*1 01-39*9I093tr 

I 
6-38*1 6-38*1 6-3^*1 6-3Z.*l 6-39*1 6-39*1 6-a3*l 01-36*8 01-38*9 01-39*8lOOOtr 

I 
6-30*1 6-30*1 6-30*1 01-3^*6 01-31*6 01-31*8 01-39*9 01-3il*fr 01-30*8 01-38* 1109ii8 

I 
01-38*9 01-38*9 01-33*9 01-30*9 01-3̂*tr 01-3l*fr 01-33*8 01-^3*3 01-3fr*l 11-30*810058 

I 
01-3fr*3 01-afr*3 01-air*3 01-38*3 01-31*3 01_38*1 01-3fr*l 11-39*6 11-3^*9 11-33*810938 

I 
11-3^*6 11-39*6 ll-3l7*6 11-30*6 11-33*8 11-30*^ 11-33*9 ll-afr*e 11-30*3 11-31*110008 

I 
11-33*8 11-31*8 11-31*8 11-36*3 11-39*3 11-33*3 11-39*1 11-30*1 31-3^*9 31-30*8109^3 

I 
31-30*8 31_36*ii 31-3Z.'̂ 31_a8*il 31-39*9 31-3tr*9 31-38*8 31_3l7*3 31-38*1 81-39*910093 

I 
31-39*1 31-3lr*l 31-afr'l 31-38*1 31-a3*l ei-3fr*6 81-39*9 81-36*8 81-30*3 ^1-36*610933 

.... I 
81-3^*1 81-39*1 81-39*1 81-39*1 81-38*1 81-30*1 1rl-30*̂ 1rl-30*l7 1/1-30*3 91-39*610003 

I 
91-38*6 91-321*6 91-38*6 91-3^*8 91-39*^ 91-38*9 91-36*8 91_3l*3 91-30*1 91-3̂*tr 109̂1 

I 
91-31*3 91-31*3 91-30*3 91-38*1 91-39*1 91-33*1 Zl-38*il £l-33*tr ^1-36*1 81-38*810091 
-————————-—— — —— —— ———————+— 
9l30*l frl39*fr 1rl33*3 ^%aO'\ 8l39*1r 8133*3 8l30*l 3139*1/ 3l33*3 31a0*l I 

y 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2Ei3 4.6E13 1.0Ei4 2.2E14 4.6E14 1.0=15 

15001 
1 

17501 
1 

20001 
1 

22501 
1 

25001 
1 

27501 
1 

30001 
1 

32501 
1 
1 

35001 
1 

37501 
1 

1 
40001 

1 

42501 
1 

45001 
1 

48.54 

48.54 

48.30 

47.88 

47.34 

46.72 

46.04 

45.32 

44.57 

43.79 

43.00 

42.21 

41.41 

17.12 

17.31 

17.42 

17.46 

17.46 

17.41 

17.33 

17.22 

17.10 

16.95 

16.78 

16.60 

16.41 

6.79 

6.90 

6.99 

7.06 

7.10 

7.14 

7.16 

7.16 

7.16 

7.15 

7.13 

7.09 

7.06 

3.25 

3.31 

3.35 

3.39 

3.42 

3.45 

3.47 

3.49 

3.50 

3.50 

3.51 

3.51 

3.50 

1.94 

1.96 

1.99 

2.01 

2.02 

2.04 

2.05 

2.06 

2.07 

2.07 

2.08 

2.08 

2.08 

1.41 

1.42 

1.43 

1.44 

1.45 

1.46 

1.46 

1.47 

1.47 

1.48 

1.48 

1.48 

1.48 

1.19 

1.19 

1.20 

1.20 

1.20 

1.21 

1.21 

1.21 

1.22 

1.22 

1.22 

1.22 

1.22 

1.08 

1.09 

1.09 

1.09 

1.09 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

1.10 

1.04 

1.04 

1.04 

1.04 

1.04 

1.04 

1.04 

1.05 

1.05 

1.05 

1.05 

1.05 

1.05 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

1.02 

FIGURE 111 THE RUANTITY Pg WHICH INDICATES THE DEPARTURE OF STEADY-STATE ELECTRON 
FROM SAHA DUB TO RADIATIVE LOSS. THIS IS A NONDIMENSIONAL RATIO OF THE 
RECOMBINATION COEFFICIENT TO THE IONIZATION COEFFICIENT, THIS TABLE IS 
DISCUSSED IN SECTION IV.C. 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2E13 4.6^13 1.0E14 2.2E14 4.6E14 1.0E15 

15001 
1 
1 

17501 
1 
1 

20001 
1 

22501 
1 
1 

25001 
1 
1 

27501 
1 
1 

30001 
1 

32501 
1 

35001 
1 
1 

37501 
1 
1 

40001 
1 

42501 
1 

45001 

0.013 

0.021 

0.026 

0.031 

0.037 

0.044 

0.052 

0.0&2 

0.072 

0.083 

0.095 

0.108 

0.122 

0.041 

0.047 

0.054 

0.063 

0.073 

0.034 

0.096 

0.110 

0.124 

0.139 

0.155 

0.171 

0.187 

0.083 

0.097 

0.108 

0.120 

0.134 

0.150 

0.166 

0.183 

0.201 

0.218 

0.235 

0.251 

0.266 

0.165 

0.175 

0.183 

0.203 

0.219 

0.236 

0.254 

0.272 

0.289 

0.305 

0.319 

0.331 

0.341 

0.256 

0.266 

0.278 

0.292 

0.307 

0.323 

0.338 

0.353 

0.366 

0.377 

0.385 

0.392 

0.397 

0.336 

0.344 

0.353 

0.364 

0.376 

0.388 

0.400 

0.410 

0.418 

0.424 

0.428 

0.430 

0.430 

0.390 

0.396 

0.402 

0.410 

0.419 

0.428 

0.436 

0.443 

0.448 

0.451 

0.451 

0.450 

0.448 

0.421 

0.425 

0.429 

0.435 

0.442 

0.449 

0.456 

0.461 

0.464 

0.464 

0.463 

0.460 

0.456 

0.437 

0.440 

0.443 

0.448 

0.454 

0.460 

0.465 

0.469 

0.471 

0.471 

0.469 

0.465 

0.461 

0.444 

0.447 

0.450 

0.454 

0.459 

0.465 

0.470 

0.473 

0.475 

0.474 

0.472 

0.468 

0.463 

FIC?URE 12: THE NONDIMENSIONAL. RATIO Cy/p IS SHOWN FOR VARIOUS ELECTRON TEMPERATURES 
AND DENSITIES. THIS SHOWS THE EFFECT OF RADIATION OR THE IONIZATION RATE 
CONSTANT. THIS IS DISCUSSED IN SECTION l^ .<Z, 
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I 1.0E12 2.2E12 4.6E12 1.0E13 2.2E13 4.6Ei3 1.0E14 2.2E14 4.6E14 l.OElS 

15001 
1 

17501 
1 
1 

20001 
1 

22501 
1 

25001 
1 

1 
27501 

1 
1 

30001 
1 

32501 
1 
1 

35001 
1 
1 

37501 
1 
1 

40001 
1 
1 

42501 
1 

45001 
1 

1.022 

1.034 

1.048 

1.063 

1.078 

1.092 

I . IOS 

1.117 

1.126 

1.130 

1.131 

1.126 

1.116 

1.015 

1.023 

1.033 

1.043 

1.053 

1.062 

1.069 

1.073 

1.073 

1.063 

1,057 

1.040 

1.018 

1.009 

1.014 

1.019 

1.025 

1.030 

1.034 

1.034 

1.029 

1.019 

1.003 

0.980 

0.951 

0.917 

1.005 

1.007 

1.010 

1.013 

1.014 

1.011 

1.005 

0.992 

0.972 

0.945 

0.913 

0.875 

0.833 

1.002 

1.004 

1.005 

1.005 

1.002 

0.996 

0.983 

0.964 

0.937 

0.904 

0.865 

0.821 

0.776 

1.001 

,1.002 
1 

1.002 

1.000 

0.996 

0.986 

0.970 

0.947 

0.916 

0.878 

0.836 

0.790 

0.743 

1.000 

1.001 

1.000 

0.993 

0.992 

0.981 

0.963 

0.938 

0.904 

0.865 

0.821 

0.774 

0.726 

1.000 

1.000 

0.999 

0.997 

0.991 

0.979 

0.960 

0.933 

0.899 

0.853 

0.813 

0.765 

0.717 

1.000 

1.000 

0.999 

0.996 

0.990 

0.977 

0.958 

0.931 

0.896 

0.855 

0.809 

0.762 . 

0.713 

1.000 

1.000 

0.999 

0.996 

0.989 

0.977 

0.957 

0.929 

0.894 

0.853 

0.808 

0.760 

0.711 

FIGURE 13s THE V» COEFFICIENT IS SHOWN FOR LEVEL 6^ 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2E13 4.6E13 1.0ei4 2.2E14 4.6E14 1.0E15 
~ — + -_̂ «. 
15001 0.0001 

I 
17501 0.0006 0.0005 0.0004 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 

I 
20001 0.0038 0.0028 0.0022 0.0018 0.0015 0.0014 0.0013 0.0013 0.0012 0.0012 

I 
22501 0.0157 0.0113 0.0085 0.0067 0.0056 0.0050 0.0046 0.0044 0.0043 0.0043 

I 
25001 0.0487 0.0341 0.0249 0.0191 0.0155 0.0134 0.0122 0.0116 0.0114 0.0112 

I 
27501 0.1230 0.0839 0.0594 0.0441 0.0348 0.0294 0.0265 0.0251 0.0244 0.0240 

I 
30001 0.2653 0.1765 0.1214 0.0874 0.0670 0.0555 0.0494 0.0464 0.0449 0.0443 

I 
32501 0.5064 0.3290 0.2199 0.1537 0.1146 0.0930 0.0819 0.0764 0.0738 0.0725 

I 
35001 0.8780 0.5572 0.3621 0.2455 0.1784 0.1422 0.1237 0.1148 0.1105 0.1085 

I 
37501 1.4077 0.8726 0.5514 0.3631 0.2574 0.2016 0.1736 0.1601 0.1538 0.1508 

I 
40001 2.1162 1.2811 0.7870 0.5038 0.3439 0.2689 0.2294 0.2106 0.2017 0.1975 

I 
42501 3.0135 1.7813 1.0644 0.6630 0.4493 0.3413 0.2888 0.2639 0.2521 0.2467 

I 
45001 4.0982 2.3651 1.3754 0.8351 0.5549 0.4161 0.3494 0.3180 0.3032 0.2964 

FIGURE 14: THE V COEFFICIENT IS SHOWN FOR LEVEL (^P 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV.C, 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2E13 4.6E13 1.0E14 2.2E14 4.6E14 1.0E15 
— 4 — — — 

15001 0.4539 0.6394 0.7907 0.8896 0.9452 0.9736 0.9875 0.9941 0.9972 0.9987 
I 

17501 0.4495 0.6337 0.7851 0.8855 0.9425 0.9720 0.9865 0.9934 0.9966 0.9982 
I 

20001 0.4459 0.6283 0.7794 0.8806 0.9389 0.9693 0.9842 0.9914 0.9947 0.9963 
I 

22501 0.4428 0.6230 0.7730 0.8745 0.9333 0.9640 0.9792 0.9864 0.9893 0.9914 
I 

25001 0.4399 0.6175 0.7655 0.8660 0.9242 0.9545 0.9694 0.9764 0.9798 0.9813 
I 

27501 0.4371 0.6113 0.7561 0.8539 0.9100 0.9388 0.9528 0.9594 0.9625 0.9639 
I 

30001 0.4339 0.6040 0.7440 0.8371 0.8893 0.9155 0.9280 0.9338 0.9365 0.9377 
I 

32501 0.4302 0.5950 0.7284 0.8148 0.8616 0.8842 0.8946 0.8994 0.9016 0.9026 
I 

35001 0.4257 0.5840 0.7089 0.7867 0.8268 0»8452 0.8533 0.8569 0.8586 0.8593 
I 

37501 0.4200 0.5706 0.6853 0.7533 0.7859 0.7999 0.8057 0.8082 0.8093 0.8098 
I 

40001 0.4130 0.5546 0.6579 0.7153 0.7406 0.7503 0.7540 0,7554 0.7561 0.7563 
I 

42501 0.4046 0.5361 0.6273 0.6741 0.6925 0.6985 0.7004 0.7010 0.7012 0.7013 
I 

45001 0.3946 0.5154 0.5943 0.6312 0.6435 0.6465 0.6469 0.6468 0.6467 0.6467 
I 

FZaUMK 151 THK V* COEFFICIENT IS SHOWN FOR LEVEL 5D 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV,C, 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2ei3 4.6E13 1.0E14 2.2E14 4.6E14 1.0E15 
+ • 

15001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
I 

17501 0.0005 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 
I 

20001 0.0027 0.0028 0.0028 0.0026 0.0025 0.0024 0.0024 0.0023 0.0023 0.0023 
I 

22501 0.0099 0.0102 0.0097 0.0088 0.0082 0.0077 0.0074 0.0073 0.0072 0.0072 
I 

25001 0.0282 0.0282 0.0260 0.0232 0.0207 0.0191 0.0182 0,0178 0.0175 0.0174 
I 

27501 0.0662 0.0647 0.0582 0.0503 0.0439 0.0396 0.0372 0.0360 0.0354 0.0351 
I 

30001 0.1347 0.1286 0.1127 0.0950 0.0807 0.0714 0.0663 0.0636 0.0623 0.0617 
I 

32501 0.2451 0.2287 0.1955 0.1603 0.1329 0.1155 0.1059 0.1010 0.0987 0.0975 
I 

35001 0.4078 0.3720 0.3100 0.2476 0.2004 0.1712 0.1553 0.1473 0.1435 0.1416 
I 

37501 0.6311 0.5626 0.4568 0,3555 0.2814 0.2365 0.2126 0.2006 0.1949 0.1922 
I 

40001 0.9198 0.8009 0.6336 0.4806 0.3725 0.3087 0.2750 0.2584 0.2505 0.2467 
I 

42501 1.2744 1.0835 0.8352 0,6181 0.4699 0.3844 0.3400 0.3182 0.3078 0.3029 
I 

45001 1.6915 1.4038 1.0547 0.7626 0.5696 0.4608 0.4049 0.3777 0.3648 0.3587 
I 

FIGURE 16: THE V COEFFICIENT IS SHOWN FOR LEVEL 5D 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 



r^ 

I 1.0E12 2.2E12 4.6E12 1,0E13 2.2Ei3 4.6E13 1.0ei4 2.2E14 4.6E14 1.0E15 
+ - — — — — — —. « _._ 

15001 0.1604 0.3200 0.5254 0.7145 0.8466 0.9230 0.9627 0.9822 0.9914 0.9958 
I 

17501 0.1585 0.3160 0.5199 0.7092 0.8424 0.9201 0.9605 0.9804 0.9899 0.9943 
I 

20001 0.1574 0.3130 0.5150 0.7037 0.8373 0.9155 0.9564 0.9765 0.9861 0.9906 
I 

22501 0.1567 0.3104 0.5101 0.6972 0.8302 0.9081 0.9489 0.9689 0.9785 0.9830 
I 

25001 0.1563 0.3081 0.5047 0.6889 0.8197 0.8961 0.9360 0.9556 0.9650 0.9693 
I 

27501 0.1560 0.3056 0.4983 0,6778 0.8045 0.8781 0.9163 0.9349 0.9438 0.9480 
I 

30001 0.1556 0.3026 0.4901 0,6631 0,7836 0.8529 0.8886 0.9059 0.9142 0.9180 
\ 

32501 0.1551 0.2988 0.4797 0.6440 0.7566 0.8204 0.8528 0.8686 0.8760 0.8795 
I 

35001 0.1543 0.2939 0.4668 0.6206 0.7237 0.7811 0.8100 0.8239 0.8305 0.8336 
I 

37501 0.1530 0.2879 0.4513 0.5931 0,6859 0,7366 0.7618 0.7739 0.7795 0.7822 
I 

40001 0.1512 0.2805 0.4333 0.5623 0,6446 0.6887 0,7104 0,7207 0,7255 0.7277 
I 

42501 0.1488 0.2719 0.4133 0.5293 0.6014 0.6393 0.6578 0,6665 0,6705 0.6724 
I 

45001 0.1459 0.2621 0.3918 0.4951 0,5578 0.5902 0.6058 0,6132 0.6166 0,6182 
I 

FIGURE 17: THE V COEFFICIENT IS SHOWN FOR LEVEL JS 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV.C. 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2ei3 4.6E13 1.0E14 2.2E14 4.6E14 1.0E15 
1 

15001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 
I 

17501 0.0004 0.0006 0.0009 0.0011 0.0014 0.0016 0.0017 0,0017 0,0017 0.0018 
I 

20001 0.0015 0.0023 0.0032 0.0039 0.0045 0.0049 0.0052 0.0053 0.0054 0.0054 
I 

22501 0.0047 0.0069 0.0090 0.0107 0.0117 0.0124 0.0127 0.0129 0.0130 0.0131 
I 

25001 0.0119 0.0170 0.0215 0.0244 0.0258 0.0264 0.0266 0.0267 0.0268 0.0268 
I 

27501 0.0261 0.0363 0.0445 0.0486 0.0496 0.0493 0.0489 0.0486 0.0485 0.0484 
I 

30001 0.0503 0.0691 0.0820 0.0865 0.0854 0.0828 0.0809 0.0797 0.0791 0.0788 
I 

32501 0.0901 0.1194 0.1376 0.1403 0.1343 0.1274 0.1226 0.1200 0.1187 0.1180 
I 

35001 0.1476 0.1906 0,2131 0,2106 0.1960 0.1821 0.1732 0.1634 0.1660 0.1648 
I 

37501 0,2261 0.2846 0.3088 0.2961 0.2685 0.2450 0.2305 0.2228 0.2189 0.2171 
I 

40001 0.3276 0.4016 0.4230 0.3939 0.3488 0.3132 0.2919 0.2807 0.2752 0.2726 
I 

42501 0,4523 0.5399 0.5523 0.5003 0.4335 0.3838 0.3548 0.3398 0.3325 0.3290 
I 

45001 0.5992 0.6962 0.6921 0.6111 0.5193 0.4541 0.4169 0.3979 0.3886 0.3842 
I 

FIGURE 18: THE V COEFFICIENT IS SHOWN FOR LEVEL yS 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV.C. 



/•"^ 

I 1.0B12 2.2E12 4.6E12 1.0E13 2.2E13 4.6E13 1.0=14 2.2E14 4.6ei4 1.0E15 
-.f. . 

15001 0.1093 0.2216 0.3800 0.5550 0.7117 0.8267 0.8976 0.9360 0.9553 0.9646 
I 

17501 0.1062 0.2135 0.3646 0.5326 0.6841 0.7956 0.8644 0.9016 0.9203 0.9293 
I 

20001 0.1036 0.2063 0.3501 0,5095 0,6527 0,7572 0.8210 0.8554 0.8726 0.8309 
I 

22501 0.1015 0.1998 0.3359 0.4856 0.6181 0.7133 0.7707 0.8013 0.8165 0.8238 
I 

25001 0.0995 0.1935 0.3219 0.4608 0.5813 0.6659 0.7161 0.7426 0.7557 0.7619 
I 

27501 0.0977 0.1874 0.3076 0.4350 0.5426 0.6164 0.6592 0.6816 0.6926 0.6978 
I 

30001 0.0959 0.1811 0.2930 0.4083 0.5027 0.5656 0.6014 0.6199 0.6290 0.6333 
I 

32500 0.0940 0.1747 0.2777 0.3806 0.4620 0.5146 0.5440 0.5590 0.5662 0.5697 
I 

35001 0.0919 0.1679 0,2619 0.3523 0.4212 0.4644 0,4880 0.4999 0.5057 0.5084 
I 

37501 0.0897 0.1607 0.2455 0.3239 0.3812 0.4160 0.4347 0.4440 0.4485 0.4506 
I 

40001 0.0873 0.1531 0.2288 0.2957 0.3427 0.3703 0.3849 0.3921 0.3956 0.3972 
I 

42501 0.0846 0.1452 0.2120 0.2684 0.3064 0.3282 0.3394 0.3449 0.3475 0,3488 
I 

45001 0.0817 0.1370 0.1954 0.2424 0.2729 0,2899 0.2985 0.3027 0.3047 0.3056 
I 

FIGURE 19s THE V* COEFFICIENT IS SHOWN FOR LEVEL yP 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV.C, 



I 1.0E12 2.2E12 4.6E12 1.0E13 2.2E13 4.6E13 1.0E14 2.2E14 4.6E14 1.0E15 

15001 0.0025 0.0043 0.0074 0.0118 0.0168 0.0211 0.0240 0.0256 0.0264 0.0268 
I 

17501 0.0069 0.0115 0.0188 0.0290 0.0402 0.0496 0.0559 0.0593 0.0611 0.0620 
I 

20001 0.0149 0.0239 0.0374 0.0555 0.0748 0.0905 0.1007 0.1063 0.1092 0.1105 
I 

22501 0.0275 0.0424 0.0637 0.0910 0.1189 0.1409 0.1548 0.1624 0.1662 0.1681 
I 

25001 0.0453 0.0681 0.0983 0.1350 0.1708 0.1980 0.2148 0.2239 0.2284 0.2306 
I 

27501 0.0709 0.1022 0.1418 0.1871 0.2291 0.2599 0.2784 0.2883 0.2931 0.2955 
I 

30001 0.1046 0.1459 0.1947 0.2469 0.2927 0.3249 0.3438 0.3537 0.3586 0.3609 
I 

32501 0.1481 0.2004 0.2574 0.3137 0.3603 0.3916 0.4095 0.4187 0.4232 0.4254 
I 

35001 0.2029 0.2662 0.3292 0.3861 0,4301 0.4582 0.4739 0.4819 0.4858 0.4876 
I 

37501 0.2698 0.3433 0.4089 0.4623 0.5002 0.5232 0.5357 0.5419 0.5449 0.5463 
I 

40001 0.3489 0.4305 0.4945 0.5398 0.5687 0.5850 0.5935 0.5977 0.5996 0.6006 
I 

42501 0.4396 0.5260 0.5335 0.6164 0.6337 0.6424 0.6465 0.6484 0.6494 0.6498 
I 

45001 0.5406 0.6275 0.6730 0.6899 0.6941 0.6945 0.6942 0.6939 0.6937 0.6937 
I 

FIGURE 201 "THE V COEFFICIENT IS SHOWN FOR LEVEL yP 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV.C. 



.--.v. 

I 1.0E12 2.2E12 4.6E12 1.0E13 2.2=13 4.6=13 1.0E14 2.2E14 4.6E14 1.0E15 
—-4. 

15001 0.0279 0.0762 0.1809 0.3505 0.5485 0.7173 0.8294 0.8925 0.9247 0.9403 
I 

17501 0.0273 0.0740 0.1744 0.3358 0.5228 0.6811 0.7857 0.8442 0.8741 0.8886 
I 

20001 0.0268 0.0720 0.1679 0.3198 0.4927 0.6368 0.7307 0.7829 0.8094 0.8223 
I 

22501 0.0264 0.0701 0.1613 0.3026 0.4598 0.5878 0.6699 0.7151 0.7379 0.7489 
I 

25001 0.0260 0.0682 0.1544 0.2847 0.4254 0.5371 0.6074 0.6456 0.6647 0.6740 
I 

27501 0.0257 0.0663 0.1473 0.2662 0.3906 0,4864 0.5456 0,5774 0,5932 0,6008 
I 

30001 0.0253 0.0642 0.1399 0.2473 0.3558 0.4370 0.4860 0,5121 0.5250 0.5312 
I 

32501 0.0249 0.0620 0.1322 0.2282 0.3217 0.3895 0.4297 0,4508 0,4612 0.4662 
I 

35001 0.0244 0.0597 0.1242 0.2091 0.2886 0.3447 0.3772 0.3941 0.4024 0.4063 
I 

37501 0.0239 0.0572 0.1160 0.1903 0.2573 0.3030 0.3292 0.3426 0.3491 0.3522 
I 

40001 0.0233 0.0546 0.1077 0.1721 0.2279 0.2651 0.2859 0.2965 0.3017 0.3041 
I 

42501 0.0226 0.0518 0.0994 0.1548 0.2010 0.2310 0.2475 0.2559 0.2600 0.2619 
I 

45001 0.0219 0.0439 0.0913 0.1386 0.1767 0.2008 0.2140 0.2206 0.2238 0.2253 
I 

FIGURE 211 THE V» COEFFICIENT IS SHOWN FOR LEVEL i,^ 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV,C, 



I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
+ 

15001 0.0018 0.0040 0.0086 0.0162 0.0255 0.0333 0.0394 0.0426 0.0442 0.0450 
I 

17501 0.0046 0.0098 0.0202 0.0369 0.0568 0.0740 0.0856 0.0921 0.0955 0.0971 
I 

20001 0.0092 0.0189 0.0377 0.0666 0.0998 0.1277 0,1461 0.1563 0.1615 0.1641 
I 

22501 0.0158 0.0315 0.0607 0.1038 0.1511 0.1897 0.2145 0.2281 0.2350 0.2334 
I 

25001 0.0246 0.0477 0.0883 0.1468 0.2079 0.2558 0,2859 0.3022 0.3104 0.3143 
I 

27501 0.0357 0.0675 0.1217 0.1946 0.2678 0.3232 0,3571 0.3752 0.3843 0.3886 
I 

30001 0.0495 0.0911 0.1592 0.2463 0.3295 0.3901 0.4263 0.4454 0.4548 0.4593 
I 

32501 0.0662 0.1189 0.2011 0.3009 0.3917 0.4552 0.4923 0.5115 0.5210 0.5255 
I 

35001 0.0861 0.1508 0.2470 0.3575 0.4530 0.5174 0.5540 0,5728 0.5820 0.5864 
I 

37501 0.1094 0.1867 0.2960 0.4147 0.5122 0.5756 0.6108 0.6287 0.6373 0.6414 
I 

40001 0.1361 0.2261 0.3470 0.4712 0.5682 0.6290 0.6621 0.6787 0.6867 0.6904 
I 

42501 0.1659 0.2684 0.3989 0.5256 0.6199 0.6771 0.7076 0.7228 0.7300 0.7335 
I 

45001 0.1985 0.3126 0.4503 0.5769 0.6669 0.7198 0.7475 0.7612 0.7677 0.7707 
I 

FIGURE 22: THE V COEFFICIENT IS SHOWN FOR LEVEL 4.1> 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION. 



-•••^\ 

I 1,0B12 2.2=12 4.6=12 1,0=13 2.2=13 4,6=13 1,0=14 2,2E14 4,6=14 1.0=15 
—-.—+ -.-. 
15001 0.0774 0.1552 0.2783 0,4402 0,6101 0.7484 0.8384 0.8885 0,9141 0,9265 

I 
17501 0.0754 0.1500 0.2669 0,419S 0,5781 0.7059 0.7885 0.8344 0.8576 0.8689 

I 
20001 0,0737 0,1452 0.2557 0.3977 0.5425 0.6570 0.7300 0.7702 0.7905 0.8003 

I 
22501 0.0722 0.1405 0.2444 0.3752 0.5051 0.6054 0.6682 0.7023 0.7195 0.7278 

I 
25001 0.0708 0.1359 0.2332 0.3525 0.4674 0.5536 0.6065 0.6349 0.6491 0.6559 

I 
27501 0.0693 0.1314 0.2219 0.3296 0.4299 0.5029 0.5467 0.5700 0.5815 0.5870 

I 
30001 0.0679 0.1268 0.2105 0.3067 0.3930 0.4539 0.4897 0.5084 0.5177 0.5221 

I 
32501 0.0665 0.1221 0.1988 0.2837 0.3570 0.4070 0.4358 0.4507 0.4580 0.4615 

I 
35001 0.0649 0.1172 0.1868 0.2608 0.3222 0.3627 0.3856 0.3973 0.4029 0.4057 

I 
37501 0.0632 0.1120 0.1746 0.2384 0.2890 0.3214 0.3393 0.3484 0.3528 0.3549 

I 
40001 0.0614 0.1066 0.1623 0.2165 0.2578 0.2835 0.2974 0%3044 0.3077 0.3093 

I 
42501 0.0594 0.1010 0.1501 0.1957 0.2290 0.2492 0.2599 0.2652 0.2678 0.2690 

I 
45001 0.0573 0.0953 0.1381 0.1761 0.2028 0.2186 0.2268 0.2309 0.2329 0.2338 

I 

FIGURE 231 THE V« COEFFICIENT IS SHOWN FOR LEVEL 8' 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV,C, 



I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
+ 

15001 0.0089 0.0145 0.0225 0.0326 0.0429 0.0512 0.0566 0.0596 0.0611 0.0619 
I 

17501 0.0183 0.0292 0.0447 0.0640 0.0838 0.0996 0.1099 0.1155 0.1184 0.1198 
I 

20001 0.0314 0.0492 0.0739 0.1043 0.1349 0.1591 0.1744 0.1829 0.1871 0.1892 
I 

22501 0.0480 0.0738 0.1089 0.1511 0.1923 0.2240 0,2438 0.2546 0.2600 0.2626 
I 

25001 0.0683 0.1031 0.1491 0.2026 0.2532 0.2909 0.3139 0.3263 0.3325 0.3354 
I 

27501 0.0927 0.1373 0.1942 0.2579 0.3158 0.3575 0.3824 0.3956 0.4022 0.4053 
I 

30001 0.1221 0.1770 0.2444 0.3165 0.3792 0.4229 0.4483 0.4616 0.4682 0.4713 
I 

32501 0.1575 0.2229 0.2997 0.3779 0.4427 0.4861 0.5109 0.5236 0.5299 0.5328 
I 

35001 0.1997 0.2755 0.3599 0.4412 0.5052 0.5465 0.5695 0.5812 0.5869 0.5896 
I 

37501 0.2493 0.3348 0.4243 0.5053 0.5658 0.6033 0.6237 0.6340 0.6389 0.6413 
I 

40001 0.3066 0.4000 0.4915 0.5687 0.6232 0.6557 0.6730 0.6816 0.6857 0.6876 
I 

42501 0.3712 0.4702 0.5598 0.6300 0.6766 0.7032 0.7171 0.7239 0.7271 0.7286 
I 

45001 0.4423 0.5437 0.6277 0.6879 0.7252 0.7457 0.7560 0.7610 0.7633 0.7645 

FIGURE 24: THE V COEFFICIENT IS SHOWN FOR LEVEL QS 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 



I 1.0=12 2.2=12 4.6=12 1.0E13 2.2=13 4.6E13 1.0=14 2.2=14 4.6=14 1.0=15 
— — — 4 - — _. 
15001 0.0161 0.0479 0.1254 0.2669 0,4488 0.6141 0.7277 0.7927 0.8262 0.8426 

I 
17501 0,0158 0,0461 0.1181 0.2461 0.4065 0.5493 0.6462 0.7013 0.7295 0.7433 

I 
20001 0.0155 0.0442 0.1105 0.2244 0.3623 0.4819 0.5615 0.6062 0.6291 0.6402 

I 
22501 0,0152 0,0423 0.1029 0.2030 0.3197 0.4178 0.4816 0.5170 0.5350 0.5437 

I 
25001 0.0148 0.0404 0.0954 0.1826 0.2803 0.3596 0.4101 0.4377 0.4516 0.4583 

I 
27501 0.0145 0.0384 0.0881 0.1636 0.2447 0.3081 0.3476 0.3689 0.3796 0.3847 

I 
30001 0.0141 0.0365 0.0812 0.1460 0.2127 0.2630 0.2937 0.3100 0.3181 0.3219 

I 
32501 0.0137 0.0346 0.0745 0.1298 0.1841 0.2238 0.2473 0.2597 0.2653 0.2688 

I 
35001 0.0133 0.0326 0.0680 0.1149 0.1588 0.1898 0.2078 0.2171 0.2217 0.2239 

I 
37501 0.0129 0.0307 0.0619 0.1012 0.1364 0.1605 0.1742 0.1812 0.1847 0.1863 

I 
40001 0,0124 0.0287 0.0561 0.0888 0.1169 0.1355 0.1458 0.1511 0.1537 0.1549 

I 
42501 0.0119 0.0268 0.0505 0.0776 0.0999 0.1142 0.1221 0.1261 0.1280 0.1289 

I 
45001 0.0114 0.0249 0.0454 0.0677 0.0854 0.0964 0.1024 0.1054 0.1068 0.1075 

I 

FIGURE 25: THE V COEFFICIENT IS SHOWN FOR LEVEL 4F 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV,C. 



I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
H 

15001 0.0161 0.0282 0.0477 0.0731 0.0983 0.1177 0.1298 0.1365 0.1398 0.1414 
I 

17501 0.0311 0.0526 0.0865 0.1293 0.1713 0.2033 0.2232 0.2340 0.2395 0.2421 
I 

20001 0.0504 0.0828 0.1322 0.1930 0.2512 0.2948 0.3216 0.3361 0.3434 0.3469 
I 

22501 0.0729 0.1167 0.1814 0.2588 0.3308 0.3835 0,4154 0.4324 0.4409 0.4450 
I 

25001 0.0976 0.1528 0.2320 0.3236 0.4061 0.4650 0.4999 0.5184 0.5275 0.5319 
I 

27501 0.1239 0.1902 0.2825 0.3857 0.4757 0.5379 0.5742 0.5931 0.6024 0.6069 
I 

30001 0.1513 0.2282 0.3323 0.4446 0.5390 0.6024 0.6386 0.6573 0.6665 0.6708 
I 

32501 0.1796 0.2668 0.3811 0.5001 0.5964 0.6591 0.6943 0.7122 0.7209 0.7250 
I 

35001 0.2088 0.3057 0.4287 0.5519 0.6479 0.7086 0,7420 0.7588 0.7669 0.7708 
I 

37501 0.2388 0,3446 0.4747 0.5999 0.6938 0.7516 0.7826 0.7982 0.8057 0.8092 
I 

40001 0.2693 0.3834 0.5188 0.6440 0.7344 0.7884 0.8171 0.8312 0.8380 0.8412 
I 

42501 0.3004 0.4218 0.5607 0.6839 0.7698 0.8199 0.8460 0.8588 0.8649 0.8678 
I 

45001 0.3318 0.4593 0.5998 0.7197 0.8005 0.8464 0.8701 0.8816 0.8871 0.8897 
I 

FIGURE 26: THE V COEFFICIENT IS SHOWN FOR LEVEL 4F 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 



I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
— — • I -

15001 0.0456 0.0923 0.1783 0.3102 0.4643 0.5977 0.6874 0.7382 0,7643 0,7769 
I 

17501 0.0430 0.0856 0.1622 0.2769 0,4079 0.5194 0.5934 0.6351 0,6563 0.6666 
I 

20001 0.0407 0,0793 0,1471 0.2455 0,3546 0.4450 0.5040 0.5368 0.5534 0,5615 
I 

22501 0.0386 0.0736 0.1332 0.2170 0.3066 0.3786 0.4246 0.4499 0.4627 0.4688 
I 

25001 0.0366 0.0683 0.1207 0,1916 0.2645 0.3213 0.3567 0.3759 0.3856 0.3902 
I 

27501 0.0348 0.0634 0.1093 0.1690 0.2279 0.2723 0.2993 0.3138 0.3210 0,3245 
I 

30001 0.0330 0.0589 0.0989 0.1488 0.1961 0,2305 0.2510 0,2618 0,2672 0,2697 
I 

32501 0.0314 0.0547 0.0894 0,1309 0.1685 0,1949 0.2103 0,2183 0.2222 0.2241 
I 

35001 0.0298 0.0507 0.0807 0.1148 0.1444 0,1645 0.1760 0.1819 0.1848 0.1861 
I 

37501 0.0283 0.0469 0.0725 0.1004 0.1235 0.1386 0.1471 0.1515 0.1536 0.1546 
I 

40001 0.0267 0,0433 0.0650 0.0875 0.1054 0,1168 0.1230 0.1262 0,1277 0,1284 
I 

42501 0.0253 0.0399 0.0581 0,0761 0.0898 0,0983 0.1029 0.1052 0.1063 0.1068 
I 

45001 0.0238 0.0365 0.0518 0,0661 0.0766 0,0829 0.0863 0.0879 0.0887 0.0891 
I 

FIGURE 27s THE V COEFFICIENT IS SHOWN FOR LEVEL 8P 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV,C, 



y ^ - ^ 

I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
+ 

15001 0.0677 0.0948 0.1244 0.1525 0.1757 0.1919 0.2016 0.2068 0.2094 0.2106 
I 

17501 0.1108 0.1507 0.1936 0.2348 0.2694 0.2939 0.3087 0.3166 0.3206 0.3225 
I 

20001 0.1587 0.2102 0.2649 0.3175 0.3617 0.3929 0.4117 0.4217 0.4268 0.4292 
I 

22501 0.2083 0.2698 0.3342 0.3956 0.4468 0.4825 0.5038 0.5150 0.5206 0.5233 
I 

25001 0.2581 0.3277 0.3996 0.4674 0.5228 0.5608 0.5831 0.5947 0.6005 0.6033 
I 

27501 0.3073 0.3834 0.4608 0.5326 0.5899 0.6283 0.6503 0.6618 0.6674 0.6701 
I 

30001 0.3558 0.4370 0.5182 0.5917 0.6489 0.6862 0.7072 0.7180 0.7233 0.7258 
I 

32501 0.4039 0.4888 0.5720 0.6455 0.7008 0.7359 0.7553 0.7652 0.7700 0.7722 
I 

35001 0.4517 0.5390 0.6227 0.6943 0.7464 0.7785 0.7959 0.8047 0.8089 0.8109 
I 

37501 0.4996 0.5880 0.6704 0.7386 0.7864 0.8149 0.8301 0.8377 0.8414 0.8431 
I 

40001 0,5476 0,6355 0,7150 0.7783 0.8210 0.8459 0.8588 0.8652 0.8683 0.8697 
I 

42501 0,5957 0.6814 0.7564 0.8137 0.8509 0.8719 0.8827 0.8880 0.8905 0.8917 
I 

45001 0.6434 0,7254 0,7943 0.8448 0.8764 0.8938 0.9025 0.9068 0.9088 0.9098 
I 

F I G U R E 2 8 : THE V C O E F F I C I E N T I S SHOWN FOR L E V E L QP 
T H I S I N D I C A T E S THE DEPENDENCE OF T H I S L E V E L ' S P O P U L A T I O N ON THE FREE 
ELECTRON P O P U L A T I O N . T H I S TABLE I S D I S C U S S E D I N S E C T I O N I V . C . 



I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
— — . 4 . — . - - _« 
15001 0.0199 0.0541 0.1280 0.2502 0,3982 0,5283 0.6164 0.6665 0.6922 0.7047 

I 
17501 0.0188 0.0497 0.1140 0.2172 0.3387 0.4434 0.5134 0.5528 0.5730 0.5828 

I 
20001 0.0177 0.0456 0.1013 0.1874 0.2855 0.3677 0.4216 0.4517 0.4670 0,4744 

I 
22501 0.0168 0.0418 0.0900 0.1616 0.2400 0.3037 0.3445 0,3670 0,3784 0.3839 

I 
25001 0.0159 0.0384 0,0801 0.1394 0,2018 0.2508 0.2815 0.2982 0.3065 0.3106 

I 
27501 0.0151 0.0354 0.0714 0.1205 0.1699 0.2074 0.2303 0.2426 0.2488 0.2517 

I 
30001 0.0143 0.0326 0.0637 0.1041 0.1431 0.1717 0.1888 0.1978 0.2023 0.2044 

I 
32501 0.0136 0.0300 0.0568 0.0900 0.1206 0.1422 0.1549 0.1615 0.1648 0.1663 

I 
35001 0.0129 0.0276 0.0505 0.0777 0.1016 0.1179 0.1272 0.1320 0,1344 0,1355 

I 
37501 0.0122 0.0254 0.0449 0.0669 0,0854 0.0977 0.1045 0.1080 0,1097 0.1105 

I 
40001 0.0115 0.0233 0,0399 0,0576 0.0719 0.0810 0.0860 0.0886 0.0898 0.0904 

I 
42501 0.0109 0.0213 0.0353 0.0495 0.0604 0.0672 0.0709 0.0728 0.0736 0.0741 

I 
45001 0.0103 0.0194 0.0311 0.0425 0.0509 0.0559 0.0586 0.0600 0.0606 0.0609 

I 

FIGURE 29t THE V COEFFICIENT IS SHOWN FOR LEVEL 7D 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV,C, 



I 1.0=12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
+ 

15001 0.0570 0.1016 0.1530 0.1996 0.2348 0.2578 0.2709 0.2777 0.2311 0.2827 
I 

17501 0.0896 0.1541 0.2259 0.2902 0.3390 0.3711 0.3896 0.3993 0.4041 0.4064 
I 

20001 0.1247 0.2076 0.2969 0.3756 0.4350 0.4739 0.4963 0.5080 0.5138 0,5166 
I 

22501 0.1602 0.2593 0.3629 0.4523 0.5189 0.5620 0.5866 0.5994 0.6056 0.6086 
I 

25001 0.1952 0.3082 0.4229 0.5197 0.5905 0.6355 0.6608 0,6738 0,6802 0.6832 
I 

27501 0.2293 0.3540 0.4772 0.5787 0.6512 0.6963 0.7213 0,7340 0.7402 0.7431 
I 

30001 0.2623 0.3970 0.5264 0.6304 0.7028 0.7467 0.7706 0.7827 0.7885 0.7913 
I 

32501 0.2944 0.4374 0.5712 0.6759 0.7467 0.7886 0.8110 0.8222 0.8276 0.8301 
I 

35001 0.3257 0.4757 0.6123 0.7161 0.7842 0.8235 0.8441 0.8543 0.8592 0.8615 
I 

37501 0.3564 0.5121 0.6500 0.7516 0.8162 0.8526 0.8713 0.8805 0.8849 0.8870 
I 

40001 0.3866 0.5467 0.6845 0.7829 0.8435 0.8767 0.8936 0.9018 0,9057 0,9075 
I 

42501 0,4162 0,5795 0.7159 0.8102 0.8665 0.8967 0,9118 0,9191 0,9226 0,9242 
I 

45001 0,4453 0.6105 0.7443 0,8339 0.8859 0.9132 0.9266 0.9331 0.9362 0.9376 
I 

FIGURE 30: THE V COEFFICIENT IS SHOWN FOR LEVEL 7D 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 



I 1.0E12 2.2=12 4.6=12 1.0=13 2.2=13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
—..—4. 

15001 0.0360 0.0764 0.1537 0.2746 0,4173 0,5414 0,6249 0,6723 0.6966 0.7084 
I 

17501 0.0341 0.0706 0.1385 0,2413 0,3607 0.4622 0.5297 0.5677 0,5871 0,5965 
I 

20001 0.0323 0.0653 0.1249 0.2125 0.3101 0,3912 0.4442 0.4737 0.4887 0,4960 
I 

22501 0.0307 0.0606 0.1127 0,1867 0.2662 0.3303 0.3713 0.3938 0.4051 0.4106 
I 

25001 0.0292 0.0563 0.1020 0.1644 0.2288 0.2790 0.3104 0.3274 0,3359 0,3400 
I 

27501 0.0278 0.0524 0.0924 0.1448 0.1968 0,2359 0.2598 0.2726 0.2790 0.2820 
I 

30001 0.0266 0.0489 0.0338 0.1276 0.1693 0.1996 0.2177 0.2273 0.2320 0.2343 
I 

32501 0.0254 0.0455 0.0759 0.1124 0.1456 0.1689 0.1825 0.1896 0.1931 0.1948 
I 

35001 0.0242 0.0424 0.0687 0.0988 0.1250 0.1428 0.1530 0.1582 0.1608 0.1620 
I 

37501 0.0231 0.0394 0.0620 0.0866 0.1072 0.1207 0.1282 0.1320 0.1339 0.1348 
I 

40001 0.0219 0.0365 0.0558 0.0758 0.0917 0.1019 0.1075 0.1103 0.1116 0.1123 
I 

42501 0.0208 0.0337 0.0500 0.0661 0.0785 0.0861 0.0902 0.0922 0.0932 0.0937 
I 

45001 0.0197 0.0311 0.0448 0.0577 0.0671 0.0728 0.0758 0.0773 0,0781 0,0784 
I 

FIGURE 311 THE V COEFFICIENT IS SHOWN FOR LEVEL 9S 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE 
GROUND STATE'S POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 



I 1.0=12 2.2=12 4.6E12 1.0E13 2.2E13 4.6=13 1.0=14 2.2=14 4.6=14 1.0=15 
+ — 

15001 0.0985 0.1385 0.1790 0.2144 0.2416 0.2597 0.2702 0.2753 0.2786 0.2799 
I 

17501 0.1443 0.1985 0.2529 0.3010 0.3387 0.3643 0.3795 0.3875 0.3915 0.3934 
I 

20001 0.1908 0.2575 0.3235 0.3821 0.4283 0.4598 0.4784 0.4883 0.4931 0.4955 
I 

22501 0.2364 0.3135 0,3888 0.4553 0.5075 0.5428 0.5634 0.5743 0.5797 0.5822 
I 

25001 0.2802 0.3659 0.4484 0.5204 0.5763 0.6134 0.6348 0.6459 0.6514 0.6540 
I 

27501 0.3222 0.4150 0.5028 0.5784 0.6357 0.6731 0.6942 0.7052 0.7105 0.7130 
I 

30001 0.3628 0.4614 0.5530 0.6302 0.6874 0.7237 0.7439 0.7542 0.7593 0.7617 
I 

32501 0.4025 0.5057 0.5996 0.6769 0.7325 0.7668 0.7856 0.7951 0.7997 0.8019 
I 

35001 0.4418 0.5483 0.6432 0.7191 0.7719 0,8037 0,8207 0.8292 0.8333 0.8353 
I 

37501 0,4810 0,5898 0.6842 0.7573 0.8064 0.8351 0.8502 0.8577 0.8613 0.8630 
I 

40001 0.5203 0.6301 0.7226 0.7916 0.8364 0.8618 0.8749 0.8814 0.8845 0.8859 
I 

42501 0.5597 0.6691 0.7582 0.8223 0.8622 0.8843 0.8956 0.9010 0.9036 0.9048 
I 

45001 0.5992 0.7066 0.7910 0.3493 0.8844 0.9032 0.9127 0.9173 0.9194 0.9204 
I 

FIGURE 32: THE V COEFFICIENT IS SHOWN FOR LEVEL 9S 
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE 
ELECTRON POPULATION. THIS TABLE IS DISCUSSED IN SECTION IV.C. 
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Figure 33: A Grotrian diagram of the Cesium levels used in 
the ionization-recombination calculations discussed in 
chapters IV and V. 
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Figure 34: The population distribution of atomic Cesium 
levels in cm-3 is shouin against the level energv in eV for 
an electron temperature of 1500K and an electron density of 
1(14) cm-3. Hansbach and Keck rates were used. This shows 
^he 7P—7s population inversion. 
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Figure 35: The population distribution of atomic Cesium 
levels in cm-3 is shown against the level energy in eV for 
an electron temperature of 1500K and an electron density of 
1(14) Cfn-3. Stabler rates were used. 
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BINDING ENERGY eV 

Fisure 37s The population distribution of excited Cesium 
levels in cm-3 is shoun asainst the binding enersv in eV for 
an electron temperature of 1500K and for various electron 
densities. Grvzinski rates were used. Small sround state 
densities are assumed. 
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Figure 38: The population distribution of excited Cesium 
levels in cm-3 is shown asainst the binding enersv in eV for 
an electron temperature of 1500K and an electron densitv of 
1(14) cm-3. Orvzinski rates were used. Small sround state 
densities are assumed. The distribution is shown for cases 
both with and without recombination lasins. 
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Fisure 39: The population distribution of hish excited 
levels in Cesium is shown asainst level enersv for three 
electron densities. A sround state densitv of 1(16) cm-3 is 
assumed. This illustrates the difficulty in measuring 
electron temperature from population distributions when the 
lectron densitv is much below Saha. 
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Figure 41: The resistances of equivalent circuit theory for 
the levels of Cesium at 500K is shown. 
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Figure 43: The resistances 
the levels of Cesium at 150 
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30 
31 
32 

33 
34 
?5 
35 
37 

8 . 5 1 3 E - 1 1 
8 . 2 7 0 F - 0 e 
3 . 2 9 9 1 ^ - 0 7 
7 . « » 2 9 S - 0 6 
c ^ 1 7 0 P _ f ) c 

5 . 4 7 1 F - 0 5 
2 .4?2E-0«< 
1 . 1 Q 5 P - 0 4 
3 . 0 4 5 E - 0 4 
2 . 6 3 7 E - 0 U 
7 . 5 4 2 E - 0 4 
/ . 7 9 3 F - 0 1 } 
2 , 3 9 7 E - 0 4 
f . 1 0 4 F - 0 4 
4 . 0 6 8 F - 0 4 
1 . 0 1 Q F - 0 3 
3 .3??!=; -0« 
1 . 2 9 3 E - 0 4 
5 . 4 1 ^ E - 0 4 
t l .1 1 6 F - 0 4 
9 .927v-0£< 
3 . 1 15?:-04 
7 . 1 5 9 F - n 5 
i i . 7 3 0 F - 0 4 
3 . 4 8 7 F - 0 4 
8 . 3 Q 0 E - 0 U 
2 . 5 2 1 E - 0 4 
3 . 9 7 6 F - 0 5 
3 . 7 9 0 F - 0 4 
2 . 7 3 1 E - 0 4 
6 . 5 6 0 E - 0 4 
1 . 9 2 9 F - 0 4 
2 . 2 4 5 F - 0 5 

2 . 9 2 2 F - 0 4 
2 . 0 6 ° F - 0 4 
5 .1 U 5 E - 0 « 

1 . 4 4 3 F - 0 y 
1 . ? 9 « F - 0 5 

O.OOCF+00 
•T .22TE-07 
6 , 4 9 6 F - 0 7 
1 . 8 1 5 F - 0 6 
6 . 2 6 - F - 0 5 
3 . 2 1 3 E - 0 5 
1 . 4 5 5 r - 0 5 
9 . 3 5 e E - 0 5 
4 . - ' 8 1 F - 0 5 
5 . 1 5 2 F - 0 5 

- 1 . 2 6 1 E - 0 5 

l . i sn -ou 
1 . 4 6 2 F - 0 5 
2 , 4 7 9 1 - 0 6 
3 . 3 6 6 E - 0 5 

- 2 , 5 1 9 E - 0 S 
7 . 7 3 3 F - 0 5 
1 . 0 9 5 F - 0 5 

- P . 1 6 2 E - 0 6 
1 . 7 1 C F - 0 5 

- 1 . 9 6 C F - Q 5 
4 . 1 9 e - F - 0 5 
6 . 5 C C F - 0 6 

- 7 . 3 3 ^ 1 - 0 6 
8 . 1 1 f F - 0 6 

- 1 , 1 9 C F - 0 5 
2 . 1 3 0 E - 0 5 
3 . 5 3 1 E - 0 6 

- 4 , 7 1 C E - 0 6 
3 . 8 6 C E - 0 6 

- 6 . 6 4 6 F - 0 6 
1 - 0 7 0 E - 0 5 
1 . 8 7 1 P - 0 6 

- 2 , 7 4 f . E - C 6 
1 . 8 8 f F - 0 6 

- 3 . 6 5 3 1 - 0 6 
5 . 4 8 t l F - 0 6 
9 , 9 7 ! E - 0 7 

Figure 44: The resistances o 
the levels of Cesium at 2000K 

5 . 8 2 3 E - 0 4 
5 . 8 1 6 F - 0 4 
5 . 8 1 0 F - C 4 
5 . 7 9 1 E - 0 4 
5 . 165F-0£1 
« . 8 ' 4 3 E - 0 4 
4 , 6 9 8 E - 0 t i 
3 . 7 6 2 E - C U 
3 . 2 3 4 E - 0 4 
2 . 7 6 9 i - 0 f J 
2 . 8 9 5 E - 0 4 
1 . 7 4 a E - 0 ' i 
1 , 5 9 8 E - 0 4 
1 , 5 7 3 E - 0 4 
1 ,237E-Ci ) 
1 . 4 8 9 E - C 4 
7 . 1 5 2 F - 0 5 
6 . 0 5 6 E - 0 5 
6 , 8 7 3 F - C 5 
5 . 1 6 3 F - 0 5 
7 , 1 2 3 E - 0 5 
2 , 9 25 E - 0 5 
2 , 2 7 5 F - 0 5 
3 . 0 0 9 F - C 5 
2 , 1 9 7 E - 0 5 
3 . 3 3 7 E - 0 5 
1 . 2 5 7 E - 0 5 
9 , 0 3 Q E - 0 6 
1 . 3 7 5 F - 0 5 
9 , 8 8 9 E - 0 6 
1 . 6 5 3 E - 0 5 
5 . 8 3 2 F - 0 6 
3 . 9 6 1 F - 0 6 

6 . 7 0 7 F - 0 6 
4 , 8 2 0 F - C 6 
8 . 4 7 2 F - n 6 
2 . 9 8 9 E - C 6 
1 . 9 9 1 E - 0 6 

65 
6P 
5D 
7 5 
7P 
6D 
85 
4P 
8P 
7D 
95 
5F 
5G 
9P 
8D 
105 
f P 
6 G , 6 n 
10P 
9D 
l i s 
7 P 
7 G , 7 H , 7 I 
I I P 
10E 
1 2 5 
8P 
8 G , 8 F , 8 I , 8 J 
12P 
I i r 
1 3 S 
9P 
9 G , c p , 9 i , 9 J , 9 K 

13P 
12D 
145 

• " ^ ^ 

1 0 G , 1 0 H , 1 0 I . 1 ( ^ ' 

equivalent circuit theorv for 
is shown. 



e . 8 3 2 E - 1 l 
1 .562E-08 
4 . 1 2 2 F - 0 8 
5 , 6 2 9 F - 0 7 
2 .129P,-0€ 
2 .004i?-06 
7 . 4 9 0 P - 0 6 
3 , 2 3 7 F - 0 6 
7 .03UE-06 
5 . 6 7 2 F - 0 6 
1 .533E-05 
5 .170E-06 
4 . 3 5 2 F - 0 6 
e , 8 6 2 E - 0 6 
6 . 6 9 7 E - 0 6 
1 .676F-05 
5.0=t7F-06 
1 .909S-06 
7 . 9 8 0 E - 0 6 
5 . 8 0 9 F - 0 6 
1.4 33F-0 5 
4 . 1 2 5 E - 0 6 
9 . 3 2 6 E - 0 7 
f . 2 9 2 E - 0 6 
4 . 4 6 7 E - 0 6 
1 .119F-05 
? , 0 7 8 P - 0 6 
4 . 7 7 3 E - 0 7 
t . 7 0 4 ' ? - 0 6 
3 . 2 7 8 E - 0 6 
8 . 3 8 6 E - 0 6 
2 . 2 2 9 F - 0 6 
2 . 5 5 4 E - 0 7 
3 . 4 5 5 P - 0 6 
2 . 3 7 3 F - 0 6 
f . 2 1 6 E - 0 6 
1 .604E-0f 
1 .421E-07 

O.OOCF+00 
1 . 3 6 5 1 - 0 7 
7 . 6 4 4 E - 0 8 
1 . 1 6 f E - 0 7 
2 . 5 2 6 E - 0 6 
1 ,04EF-06 
2 . 4 8 1F-07 
2 . 4 2 5 E - 0 6 
e . 5 6 2 F - 0 7 
9--T96I-07 

- 3 . 6 0 e F - 0 7 
2.00€E-0*= 
2 .25EF-07 

- 2 . 2 1 0 E - 0 8 
4 . 8 P 6 E - 0 7 

- 4 . 1 5 5 E - 0 7 
1 ,082F-06 
1 .37CF-07 

- 1 . 2 1 E E - 0 7 
2 , 1 2 2 F - 0 7 

- 2 . 6 3 5 E - 0 7 
5 . 1 3 ? E - 0 7 
7 . 1 4 6 F - 0 a 

- 8 . 8 C C E - 0 8 
9 .122E-0B 

- 1 .42 tF-0-^ 
2 . 3 9 1 E - 0 7 
3 .57CE-08 

- 5 . 0 7 e E - 0 8 
4 . 0 5 5 E - 0 8 

- 7 . 3 7 5 F - 0 8 
1 .132E-07 
1 ,7PeE-08 

- 2 . 7 6 7 E - 0 8 
1.89CE-n8 

- 3 . 8 4 6 7 - 0 3 
5 .56 1E-08 
9 . 1 6 3 E - 0 9 

1 .218E-05 
1 . 2 0 5 E - 0 5 
1, 197F-05 
1.186E-C5 
9 . 3 2 7 1 - 0 6 
8 ,279E-C6 
8 . 0 3 1 E - 0 6 
5 . 6 0 6 F - 0 6 
4 . 7 5 0 E - C 6 
3 . 7 7 0 E - 0 6 
4 . 131E-06 
2 .125E-C6 
1 ,900E-0€ 
1 .922E-06 
1 ,433E-06 
1 .849Z-06 
7 .669E-C7 
6 . 2 9 8 E - 0 7 
7 . 5 1 3 E - 0 7 
5 , 3 9 0 E - 0 7 
8 . 0 2 5 E - 0 7 
2 ,887E-C7 
2 . 172E-07 
3 . 0 5 2 E - 0 7 
2. 140E-07 
3 .55 i iE-07 
1.173H-C7 
8 , 160F-08 
1 .324E-07 
9 .181E-C8 
1 . 6 5 6 E - 0 7 
5 . 2 3 3 E - 0 e 
3 , 4 4 5 E - 0 e 
6 .212E-Ce 
4 . 3 2 2 E - 0 e 
8 . 16PE-0e 
2 . 6 0 7 E - 0 e 
1 .691E-06 

6 5 
6P 
5D 
7S 
7P 
6D 
85 
4P 
8P 
7D 
95 
5P 
5G 
9 P 
8D 
1 0 5 
6P 
6G,6H 
1 0 P 
9D 
I I S 
7 ? 
7 G , 7 E , 7 I 
I I P 
10D 
1 2 5 
8F 
e G , 8 ! i , 8 I , 8 J 
12P 
11D 
13S 
9V 
9 G , 9 F , 9 T , 9 J , C K 
13F 
1 2 r 
1 4 5 
10F 
10G,1CH,10T,10. 

Figure 45s The resistances of equivalent circuit theorv for 
the levels of Cesium at 2500K is shown. 



0 
1 
2 
3 
4 
5 
6 
7 
8 
o 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
71 
22 
23 
24 
25 
26 
27 
23 
2^ 
30 
31 
32 

33 
34 
35 
36 
3"̂  

9 . 0 9 3 F - 1 1 
5 . 1 0 5 F - 0 9 
1 . 0 2 5 P - 0 8 
9 . 6 4 0 E - 0 8 
2 . 4 9 9 F - 0 T 
2 . 1 6 7 1 ^ - 0 7 
7 . 1 8 6 V - 0 7 
2 . 8 4 6 1 ^ - 0 7 
5 , 6 0 3 E - 0 ' 7 
t . 2 8 0 r - 0 7 
1 . 1 2 O E - 0 6 
3 . 5 2 7 F - 0 7 
2 . 9 2 7 F - 0 7 
5.82*71^-07 
« . 2 3 4 F - 0 7 
1 . 0 7 0 E - 0 6 
3 . 0 2 t J F - 0 7 
1 . 1 1 9 F - 0 7 
fi.701E-07 
3 . 3 1 2 F - 0 7 
e . 4 2 0 E - 0 7 
2 . 2 5 0 3 - 0 7 
5 . 0 2 3 1 ^ - 0 8 
3 . 4 5 8 E - n ' ? 
2 . 3 8 6 F - 0 7 
6 . 1 ° 4 F - 0 7 
1 . 5 9 1 E - 0 7 
2 . 4 4 1 F - 0 8 
2 . 4 6 7 E - 0 7 
1 . 6 7 7 E - 0 7 
t . 4 651^-0'? 
1 . 1 1 0 E - 0 7 
1 , 2 5 7 E - 0 8 

1 , 7 5 3 F - 0 7 
1 . 1 7 7 F - 0 7 
3 . 2 1 7 E - 0 7 
7 . 7 8 1 F - 0 3 
6 . 3 1 9 E - 0 9 

O.OOCF+00 
4 . 4 5 3 F - 0 8 
1 . • ' 9 1 1 - 0 3 
1 . 7 7 9 F - 0 8 
2 . 9 C 5 F - 0 7 
1 . 0 2 5 F - 0 7 
1 . 0 9 2 F - 0 8 
2 . 0 4 3 E - 0 7 
5 . 4 2 3 F - 0 8 
6 . 6 5 5 F - 0 8 

- 3 . 0 3 2 F - 0 8 
1 . 2 9 2 F - 0 7 
1 . 3 2 2 F - 0 3 

- 3 . 7 C 2 F - 0 9 
2 . 7 6 6 F - 0 3 

- 2 . 5 6 7 E - 0 3 
e . o c J H - O P 
6 . 9 7 0 E - 0 9 

-6 , 3 9 7 F - 0 9 
1 , O e 2 E - 0 8 

-1 . 4 2 i < E - 0 8 
2 . 6 0 : 1 - 0 8 
3 . 3 3 i l F - 0 q 

- 4 , 3 6 ' = E - 0 9 
4 .347E-0C> 

- 7 . V J E - 0 9 

1 . 1 4 £ l E - n 8 
1 . 5 7 5 E - 0 < ' 

- 2 , 3 4 E E - 0 9 
1 . 3 4 5 E - 0 9 

-3 . 5 0 C E - C 9 
5 . 2 0 C E - 0 9 
7 , 5 9 1 ) 5 - 1 0 

- 1 . 2 2 1E-09 
8 . 3 2 C E - 1 0 

- 1 , 7 - ^ 1 1 - 0 9 
2 . 4 f ' C F - 0 9 
3 . 7 8 ' } F - 1 0 

1 , 0 1 5 E - 0 6 
< » . 7 0 5 E - 0 7 
9 . 5 2 P E - C 7 
9 . 3 4 B F - 0 7 
6 , 4 U 3 F - 0 7 
5 . 4 1 8 E - 0 7 
5 . 3 0 9 F - 0 7 
3 , 2 6 5 E - 0 7 
2 , 7 2 3 E - 0 7 
2 . 0 5 8 H - C 7 
2 . 3 6 1 F - 0 7 
1 , 0 6 9 E - 0 7 
9 . 3 6 5 F - 0 8 
9 . 7 3 5 F - 0 e 
6 . 9 6 7 F - 0 8 
9 . 5 3 3 E - 0 8 
3 . 5 2 6 F - 0 8 
2 . 8 2 Q E - 0 8 
3 . 5 1 9 E - 0 6 
2 , 437 E-0 6 
3 . 8 6 1 F - 0 8 
1 . 2 5 4 E - 0 8 
9 . 2 1 0 F - 0 9 
1 . 3 5 8 E - 0 6 
9 . 2 2 3 t - 0 9 
1 , 6 3 a E - 0 9 
4 . 9 0 6 E - 0 9 
3 . 3 3 0 E - 0 9 
5 . 6 7 5 F - 0 9 
3 . e 3 0 E - 0 9 
7 . 3 3 0 E - 0 9 
2 , 1 3 0 E - 0 9 
1 . 3 7 1 E - 0 9 

2 . 5 9 2 E - 0 9 
1 . 7 6 0 E - C 9 
3 . 5 2 1 E - 0 S 
1 . C 4 1 F - 0 9 
e . 6 2 5 E - 1 C 

65 
6P 
5D 
75 
7P 
6D 
85 
4F 
8P 
7D 
95 
5P 
5G 
9P 
8D 
105 
6? 
6G,6H 
10P 
9D 
115 
7F 
7 G , 7 E , 7 I 
I I P 
10E 
1 2 5 
8F 
8 G , 8 F , 8 I , 8 J 
12E 
l i e 
135 
9P 
9 G , 9 P , 9 I , 9 J , 9 K 

13P 
12D 
145 
10F 
1 0 G , 1 0 H , 1 0 I , 1 0 J , 1 0 K , 1 

Figure 4&: 
the levels 

The resistances of equivalent circuit theory for 
of Cesium at 3000K is shown. 



5 . 7 2 7 F - 1 1 O.OOOr+00 1 . 1 7 9 E - 0 8 65 
5 . 2 3 2 F - 1 0 4 . 4 7 6 F - 0 9 7 . 3 1 7 F - 0 9 6P 
6 . 0 6 P E - 1 0 8 . 6 2 2 F - 1 0 6 . 4 5 5 F - 0 9 5D 
2 . 7 8 - ! E - 0 9 2 . ' 3 9 a F - ' ' 0 6 . 1 5 5 F - 0 9 7S 
3 . 1 8 4 F - 0 9 3 . 3 8 3 F - 0 9 2 . 7 7 3 E - 0 9 7P 
2 . 3 0 7 F - C 9 7 . 9 5 3 1 - 1 0 1 . 9 7 e F - 0 9 6D 
6 . 3 1 7 F - 0 9 - 1 . 1 2 * ' E - 1 0 2 . 0 9 1 E - 0 9 85 
1 . Q 5 9 F - 0 9 1 , 2 0 U E - 0 9 8 . 8 7 0 F - 1 0 4 ? 
3 . 2 t J 5 E - 0 9 1 . 5 3 ^ F - 1 0 7 . 3 3 9 F - 1 0 CP 
2 . 2 0 8 E - 0 ^ 2 . 4 5 8 F - 1 0 4 . e 8 1 E - 1 0 7D 
5 . 7 ' : 6 v - 0 9 - 1 . 6 1 7 E - 1 0 6 . 4 9 9 E - 1 0 95 
1 . 4 6 3 F - 0 9 4 . 3 8 e F - 1 0 2 . 1 1 1 E - 1 0 5F 
1 . 1 7 6 F - 0 9 3 . 4 9 0 1 - 1 1 1 . 7 6 1 E - 1 0 5G 
2 . 2 9 1 E - 0 9 - 2 . 3 4 8 F - 1 1 1 . 9 9 6 r - 1 0 9P 
1 . 5 1 8 P - 0 9 7 . 0 ' » n F - 1 1 1 . 2 8 9 F - 1 0 8D 
4 , 0 6 0 E - 0 9 - 7 . o i ? E - 1 1 2 . 0 S 0 P - 1 0 1 0 S 
9 . 4 9 6 E - 1 0 1 . 5 0 2 E - 1 0 5 . 7 8 7 E - 1 1 6F 
3 . 4 1 " ' E - 1 0 1 . 3 9 5 E - 1 1 4 . 3 9 2 F - 1 1 6G,6H 
1 . 4 7 8 E - 0 9 - 1 . 7 1 3 F - 1 1 fi.104E-11 10P 
9 . 6 4 T - 1 0 2 . 2 2 7 F - 1 1 3 . 3 7 7 F - ' ' 1 9D 
2 . 6 7 5 E - 0 9 - 3 . 3 6 0 F - 1 1 7 . 2 3 7 E - 1 1 115 
f . 9 6 9 F - 1 0 5 . 4 0 5 E - 1 1 1 . e 3 1 E - 1 1 7F 
' ' .2QOE-10 5 . 6 ' ' 4 E - 1 2 1 . 2 7 0 E - 1 1 7 G , 7 H , 7 l 
9 . 4 3 5 ^ - 1 0 - 8 . 3 ' 1 1 E - 1 2 2 . 1 0 9 E - 1 1 I I P 
6 . 0 9 4 E - 1 0 7 . 7 8 6 F - ' » 2 1 . 3 3 0 F - 1 1 10D 
1 . 7 5 2 E - 0 9 - 1 . 4 2 9 ' = ' - 1 1 2 . 7 5 9 E - 1 1 125 
3 . 7 8 2 ^ - 1 0 - 2 . 0 9 8 E - 1 1 6 . 6 i e F - 1 2 8F 
5 . 6 r 9 r - 1 1 2 . 3 6 f i F - 1 2 4 . 2 5 0 E - 1 2 8 G , e H , 8 l , 8 J 
6 . 1 1 4 P - 1 0 - 3 . 9 0 6 r - 1 2 8 . 1 5 6 P , - 1 2 12P 
3 . 9 1 8 F - 1 0 3 . 0 0 ' ' ? - ' ' 2 5 . 1 5 a F - 1 2 11D 
1 . 1 6 4 F - 0 9 - 6 . 3 1 P F - 1 2 1 . 1 4 7 E - 1 1 135 
2 . 4 4 3 i ' - 1 0 8 . ' ' 5 a E - 1 2 2 . 7 1 Q E - 1 2 9P 
2 . 7 0 6 E - 1 1 1 . 0 5 6 F - 1 2 1 . 6 6 3 F - 1 2 9 G , 9 H , 9 I , 9 J , 9 K 
4 . 0 5 6 1 ^ - 1 0 - 1 . 3 5 3 E - 1 2 3 . 5 1 6 E - 1 2 13P 
2 . 5 8 2 P - ' ' 0 1 . 2 6 2 F - 1 2 2 . 2 5 4 E - 1 2 12D 
7 . 9 0 l F - n - 2 . ' » 4 4 E - 1 2 5 . 1 9 R F - 1 2 1 4 5 
' ' . 6 2 T - 1 0 3 . 9 2 C F - 1 2 ' ' . 2 7 e F - l 2 10F 
1 . 3 9 2 E - 1 1 4 . 9 7 6 E - 1 3 7 , 8 0 3 P - 1 3 10G, 1011, 101 , 10J , 10K, 1 

Fisure 47: The r e s i s t a n c e s of equivalent c i r c u i t theorv for 
the l e v e l s of Cesium at 5000K i s shown. 



0 
1 
2 
•> 

a 
5 
6 
"̂  
8 
9 

10 
11 
12 
13 
14 
15 
16 
1 7 

13 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2P 
29 
30 
31 
32 
33 
34 
35 
36 
3 " 

9 . 7 4 6 - - 1 1 . 
8 . 4 0 5 ^ - 1 1 
6 . 2 G 0 F - 1 1 
1 .806 '=- -10 
S . 8 6 4 E - 1 1 
6 . 0 5 3 ^ - 1 1 
1 . 5 7 5 F - 1 0 
3 . 6 ? ' ' E - ' ' I 
5 . 4 8 3 ^ - 1 1 
3 . 3 4 31^-1 1 
9 . 2 4 7 r - 1 1 
1 . 8 6 ! 4 F - 1 1 
" ' . 4 5 9 E - 1 1 
2 . 8 7 1 V - 1 1 
- . 7 4-77;-11 
5 . m 6 ^ - 1 1 
9 . 8 1 1 E - 1 2 
3 . 4 U - ' v - 1 2 
I . 5 5 Q E - I 1 
9 . a - ' 0 i ^ - 1 2 
2 . 9 3 ° B - 1 1 
5 . t J ? ? E - 1 2 
1 . 1 5 6 F - 1 2 
P.f5 0 " E - 1 2 
5 . 4 0 a ? - 1 2 
1 . 7 5 2 E - 1 1 
3 . ' ' 6 5 E - 1 2 
4 . 6 3 6 F - 1 3 
5 . 3 5 2 E - 1 2 
3 . 2 4 6 F - 1 2 
1 . 0 8 3 E - 1 1 
1.9 34 ' i : - 12 
2 . 0 9 5 E - 1 3 
3 . 3 6 2 F - 1 2 
2 . 0 3 7 E - 1 2 
7 . 0 ^ 3 F - 1 2 
1 . 2 3 3 E - 1 2 
1 . 0 3 4 1 ^ - 1 3 

0 .OOOF + 00 
6 . 3 7 2 F - 1 0 
6 . 1 9 ' ^ F - I I 
3 . 5 0 8 F - 1 2 
8 . 5 4 - ' E - 1 1 
1 . 2 7 1 E - 1 1 

- 4 . 5 0 1 F - 1 2 
1 . 6 3 9 F - ' ' 1 
8 . 7 3 f ; F - 1 3 
2 . 2 0 P E - 1 2 

- 1 . 9 1 f r - 1 2 
3 . 3 4 5 E - 1 2 
2 . 3 4 q F - 1 3 

- 2 . 3 7 4 F - 1 3 
4 . 7 7 7 E - 1 3 

- 6 . 3 4 S F - 1 3 
1 . 0 2 0 - - 1 2 
7 . 5 8 2 1 - 1 4 

- 1 . 1 0 0 E - 1 3 
1 . 7 7 l E - ' ' 3 

- 2 . 1 9 1 E - 1 3 
3 . 1 8 f E - 1 3 
2 . 6 7 f E - 1 4 

- 4 . 4 7 7 F - 1 4 
3 . 9 7 8 E - 1 4 

- 8 . 1 9 ^ F - 1 4 
1 . 1 1 9 F - 1 3 
1 . 0 3 4 F - 1 4 

- ^ . 3 6 7 F - 1 4 
1 . 4 1 Q F - 1 4 

- 3 . 3 2 C F - 1 4 
4 . 3 " 7 E - 1 4 
4 . 3 3 ' ' E - 1 5 

- 3 . 2 2 6 E - 1 5 
5 . 6 3 « J E - 1 5 

- 1 . 4 5 2 F - 1 4 
1 . 3 4 e E - 1 4 
1 . 9 5 6 E - 1 5 

8 . 1 S 8 E - 1 0 
1 . 8 1 7 F - 1 0 
1 . 197 E - 1 0 
1 . 1 6 2 E - 1 0 
3 . 0 7 5 E - 1 1 
1 , 8 0 i l E - 1 1 
2 . 2 5 y E - 1 1 
6 , 1 5 5 E - 1 2 
5 , 2 7 6 E - 1 2 
3 . 0 6 P F - 1 2 
4 . 9 3 4 E - 1 2 
1 . 139 E - 1 2 
9 . 0 5 1 F - 1 3 
1 . 1 4 2 E - 1 2 
6 , 6 4 P E - " ' 3 
1 , 3 0 0 F - 1 2 
2 , 7 0 6 E - 1 3 
1 . 9 4 8 E - 1 3 
3 . 0 4 8 F - 1 3 
1 . 7 7 7 F - 1 3 
3 . < ) 5 3 E - 1 3 
7 . 8 2 1 E - 1 4 
5 . 1 4 5 E - 1 4 
9 . 6 2 ? E - m 
5 . 6 4 5 E - 1 4 
1 . 3 8 4 E - 1 3 
2 . 6 5 8 E - 1 4 
1 . 6 2 4 F - 1 4 
3 . 4 91 E-1 t i 
2 . 0 7 2 E - 1 4 
5 . 3 9 2 F - 1 4 
1 . 0 4 6 E - 1 4 
6 . 1 2 3 E - 1 5 
1 . 4 3 5 E - 1 4 
8 . 7 1 5 E - 1 5 
2 . 3 2 3 F - 1 4 
4 . 7 7 4 F - 1 5 
2 . 8 1 8 F - 1 5 

65 
6P 
5D 
7S 
7P 
6T) 
85 
4 ? 
8P 
7D 
95 
5F 
5G 
9P 
8D 
105 
6F 
6 G , 6 H 
10P 
9D 
115 
7 ? 
7 G , 7 H , 7 I 
I I P 
10D 
125 
8P 
8 G , 6 I 1 , 8 I , 8 J 
12P 
I i r 
1 3 5 
9P 
9 G , 9 H , 9 I , 9 J , 9 K 
13P 
12E 
1 4 5 
10F 
1 0 G , ' ' O K , ^ O I , 1 0 

Figure 48: The resistances of equivalent circuit tneorv for 
the levels of Cesium at 10»000K is shown. 



e . 3 5 3 E -
2 . 7 7 2 E -
1 . 5 8 9 F -
3 . 9 7 1 E -
1 . 3 3 3 T -
7 . 4 6 5 F -
2 . 0 0 ^ ? -
3 . 7 2 4 F -
5 . 4 5 1 E -
3 . 1 1 1 E -
9 . 2 2 " E -
1.5 8 3E-
1 . 2 7 0 E -
2 . 4 4 6 E -
1 . m 4 E -
4 . ' ; 0 ^ E -
7 . 4 9 9 1 ? -
2 . 6 0 1 E -
1 . 2 1 4 F -
7 . 0 7 1 ? , -
2 . 3 8 2 E -
J .890T: -
e . 1 R 6 E -
6 . 5 5 3 P -
3 . 3 3 5 F -
1 . 3 4 8 F -
2 . 1 7 4 7 -
3 . 1 4 3 P -
3 . ' ' e 3 i ' -
2 . 2 2 2 E -
8 . 0 7 4 2 -
1 . 2 9 0 P -
1 . 3 3 2 E -
2 . 3 0 9 E -
1 . 3 5 9 P -
5.076T^-
P . 0 5 4 P -
6 . 6 8 0 E -

COO^OF + OO 
1 . 5 8 7 E - 1 0 
1 . 0 0 0 E - 1 1 

-6 . 9 0 6 F - 1 3 
8 . 4 8 4 F - 1 2 
P.<>3'3P-13 

• 4 . 3 a 7 E - 1 3 
1 . 0 9 4 E - 1 2 
2 .P0:4E-14 
1 . 1 4 1 E - 1 3 

-1 . 1 6 0 E - 1 3 
2 . 0 1 2 E - 1 3 
1 . 0 2 3 E - 1 4 

• 1 . 2 4 l E - 1 4 
2 . 1 2 7 F - 1 4 

- 3 . 1 4 - 7 F - 1 4 
4 . 7 0 7 E - 1 4 
2 . 9 7 9 E - 1 5 

• 4 . 7 2 6 E - 1 5 
5 . 1 7 8 E - 1 5 

• 9 . 7 2 5 E - 1 5 
1 . 3 4 1E-14 
9 . 3 3 4 F - 1 6 

• 1 . 7 5 3 E - 1 5 
1 . 5 2 8 E - 1 5 

• 3 . 3 9 4 E - 1 5 
4 . 4 5 6 r - 1 5 
3 . P 3 4 E - 1 6 

• 6 . 9 0 4 E - 1 6 
5 . 2 3 0 E - 1 6 

• 1 . 3 1 0 T ' - 1 S 
1 . 6 ' ; 4 P - 1 5 
1 . 4 7 7 E - 1 6 

• 2 . 9 2 7 F - 1 6 
2 . 0 1 4 E - 1 6 

• 5 . 5 3 1 E - 1 6 
6 . f ' . 2 E - 1 6 
6 . 5 0 8 E - 1 7 

K 
1 . 7 3 3 E - 1 0 
1 . 9 6 1 E - 1 1 
9 . 6 0 5 E - 1 2 
1 . 0 3 0 F - 1 1 
1 . 8 1 1 F - 1 2 
9 . 2 7 6 E - 1 3 
1 . 3 6 7 E-1 2 
2 . 7 2 9 E - 1 3 
2 , 4 3 8 E - 1 3 
1. 2 9 3 F - 1 3 
2 . 4 5 ' 7 E - 1 3 
4 . 4 5 4 F - 1 4 
3 . 4 3 1 E - i q 
4 . 6 7 1 F - 1 4 
2 . 5 4 4 F - 1 4 
5 . 6 9 0 F - 1 4 
9 . 8 3 7 E - 1 5 
6 . 8 5 ' ' F - 1 5 
1 . 1 5 8 E - 1 4 
6 . 4 0 5 F - 1 5 
1 . 6 1 3 F - 1 4 
2 . 7 1 5 E - 1 5 
1 . 7 3 2 1 - 1 5 
3 . 4 8 4 F - 1 5 
1 . 9 5 6 E - 1 5 
5 . 3 5 0 F - 1 5 
8 . 9 4 4 E - 1 6 
5 . 3 r E - 1 6 
1 . 2 2 2 F - 1 5 
6 . 9 8 5 F - 1 6 
2 . 0 0 8 E - 1 5 
3 . 4 4 3 P - 1 6 
1 . 9 6 7 E - 1 6 
4 . 893 E-1 6 
2 . 8 7 9 F - i e 
8 . 4 1 1 E - 1 6 
1 . 5 4 9 E - 1 6 
8 . 9 9 0 E - 1 7 

6 5 
6P 
5D 
75 
7P 
6 0 
PS 
4 ? 
8P 
7D 
95 
5P 
5G 
9P 
8D 
10S 
6P 
6G,6H 
10P 
9D 
l i s 
7 ? 
7 G , 7 E , 7 I 
11P 
10D 
1 2 5 
8P 
8 G , 3 H , 8 I , 8 J 
12P 
11D 
135 
9P 
9 G , 9 H , 9 I , 9 J 
13P 
12D 
145 
10F 
10G,10K,10T 

Fisure 49: 
the levels 

The resistances of equivalent circuit theory for 
of Cesium at 20»000K is shown. 
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Figure 50: The electron temperature-» '^i in a thermionic 
converter is plotted as^vinst position? T. Shou'n are two 
cases? 1=0.5 and I~0.77 computed 
kinetics. 
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T£= 1500K 
P^g=l TORR 
D= 10 MIL 
Jĵ = 20 klzvt 
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Figure 51: The electron temperature? ^ ? in a thermionic 
converter is plotted against position? "T. Shown are three 
cases? 1=0.02 (0.5A/cm2>» 1=0.1 (2.4A/cm2)? and 1=0.5 
(12A/cm2>. These were computed using col 1isional-radiative 
ionization and recombination kinetics. The rise in 
temperature at low currents causes a faster than Boltzmann 
rise of the current voltage characteristic. 
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Figure 52: Electron densities? each divided bv their 
maximum? are plotted .?.pain5t position? ~^? during steadv 
thermionic converter operation. Shown are two cases? 1=0.5 
and 1=0.02, This shows that the shape of the distribution 
changes little even for large chanst-r in current. 
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CENTERLINE ELECTRON TEMPERATURE AND DENSITY VS TIME 
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APPENDIX A 

The finite difference computer program for solving 
unsteady and steady thermionic converter plasmadynamics is 
shown on the following pages. This program is written in 
the PL/I programming language and was run under the 
optimizing compiler on Princeton's IBM 3033 computer. The 
numerical method used is the predictor-corrector technique 
with adjustable coefficients as described in[60]. 
Convergence to a steady state solution is typically obtained 
in one minute or less of CPU time. 

This program is structured as an external procedure. 
This procedure, called PREDCOR, has the function of 
integrating the thermionic converter conservation equations 
forward in time. It does this in a specified number of time 
steps and then computes the voltage drop and returns to the 
calling program. For each of the steps forward in time, the 
time derivative of the density and electron temperature must 
be computed twice, once for the predictor and once for the 
corrector steps. This is done by an internal procedure 
called DOT. DOT performs this for all points in the field 
as well as set the image points to indicate proper boundary 
conditions. 

The meaning of most of the variable names are explained 
in comments within the program. The most important ones 
will be reviewed here. PREDCOR integrates the unsteady 
thermionic conservation equations from a time TI to a time 
T2 using a total number of time steps equal to NSTEPS. The 
length of each time step is DT. These times, as all other 
variables, are of course nondimensionalized according to the 
scheme presented in Chapter II. For each of these time 
steps new electron temperatures, TAU, and electron 
densities, NEB, need to be computed. This is done by first 
computing 'predicted' values, TTILDA for temperature and 
NTILDA for density. These are all computed under assumed 
converter conditions of an emitter temperature of TE, a 
collector temperature of TC, and a Cesium pressure, in Torr, 
of PN. The neutral Cesium temperature, TAUN, is assumed to 
vary linearly between the emitter and collector 
temperatures. 



•PROCESS; 
/• 
/• 

PREDICTOR-CORRECTOR PROGRAM FOR UNSTEADY T.E.C. */ 
*/ 

PREDCOR:PROC( TI, T2, TAU, NEB, NSTEPS, TE, TC, ENR, CNR, 
TDOTl, NDOTl, 
PN, SMR, LAMDAR, KN, NR, ARECN, TCHAR, EGNDB, RE, 
N,I, AN, AT, BN, BT, CN, CT) REORDER; 

DECLARE 
SUMV ENTRY((») FLOAT DEC(16),FIXED BIN(31).FIXED BIN(31)) 

RETURNS(FLOAT DEC(16)), 
SQRT BUILTIN, 

/*THE FOLLOWING TIME VARIABLES ARE NOND BY TCHAR. 
(T1,T2, /«START fi FINISH TIMES. 
DT, /"ACTUAL TIME STEP USED. 
TIME, 

»/ 
•/ 
•/ 

AN,AT,BN,BT,CN,CT, 

IVD EXT, 

/.PRED-COR ALPHA,BETA,GAMMA 

/•PLASMA POWER GAIN 

/*THE FOLLOWING VARIABLES REFER TO THE MOST RECENT TIME */ 
TAU(»), 
NEB(*), 
TDOTl(*), NDOTl(*), 

((ENE,CNE) INIT(0.8), 
(ECHI,CCHI) INIT(3), 
(EALPHA,CALPHA) INIT(0.5) 

) STATIC EXTERNAL, 

/*E- TEMPERATURE (NOND BY TE). */ 
/•ELECTRON DENSITY (NOND BY NR)"/ 
/•PREDICTOR STEP TIME DERIV.S •/ 
/*E & C EMITTED DENSITY, NE. •/ 
/•EMITTER & COLLECTOR DROPS •/ 
/•E & C ION SPEED PARAMETERS »/ 

1550 
1560 
1570 
1580 

/•THE FOLLOWING 
MUI(0:N+1), 
ONE INIT(l), 
I, 
DZ, 
TCHAR, 
ERR, 
TE,TC, 
DTAUNDZ, 
PN, 
ENR,CNR, 
NR, 
EGNDB, 
ELOSSB EXT, 
RE, 
SMR, 
LAMDAR, 
RMUR, 
KN, 
NNR, 
ARECN, 
PI. 
CA,CSAHA, 

ARE CONSTANT DURING THIS PROGRAM 
/•ION MOBILITY 

•/ 
*/ 

/•CURRENT (NOND BY REF DIFF C) •/ 
/•ZETA INCREMENT BETWEEN PTS •/ 
/•AN ELECTRON TRANSIT TIME «/ 
/•ACCURACY PARAM FOR SHEATH «/ 
/•EMITTER & COLLECTOR TEMPERATU^/ 

•/ 
•/ 
•/ 
•/ 
•/ 
•/ 

/•NEUTRAL PRESSURE (TORR) 
/•E. & C. RICHARSON DENSITIES 
/•REFERENCE ELECTRON DENSITY 
/«E(0)/KT(E). NON-D BINDING E 
/•ENERGY LOSS PER IONIZATION 
/«Q(E-A) =Q0 « E^^-RE 
/•SQRT OF ELECTRON/ION MASS RAT^/ 
/• MFP RATIO, =RMUR/SMR 
/•MU RATIO, =SMR^LAMDAR 
/•KNUDSEN NUMBER 
/•REFERENCE NEUTRAL DENSITY. 
/•COEFFICIENT OF RECOMBINATION 
/• 3.14159... 
/•CONSTANTS IN MSOURCE EQN 

/•THE FOLLOWING ARE VECTORS (0:N+1). 
(NNB,TAUN, /"NEUTRAL DENSITY & TEMP. 

/• NON-D BY EMITTER VALUES 

•/ 
«/ 
•/ 
•/ 
«/ 
•/ 
•/ 

•/ 
*/ 
•/ 

0180 
0230 
0240 
0250 
0260 
0270 

0280 
0290 
0300 
0310 

0320 
0330 
0340 
.0350 
0360 
0370 
0380 
0390 
0400 
0410 
0420 
0430 
0440 



IF T A U d X O . l THEN DO; TAU(1)=0 .1 ; E F I X = ' 1 ' B ; END; 
IF TAU(N)<0.1 THEN DO; TAU(N)=0.1; C F I X = ' 1 ' B ; END; 
IF RE=0.5 THEN MUEA=TAUN; 

ELSE IF RE=0 THEN MUEA=TAUN/SQRT(TAU); 
ELSE IF RE=-.5 THEN MUEA=TAUN/TAU; 
ELSE MUEA=TAUN^( TAU«*(RE-0.5) ) 

K=( (RE+2)/FyEN )*MUEA*NEB*TAU; 
PC=NEB*(TAU+TAUN); 
DETA,DETAP=L0G(K(2)/K(1)) • DZ/(K(2)-K(l)); 

1740 

/•DETERMINE EMITTER SHEATH 
CALL SHEATH(ECHI,ENE,I«KN/NEB(1),TAU(1),ENR/NEB(1) 

TE, SMR, EALPHA, 0.8, ERR); 
IF ECHI<=lE-5 ! ECHI>=20 THEN EFIX='1'B; 1660 

/•FIND EMITTER (0+) DERIVATIVES FROM B.C. 
ET_ETA=(TAU(1)-1)*ENE*NEB(1)/KN - I*(ECHI-TAU(l)/2); 
ET_Z=ET_ETA/K(1) ; 
EPC_Z=(SQRT(PI/8/EALPHA)/LAMDAR/KN)* NEB(1)/MUI(1) 

- I/MUEA(1); 
EN Z=( EPC Z-NEB(1)*(ET Z+DTAUNDZ) )/( TAU(1)+TAUN(1) ); 

1870 

/•SOLVE COLLECTOR SHEATH 
CALPHA=1/TAU(N); 
CNE=0; 
NCMIN=4^I«KN/SQRT(TAU(N)); 
IF NEB(N)>=NCMIN 

THEN CCHI=-fAU(N)*LOG( NCMIN/NEB(N)+ 2.506528*SMR ) 
ELSE DO; CCHI=0; NEB(N)=NCMIN; CFIX='1'B; END; 

*/ 

PR 

2020 
2030 
2040 
2050 

2070 

/•DETERMINE DERIVATIVES AT COLLECTOR (1-) FROM B.C. > 
CT_ETA=-I*(CCHI-TAU(N)/2); 
CT_Z=CT_ETA/K(N); 
CPC_Z=(SQRT(PI/8/CALPHA)/LAMDAR/KN)* NEB(N)/MUI(N) 

- I/MUEA(N); 
CN_Z=( CPC_Z-NEB(N)*(CT_Z+DTAUNDZ) ) / ( TAU(N)+TAUN(N) ); 
CDETA=L0G(K(N)/K(N-1)) • DZ/(K(N)-K(N-1)); 

/•SET IMAGE POINTS. 
TAU(0)=TAU(2)-2«DETAP*ET_ETA; 
TAU(N+1)=TAU(N-1)+2*CDETA«CT_ETA; 
PC(0)=PC(2)-2*DZ*EPC_Z; 
PC(N+1)=PC(N-1)+2*DZ*CPC_Z; 
NEB(0)=NEB(2)-2^DZ*EN_Z; 
NEB(N+1)=NEB(N-1)+2*DZ«CN_Z; 

/•INITIALIZE GAMMAP & QKP FOR LOOP. 
MNS=MUI(1)^NEB(1)+MUI(2)*NEB(2); 
MURS=MUI(2)/MUEA{2) + MUI(1)/MUEA(1)•( 1 -2^DZ*( 

(0.5-RE)^ET_Z/TAU(l) - 0.5*DTAUNDZ/TAUN(1)) ); 
GAMMAP= 0.5̂ ( ( (MUI(1)+MUI( 2 ))*(PC( 1 )-PC(0)) 

)/DZ +I«MURS ); 
QKP=(TAU(1)-TAU(0))/DETA; 

DO J=l TO N; 

/•UPDATE FOR NEW J. 
GAMMAM=GAMMAP; 
QKM=QKP; 
DETA=DETAP; 

*/ 

1220 



+0.5^( ESOURCE(N)-CV(N)•TDOTl(N) ); 
IVD=DZ^IVD+ 2^I*(TAU(1)-TAU(N)) - (NEB(l)«ENE/KN)«(TAU(l)-l); 

/• DOT: RETURNS WITH NEW NEBDOT AND TAUDOT. •/ 

/ * * * * * « * » * * * * « « « * « * * « * « « * * * k k * l k * * * * « * * * » « * « • * • « * * « * * * « * * * « * « « « * * / 

/• •/ 
/• COLLECTOR EMISSION IS NEGLECTED. «/ 
/• •/ 
/• */ 

PROC(NEBDOT, TAUDOT, NEB, TAU) REORDER; 
DECLARE 

CHKDOT BIT(l) EXT INIT('O'B),/^IF 1 PRINT DIAGNOSTIC INFO •/ 
SHEATH ENTRY(DEC(16),DEC(16),DEC(16),DEC(16),DEC(16), 

DEC (16) ,DEC (16),DEC (16) ,DEC (16) ,DEC (16)) , 
(TAUDOT(•), 
NEBDOT(•), 
NEB(^), 
TAU(^), 
PC(0:N+1), /"CHARGED PARTICLE PRESSURE »/ 
F(15) EXT INIT(5.74E-3, 1.4E-3, 2.3. .2, .027, .00574, 

.0424, 3.2, 61.893, 11.607. 15473. 27.04). 

/•SHEATH VARIABLES 
NCMIN, /•MINIMUM NEB(N) TO ALLOW I. 

•/ 
•/ 

1410 
1420 

1440 
1470 
1500 

0980 

0990 

1000 
1010 

1040 

1670 

/•TRANSPORT VARIABLES 
FYEN EXT INIT(l), 
K(0:N+1), 
MNS, 
MUIS,MURS, 

•/ 
/•YEN THERMAL CONDUCTIVITY FhCI*/ 
/•THERMAL CONDUCTIVITY •/ 
/•SUM OF MUI•NEB AT J & J+1 */ 
/•SUM OF MUI & MUR AT J,J+1 «/ 

/•CONSERVATION EQUATION VARIABLES «/ 
EN_Z,CN_Z, /"SPATIAL NEB DERIVS «/ 
ET~ETA,ET_Z,CT_ETA,CT_Z, /•SPATIAL DERIVS OF TAU •/ 
EDETA,CDETA, /•ETA XPACING BETWEEN GRID-PTS •/ 
EPC_Z,CPC_Z, /•PC GRADIENT FROM B.C. •/ 

/•TEMPORARY ENERGY EQUATION VARIABLES «/ 
QKM,QKP, 
DETA,DETAP, /•GRID PT SPACING IN ETA •/ 
KDE, /"THERMAL COND X D ETA AVE "/ 
CONVECTN, 
POHMIC, 
PB,PBP, /"ENERGY STORED IN EXCITED STAT"/ 
SIGMA) 

FLOAT DEC(16), 

1640 
1630 

1050 

1070 
1080 

1110 
1120 

/•TEMPORARY DENSITY EQUATION VARIABLES 
(GAMMAM,GAMMAP, 
D1B.D21B,D32B.P0,IB.NUE, /"PARAMETERS FOR MSOURCE 
A, 
NES2) 

FLOAT DEC(16). 
J FIXED BIN(31); 

ON FINISH PUT SKIP(5) DATA; 

•/ 

•/ 

1130 

/•SET THERMAL & ELECTRICAL CONDUCTIVITIES AT 0+ (E) &, 1- (C). •/ 1710 
TAU(0),TAU(N+1)=1; /"AVOID NEGATIVE VALUES "/ 



/*E- PRODUCTION RATE (NOND) 
/*ENERGY SOURCE TERM (NOND) 

/*E- MOBILITY AMONG ATOMS. 

/*DID C-SHEATH REQUIRE FIX? 

/«# OF GRID PTS, E TO C INCL. 

/«PRESENT # OF TIME STEPS. 

«/ 
«/ 

*/ 

»/ 

*/ 

*/ 

«/ 

MSOURCE, 
ESOURCE, 
CV, 
MUEA, 
ND0T2,TD0T2, 
TTILDA,NTILDA) 

(0:N+1) ) FLOAT DEC(16) 
CFIX BIT(l) EXT, 
EFIX BIT(l) EXT, 
(NSTEPS, 
N, 
J, 
COUNT) 

FIXED BIN(31); 
/•HANDLE EXCEPTIONAL CONDITIONS 
ON FINISH PUT.SKIP(5) DATA; 

PI=3.1415926 + 5.3589793E-8; 
DZ=0NE/(N-1); 
DT=(T2-T1)/NSTEPS; 
CFIX,EFIX='0'B; 
ERR=lE-3; 

/*SET NEUTRAL TEMPERATURE AND DENSITY. 
IF TE=TC THEN TAUN=1; 

ELSE DO J=0 TO N+1; 
TAUN(J)=1 + (TC/TE-1)*(J-1)/(N-1); 
END; 

NNR=965.5E16*PN/TE; 
NNB=1/TAUN; 
DTAUNDZ=TAUN(N)-TAUN(1); 

/«SET TRANSPORT PARAMETERS. 
RMUR=LAMDAR*SMR; 
MUI=SQRT(TAUN); 

/*SET IONIZATION AND SAHA PARAMETERS. 
CA=0.41283*ARECN*TCHAR«(NR/1E14)«*2 * (TE/1500)«*-4.5; 
CSAHA=LOG( (1.4027E20*NNR/NR/NR) * (TE/1500)**1.5 ); 

DO COUNT=0 TO NSTEPS-1; 
TIME=T1+C0UNT*DT; 

/*PREDICTOR STEP 
CALL DOT(NDOTl,TDOTl,NEB,TAU); 
NTILDA=NEB + AN*DT*ND0T1; 
TTILDA=TAU + AT*DT*TDOTl; 

/•CORRECTOR STEP 
CALL DOT(ND0T2,TD0T2,NTILDA,TTILDA); 
NEB=NEB + DT*( BN*ND0T1+CN*ND0T2 ); 
TAU=TAU + DT*( BT*TD0T1+CT*TD0T2 ); 
END; 

/*UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER GAIN*/ 
CV(0),CV(N+1)=0; 
ESOURCE(0),ESOURCE(N+1)=0; 
CALL DOT(NDOTl,TDOTl,NEB,TAU); 
IVD= 0.5*( ESOURCE(1)-CV(1)*TDOTl(1) ) 

+ SUMV( ESOURCE-CV*TDOTl, 2, N-1) 

0450 
0460 

*/ 

*/ 

0600 

0740 
0610 
0720 

0 
0 
0 

0660 
0670 

0700 

0680 
0690 
0710 



IF J =N 
THEN DO; 

DETAP=L0G(K(J+1)/K(J)) « DZ/(K(J+1)-K(J)); 
MNS=MUI(J)"NEB(J)+MUI(J+1)*NEB(J+1); 
MUIS=MUI(J)+MUI(J+1); 
MURS=MUI(J)/MUEA(J) + MUI(J+1)/MUEA(J+1); 
END; 

ELSE 
MURS=MURS +2*DZ*(MUI(N)/MUEA(N))«((.5-RE)•CT_2/TAU(N) 

- 0.5*DTAUNDZ/TAUN(N)); 

/•FIND AMBIPOLAR FLUX AT J+l/2. «/ 
GAMMAP=0.5«( ( MUIS*(PC(J+1)-PC(J)) 

)/DZ +I*MURS ); 

/*FIND MASS SOURCE AT J. */ 
A=CA/TAU(J)*«4.5; 
NES2=NNB(J) * TAU(J)••I.5 * EXP( CSAHA-EGNDB/TAU(J) ); 
D21B=F(7)»(1+F(8)/TAU(J)); 
D32B=F(2)«EXP(F(3)/TAU(J)); 
IB=A*NES2«( 1+F(1)/NEB(J) )/( 1+D21B*(1+D32B/NEB(J))/NEB(J) 

); 
PO=l+( F(4)/NEB(J) )«( 1+F(5)/NEB(J) )/( 1+F(6)/NEB(J) ); 
NUE=NEB(J)«NEB(J)/NES2; 
MSOURCE(J)=NEB(J)^IB*( 1-P0*NUE ); 

NEBDOT(J)=RMUR*(GAMMAP-GAMMAM)/DZ + MSOURCE(J); 

KDE=K(J)«(DETA+DETAP)/2; 
QKP=(TAU(J+1)-TAU(J))/DETAP; 

1250 
C0NVECTN=-1.5^I«(DETA«QKP+DETAP*QKM)/(2«KDE); 
SIGMA=NEB(J)«MUEA(J); 1270 
POHMIC=I*( I/SIGMA + TAU(J)«( NEB(J+1)-NEB(J-1) ) 1280 

/ (2*DZ«NEB(J))); 1290 
PBP=( F(9)«NNR/NR )«EXP( -F(10) /TAU(J) ) ; 
PB=( FdD'NNR/NR )«EXP( -F(12) /TAU(J) ) ; 
CV(J)=1.5«NEB(J) + NNB(J)«(F(10)*PBP+F(12)*PB«NUE) 

/ (TAU(J)"TAU(J)); 
ESOURCE(J)=-ELOSSB»MSOURCE(J) 

- NNB(J)*PB«( 2«NUE«NEBD0T(J)/NEB(J) ) ; 

TAUDOT(J)=( (QKP-QKM)/KDE + CONVECTN + POHMIC + ESOURCE(J) ) 
/ CV(J); 

1320 

1340 
IF CHKDOT THEN PUT SKIP(2) DATA(NEB(J),TAU(J),MSOURCE(J), 

J,PB,PBP,A, 
D21B,D32B,PO,IB,NUE,NES2,QKP,GAMMAP,DETAP,MURS); 

END; 1350 
1370 
1400 

NEBDOT(O),NEBD0T(N+1)=0; 
TAUDOT(O),TAUD0T(N+1)=0; 
IF CHKDOT THEN PUT SKIP(3) DATA; 
END DOT; 
END PREDCOR; 2170 



APPENDIX B: Symbols and Notation 

Some of the important notations used in this thesis are 
listed below. The meaning of each symbol is given as well 
as the page where it is defined. Dimensional variables are 
listed in column (1). Non-dimensional variables are listed 
in column (2). As the alphabet is finite, some symbols have 
more than one meaning; the intended meaning should be clear 
by context. See also figure 2 for a graphic definition of 
various voltages used. 

(1) (2) 

cs< /O^ ionization coefficient(II-9,11-19,IV-10) 

c<£- '^ ion speed parameters (11-12,14) 

f\ temperature sensitive part of density 
dependent ionization coefficient(I1-27) 

recombination rate 
coefficient(I1-9,IV-10) /3 

QJ< interelectrode gap length (figure 2) 

y. Q ambipolar diffusion 

*^ ^ coefficient(II-20,11-28) 

c? elementary charge 

V P ambipolar flux(II-8,11-17) 

electron and ion fluxes, 
1̂ ^ /̂  "Xe I^ respectively(II-2,11-17) 

. emitted flux of electrons by the 
'Q J~£ emitter(II-ll,11-17) 

J^ Boltzmann's constant 

^. K electron thermal 
e ' conductivity(11-8,11-17) 

K. parameter related to a Knudsen 
'̂  number(11-17) 

-J- 2E total current(11-3,11-17) 



JE 

n 
r?,^ ri;^ 

x^ 
Tf 
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ratio of total current to emitted 
0 current(11-24) 

emitted current(11-11,11-17) 

plasma number density(11-3,11-17) 

electron and ion number densities, 
respectively(I1-2) 

O^/^ emitted number density(11-12,11-29) 

plasma density near the emitter and 
collector, respectively(11-12,I1-14) 

time(11-2,11-17) 

characteristic diffusion time(11-17) 

•electron temperature(I1-4,I1-16) 

electron temperature evaluated near the 
emitter and collector, 
respectively(11-14,11-16) 

neutral temperature(11-7,11-16) 

emitter and collector temperature, 
respectively(11-12,11-14) 

emitter sheath height(11-12,11-16) 

collector sheath height(11-14,11-16) 

electron motive (potential) (11-3,11-16) 
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