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Abstract

To reduce the plasma arc-drop, thermionic energy
conversaon 1S studied with both analytical and numerical
tools. Samplifications are made in both the plasmadynamac
and ionization-recombination theories. These are applied to
a scheme proposed presently using 1laser arradiation to
enhance the 1onizatlon kinetics of the thermionic plasma and
thereby reduce the arc-drop. It is also predicted that it
18 ©Ppossible to generate the required laser laght from a
thermionic-type Cesium plasma. The analysis takes advantage
of theoretical simplifications deraved for the
ionization-recombaination kinetics. It is shown that large
laser ionizataon enhancements can occur and that collisional
Cesium recombination lasing i1s expected. To complement the

kinetic theory, a numeraical method is developed to solve the

thermionic plasma dynamics.

The effects of the complete system of electron-atom
inelastic collaisions on the ionization-recombination problem
are shown to reduce to a system nearly as sample as the
well-known "“one-quantum" approximation. As a consequence
the effects of other processes such as recombination lasang,
resonant atom-atom cecllasaons, and resonant radaataon
enhanced ionization can be analyzed simply, analytically,

and quantitatavely. A number of well-known
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ionization-recombination approxamations are lamaiting cases
of this theory. The resonant radiation 1onization
enhancement process 1s analyzed and it i1s shown why 1large
enhancements are possible. A Cesium recombination laser ais
predicted and the magnitudes for the population ainversion

and the laser efficiency are derived.

To combine the above analysis of
ionization-recombination kinetics with the plasma dynamics
of thermionic conversion, a finite dafference computer
program 1s constructed. It 1s capable of solvang for both
unsteady and steady thermionic converter behavior aincludaing
possible laser ionizataon enhancement or atomac

recombination lasing.

Using the above developments, a proposal to improve
thermionic converter performance using laser radiation as
considered. In this proposed scheme, laser radiation
impangaing on a thermionic plasma enhances the ionization
process thereby raising the plasma density and reducing the
plasma arc-drop. A source for such radiation may possibly a
Cesium recombination 1laser operating in a dafferent
thermionic converter. The possibility of this being an

energy efficaent process is discussed.
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I Introductaion

The praincaples of operation and possible methods for
improvement of thermionic energy conversion (T.E.C.) are
explored in this study. A number of unusual or unexpected
results are found. Two tools were developed for the
consideration of the plasma dynamics. One 1is an isothermal
model which features closure with simplacity. The other s
a numerical computer program which is capable of examining
unsteady as well as steady modes of operation. A motaivatang
factor for this work 1s interest in possible aimproved
performance using laser arradiation of the plasma. This
involved two parts. The fairst 1s studying the effect of
such radaataon on T.E.C. operataon. The second part
involved finding a not too ainefficaient source for such
radiataion. For aionization-recombaination, standard methods
are supplemented with a new theory that saimplifies the
problem without loss of quantitative accuracy.

Using both analytical and computational methods, some
unintuitive conclusions have resulted. For one, energy
injection into a thermionic plasma actually causes a lower
electron temperature. This 1s true for laser energy
injected for absorption by the atomic 1levels. To some
lesser exXtent, 1t 1s also true for direct heating of the
electron translational modes. Another unintuitive result is
that even though energy ainjection 1lowers the electron
temperature i1t also simultaneously causes an increase in the
electron density. A further counter-conventional result is
that the double sheath whaich obstructs electron emission
from the emitter does not reduce but rather aimproves T.E.C.
performance. Suppression of this obstruction increases the
arc-drop. These conclusions appear as immediate
consequences of the analytacal aisothermal model that ais
developed presently. The trends predicted by this theory
are verified by computational solution of the governing
differential equations.

Towards a maximum of ainsight with a mainimum of
mathematical complexity, an i1sothermal model, built
upon[5,6], 1s developed and closed. The roles of various
physical processes and how they interrelate are clarafied.
A picture of the plasmadynamics 1s developed wherein the
arc-drop i1s determined by an energy balance and the electron
temperature 1s governed by an agnataon condataon. Physaical
causes of the results, even the unaintuitive ones, are
apparent. The consequences of this analysis and its
application to the laser enhancement scheme are thoroughly
discussed in chapter 1I1I.
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To verify the conclusions drawn from analytical theory,
a numerical algorithm has been created to solve the system
of unsteady or steady thermionic converter differential
equations. The present method of solution which uses a
predictor-corrector relaxation scheme differs greatly from
previously employed marching or shooting methods. In
addition to allowing the study of unsteady situations, the
exponentially growing error terms of shooting schemes are
avoided.

Because of the importance of jonization and
recombination on thermionic conversion and because these
processes can be sensitive to inelastic collision
cross—-sections, the subject of these cross-sections is
reviewed. In light of recent studies, cross-sections used
in earlier studies with Cesium are found to be of poor
accuracy. A set of cross-section formulas which appear to
have the present backing of theory and experiment are
selected for use in the present study.

A development which significantly simplifies the
collisional transition network while retaining quantitative
accuracy is presented herein. This is done by taking
advantage of a property that the cross—-section formulas
selected as above have. The resulting model is nearly as
simple as the well-known one gquantum model. As a
consequence, many otherwise subtle effects can be analyzed
and explained with unlabored algebraic formulas. A number
of examples are given. Many previous
ionization-recombination theories are shown to be limiting
cases of the present one. 1In particular, the process of
laser ionization enhancement is made clear. It is shown to
be a very energy efficient way to ionize. Recombination
lasing is also discussed with this model.

A motivation for this work is interest in the
possibility of d4improving T.E.C. behavior by altering the
ionization kinetics. This is to be done by subjecting the
plasma to 1light resonant with some atomic levels. For a
given electron temperature, this causes a very large
increase in the ionization rate constant. 1In contrast with
other proposals, laser enhancement has the advantages of
being a volume process and the energy used goes directly
into ionization. As a conseguence, the arc-drop is reduced.
In principle, this process can be energy efficient overall.
In practice, it is limited by the energy cost of producing
such 1light. Steps towards removing this obstacle are taken
by the present theoretical development of a thermionic
Cesium recombination laser. A rapidly cooled Cesium plasma
may have a population inversion on the infrared 7p-7s
transition. The plasma dynamic studies indicate that this
rapid cooling may be obtained in a thermionic type plasma by
varying the current flow.
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The laser ionization enhancement process developed
herein appears to be similar to the opto-galvanic effect
which has received much attention in the 1literature, e.g.
[103-111]. While optogalvanic theories[103,106,110,111]
have tended to be qualitative in nature, the present
investigation proceeds from first principles in hopes of
attaining quantitative accuracy.

These subjects and others are discussed in detail in
the chapters to follow. Chapter II reviews the development
of the governing equations, discusses the present isothermal
model, and applies it to various problems of interest.
Since the Cesium laser prediction is sensitive to inelastic
collision cross—sections, available theories and experiments
on this subject are discussed in chapter III. The elements
of ionization-recombination theory are reviewed in chapter
IV and some of the subtler implications are discussed with
little mathematical complication. The new egquivalent
circuit ionization-recombination theory is presented in
chapter V. The results of the computer solution of the
T.E.C. plasma equations are given in chapter VI to verify
earlier conclusions. Chapter VII summarizes and concludes
this work. From this work a number of avenues for improving
converter performance appear suggesting that much fruitful
future work is possible.



II Introduction to Thermionic Energy Conversion Theory

Thermionic energy conversion involves a large number of
physical phenomenon which interact in very complex ways. If
the performance of thermionic converters is to be improved,
it must be determined which effects dominate and how they
can be controlled. It is the purpose of this chapter to
outline the fundamental equations governing thermionic
converter performance and discuss the concepts developed in
simplified approximate models. .

The isothermal theory of thermionic converter operation
developed in Lam[6] culminated in relationships determining
the arc-drop and electron temperature in terms of the plasma
resistance and the ratio of output current to emitted
current. This has shed much light on the determination of
T.E.C. performance. 1In this chapter, the theory is further
extended. First, it is shown how the plasma resistance can
be determined a priori. Secondly, an a priori determination
of the emitted current even in the double sheath regime is
found. This closes the model and allows quantitative
prediction of T.E.C. behavior.

Sections A through E and section G are largely reviews.
They develop the general conservation equations, their
boundary conditions, and their scaling laws. The fifth
section, E, then develops simple approximate analytic
models. This 4includes a discussion of the ignition
condition and determination of arc-drop. This is based on
Lam[5,6] but differs in emphasis which is placed here on
approximating converter behavior subject to
ionization-recombination kinetics rather than the concept of
the 4ideal screwed-down-ion converter. Section G develops
the physical basis of the Lam transformed energy equation
theoryl[9]. This theory has important implications for the
development of numerical methods for thermionic plasmas.

The remaining sections extend the simplified theories
to conditions of present interest. Section F explains how
the well known faster-than-Boltzmann voltage rise can occur
in a one Adimensional T.E.C. This is done by extending the
concept of an ignition temperature to nonlinear conditions.
Section H discusses how laser enhanced ionization can reduce
the plasma arc-drop. Section 1 discusses unsteady
thermionic converter behavior with application to the
possibility of creating a thermionic Cesium plasma
recombination laser. These theories will be used to explain
the numerical results presented in a later chapter.
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I1.A Conservation Equataions

The conservation equataions to be used in this work are
cast in a form somewhat different from those commonly used.
This form, developed ain Lam[5] and Lam[9], simplifies the
equations by uncoupling the electrostatic potential from the
momentum and energy egquations. These equations will, with
the continuum approximations to be made in sectaon II1.B,
lead to the ambaipolar diffusion and Lam[9] energy equations.
The usual energy edquation, the one which explicitly includes
the electrostatic field, will also be discussed here.
Further formal saimplafication of the usual energy equataion
1s shown when the total as opposed to the sensible enthalpy
1s considered.

These equations are presently developed from a
fundamental point of view. The deravation proceeds startaing
with the mass, momentum, and energy moments of the Boltzmann
equation. This 1s done mainly for two reasons. First, it
1s desired to emphasize what assumptions and approximations
are and are not necessary to develop the ambipolar diffusion
equation. This will lead to results which differ from some
conventional conclusions, particularly with regard to the
role of electron-ion momentum transfer effects on ambipolar
diffusion. Secondly, this procedure provides an alternataive
but fully equivalent derivation of the Lam[9] energy
equataion. Again, to emphasize where approximataions are and
are not made, the collisional source terms are left in a
general unspecified form in the present section. The usual
approxamations for them will be gaiven in II.B. Because
thermionic converters are typacally one-dimensional and
planar, the present deraivation will be 1in one dimension.
This avoids the complications of tensor notataons.

To begin, the containuity equations for electrons and
for ions may be stated:

77 ) o Y/A v 7

A l El-jl = ;ff(- _2e 32——— - S - 2l

- 2t 2x ) o ax
where: /;1 = %Z/€ = ELECTKoN FLuX

1= 24U, = lon FLUX

i
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—(/{}. > joN SPEED

7
And SC / 1s the chemical source term. Ne and n; are the
electron and ion number densities, respectively. Since ions
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are assumed to exist only in the singly ionized form, the
electron and ion source must be identical.

An immediate consequence of the mass conservation
equations is the conservation of total current J:

2J
A.2 5x O WHERE J = e(/z-/;

Because of this conservation property, it is convenient to
formulate T.E.C. -theory as if the converter were placed in
a constant current circuit. Thus, J may be considered
given.

It is a definition of the term plasma that
quasi-neutrality hold as a good approximation. In the
present situation this means that, outside of the sheaths,
the electron and ion densities must be very nearly equal.
Thus from here on, the explicit distinction between these
densities will be dropped, their densities simply denoted by
n. Note however that electrons and ions may have quite
different temperatures.

Next, the momentum egquation may be considered. Thus:

D(, U _ _op2 2e¥ S(y) ((?/

A 3 W D€ ax “ex *
U 2 eV /
/Jl/ /v177 -%%;f: = -.—21.477 '*524 ‘5%%
Where s‘éz ,S(ﬂ ,S('Z are source terms for momentum caused by

electron—atom, electron-ion, and ion-atom collisions
respectively. Here pe and p; are the x-x components of the
electron and ion pressure tensors, respectively. m and M
are electron and ion masses, respectively. & is the
electron motive. e is the elementary charge. De /Dt and
D; /Dt are, respectively, the electron and ion substantial
derivatives.

Asymmetries may be immediately noted between the
electron and ion momentum egquations: both the electric
field and electron-ion momentum transfers appear in each
equation with equal magnitude but opposite signs. By adding
these two equations both of these effects exactly cancel and
disappear from the result:

B, 1, 2% - - 24 SV

A5 o€

Where: p=p +Pp

The above when combined with the continuity egquation and
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assumed behaviors for the source terms becomes the well
known ambipolar diffusion egquation, as will be shown later.
Again, it is to be noted that in addition to eliminating the
electric field, the electron-ion momentum transfer also
cancelled. Furthermore these cancellations occurred using
no approximations other than quasi-neutrality and the
Boltzmann equation.

Energy conservation is considered next. For ions under
T.E.C. conditions, it is generally adequate to replace
their energy equation with the approximation that their
translational temperature is the same as that of the
neutrals. The situation for the electrons however is quite
different. Determination of the electron temperature turns
out to be quite complex and has a dominating effect on
T.E.C. performance. Taking the appropriate moment of the
Boltzmann equation for electrons results in the energy
equation:

€  f % el G )
pe FEAFF ¥ - 5%es

Where € and h are the stagnation energy and enthalpy defined
by:

9.7 €= Fts + LT
A.8 b= € +R/

I

(&)

and where S is a collisional energy source term. In
principle, this should include both elastic and inelastic
collisional effects but, under T.E.C. conditions, the
inelastic effects dominate. The quantity de is the heat
conduction flux. The inelastic energy source, or sink,
occurs only under disequilibrium conditions such as may be
caused by ionization-recombination or radiative energy 1loss
or absorption.

In the usual development of the T.E.C. energy
equation, integration by parts of the electric field term
followed by application of the continuity equation is used
resulting in:

7 ( ¢ e )
g 2meret) o p ) iqlzniE + S

+ (e + e‘(/)—g(w

In steady state with the collisional source terms neglected,
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a first integral is obtained:
AI0 Cle = /;'(%+e‘/’)+ Fo = consTANT

which is probably the most common form for the T.E.C.
energy equation. 1In a next better approximation, a part of
the energy source is written as being the energy into
ionization-recombination. thus, let:

H

) '
Al s . -5 4p

Where Eo is the ionization energy and R is the remaining
contributions that are often neglected. The energy egquation
can then be rewritten as:

2t L)+ F (e vel)+4]
A. 12 -2 py (e +etp) s

where, when steady-state is assumed and R neglected, the
equation still has a first integral:

A1 6%/ = /;(/.+£;+e}°/+% = coNSTANT

The quantity (h+Eo) is often called the total as opposed to
sensible enthalpy.

The above equations explicitly include the electric
field or electron motive. This creates some difficulties.
To remedy this, there is an alternative formulation that has
been developed in Lam[9]. That theory eliminates the
explicit appearance of the electric field from the energy
equation. Thus this energy equation when combined with the
ambipolar diffusion equation will allow for the T.E.C.
behavior to be solved without reference to the electric
field. The problem is reduced from a system of simultaneous
equations with three unknown variables to a system with just
two. The development in Lam[9] proceeded from the usual
T.E.C. transport equations. Here, an equivalent
development is given which starts with the moments of the
Boltzmann egquation as above and before the additional
approximations for the collisional source terms are made.
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The elimination of the electric field term from the
energy equation is done simply. Taking the momentum
equation and multiplying through by the electron speed,
there results:

2P Je¥ (»! )
Ald Dtk +UX Flo BT T USe U S,

Note that the term involving the electric field here has the
same form as in the energy equation. Eliminating this term
between the two egquations there results:

¢ OJle€ 29, Rl _ _<& _i Dethe
a5 5t o tax tsx =S + €S +ml b
(»/ @l

Now, the only unknowns in this energy equation are the
density and temperature. As will be apparent later, the
plasma dynamics of the T.E.C. can DPbe solved now without
reference to the electric field at all. With this the
number of equations involved is of course less and thus the
whole problem is much simpler.

These equations cannot be sclved without a model to
quantify the collisional source terms. This will De
remedied in the next section. With section D to discuss
non-dimensionalization and section C to describe the
boundary conditions, the equations will be complete.
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II.B Approximations for a Weakly Ionized Plasma

The conservation equations stated in the 1last section
are quite general. Before such equations can be used rules
for determining the various unknowns such as the collisional
source terms must Dbe specified. For this to be done in a
practical way, more approximations are necessary. The end
result of this section will be the plasma
convection-diffusion equations. The approximations to be
made, the usual ones for a T.E.C. plasma, are mostly based
on a small mean free path assumption. This 4is reasonable
since there are typically at least ten mean free paths
between the electrodes. The specific approximations are
listed below:

1). Viscous components o©of the pressure tensor are
neglected. Thus, the X-X component of the pressure tensor,
which is the one which appears in the conservation
equations, can be given by the ideal gas law:

. = . k

B.1 RS n Te

B.2 P. = n . kTn
A

where Te is the electron temperature and Tn is the heavy
particle temperature. k is Boltzmann's constant.

2). The momentum source terms are approximated to first
order by a small mean free path or continuum assumption as
linear in the relative speed of the two interacting species.
Thermal diffusion is neglected. The constant of
proportionality is written as a product of the mass of the
target particle and a momentum transfer collision frequency:

7.3 & - vz ]

FY ng = -ml)e-(e' ‘_)
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e Ly Via I+

3). The unsteady terms in the momentum equations will be
neglected. This 1is Dbased on the assumption that the time
scales under consideration are much 1longer than particle
mean free times. Since mean free times are typically the
order of ten nanoseconds or less, this will generally be a
good assumption.

4). Terms in the momentum eqguations involving the
convection of momentum are neglected. This is based on the
assumption that the momentum transfer collisions occur
sufficiently often to keep the Mach numbers small.

5). The term dJe is given by Fourier's 1law of heat
conduction:

2%
B.5 qe= _'keax

With these approximations, the plasma conservation
equations may be written. First, the electron-ion momentum
equation, A.5, using approximations 2 and 4, is rewritten
as:

K
B/ O:v—ff(z'/;;

where is called the ambipolar flux and is defined by:

/-
7.8 = [ *ﬁ;ﬁ

and where the quantl*les/bl and ,‘%a are called mobilities
and are defined by:

/‘ﬁ': ’/ MVa
NMes © Yo %a

Combining the above relations for the ambipolar flux with
the mass conservation equation A.1 yields the ambipolar
diffusion equation:

LY (/ /a-r 'ax/(/;gg"’(/* }5 * ax(/!e«)

£
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Turning to the energy equation A.l1l5, by using approximations
1 through 5 there results:

35 _ okl =R Te o 4 3k Ple
Z735% t3 ax 55 S 5%+

Bl 2
' ) M e _E B-7
=STYHLES tmt 7 g

Employing conservation of mass A.1 and rearranging yields
the energy equation:

Te 2T r).N" 2 /2
%W?’a/xez T2 'ﬁﬁ’%)z 5% = 77kle oX
B.12. __Ef o k-7
t e T e e

To complete the energy equation, expressions are needed to
determine the electron and ion fluxes, /g and [. The ion
flux can be determined from conservation of mass, A.l:

2L _ ) _ 2%
BIZ 55X =S - 5¢

From the above and the definition of total current J, the
electron flux can be found:

<
B.IY [e= e +[]

where, again, J is a conserved quantity determined by
factors outside of the thermionic converter. Since electron
mobility is much larger than ion mobility, it is often the

case that:
-

pis R=d [« f

The limits of this approximation will be discussed later.
When it 4is wvalid, it can be used to replace B.14 and
simplify equations B.10 and B.1l2. This is often very
useful.

The remaining unspecified functions are the mass and
energy source terms. The mass source term is to be given by
detailed consideration of the ionization-recombination
kinetics of the plasma. This term is generally written in
the phenonemological form:

e6 5= (°</Vo-p77e2)77@
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where No is the neutral Cesium ground state density and
where oK 1is called an ionization coefficient and (3 is
called the recombination coefficient. Both these
coefficients are generally strong functions of temperature
and possibly density as well. They may also depend on
radiative disequilibria. If the time scales were
sufficiently short, they would also depend on the time
history of the plasma. These considerations will be
discussed in chapters IV and V.

The electron collisional energy source term can be
accurately modeled as being due to inelastic electron-atom
collisions. This includes effects of the enerqgy of
formation of ions as well as of the excited states of the
atom and radiative gains or losses. A quantitative model
for these effects will be developed in chapters IV and V
also.

As appropriate for this type of plasma, the ion
temperature will be assumed to be the same as the neutral
temperature for all regions not near the sheaths. Further,
it is a good approximation that the neutral temperature near
the electrodes is the same as the electrode temperature and
that it varies linearly in the gap between the electrodes.

To summarize, the governing equations of the thermionic
converter are the ambipolar diffusion equation B.10 and the
energy equation B.1l2, as supplemented by relation B.l4 and
either B.1l3 or B.1l5. For sections 1I.D and onward, B.1l5
will be assumed. The next section will present the boundary
conditions for these equations. Following that, they will
be scaled and nondimensionalized. the remaining sections
discuss analytical methods to simplify and clarify the roles
of the various physical processes involved.
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I1.C Sheaths and the Plasma Boundary Conditions

To solve the plasma equations developed in the previous
sections, it is of course necessary to have boundary
conditions. The electrode walls are characterized by their
behavior as sources or sinks of ions, electrons, and energy.
Their behavior determines the boundary conditions for the
problem. These conditions cannot be applied directly to the
plasma convection-diffusion equations, however, as the
quasineutral assumption generally fails in a small region
near the boundaries. While the non-neutral regions,
sheaths, are typically dquite small being the order of ten
microns or smaller in width typically, they have a major
effect on the overall T.E.C. performance. Analyzing a
sheath is a difficult problem in itself. In the present
work, the sheath theory of Lam[5)] is employed. The
assumptions used in this theory will be outlined presently.
In particular, the relationship between the mono-energetic
approximation and the presumably more precise
half-Maxwellian distribution 4is discussed. Also, the Bohm
criterion matching between the sheath and the outer plasma
will be compared with the more common ad hoc approximations.
Using this sheath analysis, the plasma boundary conditions
will then be stated.

The assumptions of plasma sheath theory are discussed
presently. The results are not derived; they are merely
stated. For the derivations and more detailed discussions,
the reader is referred to Lam[5].

Since a goal of the present work is to further
understanding of thermionic conversion, simple models are
used to describe the wall behavior. To this end:

1). The walls are perfectly absorbing, no reflection.

2). The collector is assumed to emit nothing.

3). The emitter is assumed to emit only electrons.

These assumptions reduce the number of phenomena involved.

To solve Poisson's equation for the potential drop in a
sheath, it is necessary to know the charge densities. To
start, consider the electrons emitted from the emitter.
They have a current density:
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JE=enEvE/2=ej"E

Where ng is the emitted density, and Vé is the mean thermal
speed of electrons at the emitter temperature. The emitter
sheath may or may not have a potential peak as shown in
figure two. If it has no peak, then the emitted density is
given by the Richardson density, possibly as modified for
the Schottky effect. Otherwise, it must be solved for as an
unknown in the sheath theory. The density of these emitted
electrons varies as they travel through the sheath as a
function of the potential, V. If one assumes the usual
half-Maxwellian form of the distribution function for
emitted electrons at the potential peak, the density of
these electrons as they fall down the peak towards the
plasma is given by an error function:

c.2  n (V) =ng exp( e(V.-V)/kTg ) erfc(4/e(Vg-V) /kTg )

where Vg is the total voltage drop of the sheath and V is
the potential in the sheath with respect to the potential at
the sheath-quasineutral region interface. Tz is the emitter
wall temperature. At large potential drops, the above
behaves like:

VIE

v/ (v} = "’{?‘T’W rer (V- U2 AT
ATz

It is found moreover that the the whole function, C.2, is
well approximated by the simple form:

. T
c3z o (W E V)

which is exactly the density one would find if the
mono-energetic assumption for the emitted electrons had been
made to begin with. Considering now the density of the ions
which are accelerated into the sheath and making the
mono-energetic approximation, their density is given by:

<4 n.w)= n, /N 1420/ kT

where n, is the density at the emitter sheath-quasineutral
region interface. The subscripts 0 and 1 will be used to
indicate that a plasma variable should be evaluated near the
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emitter and collector sheaths, respectively. The parameter
alpha in the ion density function 4is determined from the
speed with which the ions enter the sheath. If it is
assumed that the ions enter with a speed associated with the
neutral particle temperature, it follows that:

- oG = U/ 2

A common correction to account for non-Maxwellian effects is
to assume that the ions arrive at the sheath with twice the
mean Maxwellian speed. This would make alpha one quarter of
the value above.

o, = /8

There is & more precise method for determining alpha.
Detailed analysis indicates that ions must arrive with at
least a certain speed or else Poisson's equation is
ill-behaved. This speed is determined by Bohm's criterion.
See Lam[5].

In contrast to ions and emitted electrons, the plasma
electrons entering the sheath generally face a potential
barrier. It is assumed that the barrier, Ve is
sufficiently high that a near equilibrium density
distribution is obtained:

-/

c& 20) = 7MC

Where Ne is the ratio of the density of near equilibrium
electrons at the sheath-quasineutral region interface to the
density of ions there. Ne must be less than one if there is
emission of electrons from the wall.

At this point there are four unknowns: Ne, the ion
speed parameter o¢, the emitted density ng, and the sheath
height itself Vg. These can be solved for, as in Lam[5],
with the following four conditions:

1). Charge neutrality must exist at the sheath-quasineutral
region interface.

2). The emitted density must be given by the double-sheath
or Richardson conditions.

3). The Bohm criterion must be satisfied.

4). The net current flow must match that of the plasma.
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Information about the sheath heights can be obtained by
examining the conservation of current conditions. For
emitter and collector, the total current is J. Evaluated at
the emitter sheath-quasi-neutral region interface, it is
found that:

G % /f T A2
c.7 T T o -enMaC T 47K

Here, JE is the emitted current. Similarly, at the
collector plasma-sheath interface it is found that:

el/c
/‘éT
c.§ T = 7T E’ - 77V

where Ne has been set to one since collector emission is
assumed negligible, n; 1is the plasma density at the
collector sheath-quasineutral region interface, and Vv, is
the electron mean thermal speed.

In the plasma equations it is often accurate to assume
that the ion current is negligible compared to the electron
current. This will be true when:

£ Te
enysm < J

With the ion current neglected, the above equations when
solved for the sheath height result in:

STo 2% Ve Uy /4
Vi = T e

V.= ﬁj 7,0 /4

¢ e 7( le

n, is the ion density in the gquasi-neutral region near the
collector sheath. T, and T, are the electron temperatures
evaluated near the emitter and collector sheaths,
respectively. The above equations for the sheath heights
will be useful in later sections.

c. 9

Turning attention now to the implications of the plasma
sheath on the boundary conditions for the plasma equations,
the mass and energy boundary conditions will Dbe stated.
Using the above mass flux equations, the ambipolar diffusion
boundary condition at the emitter can be written:

c.lo /Z=’/<§§§fla= '%'V% (/'f,éfi)*/%g

The corresponding condition at the collector is:

c i f.7=’/ﬁ-92§2/.= 77/”,(’/,@ Azr
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Under some circumstances, an approximation to these
boundary conditions can be used to advantage. By analyzing
the orders of magnitude for the wvariables in these
equations, it is found that the densities at the walls are
typically of the order of a Knudsen number. This is
typically a small number, as was assumed to derive the
plasma diffusion equations. Thus, it is often a reasonable
first approximation that:

"
ne

0

-

na ng

While the above can be quite reasonably accurate for many
purposes, it 4is inadequate for use in the T.E.C. electric
field or electron energy equations since all of these are
singular as density goes to zero.

The energy equation boundary conditions are found by
considering the fluxes of energy through the sheath. At the
emitter, it follows that[5,6]):

s @ et akT) [ - (etrelf+24T)([-E)

Using the approximations of section B for the electron heat
flux Qe, it follows that:

' aT | _ AT
et -k Br s P (ETAT) By 4E)
And, at the collector:

c15 G~ (e¢/+ch+;,é7,'] A

and similarly:

2% | AT,
c.1é - 65_7/ = /g(ch"E")

l

In summary, the boundary conditions on the T.E.C.
plasma egquations have been stated. For the ambipolar
diffusion equation these are C.l2and C./l. For the energy
equation, c.lyand c.)6 are used. The sheath heights and ion
acceleration parameters are determined from the sheath
theory of Lam[5].
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II.D Scaling and Nondimensionalization

The equations presented in sections II.B and 1II.C
contain many quantities which are of uncertain magnitude.
This makes it difficult to judge the importance of each and
the sensitivity of the solutions of the equations to each of
them. To alleviate this problem, the equations can Dbe
non-dimensionalized. When this is done the number of
uncertain problems will be reduced to a smaller number of
dimensionless parameters which are just groups of the old
parameters. A further benefit of non-dimensionalization is
that scaling laws obeyed Dby these equations will Dbe
apparent.

Reference quantities should be chosen so that the
resulting non-dimensionalized variables have easily
estimated magnitudes. Electron temperature, Te, and heavy
particle temperature, Tn, are non-dimensionalized by the
emitter temperature, Tg. Thus:

T=Te /Tt , = T/T

The voltages and sheath heights are scaled similarly by the
emitter temperature:

et ele <lc

X =% ; XeTan 7 KT X
The mobilities are scaled by reference, or characteristic,

values: //OQy ‘/Léu 4Q7€C
(/L/Te) e s [ ) =5

The ratio of the ion to electron mobilities is eXxpected to
be the order of the square root of the mass ratio. Thus

define:
} /Lﬂc

where, according to kinetic theory, A¢ is the ratio of the
ion to electron mean free paths.

The X-location of a point is scaled by the distance
between the plates:

= X /KL
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The density is scaled by some fixed value Ne:

57 = 71/7,

Sometimes for steady-state analysises, n may be chosen to
be the maximum density in the field. More commonly it will
be chosen to be a fixed value 1like 1(14) cm=3=, The
currents are scaled by an expected diffusion current:

1=03/3, Ie=ele /3y

Where: J,=e n</u« kT, / a

The ambipolar flux is also nondimensionalized:

7= ellT

The time is scaled by a reference characteristic time for
electrons to diffuse across the gap:

— 22
_t = t/fc WHERE f( :-/"‘ec k72_,

In the boundary conditions, a group of parameters occurs
repeatedly: let it Dbe called Kn since it is related to a

knudsen number:
//%%<445Z§/Q(

” Ur
The remaining nondimensionalizations are listed here:
M)
— () S
= Vi Mec XTe /L2

s Ko
K = Hephac K2 Te
5= s/ (pecn) /L)
éfi =:(z%%wPZ¢&y>//<'7724*7;:4)

» The notation 1(14) signifies one times ten to the
fourteenth.
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With these definitions above, the conservation
eguations can be written. The ambipolar diffusion equation
is:

7 . _ —¢
DI %f—&@a’%ofxz.*ﬂ'@/ K

The Lam[9] energy equation is:

=2
— (€,
o 2{(2_?_,_27’2; 7?915/"” 5(»25%

D2 27 a7t T 37

(V]
\,*)
v
f
n
(Y]

\

Equations can be closed Dby setting the electron current
equal to the total current. Otherwise, the continuity
equations are needed:

3222-— j?:gé 4.:5;6”/ : _2:; = :Zf';ZT

b3 ¥ T 3=

For completeness, the usual energy equation will also be
given here:

ECE}

N
|
(
\
+

DY =
2T

Since this equation introduces the additional variable of
the electric potential, it must be used in combination with
another equation such as the electron momentum equation:

2% _ agr, L I
LS -7 3¢ = 3% Y e er

The mass and energy boundary C-O’nditions are written:

= - "?_ZZ f = o 7/9 —Q _/('—_74/
’;1? L- ~4<ﬁ( V s 7 A T

A W/mswé-f

_/(58___;”/ L (%- 4/“’1 (%- 2 /2/

-k %L = 12(%-?/2/

where the subscripts 0 and 1 refer to conditions in the
guasineutral region near the emitter and collector,
respectively. The approximate sheath heights are written:

— f 45;/VQ\/%E
CXE’ - ’Z;‘Aéx K@,CJE'IE)
= o M 2

1’
This summarizes the Cﬂ§% equations as written in
nondimensional form.

D7

Te T,

-

7/

i

n\)
‘?-."
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II.E Some Fundamental Concepts in Thermionic Conversion

The system of equations that has just been developed is
quite complex. The wvariables interact with each other in
peculiar ways and even the 4gqualitative Dbehaviors of some
variables in response to others is controversial. Yet, it
has been found that there are some guiding principles
capable of at least qualitatively describing overall
thermionic converter behavior. Principally these are the
concept of an ignition temperature and the isothermal theory
[5,6]. As these will be of great use in later sections,
they will be reviewed here. ‘

Each of these concepts is developed by dividing the
T.E.C. problem into two parts. One of these is to find
what the response of the density is to some given

temperature. This leads to the ignition temperature
concept. The second is to find the temperature given a
density distribution. This will lead to a simple

relationship between temperature and arc-drop. These Wwill
be combined only at the end to determine the overall
characteristics of the T.E.C.

The essential assumption of isothermal theory is that
the electron temperature varies little across the thermionic
plasma. this assumption 4is Jjustified only empirically.
while it is known to be somewhat inaccurate, it is extremely
useful since it eliminates unnecessary mathematical
complexities. In 1light of Lam[9], however, an additional
assumption generally associated with isothermal theory has
to be abandoned. This assumption is that the gradients of
temperature are small, and is invalid even when the first
assumption is accurate. Thus, in this thesis, the theory is
formulated so that only the first assumption is used.

Let us first consider the ignition temperature concept.
For this purpose the electron temperature is regarded as
being imposed upon the problem and the response of the
density to this temperature is studied. To avoid the
obscurational effects of unnecessary mathematical detail, a
simple case will be analyzed. Suppose that the densities

. under consideration are sufficiently low that recombination

can be neglected. assume constant mobilities and neglect
ion current. From D.l, the steady state density equation
is:

AP S
E. | ;ag‘fﬁﬁ’@

Where A, the non-dimensional ionization coefficient is

-
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defined by the dimensional quantities:

2
E2 A=Nod X/ Da

Where = is the ionization coefficient (cm3/sec), No is the
cesium density, d@ is the inter-electrode distance, and Da is
the ambipolar diffusion coefficient:

E3 Da:/%'/ﬂé‘*kfn/

-

For the present purposes, the simple density boundary
conditions <. .12 are quite adequate (use of more precise
density boundary conditions would change the results a small
amount but would add much complication and not alter the
general conceptual result.).

The above egquation is an eigenvalue problem for A.
From WKB analysis, the only solution with positive density
occurs when:

£y SALTETR

If A were too small to meet this condition, the density
would decrease to zero. If it were too large, the density
would increase until recombination became important (thus
invalidating an assumption of the equation).

Thus, the coefficient A must at least meet a minimum
value of <972 somewhere in the interval or else the density
will go to zero. A, through &K, is exponentially sensitive
to the electron temperature, “C. The electron temperature
at which A is pi squared is called the ignition temperature,

-——

_L:

E.5 Al )=Tr"

The qualitative behavior of the maximum density n,,as a
function of temperature for the isothermal case can be
summarized by:

- O FoRk <p
fi.&' l€%271 = CD<72”<7ZWhW FoR ﬂtf ?3—
Ty FR TG

Density is thus strongly dependent on temperature. Further,
this theory imposes strict limitations on how low the plasma
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electron temperature may be in a thermionic converter.
Implications of this on the reduction of the arc-drop will
soon be apparent.

Let us turn attention now to the question of what
determines the electron temperature. By integrating the
electron energy conservation equation across the gap, and
applying the boundary conditions a very important but simple
overall energy conservation equation results:

Er T = 2T T)%-2T+2T% - 2R

{ -
Where: AQ = oj ES—&)- }77%2]0(?

and vd is the voltage at the top of the collector sheath
less the voltage at the peak of the emitter sheath. The
subscripts 0 and 1 refer to conditions in the quasi-neutral
regions near the emitter and collector, respectively. Other
useful voltage differences will be defined later. This
equation is eXact. This relates the electrical power loss
in the gap, -Ivd, to the various inflows, outflows, sources,
and sinks of energy. In fact, this equation could have been
derived by thermodynamic analysis of the T.E.C. as a
system. This simple relationship has many uses. Because Qf
its simplicity, it enhances understanding of the 1loss
mechanisms in thermionic conversion. More will be said on
this below. It is also useful numerically to compute the
arc-drop from a simple well-behaved equation.

For present purposes, let us consider a steady state
situation. It is useful to rewrite the arc drop equation,
E.7, as:

co  -Tic 2L (1) +2T(%-1) - 2R

Considering the currents and aQ as known, this equation has
three unknowns: the emitter electron temperature, the
collector electron temperature, and the arc-drop itself.

A second equation for the arc-drop can be found by
integrating the electron momentum equation across the gap:

F9 e KKt TR 52"””’

Where R is the electrical refiijgnce of the thermionic
converter defined by=x: © -—
T) =" o «AL7
=S Z EKE - Uo7

* this definition differs from that of [5) wherein the
density was normalized additionally be the emitted density,
7%-
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Even with the final integral ignored, R considered given,
and the sheath heights considered as known functaons of
temperature, this equation still has three unknowns, the
same ones as the previous equation. Thus we now have two
equations in three unknowns.

It 1s possible to obtain valuable qualaitative results
with a sample ad hoc model: the isothermal model, Lam [6].
The electron temperature is thus assumed independent of
positaion. By vartue of its saimplicity, this model accents
the main features of the fundamental physical processes
occurrang in the T.E.C.

The farst of the egquations above, E.8, which expresses
gross energy conservation changes in the isothermal form to:

ENl Ty = 2L (T-1) -oXK

Again, this equation i1s exXpressing a balance between the net
electrical power out and heat ainput. The second of the
above equations, E.9, which details the mechanasms by whach
the electrical energy is 1lost to heat simplifies greatly
under the isothermal assumption. Using the exXpressaions for
the sheath heights, D.7, many cancellations occur and there

results:
g Ll
E. /2 - Z-( - I/? + /ZU/AI IE'I

The dependence of the sheath heaights on the plasma density
has cancelled with the "ambipolar motaive drop" (Lam[6]
p-10). As shown above, two terms remain on the
raight-hand-side of the equation. The first of these 1s the
plasma ohmic arc-drop. The second 1s due to the dafference
in sheath heaghts. The quantity Ne which appears above
comes from the sheath theory and may be set to one as a
first approximation. The two equations above may be equated
and solved for the electron temperature:

AT +T7R 48X _
E.lj /t/ - QI’E-FI//(‘%T;'V -/Z-;

Thais indicates how temperature behaves as a function of the
currents and the resaistance. From the above i1t can be seen
that, for fixed current, temperature rises as density
decreases. This 1s because resistance, R, 1$ ainversely
proportional to density. This contrasts with the well-known
behavior along a steady-state I-V characteristaic where
temperature and density rise and fall together as current
varies.

With the above information the approach to steady-state
operation of a thermionaic converter can be described.
Suppose the output current 1s held constant by some
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constant-current load. The initial density distribution,
whatever it is, determines a resistance and through sheath
theory an I.. This then determines a temperature by
equation E.13. Two conditions are then possible. (1) if
the temperature is high, more ionization occurs, the density
rises, and hence the resistance declines and the thus the
temperature declines. Oor, (2) the temperature is low and
recombination occurs. Thus the density falls, the
resistance rises, and hence the temperature will rise. It
is apparent that in either case an equilibrium density anad
temperature will be approached. This temperature then
determines the arc-drop through equation E.1ll.

vd was defined as the voltage drop from the peak of the
collector sheath to the peak of the emitter sheath. Some
other voltage drops are also in common use. One such, to be
called A2 here, measures the voltage at the collector-sheath
interface less the voltage at the emitter~sheath interface.
This differs from vd only if a double sheath exists, as
depicted in figure 2. Generally a double sheath c¢an exist
in a T.E.C. A only at the emitter sheath. Denoting its
magnitude as «A, it follows that:

E.14 |/:[4<+A/O\<

T

The magnitude of the double-sheath height can be expressed
in terms of the emitted and Richardson currents so that:

E.15 \/T = Vo( + 41 —:I-E_—i— wHere  Tp 15 THE  Kicnarrson Susken™

(NoN-pIMENsSION AL )

The output voltage, v, seen at the terminals is obtained
from Ve by adding the collector work function and
subtracting the emitter work function. A third common
measure of the converter performance is the difference
between the actual voltage drop and that which would occur
in a converter with an interelectrode spacing so small that
the free electron space charge would be negligible. Such a
converter is called a vacuum ideal converter and has a
voltage drop:

E.16 Vo = Mo

aly

this is a consequence of the Maxwell-Boltzmann distribution
of the emitted electrons. The difference between the actual
drop, VT‘ and the ideal drop is denoted as:
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E.17 [/6> %"VI: V()(.;//J

(14

where j is the ratio of the net current to the emitted
current, I/IE. All these drops will be referred to later
during discussions of T.E.C. performance. Note that all
drops have been defined so that the more positive, or less
negative, the voltages are the better the performance is.

There is also some terminology associated with the
behavior of the voltage drops. Consider discharge current
plotted as a function of voltage for a given thermionic
converter. The plot of the vacuum ideal voltage drop, Vo,
is called a Boltzmann line. Sometimes over some over range
of current, v., the difference between the actual drop and
the ideal drop, is roughly constant. Such a range is said
to have a Boltzmann-like rise. If Ve decreases as current
increases, this is said to be a faster than Boltzmann rise.
As the current level is increased to near the level of the
Richardson current, Vg may start to increase rapidly. This
range where \/ increases rapidly is called the 'knee' of the
current-voltage curve. These behaviors are illustrated
qualitatively in figure 58.

In sum, the fundamental concepts of thermionic
converter operation have been discussed. It was shown that
the density is eXxponentially sensitive to temperature and
that there is a minimum temperature Dbelow which the
discharge collapses and the density goes to zero. It was
also shown that the arc-drop is determined by thermal energy
losses at the sheaths which in turn are dependent on the
temperature of the electrons near the walls. Finally, it
was shown that the conversion of electrical energy to
thermal energy occurs through ohmic losses in the plasma as
well as differences in the sheath heights. While these
results were developed under the convenient and ad hoc
isothermal approximation, it is apparent that the concepts
that result have validity even in the general non-isothermal
case.
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I1.F The Faster-than-Boltzmann Rise

It is an experimentally well-known fact that the T.E.C.
current voltage characteristic in the region below the knee
rises much faster than the vacuum ideal Boltzmann curve
rises. Past one dimensional theories have not been able to
explain this. For an explanation, it was considered
necessary to invoke two-dimensional phenomenon, and there
has been some experimental evidence to indicate that
two-dimensionality may be important. It is shown herein
that this faster-than-Boltzmann rise can be explained even
in one dimension. 1In fact, there are a variety of phenomena
which can cause it. The analysis here will be confirmed by
numerical results to be presented later.

To complete this analysis it will be necessary to
extend the theory discussed in the previous sections. The
isothermal theory as developed so far has left two important
parameters undetermined: the plasma resistance R, and the
nondimensional current 3j. Examination of double sheath
theory, energy conservation, and the ignition condition will
lead to an a priori determination of R and j. This then
makes possible quantitative predictions using isothermal
theory of not only the arc-drop but also the the densities
and sheath parameters. While a full computer calculation of
the differential equations gives presumably more accurate
results, this theory explains the interconnections among the
many variables and parameters in a fairly simple and
straightforward manner.

It is suggested@ herein that for one dimensional
T.E.C.s, the cause of the faster-than-Boltzmann rise is in
the ionization kinetics. The ionization kinetics contribute
to this rise in three ways. First, the existence of
spontaneous radiation alters the ionization rate constant so
that it wvaries with density as well as temperature.
Secondly, non-Maxwellian free electron distributions also
cause the rate constant to vary with density. 1In both cases
the rate constant declines as density declines leading to a
faster than Boltzmann rise. The ¢third effect 4is that
spontaneous radiation becomes increasingly important as an
energy 1loss mechanism as density decreases. Attention in
this thesis is restricted to the first of these effects.

This effect will be studied gquantitatively 4in later
chapters, but the effects they have on T.E.C. performance
can be analyzed in isothermal theory as below. The analysis
herein 4is thus based on some simplifying assumptions. The
value is that it illustrates the essential features of the

-real equations with minimum mathematical complication.
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Presently the density equation will be considered for
ionization rate constants that vary with density. Although
the equation 4is now nonlinear, an ignition temperature
concept can be recovered. This new ignition temperature
will depend on the density level, as parameterized by, say,
the maximum density. This will then be combined with the
previously presented isothermal result relating temperature
and ohmic drop. This will determine the T.E.C. density and
temperature. From the other iscothermal relation, this
temperature implies a level of the plasma arc-drop.

As a note on mathematical technique, determination of
the ignition temperature requires solution of a nonlinear
eigenvalue problem. Standard methods yield approximate
solutions to an equivalent calculus of variations problem.
Under the isothermal assumption, it is shown that the
solution can be found directly by quadratures. Thus the
shape of the solution need not be assumed as in standard
methods but can be determined explicitly.

To begin, 1let us write the steady-state density
conservation equations:

? fm/,_o
£l -/Qf/% T2 TS

The source term is left in its general functional form, but
the problem is assumed isothermal to eliminate unnecessary
mathematical detail. In particular, by virtue of the
isothermal assumption the scolution of the above equation can
be found by quadratures. The first 4integral, found by
standard means, is: 0

- 2 an ﬂv
e A ( __,,———(E\
Fa2 £ (3% a AP
(p Jkl/ ~
Where 5,”1 , the constant of integration, is the maximum

pressure, i.e. the pressure when the first derivative af/4a¥
is zero. The above can be integrated again to find:

d(—/

- j_,-f—J’Z:TT’“"’_’

F.5 @

- 2‘—5’ ‘}——;

% P E N
Where Pa is the pressure at the emitter wall, i.e. 73=0.
Since this value is typically much less than the maximum, it
can be taken to be about zero [see section II.D]. The above

integral gives a relation between pressure and position.

There is an additional boundary condition that the
above integral must satisfy: the pressure at the collector
wall (¥1) must be a number, 5}, determined@ by the collector
boundary conditions as in section II.D. Again, 5} is also
about zero. It follows that:

I
Fd | = ;j- o SMQ” “JF 2 ’1:__§::Zﬁz_ti‘”“
6%\/;2%”?\/'1@_; 1/5 = 7
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For this to Dbe satisified, §%1 and the source function
obviously cannot both be specified independently.

At this point let us consider a form for the source
function. For example.

— (-I

£S5 thsw (——F) /(’t ) F

For F—l, this function is 1linear in density as the one
discussed in section II.E was. For ©>1 however, this form
illustrates the behavior of an 4ionization rate constant
which declines as density declines, 1like a real rate
constant does due to the spontaneous radiation effects
mentioned previously. While the above form will not
represent the actual form accurately over a wide range of
data, it does have the appropriate general shape and
suffices to illustrates the points to be considered here
without great mathematical complications.

When this form of the source function is substituted
into the integral, it becomes apparent that the values of
the density at the walls may be set to 2zero with 1little
resulting error and a relationship between B and ﬁ,nappears:

—_ — -l
F¢ Aty = T
where: 7_7_‘;” - ?,—{” /(?"f?“ﬂ)

and where the function c?is given in terms of the gamma
(factorial) function by:

2 f’(ﬁ:%)
F7 G = mp) LT+ )
If the standard methods of calculus of variations had been

employed, 90 could not have been determined explicitly as
above.

If p=1, as in section II.E, then, also as Dbefore, m,,
disappears from the above equation and the condition is
solely a condition on A. Even for the present more general
form, B is still well approximated by an exponential in

temperature:
-E/7 _
FS /71 Il e witH Q) E, consTanTs

With this form, the ignition temperature, now a function of
the maximum density, can be found:

E,
F.4 7 ,Z,T;-‘-j; +(OY) 1 T
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Let us now discuss the significance of this
temperature. First, if the density distribution is given by
the above solution with the same T, then the density will
be in steady state. Let us suppose this temperature remains
fixed but the density is for some reason perturbed. The
steady-state assumption made in this section will cease to
hold but the physical unsteady behavior that would occur is
apparent. First, if the density were perturbed to a lower
value, the rate constant decreases, the ignition condition
is no 1longer satisfied, and the density declines even
further till it reaches zero. If on the other hand the
density were perturbed to a greater value, the ignition
condition would be more than satisfied, and the density
would increase still further. 1In the physical problem, this
increase in density would be stopped only when
recombination, neglected here, became important. In
summary, the steady-state solution found above is an
unstable one for fixed temperature.

The temperature is not in reality fixed. As was shown
in the discussion on isothermal theory, it itself is
determined by density through, for example, the plasma
resistance. To repeat the isothermal result of section
II.E, the temperature is determined by:

2+ IR +a&
e T o4 A(F-1)

Where j=I/IE.

Consider how temperature changes with density for a
fixed current I. To do this it is necessary to know how R,
j, and Q behave as functions of density and current. The
value of R declines as density rises. The exact form of the
integral for R is written:

i ! ,g(f’
I R= ZJ 7

This can be integrated analytically without further
approximation. It is however simpler to use the quite good
approximation that the density at the walls, though finite,
is small compared with the maximum density. Employing the
density boundary conditions of D.6 and using the preceding
analysis of this section to determine the pressure gradients
at the walls, the wall densities are given as:

7% Ak (ST F 7750
F.2 Yy \/7779'&} /"‘ea Vo, a
F.3 -2ZL = (

P VT, /€o<< /“e %, +D 75 )
where:

=Yag/(1+p)
e :/Z T+, |
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It follows that, to a good approximation, the resistance is
given by:

Erid
IQ’

F. Y K= 7:'571.,/& {«L" W—r.‘;.‘g(ﬁ.(K.,DQS,)z —’&1[1- mﬁ

This relation for R with the information on the character of
j then shows how the isothermal temperature varies as a
function of density. Note that, typically, the first
natural log term dominates over the second.

By combining sheath theory with isothermal theory it is
possible to determine J even when a double-sheath exists.
For a single sheath with Schottky neglected, I and j can be
considered known. For the double sheath case, Iz is a
variable. Iz shall now be determined as a function of
current and maximum density for the double-sheath case. 1In
terms of the nondimensional emitted density, Ng, I is given
by:

. A
. F.15 I~ Ne Tk
where: /\/E - 7/5 /7/0

From the sheath theory of Lam[5], NE is a function of only
two parameters:

F.16 /\/E:/\/E(,,%:f,i: )T)

Iterative solution of the sheath system of equations has
been performed over a wide range of the parameters.
Figure 7 displays a graph of Ng against 7 with IKn/fi, as a
parameter. It is seen that Ngis only weakly dependent on .
For present purposes, the following functional fit is
adequate:

F.17 Ne = 022+ 1.2

Now, using the results of isothermal theory, it is possible
to relate T, to T, and thus describe the behavior of I in
terms of I and R, :

F.18 T,= (0.6+026 \I“‘/a,‘)l'\‘[ow*

Thus I and j may be considered known functions of I and T,
Furthermore, it is seen that j is an increasing function of

SF] Vigw: .
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the reduced variable I/fpy.

Two of the three functions necessary to determine
temperature from the isothermal energy balance have now been
evaluated. The third and remaining function is a&Q. While
this function is not dominating, it does have a noticeable
effect on the results and is important for evaluating the
laser schemes to be discussed later. 1In steady-state and
assuming the energy source model of A.ll with R=0, it
follows that:

F.19 o G ’goy gmjlf

Then, eliminating the mass source term using the density
equation D.1l, an exact integral results:

— e — o5 ‘
F.20 &A= ,/QEO/%;[ ~gj§+ l;:)

©

Evaluating the pressure gradient at the walls as Dbefore
yields:

P21 AR = - (3775,012—&5\/7:4“7)77477

For typical numbers=:

£>C;2 < “'<:2~352539<22ﬁ

It is now possible to show how temperature and density
are determined in a thermionic converter under the present
model. First, 1let wus consider the density-independent
ionization rate constant case, i.e. />=1. Under this
assumption, the ignition temperature, 2z, is a constant.
Thus on a plot of temperature versus maximum density, T, as
shown in figure 3, the ignition temperature is a straight
horizontal 1line. The ignition temperature is shown in this
figure for two values of the collisional rate constant,
Cy=0.31 and 0.46. These values will be discussed in
chapters III and 1IV. The plot of the isothermal
steady-state temperature, Q}, on the same graph would
however be a curve. This is also shown in figure 3 for
three different levels of current, I1=0.02, 0.5, and 0.7.
The two lower currents are in the double-sheath regime while
the higher one is in the single-sheath regime. Steady state
solutions for both temperature and density can exist only at

*, JL<=1/3; Da=3; Eo=30.17
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crossing points of these curves, 22—and Q&. As is obvious
from the above discussions, the steady-state solution at the
crossings of these curves will be a stable solution only if:

2z > X4
O Ty D Y

This condition is satisfied for all crossing points shown in
figure 3.

Let us turn to the case of the variable rate constant.
Now, the ignition temperature, ’E}, varies with density
according to the natural 1log behavior derived in the
formulas above. A plot of the ignition temperature versus
density, 7im, is shown in figure 4 for the case /9>1. This
plot is based on the ionization coefficients to be derived
in chapter IV. As in figure 3, the isothermal steady state
temperatures are also plotted on this graph for three
different levels of current. The crossings between these
graphs have quite a different character here than they did
in figure 3. As the current decreases from I=0.5 to 0.02,
the temperature is increasing. According to the isothermal
analysis of section 1II.E, this means that the arc-drop
increases with decreasing current. This is a cause for the
faster-than-Boltzmann rise discussed earlier. In fact an
additional arc-drop of 0.90 (110mV) occurs in this way.

Some other interesting effects occur also. For one,
from this analysis, it is apparent that suppression of the
emitter sheath obstruction is undesirable. This obstruction
reduces thermal energy 1losses at the emitter and is thus
beneficial. These calculations show that its suppression at
I=0.5 would increase the arc-drop by about 0.5 (60 mV).

Another unexpected result is that energy addition to
the plasma does not increase the electron temperature but
rather lowers it. The effects of energy addition by laser
ionization enhancement will be discussed in a later section.
Direct heating of the electron translational mode can be
considered here. Such heating means that there is a reduced
need for plasma arc-4rop to maintain the ignition
temperature. As a consequence the density must rise. An
increase in density, however, means that radiative loss is
just slightly 1less dimportant 4in the ionization process
causing a small decline in the ignition temperature. As a
consequence of this reduced temperature, the arc-drop is
reduced. Under conditions tested presently though, this is
not an overall energy efficient process.

In summary, a simple 4isothermal model has been
developed which highlights the important physical processes
and is sufficiently simple so as to allow solution by hand.
This model was derived from the analysis in section II.E by
finding expressions for R and j thereby closing the model.
The model was alsc extended to allow for density dependent
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ionization-rate constants. This led to conclusions that (1)
the emitter sheath obstruction is beneficial since it
reduces thermal energy losses, (2) energy addition to the
plasma reduces the temperature, and (3) the
faster-than-Boltzmann rise can be explained as being due to
reduced ionization rate constants at lower densities.
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II.G A Study of the Complete Energy Equation

The determination of the electron temperature
distribution may be the most involved and complex part of
the T.E.C. For operating efficiency, it also may be the
most important part. While the ignited mode of operation
has been actively researched for two decades, even just the
general shape of this distribution is still controversial.
One question has been the existence or not of 'hooks' in the
temperature near the electrode walls. A hook is a rapid
change in the electron temperature that occurs near one or
the other of the electrodes. The calculation of
A. T. Yen [8] was the first to 4indicate the possible
existence of hooks. 8ince it is the temperatures near the
walls which dominate the determination of arc-drop , the
existence of such hooks is of significant practical import.
The following year Lam produced an analysis that explained
much about the Dbehavior of temperature in T.E.C., and in
particular, why hooks can exist. This theory also indicates
why numerical schemes can run into difficulties solving the
energy equation. These implications will be discussed in
this section.

To review the Lam [9] theory, there are two concepts to
be introduced. First, there is the thermal resistance of
the plasma. Rather than measure distance in the plasma in
centimeters, it is found more useful to measure it in terms
of the thermal resistance. How this is done will be
discussed below. The second concept is that of a
pseudo-temperature distribution for which the effects of
convection have been removed mathematically. This will also
be discussed below.

A major feature of this analysis is that it 1locates
which phenomena cause which effects. 1In particular, the
cause of the temperature hooks will be found to be the ohmic
and ambipolar arc-drops. These phenomena become large at
near the walls because they are inversely proportional to
the magnitude of the density. This theory shows the
ambipolar arc-drop to emerge as a dominate process
determining the shape of the temperature distribution.
Notice that this occurs in contrast with the isothermal
theory where the ambipolar arc-drop quietly cancelled out
from the overall arc-drop equations.

To begin, consider thermal resistance. If K is the
thermal conductivity, then 1/K is the thermal resistivity.
In a distance 4%, there is a thermal resistance (1/K)day.
Let 7/ be the total thermal resistance between the emitter

and a position ¥X. Thus: - j?’
G ! 7 —of K(s)
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Rather than consider the temperature as a function of the
distance, 7§, consider it as a function of the thermal
resistance,/7. With this idea, the energy equation D.2 can,
assuming B.1l5, be rewritten:

| _ 2T _ ZL 2T o7l
G.2 277 3% © 9712’.%IZ+I(§QI+ av / C

In this form many of the rapidly varying coefficients that
appeared in the original energy equation are gone. Apart
from the unsteady term the only explicit appearance in the
equation of the thermal conductivity, K, is in a ratio with
the electrical conductivity, 6. This ratio is related to
what is called in gas dynamics a Lewis number, Le, and
generally varies little from a value of one for gases:

K
G.3 le * £& T

This equation is thus much Dbetter behaved and numerical
solutions of this equation are more likely to be accurate.

It is possible to determine when hooks are 1likely to
occur just be considering this equation and its boundary
conditions. Written in the thermal resistance coordinate,
the boundary conditions become:

ey | = 2T (w-) -T(x- 92)
s = -T(X-%a)

Since the temperature generally declines from the emitter to
the collector, a hook is expected to exist if the boundary
condition indicates a rising temperature leaving the emitter
or a rise in the temperature as it approaches the collector.
As can be seen from the above, this will occur on the
emitter side when:

2(%-1)

G.6 J < Q(E - 2;/;2 WHERE T I/IE

Likewise, a hook will occur on the collector side when:

/><c (
L =
The numerical computations, which will Dbe discussed in
greater detail later, appear to indicate that both emitter
and collector hooks will commonly occur, though the emitter
one is typically more pronounced.

Wnile the transformed energy equation above is an
improvement over the original form, it is still possible to
make one more change to simplify it. While this change is
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not necessary, it facilitates solution by analytical methods
such as WKB. The explicit mathematical goal of this
transformation is to eliminate the convective
(first-derivative) term from the egquation, 1leaving only a
second derivative term and a term proportional to the
transformed temperature. To do this a transformed
temperature, G, is defined:

G.7 Ge v T

With this substituted into the energy equation and
steady-state assumed, there follows:

2
G
G 9 o< :iégj; + WG

where: wﬁz I[I/aéle'r?/-" é—é—?’z]

At this point one thing should be apparent: the above
G-equation has an extremely simple form.

First, considering the general behavior of wzlwhicn is
a function of position, note that on the emitter side of the
T.E.C. where density is rising, w? is positive. This
indicates that G has a sinusoidal character, and therefore
the temperature has a growing sinusoidal behavior.
Somewhere shortly after density peaks, w2 will generally go
through zero and become negative. This indicates that G
will have an exponential type behavior with both growing and
decaying components possible.

The goal of this work, as stated earlier, was to work
to behavior of the temperature distribution as a function of
a given density distribution. For a number of special
density distributions, which look more or less realistic to
some varying degree, it is possible to have exact analytic
solutions of the temperature equation. Sinusoidal or
parabolic type behavior could result respectively in Mathieu
or Airy function type temperature distributions. If the
density were about linear then w could be a constant and
the temperature solution would be sinusoidal or exponential.
The sample solution discussed in Lam[9] was based on a
two-piece 1linear density distribution and this was shown to
contain the essential features of the problem. It should be
remembered, of course, that for a general density
distribution the solution can be obtained by WKB
approximation with a turning point.
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A notable feature of this steady state energy equation
is that there are some values of current for which there is
no acceptable solution of temperature. 1In particular, there
will Dbe no solution unless the current level, and therefore
w%, is small enough that the following inequality is
satisfied[9]: X

7

I wdy <Ir

o

Where ¥ is defined as the location where w= becomes Zzero.
Failure to satisfy this would result in unphysical negative
temperatures.

This limitation has physical significance. It
indicates that when the current is too large there is more
heat generation in this region between =0 and“7=ﬁﬂ*tnan can
be conducted out. Thus there is no steady state solution,
but rather an unsteady solution wherein the temperature
grows rapidly. The question arises: what is generating
this heat and why is it generated only in the specified
region? the answer is that this is the heat generated by
the ambipolar arc-drop. Such heat is generated only on the
emitter side of the T.E.C. since, on the collector side,
there is an ambipolar arc-rise not drop and this is actually
causing a cooling not a heating.
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I1.H Laser lonization Enhancement

In previous sections theories have been developed to explain
thermionic converter Dbehavior. The implication of these
developments would seem to be that there are some
fundamental limits to thermionic converter efficiency due to
the ignition condition and the nature of the arc-drop. It
is hoped presently to alter these limits by altering the
ionization rate constants with laser radiation. As will be
discussed in detail in later chapters, laser radiation can
enhance ionization rate constants at a fixed temperature by
a large factor. 1In fact, this factor is generally the order
of a Boltzmann factor in the photon energy. Thus, laser
ionization enhancement has an effect on T.E.C. performance
similar to reducing the ionization potential of the atom.
With this ionization enhancement it is hoped that density
can be increased thereby increasing electrical conductivity
and thus reducing the ohmic losses.

This scheme is quite different from other ionization
enhancement schemes. In particular, laser ionization
enhancement puts energy directly into ionization in an
efficient manner. In fact, the energy cost of an ion
produced by a laser enhanced T.E.C. plasma is generally the
same as or less than if the ion was produced by collisional
processes. Further, laser enhancement is a volume process.
This contrasts with the various third electrode techniques.

There are several practical questions concerning 1laser
ionization enhancement that should be discussed. One such
qguestion concerns the need for a source of laser 1light
resonant with the atoms in the plasma. One such source
could be a dye laser. A technique to develop a relatively
efficient laser suitable for ionization enhancement is the
subject of the next section, II.I. A second question
concerns the absorption length for the laser 1light.
Obviously, & plasma that is optically thick to the laser
light prohibits absorption of such light in the volume of
the plasma and is thus unacceptable. On the other hand, if
the plasma is too optically thin, it may not be possible to
absorb enough light to enhance the ionization. By checking
the orders of magnitude it immediately becomes apparent that
practically all optically allowed radiation involving the
ground state are absorbed in extremely small distances.
This does not affect the present discussion though since the
ground state makes a relatively inefficient lower level for
ionization enhancement anyway, as will Dbe shown in later
chapters. To obtain an absorption length that is not too
short, the laser light must be absorbed by an excited level
of the atom. :
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Using the isothermal theory, it is possible to analyze
the effects of a reduced ignition temperature on T.E.C.
operation at a given current level. From equation II.E.1l1l,
it was found that the isothermal arc-drop would be:

202-1) )
For simplicity, consider only the high density regime
wherein the variation of ignition temperature with density
may be neglected. With laser ionization enhancement
reducing the ignition temperature, the above equation
indicates that the arc-drop would also decline provided that
i did not also drop significantly. For the case of a single
emitter sheath and Schottky neglected, j would not change at
all. For a double-sheath, j will generally decline at least
slightly when declines. Thus laser ionization enhancement
will be especially effective in the single sheath regime.

Consider an example. For reasons to be presented in
the next section, laser ionization enhancement resonant with
the Cs 7s-7p transition is particularly interesting. This
transition is infrared, hvz=0.4leV. The photon energy is
thus much less than the Cesium ionization potential, 3.89eV.
Nevertheless, a substantial increase in the ionization rate
constant is found. For pd=10 torr-mill, irradiation on this
transition frequency can reduce the ignition temperature by
£7=0.08 (120K) from T=2.12 (3200K). For the single sheath
regime, and taking a typical value for j, say 0.66, this
implies an arc-~drop reduction of:

H.2 aly = 0.25

For the double-sheath regime, again, it is necessary to
evaluate the change in j for a given drop in temperature.
This is done using equation II.E.13:

2T +I17 +8QR
H. 3 T = oo + T (ZE-))

As is seen in figure 4, this curve is very steep. As a
result a small change in ignition temperature means only a
very small change in density and thus in j. 1In the present
example with the original j of 0.66, the final j will be

0.65. combining this with the arc-drop equation implies
that laser excitation of the 7s-7p transition can reduce the
arc-drop by:

HY Al& e 0.20

which is only slightly smaller than the reduction for the
single sheath case.
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The important question for any T.E.C. enhancement
scheme is how the energy cost of operating the scheme
compares with the energy saved by enhanced performance. As
with the various proposals for third electrode and microwave
enhanced converters, the answer is not immediately apparent.
As will Dbe shown in chapter V, ionization by absorption of
laser radiation is a very efficient process. The
combination of laser energy absorbed and electron energy
lost in inelastic collisions needed to produce an ion is
generally 1less than it would be without laser enhancement.
However, the generation of laser light is not usually an
efficient process. For laser ionization enhancement to be
an energy producing process, the losses incurred during the
generation of the laser light must be less than the gain in
output of the T.E.C. The minimum laser production
efficiency needed for this to be true can be estimated. For
the 7s-7p transition and over the parameter range of
interest, roughly two photons or 0.82eV of energy is
absorbed for each ionization. Thus the required laser
power, L, is:

2 () el [ =)
-— s < -
H.5 [;-aﬁV‘J Mﬂtf¥~f5'4f
o
Suppose the laser production efficiency is S. Thus the
power cost of producing the light is:

: L /&

For T.E.C. laser ionization enhancement to exhibit a net
energy gain, it is regquired that:

He TaVy >L/e

Examination of the numbers for the 7s-7p transition indicate
that the 1laser cannot be too inefficient. Most lasers
however are very inefficient. The value of © indicated is
30% to 40%. To obtain such efficiency would require a
special laser. A possible technique for creating such a
laser will be discussed in the next section, II.I.

In sum, it is presently proposed that laser 1light can
improve thermionic converter performance by enhancing the
ionization rates. It is important to remember that the
energy 1loss to ionization is typically a small fraction of
the total energy loss in the converter. The majority of the
T.E.C. energy 1loss occurs as heat transfer by the free
electrons to the walls. This technique works by 4injecting
energy directly 4into the ionization process. It is thus
possible to operate the converter at 1lower free electron
temperatures and thus at lower loss rates of heat to the
walls. For the example of 7s-7p resonant laser 1light, the
arc-drop was shown to be reduced, though by a small amount.



.

Chapter II Page 40

II.I The Cs Recombinataion Laser

The idea of plasma or recombination lasers i1s receiving
much attention in the literature, e.g.[11,95,112-7]. This
1s because recombinataion lasers have the potential for
tremendous power output, and some may operate at short
wavelengths. A major challenge an this field 21s obtainaing
the necessary plasma cooling rates. This thesis presents
the first prediction of a Cs I plasma recombainataon laser.
It 1s shown not only that cesium 1s probably capable of
recombination lasing, but that the cooling can be obtained
quite conveniently in a thermionic converter type of plasma.
The kainetics of recombination lasing are discussed in 1later
Chapters. The dquestion of plasma cooling 1s analyzed an
this section using aisothermal theory.

The prainciple behind a plasma recombaination laser i1s as
follows. The plasma 1s initially at some hagh temperature.
It 1s then suddenly cooled. There will then be rapid
electron ion recombination. Durang thais recombination, the
excited levels of the species will be in disequilibraum. If
1t occurs that some excited 1level has a population
sufficiently greater than a less excited level, 1lasing may
be possaible.

Many methods for cooling recombaination lasers have been
proposed[11]. They ainclude gas dynamic expansion, elastaic
energy transfer to heavy partaicle diluents, and radiatave
energy 1loss. It has been noted before that cooling be
obtained by conductaion of heat to walls, but it i1s generally
observed that this can be significant only for plasmas with
very high surface to volume ratios. It 1s found presently
that thermionic converters are such plasmas. In fact
cooling of thermionic plasmas can take place quite rapadly.
Furthermore this cooling can be obtained conveniently by
Jjust reducaing the T.E.C. output current.

The predicted thermionic Cesium recombination laser has
some peculiar features. First, most lasers use electricity
as an ainput and produce heat as a byproduct. 1In the present
scheme, the ainput energy 15 heat, and electricity ais
produced as a byproduct. Further, as will be shown in later
chapters, the Cesium recombination laser can scale to hagher
electron densities and haigher power densities because it 1S
a collisional rather than a collisional-radiative
recombination laser.

Simple theories of cooling will be presented ain thas
sectaon. The present results will be compared with
numeracal results in later chapters. The general behavior
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of a recombination laser thermionic converter plasma
dynamics can be illustrated in the 4isothermal model.
Recalling the isothermal result for unsteady thermionic
converters:

T 27 {’f 'ILIE(?“-I)4I’E+.§(E)—I%;[_[—JE-I/’Z“
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It is supposed that the T.E.C. is operating at steady-state
at some current, I, and some temperature,?9. If the current
were suddenly reduced, then the ohmic heating term, InR, and
the ambipolar-sheath term would both drop. If the current
were reduced sufficiently or actually set to 2zero, both
these terms may be neglected. For this case the unsteady
isothermal energy equation can be rewritten:

T3 5—_?7/\ 0{‘7“_ -24(?_‘)+§(E)

Let us consider the two terms on the right-hand-side of
the above equation. The first represents cooling by loss of
hot electrons to the walls. It is generally of order one.
The second term 4is the collisional source term. This is
generally dominated by inelastic energy transfers. For
present purposes this can be written as the sum of two
processes. The first is the energy released by depopulating
the atomic excited levels, and to a good approximation this
can be modeled by a single atomic level of excitation energy
E,: Which has a density Nf in Boltzmann equilibrium with the
ground state. The second process is the actual
ionization-recombination heat release. Under present T.E.C.
circumstances, this latter may actually be negligible as a
heat source as this occurs on a longer time scale. Other
loss mechanisms, such as the escape of radiation, are
neglected. The energy source can thus be written:

_ ('n) o{N?

where: E—;: Eo/j:E'
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and where g, and g, are the ground and excited 1level
degeneracies, respectively. wWith such a source term the
energy equation can be written: ()

TY G 2L - -2% (v1)-&5
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where:

_ = N —_
CD"— 3\'77 +E;; AT

Again, since recombination occurs on a 1longer time
scale than that for the relaxation of temperature, it is an
adequate approximation to consider electron density constant
during the decay of temperature. It also follows that the
emitted current is approximately a constant even in the
double-sheath regime. With these assumptions, the above
energy equation can be solved by quadratures. With the
initial condition of =7T(0) at t=0, then:

- j/r@) ,fgi(i
t° 3T Cor 21
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and hence:
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where Ei(x) is the exponential integral:

E()= ) EF

Examination of the orders of magnitude indicates that
the cooling of a T.E.C. occurs in two regimes. 1In both
cases energy is lost dominantly by exXchange of electrons
with the cooler walls. The distinction between the two
regimes is in from where the energy was lost. 1In the first
regime it 4is the decay of excited atomic levels which
dominate the release of energy. 1In the second regime, the
excited atomic 1levels have a negligible population and the
energy release is dominantly from the translational modes of
the free electrons. *

The relaxation for the first regime can be estimated.
the initial energy stored in the excited levels is:

Z, NY(x©)
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Thus, this energy is lost to the walls in a characteristic

time of:
E, N6
2% (@-1)

This time is eXxponentially sensitive to the initial
temperature through the Boltzmann population function. For
the conditions to be studied presently though, it is the
order of one half of a microsecond.

After the excited state populations become small, the
second regime occurs. This regime, dominated by the decay
of the free electron translational modes, is generally much
shorter. For this regime, the energy conservation equation

becomes:

3 AN LT

315 = - 2T (-
Thus in this regime, the temperature decays on a time scale
of:
A
27
Te
This is typically the order of twenty nanoseconds.

To summarize, it is found that when the current flow
through a thermionic converter is suddenly reduced, the
electron temperature will decay rapidly towards the wall
temperature in, typically, less than one microsecond.
During the initial stage of the decay, energy is transferred
from the atomic excited states to the walls. After the
excited populations are depleted, the free electron
translational energy d@ecays, again Dby loss to the walls.
Following the decay, the free electron temperature remains
roughly the same as the emitter wall temperature. As will
be shown in later chapters this decay is sufficiently rapid
to produce the required recombination lasing.



I11 Collisional Rate Constants

Reliable inelastic cross-sections are essential to much
of atomic 1laser theory. While ionization-recombination
rates may be forgiving to some large errors, laser
calculations can be quite sensitive to rate constants for
one or two transitions. Towards selecting rate constants
and assessing the uncertainty in them, available
experimental and theoretical information will be reviewed.
The rates selected as most appropriate to this problem are
due to Mansbach and Keck[51]. 1In section III.B, the formula
they suggest is analyzed and improved.

The impact energies of present interest are 1low,
generally much less than the binding energy of the target
atom. The cross-sections at such impact energies are
unfortunately much less well known than those for high
impact energies. This is true from the viewpoints of Dboth
theory and experiment. As the experimental information
available is quite limited, the use of theory to provide
information on unmeasured cross—sections is essential. The
theories available are based on widely differing physical
approximations. As a result, Some controversy can arise
over the choice of cross-section values for this regime.
The present discussion will focus on the physical
significance of approximations made in the available
theories and on which eXperiments the theories should be
tested against.

Two criteria are particularly important when
categorizing cross-section theories. First, over what range
of collision parameters does the method yield reasonably
accurate values? Secondly, is the nmethod practical for
calculating the large number of values that are needed for
engineering application? While cross-sections have been
studied for some time and many theories have been proposed,
few can claim positive answers to both the guestions over
the conditions of present interest. Thus for example
theories as diverse as close-coupling, Bethe-Born, and
. binary encounters may claim to meet one or the other of the
above criteria, but they generally cannot meet both.

Classical approximations have proved quite useful in
this field. This usefulness is both because of the relative
simplicity of classical theories which allows their
employment in practical engineering calculations and because
of their success in producing fairly accurate estimates of
cross—-section values. This success is an indication of the
close relationship betweén gquantum mechanics and the
classical apprbximation. They are of course related not
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only through Ehrenfest's theorem but also, and for present
purposes more importantly, through the similarity of
classical mechanics to the WKB-Jeffreys approximation to the
Schroedinger Equation. Thus despite such difficulties as
lack of formal validity at low quantum numbers and
uncertainty of correct low energy correspondence principles,
classical dynamics appears to be a valuable first
approximation.

Some numerical classical solutions have been
performed, typically using Monte-Carlo integration
techniques. These have been valuable for engineering
calculations. Some limitations remain though. For one, the
results have not been computed over as wide a range as
desired. This thus has led to some uncomfortable
extrapolations. Section 1III.B considers this question.
Further the calculations have been done for hydrogenic atoms
only. Extrapolation to such nonhydrogenic atoms such as
Cesium is discussed in section III.a. While such
uncertainties do remain, the progress that has been made
over cross-section estimates used in earlier
ionization-recombination calculations is quite significant.
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ITI.A summary of Available Theories

The theory of electron-atom inelastic collision
cross-sections has received much attention over a long
period of time. This subject has been well reviewed.
Reviews of quantum theory include[66-78] and for classical
theory[79-84]. With so many thorough reviews, the present
discussion will be in the nature of a survey and avoid
technical detail. For present purposes it is important to
consider the types of models that have been developed and
how they are interrelated. The Born approximation will be
mentioned first along with some of the many models which are
closely connected with it. Higher quantum mechanical
approximations starting with distorted wave and leading to
close coupling will be considered next. A different series
of models based on the binary encounter concept is then
discussed with Dboth quantum and classical formulations
cited. Following this, models will Dbe discussed which
attempt to combine the. better features of two models.
Lastly, some classical numerical solutions will be
discussed. While this overview is necessarily incomplete,
it serves to outline the types of methods that have been
used and their usefulness for cross-sections of present
interest.’

Probably the best known quantum mechanical model is the
Born approximation. This model considers the effects of the
collision to be a perturbation on the otherwise independent
motion of the incident electron and the atomic electron.
This perturbation expansion is called the Born series. This
subject is reviewed in[71]. The first term in this series
is called the first Born, or simply the Born, approximation.
Although the first Born is among the simplest quantum
mechanical approximations its evaluation is still quite
laborious.

The Born approximation is valid at very high impact
energies. Because of its relative convenience, however, it
is often evaluated at low energies and even near threshold.
Furthermore, much effort has been devoted to improving its
performance at these low energies. One group of such
efforts has focused on applying indistinguishability
considerations[20,21,44,76]. Other approaches to
improving the Born approximation attempt to include some
effects of the interaction potential in the 1lowest order
approximation. An example is the Coulomb-projected Born
approximation[22,23]. This includes the nuclear potential
for the inhelastically scattered electron. An different
approach was developed by Glauber[24]. This allows for
phase distortion of the incident electron as it passes
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through the atom.

There are other approximations which simplify Born.
Probably the best known of these is the Bethe-Born
approximation which expands the interaction potential into
multipole moments. This is valid when the inelastic
cross—section is dominated by long-range collisions. This
is true at wvery high impact energies. Evaluation of
cross—sections in the Bethe-Born approximation is
sufficiently simple that it 4is practical for use in
engineering calculations. Unfortunately the values at 1low
energies are not very accurate. They are generally much too
large. Moreover, the functional dependencies are quite
questionable when used at low energies. Bethe-Born
cross~sections depend prominently on the dipole moment of
the <transition. This seems to be in strong disagreement
with experiment over the parameter range of interest{49].
This dependence is also theoretically suspect since low
energy collisions are dominated by short-range interactions
for which multipole moment eXxXpansions are usually not
useful. Some confirmation for this suspicion is provided by
the Born approximation. Thus while the Born approximation
does seem to prefer dipole connected transitions at large
impact energies, the preference ceases close to threshold as
seen in the calculations of [25]. As the dipole moment
dependence is so often assumed in engineering calculations,
this Qquestion as to their importance needs further
investigation.

Because of its wvaluable simplicity, the Bethe-Born
approximation has inspired many variants. One is the
semi-classical model of Seaton[26]. This uses an impact
parameter formulation which allows unphysically high
transition probabilities to be located and corrected for in
a somewhat ad hoc fashion. There is also a fully classical
dipole moment interaction theory developed by Percival and
Richards[45,46]. These and other theories have led to some
semi-empirical formulas such as[47,48]. All work
excellently over some ranges of parameters but conditions of
present interest appear to be outside these ranges.

There are a series of approximations that are more

. complex than that of Born. The first of these is the

distorted wave approximation which is similar to Born except
that the 1lowest order approximation includes the effect of
elastic scattering. By 4including more terms of the
interaction potential, the strong coupling approximation is
found. This can bDbe interpreted as allowing the atomic
electron to be in any linear combination of the initial and
final levels, but in no other level at any time during the
collision. Finally there is the close coupling
approximation. This extends the strong coupling
approximation Dy allowing the atomic electron to occupy
additional atomic levels during the collision. The set of
atomic 1levels that can be included 4is 1limited only by
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computational requirements. This can be a fairly severe
limitation, however. Close coupling has Dbeen used most
successfully only in the lowest atomic energy levels and
only when few open channels exist. Even under these
conditions, to obtain convergence it is sometimes necessary
to create pseudo-state functions and/or functions to
simulate correlation effects. While it is of value to know
of theories more advanced than Born, these, at least in
their quantum formulation, are much more laborious to
calculate and thus most likely impractical for application.

A completely different approach to inelastic
collisions is exemplified by the many, varied, and often
controversial binary encounter theories. While gquantum
mechanical versions of these theories are the subject of
current research[63,64,65], this physical model predates the
Schroedinger equation. It was first used to model atomic
excitation by Thomson{27] in 1912. The basic concept of
this approach is that the collision between the incident and
atomic electron can be modeled neglecting the atomic core.
This 4is thus a simple two-body coulomb interaction which is
described by Rutherford scattering[28]. In the Thomson
model the atomic electron is assumed to be initially at
rest. This model is fairly successful at predicting
ionization cross-sections. Several years later this model
was improved by Thomas[29] to allow for motion of the atomic
electron prior to the collision. Further additions to the
theory were proposed to partially account for the presence
of the nucleus. Thomas[29] proposed that the nucleus would
have the effect of accelerating the incident electron prior
to its encounter with the atomic electron. Webster[31]
further proposed that the nucleus would also focus incident
electrons. Both of these additions though are
controversiall[8l].

With the introduction of quantum mechanics by
Schroedinger in 1927, work in binary encounter theory lapsed
until 1959 when Gryzinski[32) published his binary encounter
theory and found agreement with experiment that was superijior
to many complex gquantum mechanical calculations. This
provoked a series of papers[33-43] and much discussion. As
a result of this some uncertainties in the formulation of
binary encounter theory became apparent, but its agreement
with available experiments remained impressive nonetheless
and comparable to many quantum mechanical results.
Considering the simplicity with which binary encounter
cross—sections can be calculated, the degree of agreement
achieved with experiment was quite astonishing.

Binary encounter theories are probably the most widely
used for engineering application. However as more
information was found, it appeared that some of the
agreement with eXxperiment that binary encounter theory
achieved was misleadingly reassuring. The problem was that
most of the eXxXperimental data available was for a limited
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variety of cross-sections. In particular, most experimental
cross-sections were for excitation from the ground state.

" By the nature of atoms, this generally means that the energy

transfer was of comparable size to the ionization potential.
Binary encounter theory, it turns out, works quite well for
such large energy transfers. wWwhen, however, the energy
transfer is smaller these theories can give serjous errors.
This is dillustrated inl[49] by comparison with some recent
experimental results. It is further confirmed by comparison
with the classical exact solutions to be discussed later.
Compared to the magnitude of this error, the differences
between the various binary enc9unter theories is gquite
small.

Explanations have been advanced for the failure of
binary encounters for these small energy transfer
collisions. The most apparent problem 3is that Dbinary
encounter theories predict that large contributions to such
cross—-sections may occur from large impact parameter
collisions for which binary encounters 4is an inadequate
approximation because the nuclear potential shields the
electrons from one another.

The success of binary encounters at large energy
transfers and of dipole theories for small energy transfers
has naturally 1led to symbiotic theories. Burgess{36]
suggested an impact parameter scheme with small impact
parameters treated by binary encounters and large ones by a
semi-quantum dipole approximation. Vriens{37] suggested
using momentum transfer to determine the crossover point.
He proposed using binary encounters for large momentum
transfer and a guantum theory, e.qg. Born or Bethe, for
small transfers. A fully classical treatment was developed
by Percival[50] to combine dipole theory at large impact
parameters with binary encounters at small ones and a smooth
transition in between. These approximations have achieved
some success but are limited by the importance of that
region for which neither binary encounters nor dipole
theories are valid.

One of the valuable features of the classical
approximation is the ability to find exact solutions
numerically. This has been done by several investigators.
Mansbach and Keck[51], using the theory of classical phase
space to reduce computation, calculated thermally averaged
transition rates.. Percival{50] has calculated
cross-sections for atomic excitation at various dimpact
energies. He used classical scaling laws to generalize his
results. Other such calculations also exist but were done
for limited- parameter ranges, e.g.[52-55]. Both
calculations averaged and summed over atomic angular
momentum distributions. Since the Mansbach and Keck[51]
calculation was thermally averaged and an empirical fit was
provided, it has found more application to practical
problens. Its agreement with experiment appears quite
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good[49]. .

While these numerical computations have been
performed over a wide range of parameters, their great value
has led to a need for calculations over an even wider range.
Extrapolation of the Mansbach and Keck[51] results is needed
in ionization-recombination calculations and was used for
comparison with experiment in[49]. While such extrapolation
is easily done, theoretical analysis of the Mansbach and
Keck empirical fit suggests that it is possible for large
errors to result. This will be discussed further in section
III.B.

Attempting to apply these theories to engineering
calculations, an important gap emerges. There is limited
information on nonhydrogenic effects. These effects take
two main forms. First, the kinetic energy distribution of
bound electrons in nonhydrogenic atoms is different and
approximate theories have shown this to be an important
effect[43,56). Secondly and more importantly, the subshells
of nonhydrogenic atoms often must be treated individually.
This contrasts with hydrogenic atoms for which the subshells
are approximately degenerate and thus their populations may
be assumed to be related by statistical equilibrium as per
theories such as[57]. For atoms with such large gquantum
defects as Cesium or other alkali metals that are commonly
used in engineering, the assumption of approximate
degeneracy is invalid over most important levels. Thus
cross—sections for simultaneous energy and angular momentum
are needed for nonhydrogenic atoms.

As this question of subshell to subshell
cross-sections must be resolved before calculations can be
performed, this has led to the use of some unsatisfying
assumptions. One common approach has been to borrow theory
from high impact energies, Bethe-~Born theory and thus assume
a dipole moment dependence. As discussed above however,
this 4is highly questionable. Upon observation of the
available experimental data and the near threshold behavior
of theories such as Born, it appears that all final
subshells of the same energy have cross-sections of similar
magnitude. Present calculations thus assigned equal
probability to such subshells. While <this seems to be
superior to the assumption of a dipole moment dependence, it
is 1likely to be accurate to only a factor of two. The
results of these assumptions are compared in later chapters.

There is one uncertainty that all classical theories
have in common. That 4is the present ambiguity over
correspondence principles for use under conditions of
present interest. 2 number of such principles have been
suggested and used successfully but not without
controversy[81,58,59]. The ionization-recombination
calculations presented in later chapters were performed
under a variety of such principles and few qualitative
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changes resulted. Where changes d&id occur, they are of
course noteg. .

To summarize, &a large number of cross-section
theories have been developed over many years. There are
quantum mechanical theories ranging from Born to
close-coupling. There are classical mechanics theories
ranging from 4impact parameter to Monte-Carlo numerical
solutions. For the type of collision of present interest,
it appears that only the classical Monte-Carlo calculations
combine the required calculational simplicity with
reasonable accuracy.
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I1I.B Analysais of Mansbach-Keck Results

The Classical Monte-Carlo calculations of electron-atom
inelastic collision rate constants performed by Mansbach and
Keck are very useful. 2 consequence of this usefulness 1is
the desire to extrapolate the results beyond their range of
validaty. To aimprove the accuracy of the Mansbach and Keck
emparacal fit both withain and without aits range of validaty,
1t 1s presently analyzed on a theoretical basas. Some
deficiencies are found and an improvement is suggested.

Farst 1t 1s shown how the ainelastic electron atom
cross—sectaion can be found from the Mansbach and Keck
thermal rate formula. While because of the samplaicaty of
the Mansbach and Keck fit to the thermal rate constants thas
cross-section formula i1s necessarily simple, it 1s possible
to examine the scaling properties of such a formula. This
examination yields four discrepancies with available theory.
It 1s then found that by altering one of the empiracal
constants an the Mansbach and Keck fit that two of these
four dascrepancaes can be eliminated. Thais modified fit 1s
then compared with the Mansbach and Keck Monte~Carlo data.
Careful ainterpretation of their data indicates that most of
the dafference between their fit and the present suggested
modafication 1s due to a systematic error they made in
analyzing thear results. Further, eliminating from
consideration some poarnits for which the form of the fit ais
not expected to apply explains the small remaining
difference. Finally, a classical scalaing law i1s invoked to
obtain the temperature dependence of the rate constants.
This dependence will confirm what Mansbach and Keck anferred
on limited computational evidence.

Mansbach and Keck considered energy transfer to a
classical hydrogen atom from & bath of Maxwellian free
electrons. The initial atomac energy 1s Ei and the final ais
Ef. The rate constant for transitaion from Ei to Ef per unit
final energy is written K(Ef,E1,T). This thus has units of
volume per taime and per unit energy. The thermal rate is
an average of the cross-section over the Maxwellian electron
energy distrabution. The cross-sectaion for an impact energy
E to cause a transition from energy Ei to Ef per unat fainal
energy 1is denoted by O(E,Ef,E1). Thus:

K(Ef)E;)I# fw(EEf, E) uf(gT)dv

av/m
where U=Ef-E1 1s the threshold energy, Vv 1s the electron

speed, f(v,T) 1s the Maxwellian dastrabution, and m is the
electron mass. E=mva/2 1s the impact energy. For present
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purposes it 4is more convenient to change the variable of
integration from speed to impact energy. This results in
the exactly equivalent form:

U+E E - JE
B.1 K(E_f) MI) Uifo_((/-rf E_,,E) :

where E'=E-U is the impact energy above threshold, k is
Boltzmann's constant, and V is the mean thermal speed of the
free electrons.

Mansbach and Keck provided a formula for the rate
constant K. To find the cross-section implied by such a
formula, the above integral equation, B.l, will need to Dbe
solved. This 4is conveniently done by rewriting the above
integral in terms of a Laplace transform. Thus:

v
g2 K(BETD G € (&/
where f(1/kT) is the Laplace transform of F(E'):
o< _,_LE?I
53 f(R)= § Fe) €' = XEFE)S
and where F is given by:

£ F(e')= o (&£, & E ) (v+€'/

The solution of the integral equation can now be
easily done. The Mansbach and Keck empirical formula for
rate constant K for excitation is: 'Czl

T (- W3
£S5 KEHETR) = & "}Z—'é— (/< e "

where rr is a Thomson radius defined by:

e ST 5 €= 10S

The quantities al and a2 are empirical constants which
Mansbach and Keck choose to be:

B.6 al=6.75 a2=2.33

e

Equating the expressions B.2 and B.5 shows that the Mansbach
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and Keck fit implies that the function f is given by:

2= o KT (L)
f\C£T,/ = 4 t; AT Zfi K
Thus the Laplace transform f behaves as a power law. Such a

transform is easily inverted to find F. It follows that the
Mansbach and Keck implied cross—section is:
% (F0) ~ U)

s TG EE)T /"(“-ra;,,} (E/

Naturally, this formula applies only to impact energies
above threshold, i.e., E>U. Below threshold, the
cross—section must be zero.

This can now be examined in 1light of theoretical
knowledge of such cross-sections. Such knowledge 1is
available for large and small energy transfers U, and 1large
and small impact energies E.

First for small energy transfers U, dipole theories,
such as Bethe-Born or Percivall46], can be employed. The
classical theory yields the 1n{U)/U behavior. It can be
seen however that the Mansbach and Keck implied
cross-section does not follow this rule. According to the
results of [50], though, this is not always a serious
limitation. The region over which dipole theories apply
seems to be dquite small, restricted to impact energies at
least the order of the atomic binding energy, =-Ei, and
energy transfers much less than that.

Secondly, the behavior at large energy transfers can
be compared with the predictions of classical binary
encounter theories which have been found applicable in this
range[51,55]. For large energy transfers, this Dbinary
encounter theory predicts an inverse U squared dependence.
This also disagrees with the Mansbach and Keck formula.

Thirdly, consider large impact energy. In this
regime a 1/E dependence is expected. This is predicted by
classical Binary encounters. (The 1n(E)/E dependence of
quantum theory can be found from classical theory if
correspondence principles are carefully applied[81].) Again,
this is at variance with the Mansbach and Keck fit.

Fourthly and finally, consider small impact
energies. While this is a very important regime, it is also
somewhat controversial. The well-known Wigner threshold
theory implies a rise of the cross-section proportional to
the square-root of the energy above threshold. Recent
theory and experiment appear to indicate that this has a
very limited range of validity. The Wigner theory assumes a
smoothly varying integral of the wave-function. The limited
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usefulness of the resulting cross-section law appears to be
because the wave function is poorly behaved near threshold,
given to resonances. Thus other sources must be consulted
for practical threshold 1laws. The Monte-Carlo classical
calculations of Percival[50] seem to imply a cross-section
which 4is finite at threshold. This threshold law is in
disagreement with the Mansbach and Keck fit.

Many experimental and quantum-mechanical results show
cross-section which are not finite at threshold. It is
however a well-known result of quantum cross-section
theory[102] indicates that cross-sections may be effectively
finite at threshold when the final state is nearly
degenerate with some other state. Atomic states in
classical mechanics are always degenerate. It is thus not
surprising that Percival[50)] should find classical
cross—-sections to be apparently finite at threshold.

Of these four objections to the Mansbach and Keck
fit, two can be easily removed. These two are the last two
which deal with the behavior as the impact energy E varies.
It is seen that if the coefficient az_is changed to:

P& Ay = L

proper asymptotic behavior with respect to E results. At
large impact energies, the cross-section decays like 1/E
which is proper for a classical cross-section. Near
threshold, the cross-section is finite which agrees with the
Percival[50] Monte-Carlo computations. Below threshold, the
formula B.7 does not apply and the cross-section is zero.
With this change the Mansbach and Keck fit should be better
suited to extrapolation.

It is beneficial to ask why, if the above suggested a
is an dimprovement, did not the Mansbach and Keck empirical
fit find it? The answer will be shown to be that there were
systematic errors in the method of least squares fitting
used by Mansbach and Keck. To find this answer, it is
necessary to examine the organization of the Mansbach and
Keck data. Mansbach and Keck counted transitions rates from
a range of initial energies within some q/2 of the energy Ei
to a range of final energies within q/2 of Ef. q varies
from one half to twice kT Thus Mansbach and Keck did not

measure K but rather:
E +9= E;—"’?/ﬁ

ra K ET)* 5/2 g K&, €, 7 IEJE:

To find K, Mansbach and Keck approxzmz;ed the above integral’
by:

£.(e K (B ,E,T] & k(&6 T) g7
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This introduced a systematic error of typically over 10% but
sometimes up to 80%.

This approximation and the resulting error are
unnecessary. Eliminating it, and re-doing the least-squares
fit gives new values for the correlation coefficients:

B X, =533 5 K =109

This is closer to the theoretical suggestion above.
Moreover, with the ill-suitedness of the formula for small
binding energies and small energy transfers as found in
comments 1 and 2 above, it is suggested that the three data
points which most violate this region be eliminated from the
least-squares fit process. These three are the ones with U
of one half and an upper state binding energy 1less than
three, both in units of kT Having removed these points,
the least squares fit can be performed again yielding:

B.12 &,=437 5 dy3=2o005

This is now impressively close to the value of aZ expected
from theory as above.

It is thus concluded that a better fit to the
Monte-Carlo data of Mansbach and Keck is given by formula
B.5 using coefficients B.l12. For application to hydrogenic
atoms, it is useful to apply the density of states
correspondence principle to find the the rate constant for a
transition from a principle quantum number 1 to a principle
quantum number u:

-5 2 -
3.3 kQqu'z (:c?.g x O ﬁ(JCMIz/é;aL/)—ET

where again excitation, i.e. u>l, is considered. By
detailed balance, the de-excitation rate from u to 1 would

be:
c -+ 2
1214 /{w = (01.6 x |O Kﬁmffz/ﬂa)_g JJS

J
9 5%
=€

According to some Monte-Carlo computer calculations,
Mansbach and Keck found evidence that an integral of the
rate constant K over atomic states wvaried insignificantly
with respect to temperature, T. From this they concluded
that the temperature dependence of their empirical fit was
correct. By virtue of classical scaling laws, however, the
temperature variation of the rate constant K can be
determined exactly, and conforms to the Mansbach and Keck
formula. This classical exact scaling is:

0 (E, E,F) = =<’ o (xE,~E,~E)
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This implies that K scales by:

K(E,c,).‘:;) 7;): X K(“E{/ NE;/wT)

which agrees with the Mansbach and Keck empirical results.

M

In summary, modifications to the results of Mansbach
and Keck is proposed. This was done as follows. First, it
was shown that their thermal rate constant empirical fit
formula 4implies a cross-section fit. This fit is found by
inverting a Laplace transform. With the theoretical
information available, a modification of the empirical fit
was suggested which gave it some of the correct asymptotic
behaviors. This modification was verified by the Mansbach
and Keck data as modified to remove systematic errors in its
interpretation. The agreement was further improved as
points which are expected to be influenced by 1long range
collisions were removed. In the present thesis, both the
original and the modified Mansbach and Keck formulas are
employeqd.
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Iv Theory of Ionization-Recombination

The ionization-recombaination process 1s essential to
ignited mode thermionic energy conversaion. It i1s well known
that under conditions of present interest aionizataion and
recombaination occur through a multai-step process. The
present chapter aintroduces the theory of how the rate
constants for elementary processes combine to form the
overall ionization-recombination rate constants. While the
essentials of the theory of ionization-recombination have
been known for nearly twenty years, some of the more subtle
implications are sometimes unappreciated. Among these is
the location of the rate-limiting steps, known as the
'bottleneck’. Detailed analysis shows i1ts location to be
contrary to some oft applied rules-of-thumb. The reasons
for this will be explained qualitatively an thais chapter,
and analyzed quantatatavely in the next. Also discussed are
the conditaions under which recombination lasing may occur
and what role if any spontaneous radiataon will play an
generating the requisite population inversion. Further,
there 1s a dquasai-steady assumption often made in the
conservation equations whose justification and limitataons
have commonly been arrived at intuitively. This assumption
1s analyzed presently and ais found to work as expected in
most cases, but not all cases. This chapter, while
reviewing the theory of aionization-recombination, will
address these questions.

In the farst sectaon to follow, the conservation
equations for each of the atomic level populations will Dbe
set up. This will be a system of many ordinary dafferential
eguations. It wi1ll then be shown advantageous to aintroduce
some reduced variables. Eigenvector analysis will indicate
that a quasi-steady assumptaion 1s often accurate. The
limitations on this assumption will be discussed and shown
to be guite contrary to some previously published
limitations. Fanally some sample results of this theory
will be discussed.
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Iv.A The Conservation Equations

As in other kinetic problems, conservation equations
for each species present should be written. 1In the regime
of ionization-recombination of present interest, the
‘species' are atoms in each electronic state and ions. The
present development follows Bates, Kingston, and
McWhirter[13].

Discussions of ionization-recombination generally
involve reactions such as the following three:

Al A-+e= AT +rere
A.2 Az +/1V<_3/4+ te
A3 i+ As = A te

Here Ai is an atom in some excited state i. Aj 4is another
atomic state. A+ 4is an atomic ion and A2+ is a molecular
ion. e is an electron and hv is a photon. Of the three
reactions above, the thira is molecular
ionization-recombination. The cross-section for this
reaction and similar molecular reactions are quite uncertain
which makes them difficult to treat. Fortunately there is
as yet no conclusive evidence that they are importantx. The
second reaction above is radiative ionization-recombination.
For electron densities of present interest, this is known to
be negligible. It is the first of the reactions above,
ionization-recombination by electron impact, that is
believed to be the fastest under T.E.C. conditions.

In a kinetic sense however, none of the above reactions
is important. The important, that is rate limiting, step
involves not ionization nor recombination but rather the
production and destruction of the atomic states which will
be ionized or were formed by recombination. Even though the
vast majority of the atoms may be in the ground state, it is
the high excited levels which dominantly participate in the
actual 4ionization and recombination reactions. The rate
limiting steps thus involve transitions between the ground
state and these excited levels. This is generally a
multi-step process for which collisional and radiative
transitions must be considered:

Ao AtE€=A;te
A.5 A 44V T A;

= However, see[97].



Chapter 1IV Page 3

To study these, conservation equations for the atomic levels
are written. In phenomenological form:

A.6 ——= = {collisions}i + {radiation}i + {externalli

4N
res

for all levels i

where t refers to time and Ni is the population density of
lJevel i at some point in space. The following paragraphs
discuss the terms on the right hand side.

In the conservation equations, advantage is taken of
three approximations. It is assumed that under thermionic
converter conditions molecules play a negligible role and
that ions exist only in their ground state. The latter
assumption is quite accurate at these temperatures. The
former, however, is a matter of controversy but must be made
until quantitative information on the relevant molecular
cross—sections is established . Spatial diffusion of these
species is also neglected as this is generally much slower
than the inelastic collision rates.

There are four types of radiative processes that may
play a role: (1) spontaneous emission, (2) stimulated
emission, (3) absorption, (4) radiative ionization, and (5)
radiative recombination. Under T.E.C. conditions,
radiative ijionization and recombination are quite small since
at these electron densities collisional ionization and three
body recombination dominate[ll]. This leaves processes (1),
(2), and (3). They are simplified further by dividing the
atomic levels into two types. This first is the 1levels
whose absorption 1length is so small that all spontaneously
emitted radiation is reabsorbed. For such 1levels the
spontaneous radiation coefficient can be replaced by an
effective coefficient of zero. The absorption then need not
be considered explicitly. Under T.E.C. conditions,
transitions into the ground state fall into this category.
The other group of transitions are those for which
re-absorption of radiation can be neglected. Generally all
transitions into excited 1levels fall into this latter
category. The exception however is when a transition is
subjected to intense radiation as might be produced by some
external source or generated Dby laser action, then
absorption and stimulated emission of this radiation must be
considered explicitly.

There are four types of inelastic collisional processes
which must generally be considered: (1) excitation from one
atomic 1level to another, (2) the reverse process,
de-excitation, (3) direct ionization, i.e. collisions that
result in an electron and ion being formed, (4) direct
collisional three-body recombination. It will be apparent
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later that it is quite rare when these processes can be
completely neglected. All are explicitly included in the
present theory and calculations.

With the above approximations, the conservation
equations can be written-

s g (K NimKoiNs) + 7 (i T ~Kes ;)

47 e
' ,—,Z AsNs = Z A N:

G
where Ni pnd Nj are the population densities of levels i and
j, Kji 4is the collisional rate constant for a transition
from level i to level j, Kij is the reverse rate constant,
Aji 4is the Einstein A-coefficient, as modified for possible
trapping.

The conservation equation for the free electron density
can also be written:

e-l
A8 ;'2(-7('/0 7% Z Ke; N We Kje7’é2
NETo)

The first summation above represents the actual ionization
rate. The second represents the actual recombination rate.
Both of these rates are quite large and much cancellation
occurs Dbetween the two summations. This is a result of the
approximate local thermodynamic equilibrium between the free
electrons and the highly exXcited levels. When the words
ionization rate and recombination rate are used in practice,
though, they do not refer to the terms in the above
equation. They refer rather to the terms on the right hand
side above which scale as an elementary single-step
ionization or recombination reaction would. This will Dbe
elaborated upon later.

Estimating the relative sizes of the terms in the above
system of conservation equations is a natural first step for
studying the system. It is common to focus attention on the
relative magnitudes of excitation and de-excitation terms.
This question is often answered with one of two
contradictory arguments. The first is to conclude that
de-excitation can be neglected as the populations of upper
levels are always much smaller than those of lower levels.
Tne other is to conclude the excitation can be neglected
since its rate constants are typically much smaller than
that for the reverse process. While there are some fields
of study where one or the other of these conclusions may be
valid, generally neither of these is good to even an order
of magnitude for the present system even during extremes of
strong ionization or recombination. To emphasize this and
also provide a systematic method for estimating the relative
sizes of terms in the above system, it 1is convenient to
introduce some well-known[l13,85] reduced variables. First,
define a reference Boltzmann population for each atomic
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level: j- _—ls}//>_—
Aq NE(T) Niog g; S

Where Ei is the binding energy of 1level i, gi' is the
degeneracy of 1level i, and Nref is an arbitrary constant.
With this a reduced population is defined:

Alo Vo= NN

A reduced electron density is defined similarly based on
ns(T), the Saha electron density corresponding to the chosen
Nref:

Al L%? = 72;2//@Z§:

In thermodynamic equilibrium, the magnitudes of all the
reduced populations are equal. Thus the variation in these
populations gives a measure of the disequilibrium.

To accompany the reduced populations, reduced rate
constants are defined:

Wis = Kis N
g et e
Cj([; = A/QIJ /\é

The forward reduced collisional rate constants, Wij, are
equal to reverse reduced collisional rate constants, Wji.
This is by virtue of macroscopic detailed balance.

As a result of this symmetry, analogies can be made
between this system and an electrical circuit or fluid
mechanical system of pipes. Rewriting the conservation
equations in the reduced variables:

: £1577 e
LB T (B
J- 0O
A3
+ Z AV~ & T

To clarify the analogy, let us consider a single term.
The collisional net transfer rate into level i from j is:

au KMk M= Wi (570
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This is similar to an electrical Ohm's Law. (The fluid
mechanical analogy will be discussed in the next paragraph.)
The current in a resistor is a net transfer rate. It is
proportional to the difference on voltages at the resistors
ends. The reduced populations can be seen to be analogous
to voltages. The constant of proportionality between the
current and the voltage difference for a resistor is its
conductance. The reduced rate constant, Wij, 4is thus
analogous a resistor's conductance. The c¢ollisional terms
in the conservation equations can thus be drawn as a network
of resistors interconnecting the levels which are
represented as terminals. This concept is illustrated in
figure 5. Further discussion of the electrical analogy can
be found in Bates[14].

The collisional terms in the atomic level conservation
equations can also be thought of in a fluid mechanical
analogy. Referring back to equation A.14, an analogy
between the collisional net transfer rate and the mass flow
through a pipe can be made. The mass flow through a pipe is
proportional to the difference in pressures across the ends
of the pipe. The reduced populations can thus be seen to be
analogous to pressures. In fluid mechanics the constant of
proportionality is a function of the size and shape of the
pipe and also the kinematic viscosity of the fluid. Here
the constant of proportionality is the reduced rate constant
wij. The collisional terms of the conservation equations
can thus be represented by a network of pipes which meet at
terminals- representing the atomic levels. This is shown
schematically in figure 5, though using electrical notation.

In chapter V, it will be shown how the circuit of
figure 5 reduces to that of figure 6.

In addition to the above analogies, there are two more
important advantages of the reduced variables. One is that
it is possible to determine the direction of the net
collisional transition flux between two levels 3Jjust by
looking at a graph of the reduced populations. The
direction is always from higher reduced populations to lower
reduced populations. Such information cannot be so simply
deduced from a graph of ordinary dimensional populations.
Secondly, reduced populations have the advantage of being
more slowly varying as temperatures change than dimensional
populations. This makes interpolation between tabulated
values simpler.

These analogies can be extended further to include more
than just the collisional terms. The time derivative of the
level densities can be represented by water storage towers
in the fluid analogy or capacitors in the electrical system.
Unless the radiation field is in black body equilibrium at
the same temperature as the free electrons, the radiation
terms have no simple analogies.
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To summarize, a system of simultaneous ordinary
differential equations has been stated which describes the
ionization-recombination process of atoms subjected to
inelastic collisions with electrons and various radiative
processes. Each egquation described the conservation of
number densities of the excited levels of the atom and of
the ion or free electron density. Reduced variables were
introduced to create symmetry between forward and reverse
rate constants. It was shown that the collisional and
unsteady terms are analogous to electrical and fluid
systems. While these equations can be solved as they stand,
the results of eigenvector analysis discussed in the next
section will provide much simplification.



o~

Chapter IV Page 8

IV.B Eigenvector Analysis and the Quasi-Steady Theory

The implications of the conservation equations
developed in the previous section are not obvious. It is
found however that an approximate analysis can lead to some
important physical insights. The dynamics of the atomic
level conservation equations can be greatly simplified using
an eigenvalue analysis. As is typical of many reactive
systems, the atomic 1level conservation equations include
phenomena which are characterized by widely disparate time
scales. For present purposes only the most slowly varying
of these need be considered. This approach leads to what is
known as the quasi-steady assumption. Under this
approximation, simple formulas characterize the ionization
and recombination results as well as determine the excited
state populations. As a result the time history of these
variables is explained.

The quasi-steady assumption has been used at least
implicitly for many decades as in for example[l2]. It was
explicitly discussed and used on the atomic level
conservation equations of the form discussed in section IV.2
by Bates, Kingston, and McWhirter[13]. Published
justifications of this assumption have tended to be
intuitive in nature. The invocation of eigenvector
analysis, as 4is done presently, provides a rigorous basis
for it. The implications of this are mentioned herein. An
important result of this analysis is the ability to assess
the limits of validity of the quasi-steady assumption. It
is found in one case that the limit of validity is the
opposite of that commonly suggested in the literature.

To obtain the simplification, the atomic level

conservation equations are rewritten. Separating positive
from negative collisional and radiative terms, write:

IN:

B.1 === = {in}i - {out}i + {externalli

AT

where:

{in}i = Y 2 MJ Y. + Z&JVJ

SER ’ IR
fout}i = % 2 W-.V + Z &s:
¢ J#i JA A JEX JA A

The unsteady behavior of such an equation can be described
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by eigenvectors. The more common heuristic approach will be
described here with its limitations noted. It 1is observed
that for i belonging to the excited levels:

HAN;

B.2 ==« {outl}i

At

When this is the case, equation B.l can be valid only if:
B.3 {out}i ¥ {in}i + {externalli

where this approximation is known as the Qquasi-steady
approximation. Since the collisional terms on the right
hand side of B.2 grow linearly with electron density, it is
often stated in the literature that this inequality will be
valid for sufficiently large electron density. This, as
will be discussed 1later, is not the complete story. This
approximation will be shown to be invalid for large electron
density. Assuming that quasi-steady is valid, the solution
to the equations can be seen to have the form:

B ¢ 2= VR + 'Y

Where %’ and Vv, are functions of the electron temperature
and, if radiation is significant, also the electron density.

The quasi-steady assumption applies to the conservation
equations for the excited 1levels. The conservation
equations for the free electrons and the ground state still
remain to be considered. These equations, rewritten using
the quasi-steady excited level populations, are:

dve - [ 5 wesi g [ Wee (I )

-
e : .;,,a,,-tg-] [z iy BV
0( 7/@ [Z V\/oj ("VJ/’L—Z/Z——- pg,-’b% j)oy\/\»% 7/e ‘/))e
As a further conseguence of the gquasi-steady assumption, it
can be shown that the coefficients of the reduced ground and
free electron populations in the each of the above equations

are the same as in the other. These are thus written:

g¢ 2% - 2o g (R TR)

Where these coefficients are now identified as the effective
ionization and recombination coefficients. It is
interesting to note that the actual jonization and
recombination rates do not correspond to the terms in the
above equation. They are given by the terms in equation A.8
which are quite different.

2.5
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The ionization and recombination coefficients are often
written without benefit of reduced variables. In this form:

Sto _ I _ 3_ o2 N
o7 e Ao gl

where: (5;. E/Z/fz
and: X = I/NKE'F

At this point the 1limitations of the Qquasi-steady
approximation can be discussed. Knowing the form of the
ionization~-recombination rates from B.6 and the excited
level population from B.4, it is possible to return to B.2
and consider its validity. It is seen that in recombining
plasmas, the excited state populations are proportional to
the cube of the electron density. By contrast, the term
{out}i rises no faster than linearly with large electron
density. Thus from B.2, the quasi-steady approximation will
fail for large electron densities. With eigenvector
analysis, this limit can be quantified. It 4is found that
for the quasi-steady approximation to be valid in Cs, the
electron density must be much less than some number n*x where
n* is a function of the electron temperature T:

T (K) nx (cm-3)
1500 8 (15)
2000 1 (16)
2500 3 (16)
3000 7 (16)

A second limitation of the quasi-steady approximation is
that if the electron temperature changes suddenly, an
adjustment time is required for the new quasi-steady state
to be reached. This time, as found from eigenvector
analysis, is typically the order of 0.l microseconds or 1less
under T.E.C. conditions.

When the electron density is high enough that
collisions dominate over radiation, some interesting and
well known symmetry properties exist. This is due to the
reduced rate constants being symmetric for this case and
thus the Boltzmann distribution 4is a solution of the
conservation equations. First, there is a relation between
the excited state population coefficients. thus:

B 'z -V

A second relation, between the reduced ionization and
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recombination rate coefficients, indicates that steady state
occurs when the free electrons have a Saha density with
respect to the ground state:

B 1O =K

Again these equations hold only when all the reduced rate
coefficients are symmetric. Under typical T.E.C.
conditions, this occurs only when the effect of radiation is
negligible with respect collisions. This is typically true
for n 2_1(14) cm-3.

To summarize, it 1is found that the eXcited 1level
populations can be determined by approximately quasi-steady
conservation equations. These populations are thus
functions of the ground state density, the electron density,
the electron temperature, and the elementary rate constants.
By virtue of the quasi-steady approximation, they are not
functions of time history of these variables but only of
their present values. ExXpressions were also written for the
effective ionization and recombination rate constants. The
conditions for wvalidity of the quasi-steady approximation
were found using eigenvector analysis. It was explained why
the dquasi-steady assumption may fail at high electron
densities.




Chapter IV Page 12

Iv.C Some Quasi-steady Ionization-Recombination Results

In the this section, the results of some calculations
using the quasi-steady ionization-recombination theory just
stated will be discussed. This will illustrate the general
features of ionization-recombination behavior without
additional abstraction. The theory developed in the next
chapter will further explain the results. Results both with
and without the effects of laser irradiation will be
considered.

Calculation of the quasi-steady ionization and
recombination behavior has been performed presently for
Cesium. Such calculations have been performed before for
Cesium[85,87], as well as for other
atoms[e.g.13,93,98,99,100]. The present calculations in Cs
have the advantage of over ten years of development of
collisional rate constants. As discussed in chapter 1I11I,
recent theory and experiment indicate that cross-sections
from binary encounter theory, used by Norcross and
Stone[85], or from Bethe-Born theory, used by Abramov([87],
have large errors.

The - present results are collisional-radiative
computations 4involving over thirty-seven 1levels. These
levels and the radiative rate constants are as tabulated by
Norcross and Stone[85]. Resonance radiation is assumed
completely trapped. Doublets and other nearly degenerate
orbitals were each compressed to single levels. A Grotrian
diagram for this scheme of levels is shown in figure 34.

Tabulated results of these calculations appear in
figures 8 to 32. These cover the range of electron
temperatures from 1500 to 4500K in 250K steps and of
electron densities from 1(12) to 1(15) cm-3 in logarithmic
steps. (The tables indicate powers of ten using the
computer E-notation.) Figures 8 through 12 show the
ionization and recombination rate constants 4in varaious
forms. Figures 13 through 32 can be used to determine
excited state populations. In each of these, a column
represents the results for some electron density and the
rows for the indicated electron temperatures. Figures 34
through 39 show graphs of excited state populations for
various conditions and some different rate constant
theories. These and more results will be discussed herein.

As discussed in the last section, two coefficients are
needed to determine the excited state populations. These
are v and v'. As per equation B.4, the v coefficient
indicates how strongly the level population is affected by
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the reduced free electron population and the v' coefficient
andicates how strongly the populataion depends on the ground
state density. Generally, low lying levels have large V'
coefficients and small v coefficaents. Conversely high
lyaing levels have large v coefficients while having small v'
coefficients. This means low lying levels may be nearly in
equilaibrium waith the ground state population while hagh
levels may be nearly in equilabrium with the free electrons.
With respect to the high 1lying levels and theair use an
experaimental measurements, more will Dbe said later. The
transition range between such low levels and high levels is
called the bottleneck. When collisaions dominate, as at high
electron densaities, the bottleneck i1s located among 1levels
with banding energies of about 3.5 taimes the electron
temperature, as found earlier by Mansbach and Keck[51].

An important point to note i1s that there is generally a
local thermal egquilaibrium between the ground state and the
first excited level. This 1s because this 1level 1s below
the bottleneck as verified by figures 13 and 14. This is
contrary to what incautious application of a common 'rule of
thumb' might aimply. Many would say that since thas
transition has such a large energy gap that it would be

'slow. ' Also transitaions among higher levels in the atom
which often have smaller energy spacing would be relatively
'fast.' Thais would indicate the the first excited state

would be in equilibraium with levels above i1t whach would be
in equilibraium with the free electrons. Only the ground
state would not be ain such eguilibraum. Such models have
been called block-of-excited-states models. The reasoning
benind them i1s as follows. Let us consider the ground to
first excited state transition and, for example, the farst
to second excited transataions:

| < (4)+e > G(6p) +€
ca Glép)+ve > G(s4)+¢€

To make the fairst reaction above go, the free electron needs
an impact energy of over 1.43eV while in the second reactaon
only 0.37eV i1s needed. For Boltzmann distributed electron
energies and the temperatures of interest, the former
electrons are much rarer than the later. By 'rule of thumb'
analysis, this observation 1s used to indicate that the
farst reactaion i1s lakely to be much slower than the second.

The above 'rule of thumb' reasoning fails because it
misses a fundamental i1f subtle poaint about reactions among
excited states. Thais point 1s that the populations of
different excited states differ greatly. Looking again at
the above reactaions, it a1s apparent that ain thermal
eguilibraium the collision frequency of 6s atoms with 1.43eV
electrons 1s going to be higher than for 0.37eV electrons
and 6p atoms sance the former are at a lower total energy
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level. The actual relative reaction rates are the opposite
of the 'rule of thumb' predictions.

For the quite highly excited levels, the same type of
reasoning can be applied. However, as the energy
differences between these 1levels are small while their
degeneracies are rapidly rising, this means that the
transition rates start to increase in the highly excited
levels eventually becoming fast enough that a 1local
equilibrium is established between these levels and the free
electrons.

The experimental determination of electron temperature
from measurements of highly excited level populations must
be done with caution however. While a sufficiently high
level will be in equilibrium with the free electrons, the
number of such levels and their exXperimental visibility may
vary. First, these levels are defined by:

C3 V.5 R

2

which means that they have populations in equilibrium with
the free electrons. Using the results of section B and
equation B.4 in particular, it is seen that this condition
is satisfied only if the following two criteria are met:

c.q ;=
)

A
¢S Ve”’\'/;))o
The first of these is met by a generally plentiful number of
levels above the bottleneck. The second condition is more
stringent and not always appreciated. This 4is Dbecause
electron densities in experiments are often well below Saha
so that criterion C.5 becomes hard to satisfy. This is
illustrated 4in figure 39 where the populations of excited
Cesium levels is plotted against their binding energy for a
ground state density of 1(16) cm=-3, an electron temperature
of 3000K, and various electron densities. For an electron
density of 1(15) cm-3, which is very close to Saha, a
Boltzmann line is seen indicating the correct electron
temperature. For 1lower electron densities, the highly
excited 1level populations indicate a distinctly wrong
temperature because condition C.5 is failed.

Experimentally, an additional complication occurs:
even if a level is sufficiently highly excited that it meets
both criterion, it may not be experimentally observable.
this is due to the significant electron densities typical of
thermionic converter conditions. The radiation from such
levels is reduced and finally disappears for sufficiently
high levels because of Stark broadening as explained by
Inglis and Teller[101].
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In any event, the region between the 1levels in near
equilibrium with the ground state and the upper levels in
near equilibrium with the free electrons there is a
transition known as the ‘'bottleneck.' It is this region
whose slow rates dominate the ionization-recombination rate
constants. This region exists even if radiation were
negligible. The existence of a collisional Dbottle-neck in
the excited states of the atom has been apparent since
detailed solutions of the simultaneous system of equations
such as in Bates, Kingston, and McWhirter[13], became
possible twenty years ago. Confusions about this point
though have been perpetuated by interpretations of a paper
by Byron, Stabler, and Bortz[1i5].

Let us turn attention now to the recombination rate
constants. By dimensional analysis on Newton's laws of
motion for an electron plus classical hydrogen atom system,
it is found that the recombination rate may be written:

C.6 [_5: CTD; l‘,riz

Where: Z;g = ERKZ;/%Tﬂﬂl

k;’ = €°:/</§7z
And <Ff is a constant. This formula, which correlates
experimental and theoretical data very well, was found using
different reasoning by Thomson[16], although his assumptions
would today be of questionable validity. The quantity &
can vary only if radiation or quantum effects are included
invalidating Newton's laws.

Surveying various determinations of Gr/it is found to
be of order one as expected from the dimensional analysis.
Many of the experimental determinations have such 1large
scatter, as seen in e.g. [19,51], that while this order of
magnitude is verified, nothing more can be deduced. A more
recent experiment, by Sayer et. al.[19], claims to use
improved measurements of electron temperature and thus have
superior consistency and accuracy. They found values of CT
between 0.2 and 0.3. This is a factor of five to ten less
than some previous experiments. Theoretical values tend to
lie between these two. Use of Mansbach and Keck rate
constants, as is done presently, yields a value of about
0.46. The calculations of Norcross and Stone[85] give
results in the range of 0.4 to 0.7 between 1500K and 3000K.
The theory of Sayer and Pascale[86] implies a value of 0.37.
Abramov[87] calculated values ranging from 1.3 to 4 which
are large because he used Bethe-Born cross-sections. 1In the
T.E.C. calculations to be presented in Chapter VI, values
of 0.31 and 0.46 were tried. There was little difference in
the overall results.
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Examining now how (- varies when radiative or Qquantum
effects become important, the results of the present
calculations for this quantity are shown in figure 8. First
consider the result for high electron density, say
1(15) cm~-3, for which collisions dominate. If the atom were
classical, CT- would be a constant in this region for all
temperatures. The fact that Cesium 4is not classical but
does in fact have discrete levels is seen to have little
effect. Cq varies only from a low of .45 to a high of .48
over the entire temperature range. As density declines,
radiation becomes more important and OC- does vary. It
becomes larger. How much larger depends on the temperature.
At low temperatures, the Dbottleneck is in higher levels
where radiation is weaker and the the increase in Ci is
smaller than for higher temperatures.

By detailed balance, the theory of Thomson[16] can also
be used to predict ionization rate constants. Thus one

writes: 2 —_ .G
Vs Gk
D<: v—— ——— e

<7 Nt 2

ng is the Saha density and is exponentially sensitive to
temperature. A correction factor @ has been introduced.
If collisions dominate, then detailed balance is valid and
fg would have to equal one. If the loss of spontaneous
radiation occurs, @ Wwill be greater than one. This factor
is determined also from the sclution of atomic level
conservation equations described earlier. When ionization
and recombination are in balance, /4, takes on a special
significance. When this balance occurs, it can be seen from
equation B.4 that:

& e W/R

Thus determines how far below Saha the electron density
will be when the balance exists. (4 is tabulated in figure
1ll. It is seen that a substantial departure from Saha
occurs at low densities. Curiously, (g is only weakly a
function of temperature.

The entire nondimensional constant of C.7, GTQQ , is
shown 4in figure 12. A substantial reduction rom the
collision dominated values is seen at low densities.
Additionally, the dimensional ionization rate constant, &,
and the dimensional recombination rate constant, F?, are
tabulated in figures 10 and 1l respectively.

The special application of the ionization-recombination
theory which 1is of interest in the present thesis is the
determination of the nature of the interaction of resonant
radiation and the excited 1levels of a recombining or
ionizing atom, particularly of Cesium . The case of a
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strongly recombining plasma will be discussed first. For
sufficiently strong recombination, terms involving xg can be
neglected. When this is true, it follows that:

- v E Ve
0[7/0/\«
5 T 7K Ve

Under these conditions it is quite possible that there may
be population inversions among the atomic excited levels.
This means that:

¢ %:(’<a

Where 1 and u are atomic 1levels with u higher than 1.
Naturally, if transitions between these two 1levels are
optically allowed and the difference in there populations is
greater than the threshold inversion then laser action is
possible. BAs the above equations indicate, two levels will
invert if the reduced population coefficients satisfy the
inequality:

2 42
v AT
CJ7 ——*—% > 6 €

If spontaneous radiation is negligible, then all the
gquantities 4in the above equation are functions only of
temperature. If the inequality is satisfied the two 1levels
will invert for large enough 35,. Otherwise, they will not
invert no matter how large 1lj.

A sample population distribution for Cesium under this
condition of strong recombination is shown in figure 34.
This is a semi-log plot of level population against level
energy for and atomic density of 1(16) cm-3, an electron
density of 1(14) cm-3, and an electron temperature of 1500K.
There is a clear population inversion between the 7p and 7s
levels. This graph was made using Mansbach and Keck
collisional rate constants. The same type of results occur
using wvarious binary encounter theories. This is
illustrated in figure 35 which shows Cesium populations
under the same conditions as in figure 34 but computed using
Stabler[34] theory collisional rates. Although the reasons
not to apply dipole moment rules to collisional
cross—sections were discussed in chapter 1III, some
calculations have been performed using them and the result
seems to be that the 7p-7s inversion disappears. Thus for
example, Norcross and Stone[85] did this and obtained no
inversion. 2also calculations have been done presently using
Bethe-Born rates which use these rules and the 7p-7s
inversion also disappeared, as shown in figure 36. Note
however that the Bethe-Born rates predict another inversion
instead, a 7s-5d (optically forbidden) inversion.
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Additional calculations have been performed using
Gryzinskil42] collisional rates. This is a variation of
binary encounter type rates and was also discussed in
chapter 1III. These are the same rates as used by Norcross
and Stone, except dipole moment rules were not applied.
Assuming 12 /), sufficiently 1large and an electron
temperature of 1500K, the excited state populations are
plotted in figure 37 for various electron densities. Again
a 7p-7s inversion is seen. More of the effects of
recombination lasing can be explained in the next chapter.

More population inversions are sometimes predicted to
exXist in the higher levels of Cesium. Some of these can be
seen in the figure 34. Oettinger[17] has found some
experimental evidence that such inversions may exist.
Unfortunately, theoretical prediction of such inversions is
sensitive to the particular rate constants used in the
calculations. Different rate constant theories predict
different inversions. This being the case, such inversions
are not amenable to theoretical study at the present time
and shall not considered here any further.

If the recombining plasma discussed above were put in a
laser cavity, it is predicted that laser action may occur.
Calculations indicating the effects of such radiation on the
excited state kinetics have been performed. Since this
inversion is so far above threshold, it is a good
approximation that the laser action saturates the
transition. The population distribution both without
radiation and with radiation of sufficient intensity to
saturate the transition is shown in figure 38. This data
was obtained using the same rate constants and conditions as
figure 37. In addition to altering the eXxcited state
distributions, the presence of laser radiation changes the
recombination rate of the plasma. This change in Cesium for
the 7p-7s transition is small.

Laser radiation can produce profound changes in the
ionization process. Under normal discharge conditions, i.e.
when the plasma is not rapidly recombining, there are no
population inversions. Thus when laser radiation is
introduced,there will be a net absorption of such and thus a
net excitation of the atomic levels. When the radiation is
chosen to be resonant with the proper 1levels, this can
result in tremendous increases in the ionization rate
constant. This increase can be like lowering the ionization
potential of the atom by the amount of the photon energy.
This will be elaborated upon in chapter V. Further, if the
radiation were chosen resonant with & transition that
straddled the bottleneck, then the increase in the
ionization rate is given nearly by the net absorption rate
of photons, as predicted in the theory of Oettinger and
Dewey [18].
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The present theory differs from the theories employed
in the opto-galvanic laterature[l103,106,110]. Herein the
complete set of simultaneous equations governing the atomac
level populations were written and solved. Although limited
by the accuracy of the ainelastic collision cross—sectaon
data, these results are expected to be quantitatave.

To summarize, this section has presented results of
numerical computations on the excited state populataons and
ionization-recombination rate constants of a Cesium plasma.
The bottleneck was found to be in the excited levels even in
the collisional dominated regime. This was explained by a
more detailed examination of chemical rules of thumb for
excited state kinetics. Recombination rate constants were
computed and found to be in good agreement with recent
experaiments. It was found that for 1low temperatures and
moderately high electron densities there was a population
anversion in the Cs excited 1levels. Thais prediction
survaived through calculations employing a variety of
elementary rate constants. A calculation under 1lasing
conditions was performed. The ainverse process of laser
ionization enhancement was also studied. By this method,
large increases in the ionization rate are possible. All
these computational results will be further explained by the
analysis presented in the following chapter.



V Analysis of Ionization-Recombination
and,
the Equivalent Circuit Concept

While it is possible to solve the
ionization-recombination problem on modern computers using
the techniques of the last chapter, the results are not
always self-explanatory. The results for recombination
lasing and ionization enhancement in particular are
unintuitive. Why the results of such computations behave as
they do and how they can be optimized is not always clear.
Because of such conceptual difficulties, it would be
advantageous to reduce the system of conservation egquations
to new equations wherein the interactions among the various
levels were represented more simply. Herein such a
simplification is found for the collisional terms.
Furthermore this simplification is obtained without loss of
guantitative accuracy.

Many processes have been suggested to affect
ionization-recombination rates in thermionic converter
conditions. Examples include possible resonant
molecule-cesium dinelastic collisjons, wall deactivation of
excited atoms, atomic impurities, and resonant absorption or
emission of laser light. The present simplified
conservation equations can be easily applied to such
questions. As will Dbe apparent, calculations which would
otherwise require use of large modern computers can be
performed 'on the back of an envelope' using this technique.

Many of the previously published approximate models of
ionization-recombination can be obtained from the present
model by specialization of the coefficients. Among these
are the Dblock of excited states[88)], bottleneck[15],
one-gquantum[89], diffusion{%0,91)], and Mansbach-Keck[51]
models. The regions of validity of these models can be
assessed.

The form of the present simplification 4is easily
understood in terms of the electrical or fluid mechanical
analogies discussed in chapter IV. The present theory will
transform the atomic circuit of figure 5 to the relatively
simpler circuit of figure 6. The analogy, Wwe remember,
related collisional transfer rates to fluid flow through
pipes or to electrical current flow through resistors. The
atomic level populations became analogous to fluid pressures
or electrical voltages. This was introduced after
expression IV.A.1l4 in the previous chapter. This reduction
to a circuit nearly as simple as that for the one-gquantum
model will be applied to many sample situations.
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V.A Equivalent Circuit Derivation

The conservation equations shall presently be
simplified to their equivalent circuit form. This will
start by using the separable form of the collisional
transition rate constants that was discussed in a previous
chapter. With such rates, the conservation equations will
be manipulated. The result will the equivalent circuit, as
shown in figure 6, and simple expressions for the values of
the new resistors in the equivalent circuit.

The present simplification deals with the collisional
terms of the conservation equations. It is thus convenient
to denote the other effects, radiation, unsteady, or
external, all together as a single symbol. The conservation
equation for each level i is written:

A.1l O = .ZV'{S(J'V«/ +2¢'
J

The first term represents the net collisional transfer rate
into 1level i. This is a completely general equation as the
source term, Si is left arbitrary. Thus Si can include any
effects a researcher may wish to add such as, radiation
resonant collision rates, radiation, resonant inelastic
collisions, and/or unsteady effects. Even corrections for
presumed non-separable features of the electron-atom
collision rates could Dbe so included. The present theory
will make no assumption concerning the magnitude of the
terms Si.

In chapter III, the collisional rate constants were
discussed. The ones which were selected as having the
greatest experimental and theoretical support were written
mathematically in a separable form. Advantage will be taken
of this form. In the separable form, the collisional rate
constants are written as a product of a function of the
lower level and a function of the upper level. Thus:

W= §EYG A2
N UL g A

Substituting the separable rates into the conservation
equation, there results:

v Vs (L LY L Z U +S)

N

A.2
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Where - - .
.= (2L +1.ZU;)
f A "- A 07*
J7A
This new gquantity has the units of a reciprocal rate
constant. That makes it analogous to an electical resistor.

Taking the difference between this equation for level i
and the equation for level (i-l), and after performing some
algebraic manipulation, it results that:

A.4 V—V = R}-J’ +.(l;5— —ﬂi-tsi-'l

(R o A 4

where two new terms, Ri and Ji, are introduced. The
function of the collisional rate constants Ri is defined by:

A.5 <. = 12 1., (Li Uj-u - lﬁ-l ({4 )

A

And where the other new quantity Ji is defined by:

o T= (LN UY) - G056

This is an unknown as it depends on the unknown populations.
The physical significance of Ji 4is apparent when it is
rewritten as:

v T 2T Wy (%%)
J&4

4

Thus Ji is the net collisional flow rate from levels i and
above to all levels below i. This makes Ji analogous to an
electrical current or fluid mass flow. In the absence of
other effects, Ji is the net recombination rate.

While the values of the resistances Ri and szi can be
easily calculated, the current Ji is still unknown as it
involves all the unknown population variables in its
definition. This difficulty can be remedied. In the
general case, an expression for Ji can be found by studying
the quantity (Ji-Ji_‘). After some algebra it is found
that:

A.8 7—I=~§;

i A
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Thus, it follows:

2.9 J;=ZSA-

J 24

With this information, it becomes possible to interpret
equation A.4 in the electrical and/or fluid mechanical
analogies. It says that the difference in voltage between i
and i-1 is the sum of the voltage drops across three
resistors[*). The first is the resistor Ri which has the
current Ji flowing through it. The latter two are the
resistors i and i-l1 which have currents Si and -Si-1l
respectively. It can be seen that this corresponds to the
circuit as sketched in figure 6.

At this point it is possible to write down a complete
sclution for the populations as a function of the source
terms. This is done by applying A.S to A.4 and simplifying.
Thus:

A.10 ){_:ye_,,ﬂ}.g —-/ZQSC"Z )5

Where the quantity Rij is defined as the sum of all R
resistances between levels i and j:

\.) ~ -
B.11 ZE-; e J oA .
IS - .
(fZJ)~ J <L

To illustrate the use of this theory, some examples
will Dbe discussed. First, the solution of the simplest
collisional ionization-recombination problem will be
performed. This will be followed by two numerical examples
of the calculation of the equivalent circuit resistances.

Comparison of the quasi-steady conservation equations
for collisional jionization-recombination in section IV.A
with the equation A.1l of this section shows that the source

terms are given by:
L No

> —(/7’6) A T
A.12 S;= O © <ic€

' o//ﬂ?
Ze® T we it

*. Students of fluid mechanics should substitute the word

pressure for voltage and so forth according to the
explanation of the analogies as given in section IV.A.
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From this and A.8 it follows that the current Ji is
independent of i. Thus define J by:

.13 J = J; ©<iLe

It follows that:

Using the solution A.l0, the quasi-steady populations can be
written:

- 2%} = ){; - :7_.('ﬁa§»_*—(l€’} ‘
24; = )fé - 27_ (’,ﬂv +’k;€ 'F_ﬂk?/)

Thus the net zjecombination rate can be written: .
Ve- 12
———— e ——

A.J& J T _a,tRetst

This is just the difference in voltages between ground and
continuum divided by the sum of the resistances between
them. Thus for this case the ionization and recombination
coefficients are found to be:

|
.17 _ J—
’ €T = K = Lyt et e

They are of course equal because the present model has no
radiation. Cases involving various types of radiation will
be discussed in later sections.

A couple of simple numerical examples will show how the
resistances are calculated. First, consider the
(unphysical) case where all the collisional transition rate
constants are equal. Thus:

Wij =1 for .all i,3
This can be rewritten in separable rate form as:
Li = Ui =1 for all i

It follows immediately that the resistances are given by:
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Rij = 0 i = 1/N

Where N is the number of 1levels in the system. In the
quasi-steady collisional ionization~-recombination problem,
this distribution of resistances would mean the all the
excited 1levels would have the same reduced populations and
this population would be the average of the ground and
continuum populations.

As a second numerical example, consider a system with
six 1levels. Suppose the separable rate constants are as in
the table:

i= 0 1 2 3 e

Li=1 2 3 4 5

ui=5 4 3 2 1

From this it follows that the resistances are:

g. = e Viow Vot /40
;= s /24 ‘}a7  Yaq e

In this case the reduced populations of the excited 1levels
would change monotonically between the ground and continuum
levels.

To summarize, the general atomic level conservation
eguations have been manipulated so as to be reduced to a
much simpler system for analyzing collisional transition.
If N is the number of levels in the system, each original
conservation equation involved N(N-1)/2 resistors, one for
each distinct pair of levels. Under the assumption of
separable rates, this was reduced to an equivalent circuit
involving only 2N-1 resistors. This 1is often orders of
magnitude simpler. As will Dbe shown in the following
sections, calculations that would have involved large modern
computers can be reduced to back-of-an-envelope type
simplicity.
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V.B Distribution of Resistance and Limiting Cases

The behavior of the resistances in the equivalent
circuit will be discussed. The be the distribution of
resistance for the Mansbach-Keck collision rate constants
will be compared with the assumed distribution of

resistances used in a variety of well-known
ionization~recombination models. These models, such as the
one-quantum, diffusion, bottleneck, and

block~-of-excited~-states, are of at least qualitative value
for some ranges of parameters. The degree of quantitative
accuracy can be assessed by comparison with the equivalent
circuit resistances.

The equivalent circuit resistances, Ri and s2i, in
Cesium and at various temperatures are tabulated in figures
41 through 51. These cover the temperature range of 500K to
20,000K and give i, Ri, Rie for 37 Cesium levels.

In the block-of-excited-states model it 4is presumed
that the collision rate constants for transitions between
excited levels are very large while rate constants for
transitions between ground and the excited levels is rate
limiting. This approximation is similar to the ‘'rule of
thumb' discussed in section 1IV.C. To compare this model
with the Mansbach-Keck rate constants, it shall be analyzed
using eguivalent circuit theory. The rate constants for
this model are given in separable form by:

} _ g’oo £30
%-’M; > LTt ko

From this it follows that the equivalent circuit resistances
are given by: :

-—Q;=O ‘ J\e,
I?j =0 ;22
]
-ﬂo-rl%.-' W,
Jzl v

This is as one would expect: the resistances among the
excited states are Zzero in the Dblock-of-excited-states
model. Only the resistance between the ground anda first
excited states is finite. Comparing this with the tables of
resistances, it is seen that this is rarely a valid
approximation under conditions of present interest.
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In another model, it is assumed that the rate 1limiting
transitions occur in the excited levels. This is usually
case. For mathematical simplicity it 4is further assumed
that the rate limiting processes are so sharply defined that
they occur across just one level. Let that level be Kk=*.
This 4is called the bottleneck and the following model is
called the bottleneck model[15]. All rate constants for
transitions between levels which are either both above k* or
both below k* are considered fast. The separable rate
constants that correspond to this model are given by:

L3 large for j>k»

Uj large for j<k=x

The remaining Lj and Uj are defined by:

Li-Uj = Wij for i<kxZzj

It follows that the equivalent circuit resistances are given
by:

<G = Q .

K} = O /(JEJEQ‘
- ! -

K = ,((4%*-‘)’ s )

This implies a two tiered population structure. Levels
above and below the bottleneck are each in 1local
thermodynamic equilibrium. Thus:

> g 1% FEdS

£ L, A< tX
Even though the actual bottleneck is not as sharp as in this
model, gqualitatively correct behavior can often be predicted
in this approximation. The above two models are similar in
that both assume large rates in some region(s) of the atom
sO that the resistances are negligible almost everywhere.
The difference 1is that the block-of-excited-states model
assumed the important resistance to be between the ground
and first excited states while the Dbottleneck model
postulated that the important resistance was somewhere among
the excited 1levels. The following model differs from both

of the above by not a priori assuming fast rates anywhere
among the atomic levels.

Early work on inelastic collisions indicated that the
cross-sections were strongly dependent on the energy gap
between the levels, with transitions between closely spaced
levels much more 1likely than less closely spaced levels.
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This leads to an approximation in which transitions are
neglected unless they occur between adjacent levels. This
is called the one-quantum model and has received
considerable attention in the literature. While it is now
known that the approximation used to develop this model is
not quantitative, the resulting model is often useful and
instructive. While one quantum rate constants can be
incorporated into the separable rate form many ways, the
following system has the virtue of simplicity. If the
separable rate constants are given by:

/.= ><;+l
(/A' = d; ><-.A

where the a are constants and X 4is an arbitrary 1large
number, then these rate constants display one-guantum
behavior in the limit of large X. It is apparent that the
rate constant between adjacent levels is given by:

M,,)}' = d}.

As x approaches infinity, all other rate constants go to
zero, as they should in the one quantum approximation. 1In
this limit, it follows that the resistances are given by:

Ri=1/Wi,i-1 ; Ui =0

Thus a consequence of the one-quantum model 4is that the
resistances «ti are all 2zero. As can be seen from the
tables, this is not always a good approximation.

The above models have all made assumptions about the
relative sizes of collisional rate constants for various
transitions. An alternative approach is to make assumptions
about the 1levels themselves. In particular, it has been
found to be advantageous in some instances to neglect the
discrete nature of the 1levels and assume rather that the
atom has a continuum of bound levels, as a classical atom
would . Two applications of this approximation will be
mentioned. The simpler is the Aiffusion model whicCh results
from applying the atomic levels continuum approximation to
the one-gquantum model. The other 4is the Mansbach and
Keck[51] model. This model starts with the full system of
separable rates and develops the resistances Rij under the
atomic level continuum approximation. Their model is
similar to the present equivalent circuit model with the
additional level continuum approximation. There are
distinct differences though in the treatment of the
resistances fi-i, and source terms Si are not considered by
Mansbach and Keck. Also when the continuum model is found
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as a 1limit of the present theory, it becomes apparent that
the Mansbach and Keck model contains a small error due to
neglecting a delta function term in the conservation
equations. this delta function arises from the atomic level
continuum 1limit of the term SO. Further for their model as
extended to include spontaneous radiation, there is an error
due to ignoring the resistances (U 1i.

This concludes the review of simplified
ionization-recombination theories. It is shown that each of
them can be formulated as some 1limit of the present
equivalent circuit theory. This re-formulation has allowed
the limits of qualitative and quantitative accuracy for
these models to be assessed by comparison with the actual
resistances as given by equivalent circuit theory.
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v.C Sensitivity Analysis

For systems of many simultaneous equations,
determination of their sensitivity to changes in the value
of parameters or introduction of new effects is often a
tedious process. The simplicity of equivalent circuit
theory however allows the this to0 be Adone for the
ionization-recombination process gquite easily. Several
examples will illustrate this. First, sensitivity to
changes in the collisional rate constant for the ground to
first excited state will be considered. Next the importance
of resonance radiation loss will be analyzed. This will be
followed by a discussion of the effects of de-activation by
heavy particle collisions. While this nowhere near exhausts
the list of possible effects that one might want to include
for one or another reasons, these discussions will
illustrate application of equivalent circuit theory to such
problems.

It is sometimes suggested that there .may be
circumstances under which separable rate constants may not
be adequate. It might for example be suggested that such
rate constants should fail for the Cesium 6s-6p transition
because it is strongly resonant. Write this 6s-6p rate
constant as a sum of that given by some scheme of separable
rates and a correction that will account for the supposed
special nature of 6s-6p. Thus:

c.1 Vo, = LoU, + 0,

With this, it follows that the source terms are given by:

L I _
Se © ’47607?—"7

Cc.2 S‘ < @Ol (77°-))|)
So T - J -G, (%HS')%,)
This can be solved to give the net recombination rate:
Ve- 3%
- 2
(——%*&‘) @\

c.3 Jd - =2 Y -
.ﬂq"'@( t@ I+ (J‘o*Ro\*ﬂe)ch

By examining the tables of resistance, it is seen that even
if the correction an were to go to infinity, its effect
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would be negligible on the ionization or recombination rates
for conditions of interest in thermionic conversion. This
is of course because the 6s-6p rate is fast to Dbegin with,
and thus kinetically unimportant.

Cesium has a large radiative rate for the resonance
6s-6p transition. While most of this radiation is trapped,
the effect of that which escapes will be analyzed. Defining
a reduced radiative rate constant:

v
C.4 ap = €N, By,

where A0l is the Einstein A-coefficient and G-is the escape
factor. PFor this case, the source terms are written:

g,
Se” -5 S =d
5-, < ’dol-))l/7//€

5. ° '/};"zééé*dol))‘:'j"'am)),/ﬁ/e

It follows that the net recombination rate is given by:

{'_'L a,,(ﬂ,+&.)7pe -2

c.e J =

aou(—ﬂa‘ff()

ot bt Lo + + )
L4 (kﬁe JZQ 1”%*‘6&{1
The coefficient of 1, is the recombination rate constant
while the coefficient of 3, is the ionization rate constant.
Assuming a one per cent escape of this radiation as 1is
typical for thermionic converters, the loss of resonance
radiation does not affect the recombination rate constant
significantly for Cesium , though it may affect the
ionization rate constant at low electron densities.

Another process that may occur is the quenching of
excited atoms by collision with some heavy particle. It has
been suggested that this may be used to help clear the lower
levels in a recombination laser [17]. Without pursuing the
possibility of lasing, The analysis of such heavy particle
interactions will be set up to indicate the important
parameters. It has sometimes been suggested that such heavy
particles as noble gases Dbe included in the thermionic
plasma to improve the current transport processes. This
analysis will also indicate when such additional gases may
alter the ionization-recombination kinetics. There is a
significant amount of data available on quenching
cross—sections for first excited 1levels of atoms. For
nitrogen—-cesium collisions there is data on quenching of the
first two excited 1levels. The effect of gquenching
collisions on the first two eXxcited 1levels will be
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considered. Antonov, Korchevoi, and Lukashenko[92]
estimated damping cross-sections of Cs 6p and 54 levels by
collision with molecular Nitrogen. The 6p cross-section was
found to be 6.0(-15) cm2. While the 54 cross-section was
larger, 6.6(-15)cm2, it will be shown to be typically 1less
important.

Writing the quenching coefficients for ép and 5 as a
and b respectively,

~ 7
= @‘? Ur /\/gf N /édé
,é = @gg J'f NSZ M//7,€

where V, is the mean relative speed of Nitrogen and Cesium,
and N, is the molecular Nitrogen density. The source terms

are: J4,0 - J_

Se = "1%» e
S, = -V,
s = -0 vV tLY.

The corresponding excitation terms for the molecular
collisions are neglected due to0 the 1low temperature of
neutrals. From this it follows that the 54 population is

given by:
(K;e tae) J
| + L2,

)/Z; =

The 6p population is:

4 L&
I+ mf.;z )V ’?tetde*" l+,6.2n (Roe+ste |
. —_
V’ | +ali € 1+a 2,

Lastly the net recombination rate is:

[0+ i o e

a"-
I+a .z,

Using the Antonov et al. cross-sections, it is found that
the N2-Cs(6p) collisions are at least an order of magnitude
more important than the 5d collisions.

It has been shown here that a wide variety of effects
can be easily analyzed using egquivalent circuit theory.
Specifically, resonance collisions, resonance radiation, and

( ‘ 2 A Kot )
Lt he* Jet Zatk )[Ee NEO Py Py lffﬂz(@’?ﬂz?)] H;ﬂ_j

"

(ke e )



-

Chapter V Page 14

molecular deactivation were considered as examples. The
simple algebra required in these analyses contrasts with the
large computational efforts that would be required without
the equivalent circuit.

Commonly, sensitivity analysis is limited to
determining merely a partial derivative of some result with
respect to a parameter given numerical values for all the
parameters. The present theory found the behavior of the
result over the whole possible range of the changing
parameter. This was done moreover in a general analysis
that was not restricted to given numerical values of all the
remaining parameters. These results are thus far more
useful.
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V.D Computation Techniques

One of the features of equivalent circuit theory is the
ease with which solutions can be computed. If N levels are
under consideration, the populations and rate constants can
be computed in time proportional to N for collisional
recombination. For collisional-radiative problems,
computation can be performed in time proportional to N
squared. This contrasts greatly with the order of N cubed
needed for the usual solution by Gaussian elimination. The
procedures for these calculations will be outlined here.

For both the c¢ollisional and collisional-radiative
problems the equivalent circuit resistances must be
calculated. First the sums

5= £ U
> 3354 Y

Are calculated for successive i. This requires O(N)
operations. With these sums, the resistances can be

calculated:

e S
G G A tGE;

&? ,fl"ifz -(<1L ﬂ Ld‘/)

This again requires only O(N) operations and provides all
the numbers necessary for solution of the collisional
ionization-recombination problem.

If spontaneous radiation is included, more calculations
are necessary. The spontaneous radiation source terms are:

) S i 7
ST -_Z_C@‘JV;'__ZG" T
9”4 J=0

Note that the source term for each level i depends only on
the level populations of that and higher levels. This fact
can be used to advantage. Calculations start at the free
electron level and proceed to lower levels via the
population difference equation V.A.4 and the current
equation V.A.9. In this way, only O(N squared) operations
are needed to complete the calculation.

In summary, it has been shown how computation times of
ionization-recombination problems can be reduced by what is
typically one or more orders of magnitude using eguivalent
_Circuit techniques. Comparison with usual Gaussian
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techniques will also show a large reduction in necessary
computer storage. These reductions could be very important
if such ionization-recombination calculations were necessary
at, say, every grid cell of some larger numerical problem.
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V.E Highly Excited Levels

The system of atomic 1level conservation eguations
should, in principle, include one equation for each atomic
level. As there are a very large number of atomic levels,
in particular highly excited 1levels, this can cause
computational difficulties. Many ionization-recombination
calculations have simply truncated the number of levels
under consideration and sometimes altering the direct
ionization and recombination coefficients to account for the
missing levels. It is still often necessary to include up
to one hundred 1levels in such calculations. Sometimes
researchers have approximated the highly excited levels with
a level continuum and then solved an integral equation for
them simultaneously with the system of equations for the
discrete levels. Burgess and Summers[93] used a system of
interpolation to reduce the numbers of equations involved
for these levels. With equivalent circuit theory applied to
the highly excited levels, however, a much simpler approach
results. It is found that the effect of the highly excited
levels on the remaining excplicitly considered levels can be
represented by effective rate coefficients. These
coefficients are of two types. The first is effective
direct ionization and recombination coefficients. Such
effective rate constants was anticipated by previous direct
ionization and recombination rate constant fudging schemes.
The second type are effective inter-level rate constants.
These are conceptually new. .

Suppose m is the highest excited level to be considered
discretely. The goal of the present analysis is to
eliminate the terms in the conservation equations involving
all 1levels higher than m in favor of terms invelving lower
level populations as well as the free electron population.
The conservation equation for any such lower level i is
written now as:

1
E1 O Z Wiz (B5) +We (%) 45

where Hi is the net transfer rate into any level i of the
discrete levels from the highly excited levels:

€
E 2 Heo= > WaO%-%)
E=ntt) .
The present goal is to express Hi in terms of the free
electron population and the 1lower level populations thus
eliminating the highly excited 1levels altogether from
conservation equation E.l. This is done using the present
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separable rate-equivalent circuit theory. While other
processes such as radiative recombination could be included
without much complication, assume the simple, and for
present conditions accurate, model that only electron-atom
collisions are important for the highly excited 1levels.
From equation V.A.10 the populations of the highly excited
levels are:

E.3 Vk:)/e—ﬁﬁej

where J is an unknown that must be determined. With J
evaluated at 1level m using the definition V.A.7, and
eliminating the highly excited level populations as above,
it follows that:

_ /Qw12%; - ;g} LJ )g
e I na s B

where: __/LW, = Z </ /?/@

f>m

and where Am and Bm are defined by D.1. With this
substituted into the net transfer rate, the final result is:

A
A

. N amn
Er Het W 02-%) +J_§ W (V¥ )

where the rate constants Wej and le are defined by:

P
Wej L+An Loy gemey (/
E'é A L.éaw

MJ: (A A'W/ L ‘_/Z

Substituting the above expre551on for Hi into the
conservation equation E.l, it is found:

e; ©OF Jfo (w5 +1055) (535 ) +(ws+ W) (Ve-2)
+ 55

The goal of eliminating the highly excited levels from this
conservation equation has thus been achieved.

The above equation can be interpreted as follows. The
above equation indicates that the net transfer between the
highly excited levels and any other lower 1level 3j can be
replaced by effective net transfer rates between j and the
continuum and between j and other levels m and below. The
coefficient involving j and the continuum can be thought of
as an effective ionization-recombination rate constant. It
represents ‘'indirect' ionization-recombination caused by
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transfers passing from j or the continuum through the highly
excited levels eventually to its continuum or j destination.
The formula above gives a systematic method for calculating
such effective coefficients replacing earlier approximate
schemes. The coefficients involving j and other levels k m
indicate a new phenomenon. They are additional effective
rate constants for transitions between the discrete 1levels.
This indicates that transfers between two levels j and k can
occur not just directly but also indirectly, passing through
the highly excited 1levels. Such effective rate constants
had not been included in earlier approximate schemes.

Essential to the present model is the assumption that
the highly excited levels are quasi-steady. Because of the
small populations and fast transition rates of these levels,
this is generally a very accurate assumption. Also because
the populations of these levels are so small, energy storage
in them can be neglected.

Thus, an analytic scheme, exact within the context of
separable rates, has been found which reduces the system of
conservation equations to a finite number. This eliminates
the need to solve integral equations for such levels, or to
retain very large numbers of equations in the system. This
can greatly reduce precision and computational time
requirements that can be associated with solving up to one
hundred or more simultaneous equations. This scheme
introduced effective ionization-recombination rate constants
and a new type of effective inter-level transfer
coefficient.
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V.F Spontaneous Radiation

The loss of spontaneous radiation from the plasma can
significantly alter the plasma dynamics. While escape of
such radiation is a power loss mechanism, the more important
effect 1is often the alteration of the ionization and
recombination rate coefficients. These coefficients become
dependent on the electron density and Saha detailed balance
relations may fail by one or more orders of magnitude.
Simple analytic models given here will explain this
behavior.

The nature of these effects can be well illustrated by
supposing that there is just one radiative transition. This
will be from an upper level u to a lower level 1. The
source terms for this situation are given by:

) IVe _
5—6 T gle AT T O(
A
5‘(,( = = e aVu
|
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. dNe _
Sez-segf s I
Apply1ng these source terms to the equivalent ¢circuit, the

equations may be solved. The net recombination flux is seen
to be:

VQ ) — vb
J—= L+ Kpet Sl = M TRt St + abpu(Kue*Ste)
e ta (Kt TN Tkvad.

The recombination rate constant increases with the 1loss of
spontaneous radiation while the ionization rate constant
decreases. Moreover it is apparent that the importance of
such radiation to either coefficient depends on the
positioning of the upper level on the resistance ladder. If
level u is below the bottleneck, then:

2y + Ron, << Iye 12

and the radiation will never have a significant effect on
the recombination rate. It may however have a domainating
effect on ionization. Conversely, if level u is well above
the Dbottleneck, such radiation would have its dominant
effect on the recombination rate and possibly only a small
effect on ionization.
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If the electron density were large enough that
radiation had negligible effect, the reduced ground and
continuum populations would have the same value in steady
state, indicating Saha equilibrium. When spontaneous
radiation is important, however, Saha equilibrium will not
be achieved. The actual steady state values are found by
setting J to zero. Thus from the above equation:

Lo
We + dﬂu

The steady state electron density becomes smaller and
smaller as the contribution of radiation increases.

The above model indicates how the excited level
populations and ionization-recombination rates behave as the
contribution of spontaneous radiation increases. For most
purposes, the above one-radiative-transition model is only
qualitative. Greater accuracy is achieved by including more
transitions but, this is done at the eXpense of simplicity.
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V.G Laser Ionization Enhancement

The possibility of increasing ionization in a plasma by
subjecting it to radiation resonant with excited atomic
levels is of importance. Under some conditions this may be
used as an experimental technique[84,103-111]. It may yield
schemes for improved thermionic energy conversion[18]. The
behavior of such radiation enhancement will be considered
using the tools of equivalent circuit analysis.

Under consideration here are the consequences of
letting some radiation, probably of narrow bandwidth,
impinge on a plasma. If the frequency corresponds to a
transition between two levels of the atom, such radiation
may be significantly absorbed and can alter the
ionization-recombination kinetics. The two levels that the
radiation is resonant with will probably be both excited
levels as radiation connecting with the ground state often
may have short absorption lengths and be unable to penetrate
into the bulk of the plasma. This is currently the case for
thermionic converters. This light need not necessarily have
a short wavelength. It will be shown that even infrared
light can have major effects on the ionization of Cesium.

For collisional ionization-recombination subjected to
radiation enhancement, the equivalent circuit analysis
proceeds to a simple and powerful result. Suppose the laser
radiation were to be absorbed by a transition between a
lower level 1 and an upper level u. The source terms for
this situation are:
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Where A is the net rate of photon absorption. By applying
Kirchhoff's laws and the principle of linear superposition

it is quickly found that the voltage drop between the
continuum and ground is:
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Solving this for the net ionization rate yields:
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Thus the increase in the ionization rate over the unenhanced
case 1is directly proportional to the net photon absorption
rate. For every photon absorbed, « electrons will be
ionized.

Where: é;':?

A previously published formula can be derived as a
special case of this. A special case can be considered for
which the radiative transition spans the Dbottleneck. This
means:

C;lf; ]E;z( X Lt KZ:€>'#_YQ?
Which leads to the approximation:
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With this last approximation substituted into the egquation
G.4, the model of Oettinger and Dewey[18] is found.

An important practical parameter for this process is
the energy efficiency. This shall be defined as the ratio
of the light energy that must be absorbed to ionize an
additional atom to the atomic ionization potential. Thus:

4V/E
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It is apparent from this formula that the efficiency so
defined need not be less than one. By choosing a transition
l-u in the midst of the bottleneck it 4is easy to obtain
efficiencies greater than one. The additional energy, of
course, is supplied by the inelastic collisions of atoms
with the free electrons.

The net absorption rate of photons can be related to
the radiation intensity by exXamining the 1level 1 and u
populations. The quantity A is given by:

e A IO‘/M'%Na)

where 1 is the intensity, ¢ is the absorption cross-section,
and 9¢ and g are the atomic level degeneracies. Upon
solving the equivalent circuit equations, this is written:
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Where A/Vois the population Aifference if no radiation were
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And the saturation intensity is given by:

Ve

La

By examining the magnitudes of these terms from the
tables of resistances, it is apparent that absorption of
radiation can tremendously increase the ionization rate.
Further, it does so in an energy efficient manner. This
efficiency can be unintuitively large: each additional
ionization may occur even if the absorbed photon energy is
less than the atomic ionization potential. Kinetic analysis
also yielded a relation between laser intensity and the net
absorption rate. It was found that the full enhancement
effect can be obtained even at quite practical 1low
intensities.

It should be remembered that even though the results of
the present section are quite simple, they do constitute a
complete solution of the quasi-steady collisional
ionization-recombination problem. This contrasts with
previous theories of the optogalvanic effect[103,106,110].
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V.H The Recombination Laser

Recombining plasmas have great potential as a laser or
light amplification medium. The possibility that excited
state kinetics in recombination can cause population
inversions has received much attention in the literature
e.g. Gudzenko, Shelepin, Yakovienko[11], Silfvast
et. al.[112-117), and cCampbell, Jahn, von Jaskowsky, and
clark[95]. This is both because of the higher power
densities available in plasmas, as opposed to solids,
liquids, or gases, and because, in some systems, ultraviolet
lasing may be achievable. Herein the recombination kinetics
of such plasmas Wwill be considered. Use of equivalent
circuit concepts allows a simple but general analysis.

The principle of recombination or plasma lasers is as
follows. Starting with a hot plasma, the temperature is
suddenly lowered. At the new lower temperature the
electrons and ions rapidly recombine. This causes
dis-equilibrium among the excited 1levels and population
inversions may often occur. Thus, provided with a suitable
optical cavity, lasing can result.

The dquestions to Dbe answered here are when the
recombination kinetics allow a population inversion to be
established and how much power can be produced. A
population inversion is defined by:

7
H.1 M < -ﬁu /\/«
In the form of reduced variables this becomes:

2 AVIAT
H.2 — 2 €

R

This inequality is most likely to be satisfied only when the
electron density is much larger than its equilibrium value.
As was discussed previously, for sufficiently large electron
density the ground state contributions to the excited state
populations may be neglected yielding:

AV/RT
H.3 yvf’ et

Where again vl and vu are the free electron quasi-steady
population coefficients. Assuming collisional
recombination, these coefficients can be expressed in terms
of the equivalent circuit resistances so that the inequality

simplifies to: 4 //ET
M 1+ Kou v
Pp)
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It is possible that this condition for purely collisional
recombination 1lasing may be satisfied. 1In other words, it
is not always necessary to have additional mechanisms to
depopulate the lower level, such as spontaneous radiation or
heavy particle collisions.

Such an inversion is predicted to occur in Cesium. The
Tp=-Ts transition is found to be invertible at 1low
temperatures, e.g. 1500K. This is an infrared transition.
As the 7p level is a doublet, lasing is predicted on two
lines, 3330 and 3411 cm-l. Threshold inversions for this
laser, as 4is typical of electronic lasers, is the order of
1(7) to 1(8) cm-3[96]. These are very small compared with
the population densities under consideration here. It is
thus reasonable to assume that the transition saturates. 1In
this case the laser efficiency approaches a constant. It is
useful to be able to describe the efficiency of a plasma
laser. R wvariety of efficiencies could be defined that
would depend on the plasma dynamics. Here an efficiency 1is
defined to reflect the recombination kinetics. This
efficiency, let it be called the photon efficiency, 4is the
ratio of the rate at which 1laser photons are produced
divided by the net recombination rate. Thus:

£ A
Ao/ T
where A is as defined in the previous section. This number

depends on the 1light intensity in the laser cavity. This
number is 0(1/3) for the Cs 7p-7s laser predicted here.

The energy efficiency of the recombination laser may be
defined as the ratio of the photon energy out to the to the
total energy available, i.e., the energy released by
recombination. This is simply the product of the quantum
efficiency and the photon efficiency.

The power output that can be produced by plasma lasers
is gquite large. Neglecting distributed losses, the laser
power output is the net rate at which photons are produced
times the photon energy. Thus:

p= Ay ¢ ZE

This is strongly dependent on the electron density. Upon
substituting some typical numbers, output powers of one watt
per cc to possibly one kilowatt per cc can be produced in a
piasma under thermionic converter conditions.

The total laser output energy per pulse can also be
estimated. Assuming all electrons recombine and produce
photons each, the energy output is:

L4y b
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Under thermionic converter conditions, this number is fairly
modest, on the order of say tens of millijoules. This is
consistent with the energy in Jionization in thermionic
converters being a small fraction of the overall energies
involved. While the thermionic laser may produce very large
powers, these powers last only a short time, maybe a few
microseconds.

The above formulas assume that spontaneous radiation
loss is negligible. If spontaneous radiation loss were
included in the model, the laser performance may either Dbe
improved or reduced. Spontaneous radiation between levels
both above the lasing levels would improve performance Dby
increasing the recombination rate. Loss of spontaneous
radiation from a transition between two 1levels both below
the laser 1levels also increases performance. This dis
because it helps clear the lower laser level. In fact such
radiation reduces the resistance ratio requirements for the
purely collisional laser (V.H.4). Unfortunately the
remaining type of spontaneous radiation loss, that from a
transition which straddles the laser levels, reduces laser
performance. This is because it depopulates the upper level
and populates the lower level. The Cs 7p~7s inversion
suffers from such radiation. It cannot maintain the
inversion at electron densities below about 1(13) cm-3.

To summarize, employing equivalent circuit theory, the
efficiency, power output, and energy output of recombination
lasers can be characterized. A Cesium 7p-7s population
inversion 4is predicted. This is expected to have a photon
efficiency of about one third. The criterion for obtaining
a purely collisional recombination laser was established in
terms of equivalent circuit resistances, and the effects of
spontaneous radiation were discussed.



VI Unsteady and Steady Numerical Solutions
of
Thermionic Converter Plasmadynamics

Although one dimensional, numerical solutions of the
thermionic converter plasma equations challenge even modern
computers. A new computer program is developed here to
solve _ the thermionic converter plasma egquations. The
present method uses & relaxation or unsteady formulation.
This contrasts with the shooting schemes that have been used
previously. Special differencing techniques developed for
this study have increased accuracy while decreasing
computational requirements. The results of these
computations will be discussed for the normal and laser
enhanced ignited mode operation as well as the unsteady
recombination laser mode. The results of these computations
confirm the trends predicted by the simple
ignition-isothermal theory discussed earlier.

The computer program that has been developed is capable
of including a wide variety of effects. These include
microwave electron heating and thermal diffusion. The
present study, however, concentrates on the
faster-than-Boltzmann rise, proposed laser enhanced
ionization mode and the possibility of a thermionic plasma
recombination laser. ’

For steady-state T.E.C. operation, a detailed account
of the source of the arc-drops is given. This is done from
two points of view: (1) an energy balance, and (2)
Kirchhoff's Law. For the various modes of operation
studied, the information from these viewpoints is organized
in the form of short tables. From these, it is apparent
that most of the arc-drop is due to plasma heat losses at
the electrodes and that the sheaths play a major role in
adjusting the plasma to different operating conditions.
This confirms the predictions of chapter II.
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VIi.a Formulation and Methods

The equations solved and the method for solving them
are discussed here. The numerical method benefited from
tests against special case exact solutions and these will be
described. The numerical method used presently is quite
general and may be modified to include many additional
effects if so desired. )

There are &a nhumber of reasons why computational
solution of thermionic conversion has been so difficult.
One is that in either spatial direction, there are error
terms which tend to grow exponentially. Secondly, the
problem is a boundary value problem, and the interactions
among the boundary conditions make it very difficult to
obtain shooting algorithms that converge. Sincée the present
method involves no shooting, neither of these problems
occur.

The differential equations solved are those of section
II.D in the form with ion current neglected. There are thus
two parabolic dquasilinear differential egquations to De
solved. One is for temperature and the other is for
density. There is an additional equation to determine the
arc-darop. This is the integral equation developed in
section II.E, equation II.E. . These equations differ from
those used by Yen[8] who neglected diffusion by temperature
gradient in comparison with diffusion by density gradient
and obtained convergence by assuming a thermal conductivity
five times the physical value. The present study obtained
convergence without making assumptions about the thermal
conductivity.' Further, more recent work[9] indicates that
the neglect of temperature gradients near the walls is not
valid.

The time dependent form of these equations is
programmed. Solution proceeds by updating the variables in
time using the a predictor-corrector method described
in[e60]. Since this 4is a diffusion dominated problem, the
time step must be no greater than the order of the square of
the spatial distance between mesh points. This implies that
the major source ©of errors will be from spatial not temporal
differencing.

Rnalyticdl tests of the -numerical method proved
valuable. Testing of the present method against the special
case analytical solutions of the energy equation [9]
revealed that special care should be taken when dAifferencing
the terms in the energy equation. This is due to the
rapidly varying thermal conductivity. Taking advantage of
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the information gained in these tests has dgreatly reduced
computational requirements. As yet, no other numerical
scheme has been tested against such analytical solutions.

The main result of the comparison with the Lam[9]

theory has been that careful numerical treatment of the
thermal conductivity term is very important. This term is:

9 2% 2 T
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By normal differencing techniques one would approximate this

as:
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which is accurate through second order. This formal
accuracy however is misleading. According to [9], the
derivatives of temperature with respect to x or € are nearly
singular near the walls of a small knudsen number converter.
In such a case Taylor series expansions are of 1limited use
and thus neither is 'second order accuracy.' Following{9],
the solution to this is found to be a change of variables.
Using the thermal resistance coordinate %, the derivatives
of temperature become well behaved. To take advantage of
this, the thermal conductivity term re-written in the
mathematically eguivalent form:

- 2
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K 297>
By expanding 7" in a Taylor series and using the values of

temperature at locations i-1, i, 1+1, the second derivative
is found to be:
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where &7ican be found to sufficient accuracy by assuming a
linear variation in thermal conductivity Dbetween mesh

points. Thus: .
f e _bAF K:
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Using this method of differencing, an order of magnitude
fewer mesh points were needed.

The first derivative of temperature was likewise
differenced using the ?] coordinate:
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Mesh points were also placed at the wallsx. Thus no
differencing was required to find the first derivatives at
the walls. These were found from the boundary conditions
using the values of temperature and density at the walls.
The second derivative of temperature is thus found:

l;""c“lh LT - EHoay,

————
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where point 1 is on the wall and point 2 1is next to the
wall. This is accurate to first-order.

The remaining differencing technigques used are common.
These are documented in the program listing of Appendix A.
The program is written in the PL1 language and was run on
Princeton's IBM 3033 computer.

* Actually, of course, they were not 1located precisely at
the wall but rather at the plasma-sheath interface where the
sheath is accurately assumed to have negligible thickness.

s
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VI.B Ignited Mode Operation

Thermionic converter performance will first be
considered under steady conditions, with and without laser
enhancement. Most attention will be focused on operation
below the knee. The difference between the
classical-kinetics similarity operation and real kinetics
behavior will be emphasized. The prediction of the
faster-than-Boltzmann voltage rise will be discussed. This
section uses terminology defined earlier in II.E. Laser
enhanced performance is then considered. Finally, rapid
cooling of the electrons is demonstrated and found
sufficient for possible recombination lasing.

The operating conditions chosen to be studied herein
correspond to a pressure-distance product of pd=10 torr-mil.
Further, the pressure was taken to be one torr and thus d
was ten mill (0.254 mm). The ion-atom momentum transfer
cross-section was 1(-14) cm2 and the electron-atom
cross-section was assumed to be one third of that. The
Richardson current was chosen to be 20 Amps/cm2 which
corresponds to a Richardson density of 1(13) cm-3. The
emitter temperature was 1l500K. The collector temperature
was 1000K. These are fairly typical operating parameters
for thermionic converters.

Referring to the nondimensionalization of section II.D,
the above stated conditions imply that the parameter Kn is
given be 0.061 while the characteristic time, t , is 0.017
microseconds. The electron density was scaled by the
reference quantity 1(14) cm-3. The nondimensional current I
is given by the actual current J divided by 24 Amps/cm2.
The nondimensional Richardson current is thus 0.81l. Actual
temperatures are divided by 1500K to obtain the
nondimensional temperature T.

To simplify the interpretation of these results, some
approximations have been made. As the ionization fraction
under conditions of present interest is 1low, electron-ion
momentum transfer collisions have been neglected. Ion
emission from the emitter and all emission from the
collector are neglected. The effect of radiation on the
energy balance is neglected. As the region above the knee
of the current voltage curve is not of major interest here,
the Schottky effect is ignored. The thermal diffusion ratio
is neglected. Again, these simplifications are made to
clarify the results. There is no reason why future studies
should not or could not include such effects if they were of
interest.
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For the chosen converter parameters, recombination is
generally negligible at the knee and below. If also the
ionization rate constant is assumed independent of density,
i.e. radiation loss neglected, then the
collisional-kinetics similarity holds. The temperature
distribution becomes independent of the current level in
this regime. The density is linearly proportional to the
current. The density rises to a maximum value of about
twice I, both non-dimensional. The temperatures are near
3000K. The temperature distribution has hooks at the
emitter and collector. This distribution of versus is
shown as the lower graph of figure 50.

A notable feature is the small size of the collector
sheath height. It is Xc=0.15 (=0.02eV) or less than a tenth
.0f the electron temperature at the collector sheath edge.
Such a small sheath height would invalidate approximations
made in the sheath theory. It would also indicate that the
plasma flow near the collector had a significant Mach number
calling into question some of the plasma approximations.
Yen [8] found similarly low collector sheath heights using
an entirely different numerical method.

In the collisional kinetics similarity regfme, the
arc-drop vd is a constant. this means that the current
voltage curve rises like a Boltzmann curve. The
responsibility for the arc-drop can be divided among the
energy losses at the emitter, at the collector, and to
ionization~recombination as discussed in section II.E.
Computations show that ionization-recombination contributes
only 0.53 (0.07eV) to the arc-drop. The thermal energy
exchange between the emitter and the plasma in net adds
energy to the plasma thereby reducing the arc-drop by 0.83
{0.11eV). The major responsibility for the arc-drop rests
on thermal energy 1loss at the collector amounting to an
arc-drop of 3.6 (0.47eV). This gives a total arc-drop of
-vd=3.3 (0.43eV). 1In an alternative view, the arc-drop can
be characterized according to where in the plasma it occurs.
In this way, most of the arc-drop, 2.4 (0.3leV), is due to
the difference between emitter and collector sheath heights.
only 0.93 (0.12eV) occurs in the plasma itself.

All this information about the sources of the arc-drop
can be organized. As found in section VI.E, there are two
ways of accounting for the arc~drop. One looks at it from
an energy conservation point of view and locates the energy
sources and sinks. This is manifested by equation 1II.E.7.
The other is to 1look at it from the point of view of
Kirchhoff's law, that is, add the arc-drops from one side to
the other. As in double-entry accounting, this can be
written in two columns which must sum to the same total. In
symbolic form:

e s~ pare—— -
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T.E.C. voltage accounting

Energy Conservation Kirchhoff's Law

gain from emission 2/y

less emitter plasma loss —I(ZVUﬁcollector sheath K¢
less collector plasma 1loss -27{ less emitter sheath - X£
plus volume source A3/ plasma gain A7f
total: v, V. total: v \

Applying this the the specific case just discussed:

T.E.C. voltage accounting

Energy Conservation Kirchhoff's Law

gain from emission 3ol

less emitter plasma loss -2.19¢ collector sheath o.18
less collector plasma loss -3.62 less emitter sheath -2.5/7
plus volume source -0.53 Pplasma gain -0493
total: Ve -3.33 total: M -3.33

From this, it is seen that the major energy loss is the
electron flow into the collector. The major voltage drop is
the emitter sheath. The total above, v , is the difference
between the voltage at the top of the collector sheath and
at the top o¢of the emitter sheath. With the assumed
Richardson current, this implies an electrode to electrode
voltage difference, v , waicn is lessened by the amount of
the double sheath rise, A, yielding an overall voltage drop
of -3.25. The vacuum ideal voltage rise for this case is
v =0.41 and thus the real converter is 3.74 (0.48 V) less
than this. Because of the classical-kinetics similarity,
the wvalues in the table above remain unchanged throughout
the double-sheath regime.

These results compare well with the isothermal-ignition
theory presented in sections II.E and II.F. This theory
predicted a temperature of 2.21 (3300K) while the numerical
results indicate that the electron temerature varies from a
peak of 2.22 on the emitter side to a minimum at the
collector of 1.81 (2700K). This theory predicted an
ionization voltage loss, aQ/I, of 0.48 while the computer
solution gave a value of 0.53. The nonisothermal computer
solution gave a superior voltage performance, q,=-3.33
against -3.58 for isothermal theory. This improved
performance is principally because isothermal theory
overestimates the electron energy loss rate at the
collector. The maximum density predicted by isothermal
theory was 0.6 (6(13) cm~3) and this is similar the computed
result of 0.9 (9(13) cm-3).
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Under the present assumptions, the- collisional
ionization kinetics similarity solution will fail for one of
two reasons as current is increased. Both of these happen
because the density rises with rising current. For one,
this failure can occur if the density rises to a level for
which recombination becomes important. It could also fail
if the plasma density rises to a level where the
double-sheath is suppressed. Which failure occurs first
depends on the relative sizes of the Saha density at the
ignition temperature and the emitter Richardson density. At
the pressure-spacing product, pd, chosen for the present
study, the double~sheath is suppressed first. This occurs
at I=.54 (13 A/cm2). Above this the arc-drop rises rapidly,
the sheath heights rise, and ion current eventually becomes
more important. For a sample case of 1I=0.7 (17 Amps/cm2),
the voltage accounting is:

T.E.C. voltage accounting

Energy Conservation Kirchhoff's Law

gain from emission 2.34

less emitter plasma loss -0.78& collector sheath 3.5/
less collector plasma loss-374 less emitter sheath -49./|
plus volume source -2.£7 Plasma gain 0.49
total: v -505 total: 74 -5.05

Again, this is for the case where c¢ollisional kinetics is
assumed and cT=O.31. It 4is seen that there are major
changes between this single sheath case and the .preceding
double sheath case. First, the ionization voltage drop has
increased six-fold and is now a major portion of the overall
arc-4arop. Secondly, the sheath drops are much larger. 1In
fact, if they were any 1larger, ion current would become
important. The total voltage dAifference is -5.05 (0.65 V).
The vacuum ideal voltage difference is 0.15 (0.02 V) and
thus the actual drop is poorer by 5.21 (0.67 V). These
numbers agree well with the trends given by isothermal
theory as before The major difference however is that
isothermal theory underestimates the density by a factor of
two in this case. As a result it underpredicts the
ionization voltage loss. As this term is a significant part
of the energy 1loss in this single sheath regime the
predicted voltage difference, g is too small, being =4.4
versus -5.05 as shown above.

The above calculations were all done with collisional
kinetics for ionization-recombination. - If (real)
collisional-radiative kinetics are used sone different
behavior results. First, the similarity behavior ceases.
As discussed earlier, as the current decreases, the density
decreases, the 4ignition temperature rises, and thus the
arc-drop rises. This causes the faster than Boltzmann rise
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of the current voltage characteristic. This manifests
itself through decreased energy inflow at the emitter and
increased energy 1loss at the collector. This appears both
as increased sheath loss and increased plasma 4rop.

This effect appeared in the numerical calculations done
using real ionization and recombination rate constants as
described in chapter IV. Again consider the case of I1=0.5.
With real collisional-radiative kinetics, the voltage
accounts become:

T.E.C. voltage accounting

Energy Conservation Kirchhoff's Law

gain from emission 3.02

less emitter plasma loss -2.5 collector sheath o.17
less collector plasma loss -3.53 1ess emitter sheath -2.50
Plus volume source -0.65 plasma gain -0. 89
total: v;q ~-3.2! total: Vo -3 2

This case has a voltage drop 3.54 (0.46 V) greater than the
vacuum ideal case. Now, as the current level is reduced,
the ignition temperature rises and reduced performance is
found. For the case I=0.02, again with real kinetics, there
results:

T.E.C. voltage accounting

Energy Conservation Kirchhoff's Law

gain from emission 299

less emitter plasma loss -2.2Y collector sheath O3S
less collector plasma loss -3.97 less emitter sheath -2.9Y
Plus volume source -0.5{ plasma gain -1.22
total: ‘;Q -3.81 total: g -3.5 |

This voltage drop is 4.20 (0.54 V) greater than the vacuum
ideal voltage. This is seen to arise from increased energy
outflows from the plasma to the walls as well as reduced
energy inflow from emission at the emitter. The sheath
heights and the plasma voltage drops are all larger.

All these results compare well with the
isothermal-ignition theory predictions. For 1I=0.5, the
predicted temperature was 2.16 (3240K) while in the computed
solution the temperature ranged from 2.18 to 1.77. The
predicted voltage difference, vp=-3.46, was larger the the
actual drop of -3.21 due to overestimation of the collector
temperature in the isothermal model. As the current is
reduced from I=0.5 to 1I=0.02, the isothermal predicted
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temperature rises greatly to a value of 2.54 (3800K). The
numerical temperatures were close to this prediction, having
a maximum of 2.46 and a minimum of 1.98. The predicted
arc-drop was 4.56 (0.59 V), again larger than the numerical
calculation of ~-3.81 for the same reason as before.

Thus, the faster-than-Boltzmann rise predicted in
chapter 1II is verified in the numerical calculation. While
the two dimensional effects to which this rise is commonly
attributed may or may not be significant, they are not the
only possible cause. The rise is explained presently by the
deterioration of ionization rates at 1lower electron
densities, and the magnitude of this effect is the same
order as seen experimentally. Note though, that additional
effects may also contribute to this rise but have been
ignored here. For one, radiation power 1loss, commonly
neglected as small at high electron densities, can have an
observable effect at the low electron densities discussed
here. Secondly, as the density decreases further,
non-Maxwellian electron energy distribution effects start to
play a role. Again, these are all effects which degrade
performance and become significant at lower electron
densities.

The performance of laser enhanced thermionic conversion
can be analyzed with the present computer program. The
important factor to Dbe considered here is how much
additional power would a laser enhanced thermionic converter
produced over an unenhanced converter, and how does this
power compare with the laser input power used. The question
of how efficiently the laser light can be produced will be
considered subsequently.

One laser enhancement frequency is considered here.
This corresponds to the Cs 7s-7p infrared transition. It is
supposed that the thermionic plasma is subjected to strong
radiation on this wavelength. From the
ionization-recombination theory discussed in chapter IV, new
rate constants are calculated and employed in the present
plasma solution.

The counter-intuitive result of isothermal theory for
laser enhancement is confirmed. The act of injecting laser
energy into the plasma 1lowers the electron temperature.
Since it 1lowers the electron temperature, it lowers the
arc-darop.

For numerical study of 7s-7p enhancement, it was chosen
to study a current near the knee, I=0.5. with the
enhancement, the temperature dropped about 0.09 (120K) while
the density rose about 7 per cent. The temperature
distributions with and without the enhancement are shown in
figure 53. The density daistributions with and without
enhancement are displayed in figure 54. The overall effect
that this had on the arc-drop 4s shown in the voltage
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accounts for the enhanced converter:

T.E.C. voltage accounting

Energy Conservation Kirchhoff's Law

gain from emission 2306

less emitter plasma loss -2,/ collector sheath 0oy
less collector plasma loss -3 35 1less emitter sheath -2.34
plus volume source -0.4Y9 plasma gain -7
total: vy -299 total: vy -294

Comparing this with the results given previously for the
unenhanced case, a reduction of the energy loss at the
collector is seen. There is also a slight reduction in the
ionization energy 1loss. Further, the collector sheath
height has increased while the emitter sheath height has
dropped. Overall, vg has declined by .19 (24 mv) and the
total arc-drop, Vv, declines by about the same amount. To
obtain this arc-drop some laser power had to be supplied.
This power is appropriately measured by the size of the
voltage drop through which the output current of the
thermionic converter would need to pass in order to create
it. This voltage drop is called the Rasor equivalent drop.
The Rasor equivalent drop for the laser power supplied to
the plasma 4is 0.03 (8 mV). Thus three times as much power
is produced by laser enhancement as is consumed by it. This
unfortunately means that the production of the laser light
need to be fairly efficient

No common laser would be sufficiently efficient to make
this an overall energy producing process. For this purpose,
however, an uncommon laser has been designed. Unlike common
lasers which use electricity and produce heat as a
byproduct, the presently proposed laser uses heat and
produces electricity as a byproduct. The principal behind
this laser is to use a thermionic converter operating at
some high current 1level and suddenly reduce the current.
When this happens the electron temperature is quickly
decreased (1o} that strong recombination occurs and a
recombination 1laser becomes possible. A system of
thermionic converters can thus be imagined wherein some
would be acting as recombination lasers while others would
be benefiting from laser enhanced operation.

The overall efficiency of this recombination laser will
be determined by factors other than the characteristics of
the laser. As was discussed in chapter II the 1laser power
is only a small fraction of the power into ionization.
Further, the power into ionization is a fraction of the
other powers involved. Thus the efficiency of a
recombination laser using an unsteady thermionic converter
will be determined by the behavior of an unsteady thermionic
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converter and not the behavior of the laser. The efficiency
of an unsteady thermionic energy conversion cycle is a topic
of current research and not addressed here.

To demonstrate that an unsteady thermionic converter
can produce conditions under which recombination lasing is
possible, a time dependent simulation of T.E.C. performance
was computed. In the sample case chosen, the thermionic
converter is initially in steady state at a current of
I=0.5. This 4is reduced to I=0.l1 and held constant. It is
found, as expected, that the temperature drops much more
rapidly than the density. Also, the temperature drops to a
level very close to the emitter wall temperature. This is
illustrated by the plot of centerline, ¥=0.5, temperature
and density versus time shown in figure 655. According to
the results of chapter IV, most of the plasma is suitable
for recombination 1lasing during this decay. A sample
population distribution of the atomic levels in Cesium for a
time 0.5 microseconds after the current decreases is shown
in figure B56. A 7p-7s population inversion is indicated.
Thus the ability of an unsteady thermionic converter to
produce the conditions necessary for recombination lasing is
confirmed. A difficulty in the computation occurs at 3.1
microseconds after the current is reduced. This is seen in
figure 57 where the sheath heights are plotted against time.
The emitter sheath height is seen to decline initially,
reach a minimum at 0.5 microseconds and then rise. The
collector sheath height behaves differently. It quickly
rises to a peak after the current is dropped and then
declines steadily. It is still steadily declining when it
reaches zero signifying that the electron density at the
collector plasma-sheath interface is insufficient to supply
to required current without invalidating the underlying
assumptions of the differential equations developed in
chapter II. Thus further computation cannot be performed
within the context of the present physical model.

In summary, computational solution of the thermionic
converter plasma equations has been presented herein for
steady and unsteady operation. These results give density
and temperature distributions within the thermionic
converter as well as the overall current-voltage
characteristics . The faster-than-Boltzmann rise predicted
in Chapter II has been verified. Overall, the results agree
guite well with the trends predicted by simple
ignition-isothermal theory. Further, laser ionization
enhancement of thermionic converter operation has been
verified. The ability of unsteady thermionic converter
operation to generate the condition necessary for
recombination .asing is confirmed.
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VII Summary and Conclusion

Many aspects of thermionic energy conversion are
examined in the preceding chapters. The ionization and
recombination kinetics of Cesium are studied and computed.
A new result, the equivalent circuit, was obtained. The
effects of ionization and recombination kinetics on
thermionic converter plasma dynamics are considered using
two methods. A simple isothermal model is developed in
Chapter II. This exXplains thermionic behavior and predicts
trends. To verify such predictions, a numerical computer
code is developed which is capable of solving for unsteady
as well as steady thermionic converter behavior. All these
techniques are applied to the study of laser ionization
enhancement and the possibility of a Cesium thermionic
recombination laser.

Towards a maximizing physical insight while minimizing
unnecessary mathematical complications, a simple isothermal
model is developed. This model which combines simplicity
with closure highlights the physical features on the
thermionic converter plasmadynamics. A number of
interesting results were obtained. For one, the double
sheath obstruction at the emitter was found to be beneficial
to thermionic performance. This 1is a result of the
obstruction's reducing thermal 1losses. Secohdly, energy
addition to the plasma is shown to reduce the electron
temperature. The main features of this model are the
generalized ignition condition, II.F.6, the energy balance
condition, II.E.13, and the arc drop equation, II.E.1l. As
discussed in section 1II.F, this model can be closed and
solved graphically.

One of the immediate implications of the isothermal
model is that the faster than Boltzmann rise of the current
voltage characteristic can be explained in a one-dimensional
model. This was shown to be due to lower ienization rate
constants that exist at 1lower electron densities due to
increased radiative loss.

Because of the importance of elementary electron-atom
inelastic collision cross—-sections on the overall
ionization-recombination rate constants, these were studied.
As summarized in Chapter III, it is found that cross-section
theories used in earlier calculations had serious flaws.
Using recent experimental evidence, a different set of
cross-sections was chosen. Thus an improved set of Cesium
jonization and recombination rate coefficients could be
computed and were tabulated.
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The effects of the complete system of electron-atom
inelastic collisions on the ionization-recombination problem
are shown to reduce to a system nearly as simple as the
well-known "“one-gquantum" approximation. This reduction is
shown to be exact for collisional rates of the type chosen
in Chapter 11I. The reduced system is illustrated in terms
of an equivalent circuit in figure 6. As a consequence the
effects of other processes such as recombination lasing,
resonant atom-atom collisions, and resonant radiation
enhanced ionization can be analyzed simply, analytically,
and guantitatively. A number of well-known
ionization~recombination approximations are limiting cases
of this theory. These include the one-quantum, diffusion,
bottleneck, and Mansbach-Keck models as well as others
discussed in section V.B. The resonant radiation ionization
enhancement process is analyzed and it is shown why large
enhancements are possible. A simple expression for the
photon efficiency of this process is derived in section V.G.
A Cesium recombination laser is predicted and the magnitudes
for the population inversion and the laser efficiency are
derived. :

To verify the trends predicted by isothermal theory, a
finite difference computer program is constructed. It is
capable of solving for both unsteady and steady thermionic
converter behavior including possible laser ionization
enhancement or atomic recombination lasing. This method of
solution contrasts with previously used marching or shooting
schemes which suffer from exponentially growing error terms.

The contrast between the results of the complex
computer brogram and the simple isothermal theory is great.
The predicted trends from both approaches agreed for the
cases studied herein. It is tempting to conclude that the
complicatiens of a complete numerical solution of the
governing differential equations is unnecessary since
isothermal theory works nearly- as well. However, there is
as yet no method for estimating the error in the isothermal
approximation. Lacking such an estimate, isothermal theory
cannot stand on its own. It does remain useful as an
explanatory tool.

Using the above developments, a proposal to improve
thermionic converter performance using laser radiation is
considered. In this proposed scheme, laser radiation
impinging on a thermionic plasma enhances the ionization
process. The consequences of this are that the ignition
temperature is reduced and that implies that the ohmic
losses will decline since less heating is required to
maintain the new lower electron temperature. For the ohmic
losses to decline, the density will need to rise. The
reduced electron temperature means a reduced arc-drop and
thus superior performance. A source for such radiation may
possibly a Cesium recombination ‘laser operating in a
different thermionic converter.
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It appears that such a system may be energy efficient
overall. Laser ionization enhancement was found-to be quite
energy effective, as discussed in sections II.H, V.G, and
VI.B. The increase in electrical power output is at least
twice the laser power input. It was alsc found that the
necessary laser 1light could be produced during unsteady
operation of a thermionic converter, as considered in 1II.I,
V.H, and VI.B. This laser is infrared with a photon energy
of 0.41 eV. The efficiency of this laser, which operates on
the Cesium 7p=7s transition, could not be established under
the present physical model. Ionization enhancement on the
7p-7s frequency unfortunately saturates when the reduction
on the arc-drop is only the order of ten millivolts. This
effect is likely too small to be of commercial importance.

Although the effect of the 7p-7s laser studied is not
large, these studies do indicate however that laser
enhancement has a great potential for _ reducing or
eliminating the plasma arc-4rop. To realize such gains,
higher frequency resonant laser sources are needed. Thus
further studies should be directed towards finding superior
laser sources.
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Fisure 1t This diasram (not to scale) 1i1llustrates the
components of & thermionic converter. Shown are two
electrodes, the emitter and collector. Thevy are subijected
to a Cesuim sas environment in a bell Jar. Heat is supplied
to the emitter which emits electrons thermionically. In the
narrow oaP between the emitter and collector these electrons
are transported throush a plasma to the colliector. In part.
the electrons are transporting heat which is rejected from
the collector as shown. The traversal of electrons also
andicates that a current is flowins. Due to the work
function difference between the electrodes, this current
stowus uUP as a power output. The electrodes are tvypically
one sqaure centimeter in area but less than one millimeter
arart.
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Fisure 2: Shown are the voltases in a thermionic converter.
The uPPer diasram sives the voltases in the dimensional form

hile the lower diasrams contains their nondimensiconal
‘ nterrarts.
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-Fisure 3t Shown are mlots of isnition temmerature and
_enersy balance temperature asainst maximum electron density
in wunits of 1(14) cm-3. For ¢this erlot of ienition
temperature, collisional kinetics were assumed. The lower
line for the isnition temperature was computed UE1ns
C =0.44. The urmper assumed a value of 0.31. The enersy
balance temperature is shown for three current levels,
1=0.02, O©0.S5. and 0.7. This fisure is discussed in section

II.F.
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Fisure 4 Shown are plots of ignition temperature and
enersy balance temperature asainst maximum electron density
in units of 1(14) cm—-3. For this elot of isnition

. tempPerature, collisional~radiative kinetics were assumed.

The enerov balance temperature is shown for three current
levels, I=0.02y 0.5y and 0.7. This figure is discussed in
section I1.F. :
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Fisure 5S¢ The circuit for collisional transitions between
atomic levels is shown. This diasram has been simeplified by
includine only those resistors that interconnect the first
seven atomic levels of Cesium. Thus. each level should have
resistors connectineg with all hisher levels in addition to
the levels shown. In charter V, a theory is develored which
simPplifies this circuit to the one shown in fisure b, This
diasram is drawn usine the notation of electrical circuits
as pPer the analosy discussed in charter 1v.
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‘ Figure 6@ The equivalent circuit for colliisional
transitions between atomic levels is shown. This is based
on the theory develorped in charpter V.
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Figsure 7 The ratio of the emitted number density to the
plasma number density at the sheath edoe is pPlotted asainst
temperature with various wvalues of a current related
quantitys IK /n » as a parameter. The erarh is pPlotted for
all values of the rarameter between O and 1 with increments
of 0.25. Since all plots are nearly horizontals, it is seen
that the emitted density is only a weak function of plasma
electrorn temrerature. These are the results of iterative
solutions of the eauations of the sheath theory of LamlS1].
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0.54
0.53

~ 0.63

0.69

0.75

0082 ‘

0.83
0.95

1.01 -

1.07

1.19

THE THOMSON RECOMEBINATION

0.50
0.52
0.55
0.59
0.62
- 04446
0.69

0.73

0.76 -

0.78
0.80
0.82

0.83

0.47
0.4
0.51
0.53
0.55
0.57
0.59

0440

0.62 -

0.63
0.43
0.64

N. 64

0.46

0.47

0.48

0.49
0.50

- 0492 . .

0.53
0.54
0.54
0.55
0.55
0.55

0.55

0.446
0.46
0.47
0.48
0.48
0.49
0.50
0.51

0.51-
0.51

0.51
0.51

0.50

0.45
0.446
0.446
0.47

0.47"

0.48
0.49
0.49
0.49
0.47
0.49
0.49

0.48

RATE COEFFICIENT IS SHOWH FOR ELECTRON
TEMPERATURES RAMHGING FROM (500K TO A4S00K AND FOR ELECTRON DENSITIES FROM
THIS TARBLE IS THE RESULT OF

LEVELS AHD EMPLOYING MANSBACH-KECK COLLISIOMAL RATE COMNSTANTS,

THIS TAEBLE X§ DISCUSSED IN SECTIOHM IV,C OF THE TEXT,

1.0E15. .

0.45
0.46
0.446
0.446
0.47

0.47

0.43.

0.48
0.48
0.48
0.48
0.48
0.47

'n
4



TABLE 11Q

-~

I 1.0E12 2.2E12 4.6E12

e

1.0E13 2.2E13 4.4E13

1.0E14 2.2E14 4,.4E14

1.0E1S

150073.55"23
1750:2.15-23
2000:1.45'23
2250:9.95'24
2500:7.35'24
2750:5.65"24
3000:4.45‘24
3250:3.65‘24
3500:2.95'24
3750:2.45'24
4000:2.05'24
4250:1.75'24
4500;1.55'24

FIGURE 9:

2.9E23
1.76723
1.1-23
7.35724
5.3E724
3.95724
3.0E"24
2.4€-24
1.98724
1.6E"24
1.3€724
1.12-24
9.0E~25

2.5E723
1.4E723
8.5E724
S.7E724
4,0E724
2.9E724
2.2E724
1.7E724
1.3E724
1.0E724
8.4E725
6.8E725
S.5ET25

2.2E-23
1.2E-23
7.1E724
4.65724
3.1E724
2.26724
1.6E-24
1.2E724
9.2E725
7.1725
5.6E"25
4.45-25

2,525

2.1E723
1.1E723
6.3E724
3.9E724
2.6E724
1.86724
1.3E724
?.3ET25
&.9E725
S.2E725
4,0E725
3.1E725

2.4E725

THE RECOMBINATION RATE CONSTANT 3,
TEMPERAUTRES AND DENSITIES,

2.0E723 1.9E723 1.9E723

1.0E723 9.7E724 9.5E724

S5.7E724
3.5E724
2.3E724
1.5E724
1.1E724
7.7E725
S.4ET25
4,225
3.2E725
2.4E725
1.9E725

IN CM&/SEC, 1S SHOWN FOR VARIOUS ELECTRON
THIS TABLE IS DISCUSSED IN SECTION IV, C,

5.4E724
3.3E724
2.1E724
1.45724
9.6E™25
6.8E725
5.08~25
3.7E725
2.8E725
2.1E725
1.6E725

S.3E724
3.2E724
2.0E724
1.38724
P.1E725
6.4E725
4,6E725
3.4E725
2.5E725
1.98725

1.5E725

1.9E-23
9.4E-24
5,2E-24
3.1E-24
2.0E-24
1.,3E-24
8.9€-25
6.2E-25
4.5E-25
3.3E-25
2.5E-25
1.9E-25
1.4E-25

1.9E723
9.4E724
S5.2E724
3.1E724
1.98724
1.35'24
8.7E725
4.1E725
4.4E725
3.2E725
2.4E725
1.88725

1.4E725



'y

1.0E12 2.2E12 4.4E12

1.0B13 2.2E13 4.4F13

1.0E14 2.2E14 4,.4E14

1.0E1S

1S0018.3E™18 1.9E717

1750:4
2000:9
| 2250:9
2500:6
2750:3
3000E1

+7ET16
.SET1S
;95'14
«OET13
.O0ET12

+1ET11

325013.2E711

350018,.0E711

|
375011
!

.8ET10

400013.46E710

425016.6E710

|
450011
{

J1ET9

1.0E71S
2.0E714
2.05'15.
1;35‘12
S.78712
2.0E711
S5.7€711
1.4E710
3;05"10
S5.8E710
1.0E79

1.7679°

4.2ET17 7.8ET17 1.2ET146 1.6ET1S 1.8ET14 2.0ET16 2.1ET16 2.1ET1S

2.1E715
4.0E714
3.9E713
2.4E712
1.0e711
3;45'11
9.5E711
2.2E710
4.75'16
8.98710
1.5e79

2.5E7Y

3.9E715 S5.8ET1S 7.6ET15 8.7E715

7.0E7{4
6.5E713
3.8E712
1.68711
S.2E711
1.4E710
3.2E710
6.6€“10
1.2E79

2.0E79

3.2E79

1.0E713
9;45;13
S.4E712
2.2E711
7.05;11
1.88710
4.1E710
8.1E710
1.579

2.4E79

3.7E7Y

1.3E713
1.2712
6.6E712
2.4E711
8.2E711
2.1E710
4.7710
9.1E710
1.6E™Y

2,.6E7Y

4.0E79

1.56713
1.36712
7.36712
2.96~11
9.0E"11
2.3E710
5.0E~10
9.7€710
1,769

2.7E79

4.2E79

FIGURE

10:

THE IONIZATION RATE CONSTANT
TEMPERATURES AND DENSITIES,

THIS TA

9.38-15
1.6E-13
1,4E712
7.7E712
3.1E711
9.48711
2.48-10

S.2ET10

1.0E79

1.7e79
2.3E79
4,.2E79

?.7E715
1.6E713
1.45;12
7.9E712
3.1E711
9.6E"£1
2.48710
9.3E710
1,079

1.8879

2.8E79

4,379

9.8E715
1.7E713
{.56=12
8.0E™12
3.2E711
9.7E711
2.4E710
5.3E710
1.0E79
1.9E79

2.,9E79

4,.3E79

IN CM3/SEC 1S SHOWN FOR VARIOUS ELECTRON
géE IS DISCUSSED IN SECTION IV C




£..110...

1 1.0E12 2.2E12 4.46E12 1.0E13 2.2E13 4.4E13 1.0E14 2.2E14 4,.6Ei14 1.0E1S
1500; 48.54 17.12 6.79 3.25 1.94 1.41 1.19 1.08 1.04 1.02
1750: 48.54 17.31 6.90 3.31 1.96 1.42 1.19 1.09 1.04 1.02
2000: 48.30 17.42 6.99 3.35 1.99 1.43 1.20 1.09 1.04 1.02
2250: 47 .88 17.46 7.06 3.39 2.01 1.44 1.20 1.09 1.04 1.02
2500: 47.34 17.46 7.10 3.42 2.02 1.45 1.20 1.09 1.04 1.02
2750: 46.72 17.41 "7.14 3.45 2.04 1.46 1.21 1.10 1.04 1.02
3000: 46.04 17.33 7.16 3.47 2.05 1.46 1.21 1.10 1.04 1.62
3250: 45.32 17.22 7.16 3.49 2.06 1.47 1.21 1.10 1.05 1.02
3500: 44.57 17.10 7.16 3.50 2.07 1.47 1.22 1.10 1.05 1.02
3750: 43.79 16.95 7.15 3.50 2.07 1.48 1.22 1.10 1.05 1.02
4000: 43.00 16.78 7.13 3.51 2.08 1.48 1.22 i.10 1.05 1.02
4250: 42.21 16.60 7.0%9 3.51 2.08 1.438 1.22 1.10 1.05 1.02
4500: 41.41 16.41 7.06 3.50 2.08 1.48 1.22 1.10 1.05 1.02

FIGURE 111

FROM SAHA DUE TO RADIATIVE LOSS,
RECOMEBINATION COEFFICIENT TO THE IONIZATION COEFFICIENT,

DISCUSSED IN SECTION 1V _C,

THE RUANTITY Py WHICH INDICATES THE DEPARTURE OF STEADY-STATE ELECTRON
THIS IS A NONDIMENSIONAL RATIO OF THE
THIS TAEBLE IS



1.0E12 2.2E12 4.6E12 1.0E13 2.2Ei3 4.4E13 1.0E14 2,2E14 4.6E14 1.0E15

+ -

15001 0.018 0.041 0.0;8 0.165 0.256 0.336 0.390 0.421 0.437 0.44;
17501 0.021 0.047 0.097 0.17% 0.266 0.344 0.3%96 0.425 0.440 0.447
20001 0.026 0.054 0.108 0.188 0.273 0.353 0.402 0.429 0.443 0.430
22501 0.031 0.063 0.120 0.203 0.292 0.3464 0.410 0.435 0.443 0.454
25001 0.037 0.073 0.134 0.219 0.307 0.376 0.419 0.442 0.454 0.459
27501 0.044 0.0384 0.150 0.236 0.323 0.383 0.428 0.447 0.460 0.465
30001 0.052 0.096 0.166 0.254 0.333 0.400 0.4346 0.456 0.465 0.470
32501 0.062 0.110 0.183 0.272 0.353 0.410 0.443 0.461 0.449 0.473
35001 0.072 0.124 0.201 0.289 0.366 0.418 0.448 0.4464 0.471 0.47S
37501 0.083 0.139 0.218 0.305 0.377 0.424 0.451 0.444 0.471 0.474
40001 0.095 0.155 0.235 0.319 0.385 0.428 0.451 0.463 0.449 0.472
42501 0.108 0.171 0.251 0.331 0.392 0.430 0.450 0.4460 0.465 0.4638

45001 0.122 0.187 0.266 0.341 0.397 0.430 0.448 0.456 0.46461 0.443

FISURE {2: THE NONDIMEMSIONAL RATIO Cyq/p IS SHOWN FOR VARIOUS ELECTRON TEMPERADURES
AND DENSITIES, THIS SHOWS THE EFFECT OF RADIATION OR THE IONIZATION RATE
CONSTANT , THIS IS DISCUSSED IN SECTION IV _C,



l 1.0E12 2,212 4.6E12 1.0E13 2.2E13 4,413 1.0E14 2.2€14 4.6€14 1.0E1S
1500] 1.022 1.015 1.009 1.005 1.002 1.001 1.000 1.000 1.000 1.000
1750: 1.034 1.023 1.014 1.007 1.004 ;1.002 1.001 1.000 1.000 1.000
2000: 1.048 1.033 1.019 1.010 1.005 1.002 1.000 0.999 0.999 0.999
2250: 1.063 1.043 1.025 1.013 1.005 1.000 0.993 0.997 0.996 0.996
2500: 1.073 1.053 1.030 1.014 1.002 0.996 0.992 0.991 0.9%0 0.989
2750: 1.092 1.062 1.034 1.011% 0.996 0.986 0.981 Q.979 0.977 0.977
3000: 1.1095 1.06% 1.034 1.005 0.983 0.970 0.963 0.960 0.958 0.957
3250: 1.117 1.073 1.029 0.992 0.964 0.947 0.938 0.933 0.931 0.929
3500: 1.126° 1.073 1.019 0.972 0.937 0.916 0.904 0.899 0.8%6 0.874
8750: 1.130 1.068 1.003 0.945 0.904 0.378 0.865 0.858 0.835 0.853
4000: 1.131 1.057 0.9380 0.913 0.865 0.836 0.821 0.813 0.309 0.808
4250: 1.126 1.040 0.951 0.875 0.821 0.7%0 0.774 0.765 0.762 . 0.760
4500; 1.116 1.018 0.917 0.833 0.776 0.743 0.726 0.717 0.713 0.711

FIGURE {3: THE V' COEFFICIENT IS SHOWN FOR LEVEL 4P

THIS INDICATES YHE DEPENDEMNCE OF THIS LEVEL'S POPULATION OM THE
GROUND STATE'S POPULATION,

THIS TAELE IS DISCUSSED IN SECTION 1IV,C,

-
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I 1.0Bi2 2.2E12 4,6E]2 1.0E13 2.2E13 4.4E13 1.0E14 2.2E14 4.4E14 1.0E1S

1500? 0.0001

1750: 0.0006 00,0005 0.0004 0.0003 0.0003 0.0003 0.0002 0.0002 0,0002 0.0002
2000: 0.0038 0.0028 0.0022 0.0018 0.0015 0.0014 0.0013 0.0013 0.0012 0.0012
2250: 0.0157 0.0113 0.0035 0.0067 0.0056 0.0050 0.0046 0.0044 0.0043 0.0043
2500: 0.0487 0.0341 0.024% 0.01i91 0.0155 0.0134 0.0122 0.0116 0.0114 0.0112
2750: 0.1230 0.083?% 0.0594 0.0441 0.0348 0.0294 0.0265 0.0251 0.0244 0.0240
3000: 0.2652 0.1765 0.1214 0.08374 0.0670 0.035355 0.0494 0.0464 0.0449 0.0443
3250: 0.5064 0.32%0 0.2199 0.1537 0.1146 0.0930 0.0819 0.0764 0.0733 0.0725
3500: 0.3720 0.5572 9.3621 0.2455 0.1734 0.1422 0.1237 0.1148 0.1105 0.1085
3750: 1.4077 0.872&6 0.5514 0.3631 0.2574 0.2016 0.1736 0.1601 0.1533 0.1508
4000: 2.1162 1.2811 0.7870 0.5023 0.3429 0.2689 0.2294 0.2106 0.2017 0.197S
4250: 3.0135 1.7313 1.04644 0,.464630 0.4493 9.3413 0.2888 0.2639 0.2521 0.2467
45005 4.0982 2.2651 1.3734 0.8351 0.5549 0.4161 «2494 0.3180 0.3032 0.2964

FIGURE {4: THE V COEFFICIENT IS SHOWN FOR LEVEL &P
THIS INDICATES THE DEPEHNDENCE OF THIS LEVEL'S POPULATIOM OM THE FREE
ELECTRON POPULATION, THIS TAELE IS DISCUSSED IN SECTION IV C



.

.

1.0E12 2.2E12 4.,6E12 1.0E13 2.2E13 4.6E13 1.0E14 2.2€14 4.4E14

1.0€1S

1500;
1750:
2000:
2250:
2500:
2750:
3000:
3250:
?500:
3750:
4000:
-4250:
4500E

FIGURE

0.453%9 0.63%94 0.7907 0.88%6 0.9452 0.9736 0.9875 0.9941 0.9972
0.4495 0.6337 0.7851 0.83855 0.9425 0.9720 0.98465 0.9934 0.9966
0.4459 0.6283 0.7794 0.8806 0.9389 0.9693 0.9842 0.9914 0.9947
0.4428 0.6230 0.7730 0.8745 0.9333 0.9640 0.9792 0.9864 0.9893
0;4399 0.6175 0.7655 0.8660 0.9242 0.9545 0.94694 0,.9764 0.9798
0.437%F 0.6113 0.7561 0.8539 0.9100 0.9388 0.9528 0.9594 0.962S
0.433% 0.6040 0.7440 0.8371 0.8893 0.9155 0.9280 0.9338 0.9365
0.4302 0.5950 _6.7284 0.8148 0;8616 0.8842 0.8%9446 0.8994 0.9016
0.4257 0.5840 0.7089 0.7867 - 0.8268 08452 0.8533 0.85469 0.8586
0.4200 0.5706 0.6853 0.7533 0.785% 0.799% 0.8057 0.8082 0.8093
0.4130 0.5546 0.657? 0.9153 0.7406 0.7503 0.7540 0.7554 0.7561
0.4046 0.35361 0.6273 - 0.6741 0.6925 0.6985 0.7004 0.7010 0.7012
0.3946 0.5154 0.5943 0.6312 0.643F 0.6465 0.64469 0.6468 0.6467

152 THE V' COEFFICIENT IS SHOWN FOR LEVEL 5D
THIS INDICATES THE DIEPENDENCE OF THIS LEVEL'S POPULATION ON THE

GROUND STATE'S POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV C

0.9987
0.9982
0.9963
0.9914

0.9813

0.963%
0.9377
0.9026
0.8593
0.8098
0.7563
0.7013
0.46467



e
B

1.0812 2,2E12 4.46E12 1.0E13 2.2E13 4.4LEL3

AT O,

1.0E14 2.2E14 4.4E14

1.0E15

15001
1750:
2000:
2250:
2500:
2750:
3000:
3250:
3500:
3750:
4000:
4250:
4500;

FIGURE

0.0001
0.0005
0.0027
0.0099
0.0282
0.0642
0.134?
0.2451
0.4078
0.6311
0.9193
1.2744

1.46915

0.0001
0.0006
0.0023
0.0102
0.0282
0.0647
0.1284
0.2287
0.3720
0.5626
0.8009
1.0835

1.4038

0.0001
0.0006
0.0028
0.0097
0.0260
0.0532
0.1127
0.1955
0.3100
0.4568
0.6336
0.8352

1.0547

0.0001
0.0005
0.0026
0.0088
0,0232
0.0503
0.0950
0.1603
0.2474
0.3555
0.4806
0.6181

0.7626

0.0001
0.000S
0.0025
0.0082
0.0207
0.0439
0.0807
0.1329%9
0.2004
0.2814
0.3725
0.4499

0.5696

0.0001
0.0005
0.0024
0.0077
0.0191
0.03%6
0.0714
0.1155
0.1712
0.2365
0.3087
0.3844

0.44608

16: THE V COEFFICIENT IS5 SHOWM FOR LEVEL SD
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE

ELECTRON POPULATION,

0.0001
0.0005
0.0024
0.0074
0.0182
0.0372
0.0663
0.1059
0.1553
0.2126
0.2750
0.3400

0.4049

0.0001
0.0005
0.0023
0.0073
0.0178
0.0360
0.06346
0.1010
0.1473
0.2006
0.2584
0.3182

0.3777

0.0001
0.0005
0.0023
0.0072
0.017S
0.0354
0.0623
0.0987
0.1435
0.1949
0.2505
0.3078

0.3448

THIS TABLE 15 DISCUSSED IN SECTION IV C

0.0001
0.0005
0.0023
0.0072
0.0174
0.0351
0.0617
0.0975
0.1416
0.1922
0.2467
0.3029

0.3587



.

1.0E12 2.2E12 4.46E12

1.0E13 2.2E13 4.4E13

1.0E14 2,214 4,4E14

1.0E15

15001
17501

20001

22501
25001
27501
30001
32501
3500
37501
40001
42501
4500

FIGURE

0.1604
0.1585
0.1574
0;1567
0.1563
0.1560
0.1556
0.1551
0.1543
0.1530
0.1512
0.1488
0.1459

0.3200
0.3160
0.3130
0.3104
0.3081
0.3056
0.3026
0.2988
0.2939
0.2879
0.2805

0.2719 -

0.2621

0.5254
0.5199
0.5150
0.5101
0.5047
0.4933
0.4901

0.4797

0.46468
0.4513
0.4333
0.4133
0.3918

0.7145
0.7092
0.7037
0.6972
0.6889
0.6778
0.6631
0.46440
0.6206
0.5931
0.5623
0.5293
0.495£

0:8466
0.8424
0.8373
0.8302
0.8197
0.8045
0.7836
0.7564
0.7237
0.4685%
0.464446
0.6014
0.5578

0.9230
0.9201
0.92155
0.9081
0.8961
0.87381
0.8529
0.8204
0.7811
0.7366
0.6887
0.6393

0.5902

17: THE V' COEFFICIENT IS SHOWN FOR LEVEL 7S
THIS INDICATES THE DEPEMDENCE OF THIS LEVEL'S PDPULATIDN ON THE
THIS TARBLE 1S DISCUSSED IN SECTION IV C,

GROUND STATE'S POPULATION,

0.9627
0.9605
0.9564
0.9489
0.9360
0.9163
0.8886
0.8528
0.8100
0.7618
0.7104
0.46578

0.46058

0.9822
0.9804
0.9765
0.9689
0.9556

0.9349

0.9059

0.8484
0.8239
0.7739%9
0.7207
0.6665

0.6132

0.9914
0.9899
0.9861
0.9785
0.9650
0.9438
0.9142
0.8760
0.8305
0.7795
0.7255
0.6705

0.6166

0.9958
0.9943
0.9906
0.9830

0.9693

0.9480
0.9180
0.8795
0.8336
0.7822
0.7277
0.6724

0.46182
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1.0E12 2.2E12 4.6E12

1.0E13 2.2E13 4.46E13

1.0E14 2.2E14 A4,.(E14

1.0E1S

15001
1750:
2000:
2250:
2500:
2750:
3ooo:
3250:
'3500:
'3750:
4000:
4250:
45005

FIGURE

0.0001
0.0004
0.0015
0.0047
0.0119
0.0261
0.0503
0.0901
0.1476
0.2261
0.3276
0.4523

0.5992

0.0001
0.0006
0.0023
0.0046%
0.0170
0.0363

0.04691

0.1194

0.1906
0.284¢6
0.4016
0.5399

0.6962

0.0002
0.0009
0.0032
0.0090
0.0215
0.0445
0.0820
0.1375
0.2131
0.3088
0.4230
0.5523

0.46921

0.0002
0.0011
0.0039
0.0107
0.0244
0.0486
0.0865
0.1403
0.2196
0.2%61
0.3959
0.5003

0.6111

9.0003
0.0014
0.0045
0.0117
0.0258
0.0496
0.0854
0.1343
0.1960
0.268%
0.3438
0.4335

0.5193

0.0004
0.0016
0.004%
0.0124
0.0264
0.0493
0.0828
0.1274
0.1321
0.2450
0.3132
0.3338

0.4541

1g8: THE V COEFFICIENT IS SHOWM FOR LEVEL 78
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE

ELECTRON POPULATION,

0.0004
0.0017
0.0052
0.0127
0.0264
0.0489
0.0809
0.1226
0.1732
0.2305
0.2919
0.3548

0.4169

0.0004
0.0017
0.0053
0.0129
0.0267

0.0426

0.0797

0.1200
0.1634
0.2228
0.2867
0.3398

0.3979

0.0004
0.0017

0.0054

0.0130

0.02468

0.04835
0.0791
0.1187
0.16460
0.2189
0.2752
0.3325

0.3886

THIS TARBLE IS DISCUSSED IN SECTIOWN IV C,

0.0004
0.0018
0.0054
0.0131
0.02468
0.0484
0.0783
0.1180
0.1648
0.2171
0.2726
0.32%0

0.3842
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1.0E12 2.2E12 4.4E12

1.0E13 22.2E13 4.4EL3

1.0E14 2.2E14 -4,4El4

1.0E15

15001
1750:
2000:
2250:
25001
2750:
3000:
3250é
3500:
'3750:
4000:
4250:
4500i

FIGURE

0.1093
0.1062
0.1036
0.1015
0.0995
0.0977
0.0959%
0.0940
0.0919
0.0897
0.0873
0.0846
0.0817

0.2216
0.2135
0.2063
0.1998
0.193S
0.1874
0.1811
0.1747

0.1679

0.1607
0.1531
0.14352
0.1370

0.3800
0.3446
0.3501
0.3359
0.3219
0.3076
0.2930
0.2777
0.2619
0.2455
0.2288
0.2120
0.1954

0.5550

0.5326
0.5095
0.4856
0.4608
0.4350
0.4083
0.3806
0.3523

0.3239

0.2957

0.24684
0.2424

0.7117
0.6841
0.6527
0.46181
0.5813
0.5426
0.5027
0.4620
0.4212
0.3812
0.3427
0.30464
0.2729

0.8267
0.7956
0.7572
0.7133
0.6659
0.46164
0.54656
0.5144
0.4644
0.4160
0.3703
0.3282

0.2899

191 THE V' COEFFICIENT IS SHOWN FOR LEVEL 7P

THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S
GROUND STATE'S POPULATION,

0.8976
0.8444
0.8210
0.7707
0.7161
0.6592
0.4014
0.5440
0.4880
0.4347
0.3849
0.33%4
0.2985

10.9360

0.9016
0.8554
0.8013
0.7426
0.6816
0.6199
0.5590
0.4999
0.4440
0.3921
0.3449
0.3027

0.9553
0.9203
0.8726
0.8145
0.7557

0.6926

0.6290
0.5662
0.5057
0.4485
0.3956
0.3475
0.3047

POPULATION ON THE

0.9646
0.9293
0.8309
0.8238
0.7619
0.6978
0.6333
0.5697
0.5084
0.4506
0.3972

0.3488

0.30546

THIS TABLE 1§ DISCUSSED IN SECTION IV C,



.

1.0E12 2.2E12 4.6E12 1.0E13 2.2E13 4.4E13 1.0Ei4 2.2E{4 4,.46E14 1.0E{S

15001 0.0025 0.00483 0.0074 0.0118 0.0168 0.0211 0.0240 0.0256 0.0264 0.0262
|

17501 0.0049 0.0115 0.0188 0.0290 0.0402 0.0496 0.055% 0.0593 0.0611 0.0620
|

20001 0.0149 0.023%9 0.0374 0.0555 0.0748 0.0905 0.1007 0.1063 0.1092 0.1105
l

22501 0.0275 0.0424 0.0637 0.0910 0.118%9 0.1409 0.1548 0.1624 0.1662 0.1681
|

23001 0.0453 0.0681 0.0983 0.1350 0.1708 0.1980 0.2148 0.2239 0.2234 0.2306
|

27501 0.0709 0.1022 0.1418 0.1871 0.2291 0.2599 0.2784 0.2833 0.2931 0.2955
|

30001 0.1046 0.1459 0.1947 0.2469 0.2927 0.3249 0.3438 0.3537 0.3586 0.3609
!

32501 0.1481 0.2004 0.2574 0.3137 0.3603 0.3916 0.4095 0.4187 0.4232 0.4254
|

35001 0.2029 0.26462 0.3292 0.3861 0.4301 0.4532 0.473%9 0.4381% 0.4858 0.4876
3750: 0.2698 0.3432 0.4039 0.4623 0.5002 0.5232 0.5357 0.5419 0.5449 0.5463
4000: 0.343% 0.4305 0.4945 0.5398 0.5687 0.5850 0.5935 0.5977 0.5996 0.46006
4250: 0.4396 0.5260 0.5835 0.6164 0.6337 0.6424 0.6465 0.6434 0.6494 0.6498
4500i 0.5406 0.6275 0.6730 0.6899 0.6941 0.6945 0.46942 0.6939 0.6937 0.6937

FIGURE 201 THE VvV COEFFICIENT IS SHOWN FOR LEVEL 7P
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE
ELECTRON POPULATION, THIS TABLE IS DISCUSSED IN SECTION IV C,
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1.0E12 2.2E12 4,.4E12

1.0E13 2.2E13 4.4E13

.d"'\

1.0E14 2.2Ei4 4.6E14

1.0E15

15001
1750:
2000:
2250:
2500:
2750:
3000:
3250:
3500:
3750:
4000:
4250:
4500E

FIGURE

0.0279
0.0273
0.0268
0.0264
0.0260
0.0257
0.0253
0.0249%
0.0244
0.0239
0.0233
0.0226
0.0219

0.0762
0.0740
0.0720
0.0701
0.0682
0.0643
0.0642
0.0620
0.0597
0.0572
0.0546
0.0518

0.0438%

0.1809%
0.1744
0.1679
0.1613
0.1544
0.1473
0.1399
0.1322
0.1242
0.1160
0.1077
0.09%4
0.0913

0.3505

© 0.3358

0.3198
0.3026

0.2847

0.2662

0.2473
0.2282
0.2091
0.1903
0.1721
0.1548

0.1386

0.5485
0.5228
0.4927
0.4598
0.4254
0.3906
0.3558
0.3217
0.2886
0.2573
0.2279
0.2010

0.1767

0.7173
0.6811
0.6368
0.5878
0.5371
0.4844
0.4370
0.3895
0.3447
0.3030
0.2651
0.2310

0.2008

21t THE V' COEFFICIENT IS SHOWN FOR LEVEL 4D .
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE
THIS TABLE 1S DISCUSSED IN SECTION IV C,

GROUND STATE'S POPULATION,

0.8294
0.7857
0.7307
0.6699
0.6074
0.5456
0.4860
0.4297
0.3772
0.3292
0.2859
0.2475

0.2140

0.8925
0.8442
0.7829%
0.7151
0.64546
0.5774
0.5121
0.4508
0.3941
0.3426
0.2965
0.2559
0.2206

0.9247
0.8741
0.8094
0.7379
0.46447
0.5932
0.5250
0.4612
0.4024
0.3491
0.3017
0.2600
0.2238

0.9403
0.8886
0.8223
0.7439
0.6740
0.46008
0.5312
0.4662
0.4063
0.3522
0.3041
0.2619

0.2253
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1.0E12 2.2E12 4,.6E12

1.0E13 2.2E13 4.46E13

1.0E14 2.2E14 4.46E14

1.0E15

1500;
1750:
2000:
2250:
2500:
2750:
3000:
3250:
3500:
3750:
4000:
4250:
45005

FIGURE

0.0018
0.00446
0.0092
0.0158
0.0246
0.0357
0.0495
0.04662
0.0861
0.1094
0.1361
0.1659

0.1985

0.0040
0.0098
0.0189%
0.0315
0.0477
0.0675
0.0911
0.1189
0.1508
0.1867
0.2261
0.2624

0.3126

0.00346
0.0202
0.0377
0.0607

0.0:383

0.1217

0.1592
0.2011
0.2470
0.2960
0.3470
0.39389

0.4503

0.0162
0.0369
0.0666
0.1033
0.1468
0.1946
0.2463
0.3009
0.3575
0.4147
0.4712
0.5256

0.5769

0.0255
0.0568
0.0998
0.1511
0.2072
0.2678
0.3295
0.3917
0.4530
0.5122
0.5682
0.6199

0.64646%

0.0333
0.0740
0.1277
0.1897
0.2558
0.3232
0.3%901
0.4552
0.5174
0.5756
0.46290
0.6771

0.7198

22 THE V COEFFICIENT IS SHOWN FOR LEVEL 4D
THIS INDICATES THE DEPEMDENCE OF THIS LEVEL'S POPULATION ON THE FREE

ELECTRON POPUILLATION

0.03%4
0.08546
0.1461
0.2145
0.28%9
0.3571
0.4262
0.4923
0.5540
0.6108
0.46621
0.7076

0.7475

0.0426
0.0921
0.1563
0.2281
0.3022
0.3752
0.4454
0.5115
0.5728
0.6287
0.6737
0.7228

0.7612

0.0442
0.09355
0.1615
0.2350
0.3104
0.3843
0.4548
0.5210
0.5820
0.6373
0.6867
0.7300

0.7677

THIS TAELE IS DISCUSSED IN SECTION IV, C,

0.0450
0.0971
0.1641
0.2384
0.3143
0.3886
0.4553
0.5255
0.5864
0.6414
0.6904
0.7335

0.7707
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FIGURE 231

e

1.0E12 2.2E12 4,4E12

1.0E13 2.2E13 4.46E13

1.0E14 2.2E14 4.46Ei4

1.0E15

15007
1750:
2000:
2250:
2500:
2750:
3000:
3250:
3500:
3750:
4000:
4250:
4500!

0.0774
0.0754
0.0737
0.0722
0.0708
0.0693
0.0679%
0.0665
0.0649
0.0632
0.0614
0.05%94

0.0573

0.1552
0.1500
0.1452
0.1405
0.1359
0.1314
0.1248
0.1221
0.1172
0.1120
0.1066
0.1010

0.0953

0.2783
0.26469
0.2557
0.2444
0.2332
0.2219
0.2105

0.1988

0.1868
0.1744
0.1623
0.1501
0.1381

0.4402
0.4199
0.3%977
0.3752
0.3525

0.3296

0.3067
0.2837
0.2608
0.2334
0.2165
0;1957

0.1761

0.6101 0.7484
0.5781 0.70S59
0.5425 0.6570
0.5051 0.46054
0.4674 0.5536
0.4299 0.5029
0.3930 0.4539
0.3570 0.4070
0.3222- 0.3627
0.2890 0.3214
0.2578 0.2835
0.22%0 0.2492

0.2028 0.2186

THE V' COEFFICIENT IS SHOWN FOR LEVEL g§

0.8384
0.7885
0.7300
0.46482
0.6065
0.5467
0.4897
0.4358
0.3856
0.3393
0.2974
0.2599
0.2243

0.38885
0.8344
0.7702
0.7023
0.46349
0.5700
0.5084
0.4507
0.3973
0.3484
0.3044
0.2652

0.2309

0.9141
0.8576
0.7905
0.7195
0.6491
0.5815
0.5177
0.4580
0.4029
0.3528
0.3077
0.2478

0.2329

THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE
THIS TAEBRLE IS DISCUSSED IN SECTION IV, C,

GROUND STATE'S POPULATION,

0.9265
0.8689
0.8003
0.7278
0.46559
0.5870
0.5221
0.4615
0.4057
0.3549
0.3093
0.26%0

0.2338



1.0E12 22,212 4.6E12 1.0E13 2.2E13 4.6E13 1.0E14 2.2E14 4,.4E14 |,0E{S

e
<+ —-—— -—

15001 0.008%9 0.0145 0.0225 0.0326 0.0429 0.0512 0.0566 0.0596 0.0611 0.0619
!

17501 0.0183 0.0292 0.0447 0.0640 0.0838 0.0996 0.10992 0.1155 0.1184 0.1198
|

20001 0.0314 0.0492 0.073%9 0.1043 0.1349 0.1591 0.1744 0.1829 0.1871 0.1892
|

22501 0.0480 0.0738 0.108% 0.1511 0.1923 0.2240 00,2438 0.2546 0.2600 0.2626
|

25001 0.0683 0.1031 0.1491 0.2026 0.2532 0.2909 0.3139 0.3263 0.3325 0.3354
!

27501 0.0927 0.1373 0.1942 0.2579 0.3158 0.3575 0.3824 0.3956 - 0.4022 0.4053
|

30001 0.1221 0.1770 0.2444 0.31465 0.3792 0.4229 0.4483 0.4616 0.44682 0.4713
i

32501 0.1575 0.2229 0.2997 0.3779 0.4427 0.4861 0.5109 0.52346 0.5299 0.5328
|

35001 0.1997 0.2755 0.3599 0.4412 0.5052 0.5465 0.5695 0.5812 0.5869 0.58%6
|

37501 0.2493 0.3348 0.4243 0.5053 0.5658 0.6033 0.4237 0.6340 0.4389 0.6413
4000: 0.3066 0.4000 0.4915 0.5687 0.6232 0.6557 0.6730 0.6816 0.6857 0.4876
4250: 0.3712 0.4702 0.5598 0.6300 0.6766 0.7032 0.7171 0.7239 0.7271 0.7286
45005 0.4423 0.5437 0.46277 0.6379 0.7252 0.7457 0.7560 0.7610 0.7633 0.7645

FIGURE 24: THE V COEFFICIENT 1S SHOWHW FOR LEVEL 35
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE
ELECTROM POPULATIOM, THIS TAELE IS DISCUSSED IN SECTION IV _C
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1.0E12

2.2E12 4 .4E12

1.0E13 2.2E13 4.46E13

1.0E14 2.2E14 4.4E14

1.0E1S

1500;
1750:
2000:
2250:
2500:
2750:
3000:
32505

- 35001

3750:
4000:
4250:
45005

FIGURE

0.0161
0.0158
0.0155 -
0.0152
0.0148
0.0145
0.0141
0.0137
0.0133
0.0129
0.0124
0.0119
0.0114

0.0479
0.0461
0.0442
0.0423
0.0404
0.0384
0.0365
0.0346
0.0326
0.0307
0.0287
0.0268

0.0249

0.1254
0.1181
0.1105
0.1029
070954
0.0381
0.03812
0.0745
0.0680
0.0619
0.0561
0.0505

0.0454

0.2669
0.2461
0.2244
0.2030
0.1826
0.1636
0.14460

0.1298

-0.1149

0.1012
0.0888
0.0776

0.0677

0.4483 0.6141
0.40465 0.5493
0.3623 0.4819
0.3197 0.4178
0.2803 0.35%96
0.2447 0.3031
0.2127 0.2630

0.1841 0.2238

-0.1588 0.1898

0.1364 0.1605
0.1169 0.1355
0.0999 0.1142

0.0354 0.0964

251 THE V' COEFFICIENT 1S SHOWN FOR LEVEL 4F
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE
THIS TABLE IS DISCUSSED IN SECTION IV,C,

GROUND STATE'S POPULATION,

0.7277
0.464462
0.5615
0.4816
0.4101
0.3476
0.2937
0.2473
0.2078
0.1742
0.1458
0.1221

0.1024

0.7927
0.7013
0.6062
0.5170
0.4377
0.3689
0.3100
0.2597
0.2171
0.1812
0.1511
0.1261

0.1054

0.8262
0.7295
0.62%1
0.5350
0.4516
0.3796
0.3181
0.2458
0.2217
0.1847
0.1537
0.1280

0.1048

0.8426
0.7433
0.6402
0.5437
0.4583
0.3847
0.3219
0.2688
0.2239
0.1863
0.1549y
0.1289

0.1075



1.0E12 2,.2E12 4,46E12 1.0E13 2.2EI3 4.6E13 1.0E14 2.2E14 4,46E14 1.0E1S5

i
15001 0.0161 0.0282 0.0477 0.0731 0.0933 0.1177 0.1298 0.1365 0.1393 0.1414
i
17501 0.0311 0.0526 0.03465° 0.1293 0.1713 0.2033 0.2232 0.2340 0.2395 0.2421
!

20001 0.0504 0.0828 0.1322 0.1930 0.2512 0.2948 0.3216 0.3361 0.3434 0.3469
|

22301 0.072% 0.1167 0.1314 0.2588 0.3303 0.3835 0.4154 0.4324 0.440% 0.4450
|

25001 0.0976 0.1528 0.2320 0.3236 0.4061 0.4650 0.4999 0.5184 0.5275 0.5319
! o

27501 0.123% 0.1902 0.2825 0.3857 0.4757 0.5379 0.5742 0.5931 0.6024 0.6669
|

30001 0.13513 0.2282 0.3323 0.4446 0.5390 0.6024 0.46386 0.46573 0.6665 0.6708
i

32501 0.1796 0.26468 0.3211 0.5001 0.5964 0.6591 0.6943 0.7122 0.7209 0.7250
!

35001 0.2088 0.3057 0.4237 0.5519 0.6479 0.70836 0.7420 0.7538 0.766% 0.,7708
|

37501 0.2388 0.3446 0.4747 0.5999 0.6938 0.7516 0.7826 0.7932 0.8057 0.3092
!

40001 0.2693 0.3834 0.5188 0.46440 0.7344 0.7834 0.8171 0.8312 0.8380 0.8412
!

42501 0.3004 0.4218 0.5607 0.6839 0.76%83 0.8199 0.8460 0.8533 0.8649 0.8678
|

45001 0.3318 0.4592 0.5993 0.7197 0.3005 0.23464 0.8701 0.8816 0.8871 0.8397
|

FIGURE 243 THE V COEFFICIENT IS SHOWN FOR LEVEL 4F
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE
ELECTROM POPULATION, THIS TABLE IS DISCUSSED IM SECTION IV _ C



o

1.0812 2.2812 4.6E12 1.0E13 2.2E13 4,613 1,.0E14 2.2E14 4, 4E14 1,0E4S

|
15001 0.0456 0.0923 0.1733 0.3102 0.44643 0.5977 0.6874 0.7332 0.7643 0.7749
|

17501 0.0430 0.0856 0.1622 0.2769 0.4079 0.5194 0.5934 0.6351 0.6563 0.6646
i

20001 0.0407 0.0793 0.147%1 0.2455 0.3546 0.4450 0.5040 0.5368 0.5534 0.561S5
|

22501 0.0386 0.0736 0.1332 0.2170 0.3066 0.3786 0.4236 0.4499 0.4627 0.4688
l

25001 0.03646 0.0683 0.1207 0.1916 0.2645 0.3213 0.3567 0.3759 0.3856 0.3902
i

27501 0.0348 0.0434 0.1093 0.1690 0.2279 0.2723 0.2993 0.3133 0.3210 0.3245
|

30001 0.0330 0.058% 0.0989 0.1483 0.1961 0.2305 0.2510 0.2618 0.2472 0.2697
|

32501 0.0314 0.0547 0.0894 0.1309 0.1685 0.1949 0.2103 0.2183 0.2222 0.2241
|

35001 0.0298 0.0507 0.0307 0.1148 0.1444 0.1645 0.1760 0.1819 0.1843 0.1861
!

37501 0.0283 0.0449 0.0725 0.1004 0.1235 0.1336 0.1471 0.1515 0.1536 0.154%
|

40001 0.0267 0.0433 0.0650 0.0875 0.1054 0.1168 0.1230 0.1262 0.1277 0.1284
|

42501 0.0253 0.0399 0.0581 0.0761 0.0898 0.0933- 0.1029 0.1052 0.1063 0.1063
!

45001 0.0238 00,0365 0.0518 0.0661 0.0766 0.0829 0.0863 0.0879 0.0887 0.0891
|

FIGURE 27: THE V' COEFFICIENT IS SHOWN FOR LEVEL gP
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE
GROUND STATE'S POPULATION, THIS TARLE IS DISCUSSED IN SECTION IV _C,
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0.0677 0.0948
0.11028 0.1507
0.1587 0.2102
0.2083 0.2698
0.2581 0.3277
0.3073 0.33834
0.35523 0.4370
0.403% 0.4888
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0.2649
0.3342
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0.560%
0.46233
0.6862
0.7339
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282 THE VvV COEFFICIENT IS SHOWN FOR LEVEL gP
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ONM THE FREE

ELECTRON POPULATION,
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THIS TAELE IS DISCUSSED IN SECTION IV _C,
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COEFFICIENT IS SHOWN FOR LEVEL 7D
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THIS INDICATES THE IDEPENDENCE OF THIS LEVEL'S POPULATION ON THE
THIS TABLE 1S DISCUSSED IN SECTION IV _ C,

GROUND STATE'S POPULATION,
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I 1.0E12 2.,2E12 4.46E12 1.0E13 2.2E13 4.4Ei3 1.0Ei4 2.2E14 4.46Ei4 1.0E1S
15001 0.0570 0.1016 0.1530 0.1996 0.2348 0.2578 0.2709 0.2777 0.23811 0.2827
i

17501 0.0896 0.1541 0,.2259 0.2902 0.3390 0.3711 0.3896 0.3993 0.4041 0.4044
|

20001 0.1247 0.2076 0.2969 0.3756 0.4350 0.4737 0.4963 0.5030 0.5138 0.5166
|

22501 0.1602 0.2593 0.362% 0.4523 0.5189 0.5620 0.5866 0.5994 0.6056 0.6036
i

25001 0.1952 0.3082 0.4229 0.5197 0.5905 0.6355 0.6608 0.46738 0.6802 0,6832
|

27501 0.2293 0.3540 0.4772 0.5787 0.6512 0.6963 0.7213 0.7340 0.7402 0.7431
|

30001 0.2623 0.3970 0.5264 0.6304 0.7028 0.7467 0.7706 0.7327 0.7885 0.7913
|

32501 0.2944 0.4374 0.5712 0.6759 0.74467 0.7836 0.8110 0.8222 0.8276 0.8301
!

35001 0.3257 0.4757 0.56123 0.7161 0.7842 0.8235 0.8441 0.8543 0.8592 0.8615
|

37501 0.3564 0.5121 0.6500 0.7516 0.8162 0.83526 0.8713 0.8805 0.884% 0.8870
4000: 0.3866 0.5467 0.6845 0.7829 0.8435 0.8767 0.8936 0.%9018 0.9057 0.9075
4250: 0.4162 0.5795 0.7159 0.8102 0.86465 0.8%67 0.9118 0.9191 0.9226 0.9242
4500E 0.4453 0.46105 0.7443 0.333% 0.8859 0.9132 0.92646 0.,9331 0.9362 0.9376

FIGURE 30 THE VvV COEFFICIENT IS SHOWN FOR LEVEL 7D
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S PORPULATION ON THE FREE
ELECTRON POPULATION, THIS TABLE IS5 DISCUSSED IN SECTION IV _C,
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31: THE V°* COEFFICIENT IS5 SHOWN FOR LEVEL 9§
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE
THIS TABLE IS DISCUSSED IN SECTION IV _C,

GROUND STATE'S POPULATION,
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32 THE VvV COEFFICIENT IS SHOWN FOR LEVEL 9S .
THIS INDICATES THE DEPENDENCE OF THIS LEVEL'S POPULATION ON THE FREE

ELECTRON POPULATIONMN,
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THIS TARLE IS DISCUSSED IN SECTION IV, C,
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Figure 323: A Grotrian diasram of the Cesium levels used in
the ionization—recombination calculations discussed in
charters IV and V.
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Fisure 34: The pPorpulation distribution of atomic Cesium
levels in cm—3 is shown against the level energvy in eV for
an electron temperature of 1S0O0K and an electron density of
1(14) cm~-3. Manstach and Keck rates were used. This shows
the 7p-7s pPopPulation inversion.
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Fisure 35: The pPorulation distribution of atomic Cesium
levels in cm=3 is shown asainst the level enerevy in eV for
an electron temperature of 1500K and an electron density of
1(14) cm-3. Stabler rates were used.
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Figure 24t The pPopulation distribution of atomic Cesiui
levels in cm=3 is shown asainst the level enersy in eV foi
an electraon temperature of 1SO0OK and an electron density o
1(14) cm-3. Bethe-Born rates were used.
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Fisure 37: The population distribution of excited Cesium
levels in cm—32 is shown asainst the bindins ernersy in eV for
an electron temperature of 1500K and for wvarious electron
densities. Gryzinski rates were used. Small sround state
densities are assumed.
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Figure 32: The porpulation distribution of excited Cesium

levels in cm—3 is shown against the binding enerav in eV faor

an electron temrerature of 1500 and an electron density of

1(14) cm—-2. Gryvzinski rates were used. Ssmall sround state
densities are assumed. The distribution is shown for cases

both with and without recombimation lasins.
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Fisure 3%: The porulation distribution of hish excited
levels in Cesium is shown azainst level enersy for three
electron densities. A orocund state density of 1(16) cm=C3 is
assumed. This 1llustrates the difficulty in measurins
electron temperature from porpulation distributions when the
lectron density is much below Saha.



IONIZATION AND RECOMBINATION RATES IN CS
VS. 7P-75 RADIATION INTENSITY |
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c = absorption cross -section
= radiation intensity
Io =10'° photons/sec corresponds to I~1 watt/cm?

Fisure 40.
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2.068%¥-02
3.176F-02
1.303E-02
9,270F-03

1.U438F¥-02
1.031¥~-02
1.720F-02
6.997F~(C2
4.8<0£-~03

&S

" 6P

5D

7s

e

6D

8s

ur

8p

7D

9s

5F

56

apr

8D
10s
€
65,6H
1op
9D
118
7®
6,774,711
11p
10L
128
a8r
8;,er,81,8J
12p
r
13s
9F
9G,gﬂ,9119qux

139
12T
1458

10F ‘e & v'
106,17

The resistances of eaquivalent circuit theory for
the levels of Cesium at 1500K is shown.
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Fisure 44:
the levels of Cesium

8.513E-11
€.270F-08
2.299%-07
7.929E-0€
€.172%-0¢
£.471E-05
2.492E-04
1.195F-04
3.045E-04
2.637%-04
7.5422-04
Z.723r-04
2.397%-04
£.10UK-04
4,068F-24
1.01°r-03
3.3238-04
1.293=-04
Eo418-9Y
4,114%-04
2.9327%-04
3.1157-04
7.15G6F-0NE
b,720pP-04
3.487F-04
£,2Q0E-04
3,97€F-0°%
3,790F-04
2.731E-04
€.660E-04
1.9295-04
2.245F-0°5

2.9227-04
2,06°F-04
c.1u5e-04
1.483F-04
1.290°7-0¢%

0.00CF+00
’0227E-07
6.49¢F-07
1.815F-06
6.265F-05
3.213E-05
1.45¢5-05
9.359E-05
L.781F~-C5
5.1527-05
-1.261E-05
1 0‘051E"0u
1.462F-05
2.47¢E-06
3.366E~05
-2.5185-05
7.733E-05
1.095r~-05
-8 ,16ZE-0¢
1.710F-05
-1.3€CF-05
4.19€7~05
6.5CCF-06
-7.334x-06
8.11FF-06
-1.19(CF-05
2.130F-05
3.531E-05
-4 .71CE-06
3.86CE-06
-6 AL EF-N5
1.070E-05
1.871F-06

-2.74€E-06
1.RA8EF=-06
-3.€653FE-15
5.484F-06
9.97%E-07

5.823E-04
£.816E-04
5.810%-C4
5.791E-04
5.1€5F=-04
4,843 E-04
b,698E-04
3.7€2E-C4
3.284F-04
2.T7€9E-04
2.895E-04
1.74UE-0L
1. 5CRE-04
1.573E-04
1.237:-04
1.43%E-C4
T.182F-0¢
6.056E~-0C¢
6.873F~CS<
5.163F-0°%
7.123%-0°%
2.G25E-0°¢
2.275E-0°¢
3.00%9F-CE<
2.197£-05
3.337E-05
1.257E-0¢
8.03°E-06
1.375F=-0¢
9.889E-06
1.653%-0%
5.832E-0¢
3.961F~0¢€

6.707F-0€
4,820E-C6
8.472F-0¢
2.989Ek-C€
1.991E-06€

6S
6P

5D

7s

7p

6D

85

4y

8P

7D

9s

5F

56

9p

an
105s
€F
66,68
10P
9p
115
7¥
75,78,71
11p
10C
128
8P
8G,8F,81,8J
129
1L
138
9p

96 ,¢P,91,9J,9

13E
12C
14s
10F

10¢c, 108,101,

The resistances of equivalent circuit theory for

100,
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Fisure 45:

S TP V VY

81832£°11
1.562E~OE
4,122Fr-08
£.629F%~07
2.1298-0¢€
2.008%~=9€
TF.4%0%R~0€
3.,237F-0¢
7003UE-06
€E.672F~-0F
1.533E-0°€
£, 170®-0¢
4.352F-0€
£.862F-06¢
6.697E-06
1.6 76F¥-0°%
SCOQ7E-06
1.909=2-06
7.920:-06
€.809F-06
1.“38?'05
4.125F-06
903265-07
€.292E-06
4.467E-0E€
1.119F-0°%
2,078%=0¢

“.7733-07

D-7OUE-05
3,278E-06
§.38€E-0¢
2.229F7-0¢€
2.554E-07
3.455P-06
2.373F-0¢
€.216E-0¢
1.604c-0¢
1.,821%-07

0.00CF+00
1.365E-07
7.64048E~-08
1.16€fE-07
2.52FE-0Q6F
1.04EF-0¢€
2.481F-07
2.U25F~06
8.562f-07
9.79€E~07
~3.60EF=~07
2.00£€F~0F
2.25EF~07
-2.210E-08
4.88€F~07
-4 .,158x~07
1-082F‘06
1.37CF=-07
=-1.215E~-07
2.122F~-0Q7

| -2.635E-07

5.13€F=07
7.14€F-03
-8.8CCE~08
9,122E-08
-1, 482LF¥-0Q"
2.391E-07
3.57CF~-08
-5.07€E=-08
4,.05<F-08
-7.37FfF-08
1.132F-07
1.78€fE-08
-2.767F-08
1.89(CF-08
-3.34€F-08
5.561E-08
9.163F-09

1-2182‘05
1.205E-05
1.1975-05
10186£-C5
9,327F-06
8. 279F-C€
80031E’06
5. 606E-0€
4,750r-06
30770?-06
uo131£‘06
2.125E~-C6
1.800E-0€
1.922E-06
1. 433 ¥=0F
1.842:-06
7.€668E-07
6.298E-07
70513E‘07
5.3S0E-07
8.025E~07
2.887E-C7
20172{—07
3.082§¥-07
201”02-07
3055“E-07
1.173E-c7
8-1605—08
1.324E-07
9,181E~C8
10656E’07
5.233E~0C8
3.445E~08
6'2122-08
4.322E-0€
8. 1€RE-08
2.607E-08
1069:;*08

is shouwn.

6S
6P
5D
7S
7p
6D
3s
4r
8p
7D
gs
5F%
5G
9P
8D
10s
6F
6G,6H
i0op
9D
11s
77
7G6,7¢,71
11P
0D
128
8F

8G,8%,81,8J

12p
11D
13s
qF

9":' 9F.9!.9\"gx

13F
12¢T

" 14s

10F

10G, 1CH, 10T , 107, 17%~

The resistances of equivalent circuit theory for
the levels of Cesium at 2500K

'



0 ©.002¥F-11 0.00CE+00 1.015E~0¢€ 6S
1 €. 105F-09 4.453F-08 9,705E-07 6

2 1.025R-08 1.7¢15-08 9.526E-C7 5D

3 9.640E-08 1.779F-08 9.348E-07 7s

4 2.499F-07 2.905F-07 6.UU3F~07 7p

5 2.167%=07 1.025¥7-07 5.4185-07 6D

6 7.186¥=-07 1.063F-08 5.300F-07 8s

7 2.846%=07 2.043E-07 3.265E-07 4P

8 €.603E-07 5.423F-08 2.723%-07 8P

a £.289P-07 6 L65EF-08 2.058%-C7 7D

10 1.120F-06 -3.0313F-08 2.3615-07 9s

11 3,5277-07 1.2925-07 1.0605-07 5F

12 2.927%-07 1.323r-08 9.3655-08 56

13 £.8277-07 -3.,702F-09 9.735¥F-08 9p

14 n,234F-07 2.765E-08 6.567E~08 8D

15 1.070E-06 -2.5675-09 0.533%-08 105

1% 2.02LF=07 6.0C07E=-0P 2.526F-08 3

17 1.119F-07 6.970E-09 2.820%-08 6G, 6H

18 5,7018-07 -6 .397F-090 3.5198-0¢ 10P

19 3.3128-07 1.087E-08 2.437E-0¢€ 9D

20 £.420%-77 -1.424E-08 3.861E-08 115

21 2.2503-27 2.6C7F-08 1.254E-08 77

22 5.0297-08 3.334F-09 9.210F~-09 76,78,71

23 3,458F-07 -4 ,365E-09 1.3582-0¢ 11

24 2.3867-07 4.347E-00 9.229E-09 10T

25 €.104F=07 -7.1*3E-09 1.634F-08 125

26 1.591E-07 1.104E-08 4. S0RE=-0S 8F

27 2.481F-08 1.575E-09 3.339E-06 8G,8%,81,8J
28 2 UETE-0T -2.3455-09 €. €75F~0¢ 12F

20 1.677E-07 1.385E-09 3.830F-0¢ 111

30 L,465%7=-07 -3.50CF-09 7.3305-09 125
31 1.110%-07 5.20CE-09 2.130E-0¢ 9P

32 1.257E-08 7.554%-10 1.3715-06 96,68,97,9J3,9K
33 1.7537-07 -1.221E-09 2.592F-09 13p

34 1.177F=-07 8.32CE-10 1.7605-09 12D

35 3.217E-07 -1.751E-09 3.521E-05 145

36 7.781F-08 2.42CE-09 1.C41F-09 10F

37 £.8198-09 3,787F-10 €.625EF-1C 106,10H,101,103,108,1

Fisure 446: The resistances of eauivalent circuit theory +or
the levels of Cesium at 3I000K 1s shown.
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Fiaure 47:

€.727F-11
$.,232F-10
6.06RE-10
2.781¥-0°
3.1847-09
2.302F-03
6.317%-09
1.9597-09
3.2u43=-09
2.208E~-09
£.7%5¥%=-09
1.4637-03
1.1767-09
2.2%1E-09
1.5187-09
L,060%-09
2.496E-10
.417E-10
1.,478<-09
¢.647°r-10
2.675E-0°%
£.969¥-10
7.2Q3F-10
S.435%-10
€.09LE-10
1.752F-09

307823‘10‘

€.6297-11
6.114P-10
2.318F-10
1.164F-09
2.4437-19
2.706®E-11
'4.056"-10
2,582F-70
7.901F-19
*.6270-10
1.392E-11

0.0007+00
4.47€r-09
B.622F=-10
2.704P-10
3.3223F-09
7 .953E-10
-1.129E-10
1.204F-00
1053‘}:-10
2.458F-190
-1.517%-10
4 .38B€EF-10
3.4927-11
-2.34fF-11
7.970F=-11
-7.217E-11
1.502F-10
1.395E-11
-1.712F-11
2.,2?27F=-11
-2.3607-11
5S.8005E-11
5.A14F~12
-8.,391F-12
7T.78EF~12
-1.42¢F=-11
2.0%8:-11
2.36FF=-12
-3.90€6r-12
3.00F=-12
-6.318FE-12
8.75'JE-'12
1.05F£F=-12
-1.853F-12
1.262F=-12
-2,944F-12
2.,292CF-12
4,97€E~13

1. 179¥-08
7.317F-09
6.455F-09
6. 15 F-09
2. 773%-0¢
1.97e F-09
2.0%1 E-09
8.870F-10
7.33¢%-10
4.881E-10
6.“99E’10
2.111E-10
1.761r-10
1.996?'10
1.289F-10
2.020F-10
5.787E~11
4.392F-11
€.104F-11
3.877r-11
7.237E-11
1.E31E-11
1.270E-11
2.10¢E~-11
1.330F-11
2. 759E-11
6.618F-12
4.250E-12
8., 156F=-12
E.15UF=-12
1. 147 E-11
2.719E-12
1. 663?‘12
3.51E=-12
2,254E-12
5. 198 F=12
1.27€ E-12
7.803P-13

65

6P

5D

7S

7p

6D

8s

ur

&P

7D

95

SF

55

9p

8D
108
6F
6G,6H
10P
9D
115
7F
76,74,71
11p
10D
125
ar
8G,8H,87,8J
12p
11D
135
9p
9G, SH, 91,9J, 9K
13p
12D
145
10F

10G, 108,101, 103, 10K, 1

The recsistances of equivalent circuit theory for
the levels of Cesium at SOOOK is shouwn.
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25
2?7
29
29
39
31
32
32
34
33
36
3‘1

-2,

c,7Lh=-11
f2.40535-11
€.2607-11
1.8067-19
S.R64%-11
£.058°7=-11
1.575%-10
2,£6275-11
5. 488%-11
3.343%=-11
9.2u7%7-11
1.854F-11
1, 450F~11
2.871v=-11
“.7LTE-11
c.1u6™-11
€. 811E-12
I 40R-12
1.559r-11
G, U7nr=-12
2.93°=2-11
5,429F-12
1. 1585¥-12
f,909F~12
c.4097-12
1.752F-11
3.765=5-12
4,636%-13
£.3802%-12
3.24AF-12
1.088%-11
1.934%-12
2,095F-~13
2,362F-12
2.037E-12
7.033F=12
1.233%~12
1.0347=-13

Fisure 4%5:
the levels

«f Cesium

R.1
0.000F+900
€.272E-10
6.19FrF-11
3.50RF-12
8.547F-11
1.271-11

-4 ,501F=-12
1.583¢%=-11
8.78FF-13
2.200%-12

-1.91¢F~-12
3.3465E-12
2.384%-13

-2.374F-13
4, 777F-13

-6.34C<F~13
1.0267-12
7.582%~-14

-1.1007-13
1.271E-13

-2.191E-13
3,18FF-13
2.67€F-14

-4 ,477F-14
3.97¢8F-14

-8.192r-14
1.116F-13
1.034%-14

-1 _Q¢7F-14
1.41097-14

-3 .32CF-14
4  ingr-14
4,327g~-15

-3 ,22€6%~-15
5.5634F-15

-1 .,452F-14
1.88€r-14
1.95€E-15

Rle
8.198F-10
1.817%-10
10 1Q7£"10
1.162E-10
3.075¥-11
1.804E-11
2,254 E-11
6.155E-12
5, 27¢E-12
3.06PE-12
4.834E-12
1< 132 E-12
29,051F-13
1. 142E-12
6.,688EFE-13
1.300E-12
2,73:E-13
1.942¢E-13
3.048F=-123
1.777E-13
3.968E-13
7.821E-14
5.145F-14
9.622E-14
5.€45F-14
1.384F~-13
2.6582“1“
1.620F-14
3.“91 E"‘Iu
2.072E-14
5.392F-18
1. 046F-14
6. 123E-1¢
1.435E-14
8. 715E"15
2.323F-14
4,774%-15
2.818F~-15

The resistances of equivalent circuit theory
at 10,000k is shown.

6S
6P
5D
75
7p
6D
8S
4z
8p
7D
9s
SF
5G
9p
8D
10S
6F
6G,6H
iop
2D
11S
7r
76,774,711
11p
10D
128
er
8G,€H,81I,8d
120
11r
138
ar

aG,64,91,93,9K

13Pp
12C
1Ls
10F

10G,*0H,*01, 1065, 10%,

tor
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1A
17
15
16
20
21
22
23
24
28

-

25
27

23
29
20
21
32
33
34
35
33
37

-

o
€.359F~11
2.,772%-11
1.589%-11
3.971E-11
1.3397-11
T.465F-12
2.00F%~-11
3.72uF-12
S.451r-42
2.111E-12
¢.227E-12
1.583E-12
1.222E-12
2.84°F-12
1.414E-12
4,503E-12
7.499%-13
2,,01F-12
1021“?'12
7.0718-13
2.3828-12
3.8907-13
E.1R6E-14
€.553F-13
2.,8357-13
1.3687=-12
2.1747-13
L TL3E-14
2.7837-13
2.222%-13
8.0733‘13
1.290P-13
1.382=%-14
2,309%8-13
1.359¥%-13
5.276%-13
P.05L%-14
6.680E-15

Figsure 4%:
the levels

K,
0.000¥%+00
1.587x-10
1.000E-11

-6,3206F-13
8.4804F-12
8,237%7-13

-4 ,397E-13
1.094¥%-12
2 .904F-14
1.141-13

-1.160E-13
2.0128-13
1.023r-14

-1.2415-14
2.127F-14

-3.147p-%4
4.707E-14
2.973F=-15

-4.72€6¥F-15
S.178E-15

-3 .725E-15
1.341F-14
2 ,RA34F-16

-1.7532-15
1.529E-15

-3.3%4%-15
4.4567-15
30‘3“E'16

-6.304E-16
5.230E-15

-1.3107-15
1.AR4F=15
1.477E-16

-2.227r-16
2.014E-16

-5.531E-16
6..32E-16
6.509E-17

K,
1.783E-10
1.961E~11
9,0605E-12
1.0307-11
1.811F-12
2,276E-13
1.367E-12
2,729E-13
20“382‘13
1. 2937-13
2,457E-13
4,454F-14
3.431E-14
4,.671F-14
2.54u4F-14
5.690F~-14
9,837€-1°%
€.857F=15
1. 158E-14
6.405F~-15
1.613r-14
2.715E-15
1.7321-15
3.484F-158
1.95¢E-1%
50350?"5
B, 9U4E~-16
S.31"E=-1€
1.222F-15
6.985F~-1€
2.00EE-15
3.L42E-16
1.957E-16
4,893E-16
2.879F~-1¢€
8., 411E-16
1.54¢E-1¢€
8.980E-17

6s

6P

5D

7s

7P

6D

es

4z

8p

70

9s

57

56

9p

8D
108
6%
6G,68
10P
9D
118
7°
7G6,7E,7Z
11p
10D
125
8"

8G ,%H,RI,B6J
12p
11D
13s
oF
95,94,91,9J,9K
13p
12T
1us
10F

106G, 108,101,103 ,10%,1

The resistances of equivalent circuit theory for

of Cesium at 20,000K

is shown.
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Figure S0z The electran temperaturo, 7, in a thermionic
converter is plotted asainst position, £. Shown are twao
CARES, 1=0.5 and I=0.7, computed assuming callrsional
kinetics.
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TE= 1580K
) Pcs=l TORR
p= 10 mIL

2

20 A/cM

- JR

LAl

- 3600K

3

0 ‘0.4 6.2 0.3 0.4 005 0.6 0.7 6.8 0.9

3=X/D

Fisure Si:t The electron temperature, 7 in a&a thermionic
converter is pPlotted asainst pPosition, F. Shown are three
cases, I=0.02 (0.5A/cm2), I=0.1 (2.4A/cm2), and I=0.5%
(12A/cmz). These were computed using collisional-radiative
ionization and recombination kinetics. The rise in
tempPerature at low currents causes a faster than Boltzmann
rise of the current voltagse characteristic. ’
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Figaure S2: Electren densities. each divided by their
maximum, are prPlotted =eainst pPosition, “€, durins steady
thermionic converter operaticon. Shown are twoe cases, I=0.5
and 1=0.02, This sheows that the share of the distribution
chanaes little even for large chansers in current.
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Figure 54:



Te= 1500K

- P..=1 TORR
Dgs 10 mIL
Jo= 20 A/ ch

9

- 3000k
] - 2250K
'1 5 - 1590K
75 '
0.5F - 750K
sk Mo (19%9em™) ‘ !
’ D . m—— e e b | ‘ .. 1 - | 1 N 3
5 - 0.5 1 1.5 2 2.5 3 3.5
5

CENTERLINE ELECTRON TEMPERATURE AND DENSITY VS TIME
AFTER SUDDENLY DROPPING THE CURRENT FROM 12 1o 2.4A/cM

¢ Fiaure 55:



1£8
1E7

jo

T.= 1500K

"7P-75 INVERSION

LEVEL ENERGY (EV)

——

POPULATION DISTRIBUTION AMONG ATOMIC CESIUM LEVELS
AT % MICROSECONDS AFTER CHANGING THE CURRENT AND AT
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APPENDIX A

The finite difference computer program for solving
unsteady and steady thermionic converter plasmadynamics is
shown on the following pages. This program is written in
the PL/1I programming language and was run under the
optimizing compiler on Princeton's IBM 3033 computer. The
numerical method used is the predictor-corrector technique
with adjustable coefficients as described in[60].
Convergence to a steady state solution is typically obtained
in one minute or less of CPU time.

This program is structured as an external procedure.
This procedure, called PREDCOR, has the function of
integrating the thermionic converter conservation equations
forward in time. It does this in a specified number of time
steps and then computes the voltage drop and returns to the
calling program. For each of the steps forward in time, the
time derivative of the density and electron temperature must
be computed twice, once for the predictor and once for the
corrector steps. This is done by an internal procedure
called DOT. DOT performs this for all points in the field
as well as set the image points to indicate proper boundary
conditions.

The meaning of most of the variable names are explained
in comments within the program. The most important ones
will be reviewed here. PREDCOR integrates the unsteady
thermionic conservation egquations from a time Tl to a time
T2 using a total number of time steps equal to NSTEPS. The
length of each time step is DT. These times, as all other
variables, are of course nondimensionalized according to the
scheme presented in Chapter 1II. For each of these time
steps new electron temperatures, TAU, and electron
densities, NEB, need to be computed. This is done by first
computing 'predicted' values, TTILDA for temperature and
NTILDA for density. These are all computed under assumed
converter conditions of an emitter temperature of TE, a
collector temperature of TC, and a Cesium pressure, in Torr,
of PN. The neutral Cesium temperature, TAUN, is assumed to
vary linearly between the emitter and collector
temperatures.
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*PROCESS;

/* PREDICTOR-CORRECTOR PROGRAM FOR UNSTEADY T.E.C. x/
/* :/
PREDCOR:PROC( T1, T2, TAU, NEB, NSTEPS, TE, TC, ENR, CNR,
TDOT1, NDOT1,
PN, SMR, LAMDAR, KN, NR, ARECN, TCHAR, EGNDB, RE,
N,I, AN, AT, BN, BT, CN, CT) REORDER;
DECLARE
SUMV ENTRY((*) FLOAT DEC(16),FIXED BIN(31),FIXED BIN(31))
RETURNS (FLOAT DEC(16)),
SORT BUILTIN,

/*THE FOLLOWING TIME VARIABLES ARE NOND BY TCHAR. */
(T1,7T2, /*START & FINISH TIMES. x/
DT, /*ACTUAL TIME STEP USED. x/
TIME,

AN,AT,BN,BT,CN,CT, /*PRED-COR ALPHA,BET2,GAMMA x/
IVD EXT, /*PLASMA POWER GAIN */

/*THE FOLLOWING VARIABLES REFER TO THE MOST RECENT TIME x/
TAU(*), /*E- TEMPERATURE (NOND BY TE). =/
NEB(x), /*ELECTRON DENSITY (NOND BY NR)=»/
TDOT1 (%), NDOT1(x), /*PREDICTOR STEP TIME DERIV.S =/

((ENE,CNE) INIT(0.8), /*E & C EMITTED DENSITY, NE. =/
(ECHI,CCHI) INIT(3), /*EMITTER & COLLECTOR DROPS */
(EALPHA,CALPHA) INIT(0.5) /*E & C ION SPEED PARAMETERS =/

) STATIC EXTERNAL,

/*THE FOLLOWING ARE CONSTANT DURING THIS PROGRAM */
MUI(0:N+1), /*ION MOBILITY x/
ONE INIT(1), .

I, /*CURRENT (NOND BY REF DIFF C) =/
DZ, /*ZETA INCREMENT BETWEEN PTS x/
TCHAR, /*BN ELECTRON TRANSIT TIME x/
ERR, /*RCCURACY PARAM FOR SHEATH */
TE,TC, /*EMITTER & COLLECTOR TEMPERATUx/
DTAUNDZ,

PN, /*NEUTRAL PRESSURE (TORR) x/
ENR,CNR, /*E. & C. RICHARSON DENSITIES. »/
NR, /*REFERENCE ELECTRON DENSITY =/
EGNDB, /*E(0)/KT(E). NON-D BINDING E =/
ELOSSB EXT, /*ENERGY LOSS PER IONIZATION =/
RE, /*Q(E-2) =Q0 = Ex»-RE x/
SMR, /*SQORT OF ELECTRON/ION MASS RAT=*/
LAMDAR, /% MFP RATIO, =RMUR/SMR x/
RMUR, /*MU RATIO, =SMR»LAMDAR x/
KN, /*KNUDSEN NUMBER x/
NNR, /*REFERENCE NEUTRAL DENSITY. =/
ARECN, /*COEFFICIENT OF RECOMBINATION =/
PI, /* 3.14159... x/
CA,CSAHA, /*CONSTANTS IN MSOURCE EQN x/

/*THE FOLLOWING ARE VECTORS (O:N+1). */
(NNB, TAUN, /*NEUTRAL DENSITY & TEMP. x/

/* NON-D BY EMITTER VALUES

~/
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IF TAU(1)<0.1 THEN DO; TAU(1)=0.1; EFIX='1'B; END;
IF TAU(N)<0.1 THEN DO; TAU(N)=0.1l; CFIX='1'B; END;
IF RE=0.5 THEN MUEA=TAUN;

ELSE IF RE=0 THEN MUEA=TAUN/SQRT (TAU);

ELSE IF RE=-.5 THEN MUEA=TAUN/TAU;

ELSE MUEA=TAUN= ( TAU=xx(RE-0.5) );
K=( (RE+2)/FYEN )xMUEA«NEB=TAU;
PC=NEB=* (TAU+TAUN) ;
DETA,DETAP=LOG (K (2)/K(1)) = DZ/(K(2)-K(1));

/*DETERMINE EMITTER SHEATH
CALL SHEATH(ECHI,ENE,I=KN/NEB(1),TAU(1),ENR/NEB(1),
TE, SMR, EALPHA, 0.8, ERR);
IF ECHIK=1E-5 ! ECHI>=20 THEN EFIX='1'B;

/*FIND EMITTER (0+) DERIVATIVES FROM B.C.
ET_ETA=(TAU(1)-1)*ENE*NEB(1)/KN - I*(ECHI-TAU(1)/2);
ET_2Z=ET_ETA/K(1);
EPC_2=(SQRT(P1/8/EALPHA) /LAMDAR/KN) *NEB (1) /MUI (1)

- I/MUEA(1);
EN_Z=( EPC_Z~NEB(1)* (ET_Z+DTAUNDZ) )/( TAU(1)+TAUN(1) );

/*SOLVE COLLECTOR SHEATH
CALPHA=1/TAU(N);
CNE=0;
NCMIN=4xI=KN/SQRT (TAU(N));
IF NEB(N))>=NCMIN
THEN CCHI=ZFAU(N)*LOG( NCMIN/NEB(N)+ 2.506628*SMR );
ELSE DO; CCHEI=0; NEB(N)=NCMIN; CFIX='1'B; END;

/*DETERMINE DERIVATIVES AT COLLECTOR (1-) FROM B.C.
CT_ETA=-Ix{(CCHI-TAU(N)/2);
CT_2Z=CT_ETA/K(N);
CPC_2Z=(SQRT(PI/8/CALPHA) /LAMDAR/KN) «NEB (N) /MUI (N)
- I/MUEA(N);
CN_Z=( CPC_Z~NEB(N)* (CT_Z+DTAUNDZ) ) / ( TAU(N)+TAUN(N) );
CDETA=LOG (K(N}/K(N-1)) = DzZ/(K(N)-K(N-1));

/*SET IMAGE POINTS.
TAU(0)=TAU(2)-2«DETAP*ET_ETA;
TAU (N+1) =TAU(N-1)+2*xCDETA*CT_ETA;
PC(0)=PC(2)-2xDZ*EPC_Z;
PC(N+1)=PC(N-1)+2*DZ*CPC_Z;
NEB(0)=NEB(2)-2*DZ*EN_Z;
NEB (N+1)=NEB(N-1)+2*xDZ*CN_2Z;

/*INITIALIZE GAMMAP & QKP FOR LOOP.
MNS=MUI (1) *NEB(1)+MUI(2)*NEB(2);
MURS=MUI(2)/MUER{2) + MUI(1)/MUEA(1)=( 1 -2xDZx(
(0.5-RE)*ET_2Z/TAU(1) - 0.5*DTAUNDZ/TAUN(1)) );
GAMMAP=  0.5+( ( (MUI(L)+MUI( 2 ))=(Pc( 1 )=-PC(0))
)/DZ +I*MURS );
QKP=(TAU (1)-TAU(0) ) /DETA;

DO J=1 TO N;

/*UPDATE FOR NEW J.
GAMMAM=GAMMAP;
DKM=0KP;
DETA=DETAP;
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DOT:

+0.5* ( ESOURCE (N)~CV(N) *TDOT1(K) );
IVD=DZ*IVD+ 2*Ix (TAU(1)~TAU(N)) - (NEB(1)=ENE/KN)=*(TAU(1)-1);

/* DOT: RETURNS WITH NEW NEBDOT AND TAUDOT. x/
SRR R R AR R A R AR R AR AR R AR R R R AR AR R AR KRR R AR RN AR AR R AR KR KRR R AR AR RN R AR x/
/* x/
/* COLLECTOR EMISSION IS NEGLECTED. x/
/* 74
/* */

/*t****tt**t*ttktttt*tt*t*ttttktttt***tttt**ttttRtt*tkt*t****ttt/
PROC (NEBDOT, TAUDOT, NEB, TAU) REORDER;
DECLARE
CHKDOT BIT(1) EXT INIT('0'B),/*IF 1 PRINT DIAGNOSTIC INFO =/
SHEATH ENTRY (DEC(16),DEC(16),DEC(16) ,DEC(16) ,DEC(16),
DEC(16) ,DEC(16) ,DEC(16) ,DEC(16) ,DEC(16)),

(TAUDOT (*),
NEBDOT (x),
NEB(x),
TAU(*),
PC(O:N+1), /*CHARGED PARTICLE PRESSURE 74
F(15) EXT INIT(5.74E-3, 1.4E-3, 2.3, .2, .027, .00574,
.0424, 3.2, 61.893, 11.607, 15473, 27.04),
/*SHEATH VARIABLES x/
NCMIN, /*MINIMUM NEB(N) TO ALLOW I. =/
/*TRANSPORT VARIABLES =/
FYEN EXT INIT(1), /*YEN THERMAL CONDUCTIVITY FACTx/
K(0:N+1), /*THERMAL CONDUCTIVITY */
MNS, /*SUM OF MUIs«NEB AT J & J+1 x/
MUIS,MURS, /*SUM OF MUI & MUR AT J,J+1 x/
/*CONSERVATION EQUATION VARIABLES %/
EN_Z,CN_3Z, /*SPATIAL NEB DERIVS x/
ET_ETA,ET_Z,CT_ETA,CT_2Z, /*SPATIAL DERIVS OF TAU x/
EDETA,CDETA, /*ETA XPACING BETWEEN GRID-PTS =/
EPC_Z,CPC_Z, /*PC GRADIENT FROM B.C. */
/+*TEMPORARY ENERGY EQUATION VARIABLES x/
OKM,OKP,
DETA,DETAP, /*GRID PT SPACING IN ETA 74
KDE, /*THERMAL COND X D ETA AVE 74
CONVECTN,
POHMIC,
PB,PBP, /*ENERGY STORED IN EXCITED STAT»/
SIGMR)
FLOAT DEC(16),
/+TEMPORARY DENSITY EQUATION VARIABLES x/
(GRMMAM, GAMMAP,
D1B,D21B,D32B,P0,1B,NUE, /*PARAMETERS FOR MSOURCE x/
A,
NES2)

FLOAT DEC(16),
J FIXED BIN(31);
ON FINISH PUT SKIP(5) DATA;

/*SET THERMAL & ELECTRICAL CONDUCTIVITIES AT O+ (E) &, 1~ (C). =/
TAU(O) ,TAU(N+1)=1; /*AVOID NEGATIVE VALUES x/
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MSOURCE, /*E~- PRODUCTION RATE (NOND)
ESOURCE, /+*ENERGY SOURCE TERM (NOND)

Cv,

MUER, /*E~ MOBILITY AMONG ATOMS.

NDOTZ,TDOTZ,
TTILDA,NTILDA)
(0:N+1) ) FLOAT DEC(16),

CFIX BIT(l) EXT, /*DID C-SHEATH REQUIRE FIX?

EFIX BIT(l) EXT,
(NSTEPS,

x/
=/

N, /*# OF GRID PTS, E TO C INCL. =/

J,

COUNT) /*PRESENT # OF TIME STEPS.

FIXED BIN(31);
/*HANDLE EXCEPTIONAL CONDITIONS.
ON FINISH PUT SKIP(5) DATA;

P1=3.1415926 + 5.3589793E-8;
DZ=ONE/ (N-1);

DT=(T2-T1) /NSTEPS;
CFIX,EFIX='0'B;

ERR=1E-3;

/*SET NEUTRAL TEMPERATURE AND DENSITY.
IF TE=TC THEN TAUN=1;
ELSE DO J=0 TO N+1;

TAUN(J)=1 + (TC/TE-1)#(J=-1)/(N-1);
END;

NNR=965.5E16*PN/TE;

NNB=1/TAUN;

DTAUNDZ=TAUN (N) -TAUN (1) ;

/*SET TRANSPORT PARAMETERS.
RMUR=LAMDAR*SMR;
MUI=SQRT (TAUN) ;

/*SET IONIZATION AND SBHA PARAMETERS.

CA=0.41283*ARECN*TCHAR* (NR/1E14)**2 * (TE/1500)x%-4.5;

CSAHA=LOG( (1.4027E20*NNR/NR/NR) * (TE/1500)%x1.5 );

DO COUNT=0 TO NSTEPS-1;
TIME=T1+COUNT=DT;

/*PREDICTOR STEP

CALL DOT(NDOT1,TDOT1,NEB,TAU);
NTILDA=NEB + ANxDT«NDOT1;
TTILDA=TAU + AT=xDT+TDOT1;

/*CORRECTOR STEP

CALL DOT(NDOT2,7TDOT2,NTILDA,TTILDA);
NEB=NEB + DT=*( BN*NDOT1+CN=xNDOT2 );

TAU=TAU + DT*{ BT*TDOT1+CT=+TDOT2 );

END;

/*UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER

CV(0),CV(N+1)=0;

ESOURCE (0) , ESOURCE (N+1)=0;

CALL DOT(NDOT1,TDOT1,NEB,TAU);

IVD=  0.5x( ESOURCE(1)-CV(1)=*TDOT1(1) )
+ SUMV( ESOURCE-CVxTDOT1, 2, N-1)

GAIN=*/
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IF J =N

THEN DO;
DETAP=LOG (K (J+1) /K(J)) = DZ/(K(J+1)-K(J));
MNS=MUI (J) *NEB (J) +MUI (J+1) *NEB (J+1) ;
MUIS=MUI(J)+MUI (J+1);
MURS=MUI (J) /MUEA(J) + MUI(J+1)/MUEA(J+1);
END;

ELSE
MURS=MURS +2xDZ= (MUI (N)/MUEA(N))=((.5-RE)=*CT_2/TAU(N)

- 0.5*DTAUNDZ/TAUN(N));

/+FIND RMBIPOLAR FLUX AT J+1/2. */

GAMMAP=0.5x( ( MUIS=» (PC(J+1)-PC(J))
)/DZ +I+MURS );

/*FIND MASS SOURCE AT J. x/

A=CA/TAU(J)**4.5;

NES2=NNB(J) * TAU(J)=x1.5 = EXP( CSAHA-EGNDB/TAU(J) );:

D21B=F(7) * (1+F(8) /TAU(J) ) ;

D32B=F (2) *EXP(F(3) /TAU(J));

IB=A*NES2x ( 1+F(1)/NEB(J) )/( 1+D21B=*(1+D32B/NEB(J))/NEB(J)
):

PO=1+( F(4)/NEB(J) )=( 1+F(5)/NEB(J) )/( 1+F(6)/NEB(J) );

NUE=NEB(J) *NEB{J) /NES2;

MSOURCE (J)=NEB(J) *IB* ( 1-PO*NUE );

NEBDOT (J) =RMUR=* (GAMMAP-GAMMAM) /DZ + MSOURCE(J);

KDE=K (J) » (DETRA+DETAP)/2;
QKP=(TAU(J+1)-TAU(J))/DETAP;

CONVECTN=-1.5%1x (DETA*QKP+DETAP*QKM) / (2*KDE) ;
SIGMA=NEB(J) *MUEA(J) ;
POHMIC=Ix( I1/SIGMA + TAU(J)=( NEB(J+1)-NEB(J-1) )

/ (2xDZ=NEB(J)));
PBP=( F(9)*NNR/NR )*EXP( -F(10)/TAU(J) );
PB=(-F(11)*NNR/NR )*EXP( -F(12)/TAU(J) );
CV(J)=1.5*NEB(J) + NNB(J)=*(F(10)*PBP+F(12)*PB*NUE)

/ (TAU(J)=TAU(J));
ESOURCE (J) =-ELOSSB*MSOURCE (J)
- NNB(J)*PB=*( 2*NUE*NEBDOT(J)/NEB(J) );

TAUDOT (J)=( (QKP-QKM)/KDE + CONVECTN + POHMIC + ESOURCE(J) )
/ CV(J);

IF CHKDOT THEN PUT SKIP(2) DATA(NEB(J),TAU(J),MSOURCE(J),
J,PB,PBP,A,
D21B,D32B,P0, 1B, NUE,NES2,0KP,GAMMAP, DETAP, NURS) ;
END;

NEBDOT (0) , NEBDOT (N+1)=0;

TAUDOT (0) , TAUDOT (N+1)=0;

IF CHKDOT THEN PUT SKIP(3) DATA;
END DOT;

END PREDCOR;
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APPENDIX B: Symbols and Notation

Some of the important notations used in this thesis are
listed Dbelow. The meaning of each symbol is given as well
as the page where it is defined. Dimensional variables are
listed in column (1). Non-dimensional variables are listed
in column (2). As the alphabet is finite, some symbols have
more than one meaning; the intended meaning should be clear
by context. See also figure 2 for a graphic definition of
various voltages used.

(1) (2)

o< A ionization coefficient(II-9,II-19,IV-10)
X X ion speed parameters(II-12,14)

ij temperature sensitive part of density
dependent ionization coefficient (II-27)

recombination rate
coefficient (II-9,IV-10)

interelectrode gap length(figure 2)

NN T®

fj ambipolar diffusion
o coefficient (I1I-20,11-28)
elementary charge
11
r i ambipolar flux(II-8,II-17)
electron and ion fluxes,
/:) /;—7 Ie, I; respectively(II-2,II-17)
— emitted flux of electrons by the
l;' Lg  emitter(II-11,II-17)
Y Boltzmann's constant
,}% K electron thermal
€ conductivity(I1-8,II-17)
% parameter related to a Knudsen
41

number (II-17)

T I total current (II-3,II-17)
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J
Je Ie
77 77
7%, 7
Ve
W, 7,7
€ €
T
Te g
To, i  L,7T
Tos T
'E;,7z -
V Xe
Ve “Xc
¥ X

Page 2
ratio of total current to emitted
current (I11-24)
emitted current(II-11,I1-17)
plasma number density(II-3,I1I-17)

electron and ion number densities,
respectively (I1-2)

emitted number density(IiI-12,1I-29)

plasma density near the emitter and
collector, respectively(1l-12,II1-14)

time(II-2,II-17)

characteristic diffusion time(II-17)

electron temperature(lI-4,II~16)

electron temperature evaluated near the
emitter and collector,
respectively(11-14,1I-16)

neutral temperature(lI-7,II-16)

emitter and collector temperature,
respectively(I11-12,11-14)

emitter sheath height(I1-12,II-16)
collector sheath height (II-14,I1-16)

electron motive (potential) (II-3,II-16)





