

TEMPORAL AND SPATIAL TRENDS IN THE CHEMISTRY
OF ACIDIFIED LAKES UNDER ICE COVER

George R. Hendrey, James N. Galloway, and Carl L. Schofield

MARCH 1980

Prepared for Presentation at
the International Conference on the Ecological Impact
of Acid Precipitation
As-NLH, Norway
March 11-14, 1980

MASTER

DEPARTMENT OF ENERGY AND ENVIRONMENT

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973

bnl
cii

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

MASTER

C6NF-800365-6

BNL-27850

TEMPORAL AND SPATIAL TRENDS IN THE CHEMISTRY
OF ACIDIFIED LAKES UNDER ICE COVER

George R. Hendrey, James N. Galloway,¹ and Carl L. Schofield²

¹University of Virginia, Charlottesville, VA, U.S.A.

²Cornell University, Ithaca, NY U.S.A.

MARCH 1980

Prepared for Presentation at
the International Conference on the Ecological Impact
of Acid Precipitation
As-NLH, Norway
March 11-14, 1980

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

LAND AND FRESHWATER ENVIRONMENTAL SCIENCES GROUP
DEPARTMENT OF ENERGY AND ENVIRONMENT
BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.

Under Contract No. DE-AC02-76CH00016 with the
U.S. Department of Energy

80
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TEMPORAL AND SPATIAL TRENDS IN THE CHEMISTRY OF ACIDIFIED LAKES UNDER ICE COVER

George R. Hendrey,¹ James N. Galloway,² and Carl L. Schofield³

¹Brookhaven National Laboratory, Upton, N.Y., U.S.A.

²University of Virginia, Charlottesville, Va., U.S.A.

³Cornell University, Ithaca, N.Y., U.S.A.

When preparing materials budgets for watersheds containing lakes, the spatial and temporal interchange between large compartments within the whole system must be considered. This paper addresses the lakes of the Integrated Lake-Watershed Acidification Study (ILWAS) and their role in our mass balance calculations for the period of winter stratification of 1978-1979, and presents data on lake metabolism.

Snow accumulation is one mechanism by which strong mineral acids are temporarily stored in the watersheds of regions receiving acidic precipitation. On melting, 50-80% of the pollutant load may be released in the first 30% of the meltwater.¹ Acids may also be stored elsewhere in a watershed, including in various soil layers (where biological activity may generate acids, in addition to acids derived from precipitation) and in the waters of lakes. Furthermore, biological processes within lakes may result in an accumulation of carbon dioxide which can add to the total amount of acid in the lake by forming bicarbonate, depending on the lake pH.

Stratification of ILWAS Lakes

In winter stratified lakes, acids associated with snowmelt may move across the surface of the lake under the ice cover and be discharged from the system.² But mixing of inflowing stream water into lakes during winter stratification is strongly influenced by lake and watershed morphometry. The basin topography and large ratio of lake surface to watershed area, 1:69 (Table 1), of Sagamore Lake results in a single stream carrying 89% of the drainage from the 4965 Ha watershed. Both Woods and Panther Lakes are smaller, shallower, froze earlier and were more firmly stratified than Sagamore Lake (Table 1). Both of the smaller lakes have several small inlet

channels through which snowmelt-water enters so that water moves across the epilimnion with little advection to the hypolimnion. Woods Lake's hypolimnetic (1-6m) pH in winter was 4.5-5.1, while Panther's (1-5m) was 6.4-6.6. The respective epilimnetic pH values were as low as 4.2 and 5.0. This acidic water was confined to the top 1m or less of the lakes.

Table 1.
Physical Characteristics of the ILWAS Lakes

	Panther	Sagamore	Woods
Elevation, m	562	586	615
Watershed Area, Km ²	1.24	49.65	2.07
Lake Surface Area, Km ²	0.18	0.72	0.23
Surface:Watershed, Ratio	1:6.9	1:69	1:9.0
Volume, 10 ⁶ m ³	0.709	7.54	0.813
Mean Depth, meters	3.51	11.6	4.22
Flushing Time <u>volume</u> in days <u>mean annual flow</u>	230	65	180
Winter Hypolimnetic Volume, 10 ³ m ³	542	3940	616
Winter Hypolimnetic Area, 10 ³ m ²	150	480	160

During the winter of 1978-1979, three episodes of melting occurred which brought large amounts of acid through the lake systems. The first was in early December and affected Woods Lake only. The next episode was in early January when warm temperatures and rain caused melting which dropped the pH in the surface waters of all three lakes. The final episode was the spring thaw in March and April.

The spring melt at Sagamore Lake brought strong inlet stream discharge, up to $14 \text{ m}^{-3} \text{ sec}^{-1}$, with pH as low as 4.6. This water mixed to 6m depth, depressing epilimnetic pH from 6.0 in early March to 4.2-4.8 in mid-March to mid-April, and exposing the entire littoral zone to this acidic water (with potential biological consequences,

as discussed by Hultberg).³ Sagamore's pH was 5.2 in the epilimnion and 5.6 in the hypolimnion just before ice-out. With clearing of the lake surface and spring circulation, pH for the entire water column was 5.2. Inlet stream pH at this time was near 5.0. Water column pH at spring circulation was thus due to prior input of acids by stream discharge to the epilimnion, mixing of hypolimnetic water of higher pH and input of lower pH stream water to the mixing system.

Hypolimnetic Metabolism

While thermal stratification allows materials entering a lake via stream flow, or from the melting snow pack on the lake surface, to pass through the epilimnion, stratification also prevents much advection of materials to or from the hypolimnion. Since hypolimnetic water is essentially cut off from exchange with the epilimnion, the hypolimnion may be treated, approximately, as a closed reactor. The accumulation of dissolved inorganic carbon (DIC) and uptake of dissolved oxygen (O_2) provide information on the rates of heterotrophic activity in the whole lake, as discussed by Ohle.⁴ Consumption of O_2 on an areal basis measured in the period 21 Jan.-16 Mar. (Table 2) was greater in Sagamore than in the other lakes. The initial hypolimnetic O_2 mass for Sagamore, Woods and Panther, respectively, were 1.4, 3.0 and 1.2 moles $O_2 \text{ m}^{-2}$, and the dissolved inorganic carbon concentrations (DOC) of the hypolimnia were 0.6 mM^{l-1} in Sagamore and 0.3 mM^{l-1} in the other two lakes.

Table 2.

Changes in O_2 , CO_2 and the respiratory quotient RQ in the hypolimnia during winter stratification. The time period was 52 days in Woods and Sagamore and 49 days in Panther.

	$-\Delta O_2$ $\text{mM m}^{-2} \text{ d}^{-1}$	ΔCO_2 $\text{mM m}^{-2} \text{ d}^{-1}$	RQ
Woods	$6.4 \pm .6$	$10.2 \pm .7$	$1.6 \pm .1$
Sagamore	10.4 ± 1.2	11.7 ± 1.5	$1.1 \pm .1$
Panther	6.4 ± 0.7	11.8 ± 1.5	$1.8 \pm .1$

The ratio of CO_2 released (calculated from DIC) to O_2 taken up, the respiratory quotient (RQ) is a useful indicator of the extent to which anaerobic decomposition contributes to the metabolism of lakes.^{4,5} RQ values of 0.5 to 1 (average 0.85) are expected for completely aerobic respiration.⁴ Values greater than this indicate contributions by anaerobic processes to lake metabolism.^{4,5,6} Woods and Panther lakes had essentially identical RQ values while Sagamore's RQ was much lower. These differences reflect the similarity of initial O_2 and DOC concentrations and mean depths (Table 1) of Woods and Panther, and their differences from Sagamore. The effect of respiration in the sediments on the O_2 deficit and DIC accumulation of shallow lakes can be expected to be greater than in the deeper lake and this is reflected in the RQ values.

It has been suggested that lake acidification will inhibit microbial activity, reduce the biomass of benthic invertebrates, and lead to an accelerated accumulation of organic debris in lakes, and that neutralization will reverse these processes. Much evidence supports these ideas.^{7,8,9,10} Data on the hypolimnetic metabolism of the ILWAS lakes during the winter of 1978-1979 do not indicate an inhibition of community respiration due to acidification. On the other hand, the data and discussion presented here do not include an analysis of the sources or stocks of reduced carbon within the lakes. Carbon inventories are currently being made for the three lakes and will be included in future analyses so that whole-lake metabolic processes can be more accurately compared among the lakes.

References

1. Johannessen, M. and A. Henriksen. 1978. Chemistry of snow meltwater: changes in concentration during melting. *Water Resources Res.* 14:615-619.
2. Henriksen, A. and R. F. Wright. 1977. Effects of acid precipitation on a small acid lake in southern Norway. *Nordic Hydrology* 8:1-10.
3. Hultberg, H. 1976. Thermally stratified acid water in late winter, a key factor inducing self-accelerating processes which increase acidification. pp. 503-517 in Dochinger, L.S. and T.A. Seliga (Ed.). *Proc. First Internat. Symp. on Acid Precipitation and the Forest Ecosystem.* USDA For. Serv. Gen. Tech. Rep. NE-23.
4. Ohle, W. 1956. Bioactivity, production and energy utilization of lakes. *Limnol. Oceanogr.* 1:139-149.
5. Hutchinson, G. E. 1957. A treatise on Limnology. Vol. I. John Wiley and Sons, New York.
6. Rich, P. H. 1979. Differential CO_2 and O_2 benthic community metabolism in a softwater lake. *J. Fish Res. Board Can.* 36:1377-1389.
7. Andersson, I., O. Grahn, H. Hultberg, and L. Landner. 1974. Jamforande undersokning av olika tekniker for alterstallande av forsurade sjoar. Institute for Water and Air Research, Stockholm. STU Rept. 73-3651.
8. Grahn, O., H. Hultberg and L. Landner. 1974. Oligotrophication--a self-accelerating process as in lakes subject to excessive supply of acid substances. *Ambio* 3:94-94.
9. Hendrey, G. R., K. Baalsrud, T. Traaen, M. Laake and G. Raddum. 1976. Acid precipitation: some hydrobiological changes. *Ambio* 5:224-227.
10. Scheider, W., J. Adamski and M. Paylor. 1975. Reclamation of acidified lakes near Sudbury, Ontario. Ontario Ministry of the Environment, Rexdale, Ont. Canada.