

Conf-920402-23

ANL/CP-73655

**A Study of Parameters That Influence Growth
and Stability of the $(Bi_{1-x}Pb_x)_2Sr_2Ca_2Cu_3O_y$ Phase***

DE92 015187

J. S. Luo, N. Merchant, V. A. Maroni, D. M. Gruen, and B. S. Tani
Argonne National Laboratory, Argonne, IL. 60439

W. L. Carter, G. N. Riley, Jr., and K. H. Sandhage*
American Superconductor Corporation, Watertown, MA 02172

April 1992

Prepared for the Proceedings of the Symposium on
Layered Superconductors, Held as part of the Spring
1992 Materials Research Society Meeting, April 27-May
1, 1992, San Francisco, CA.

RECEIVED BY US
JUN 1 1992
The submitted manuscript has been authored by a
contractor of the U.S. Government under contract No.
W-31-109-ENG-38. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish
or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

*Work at Argonne National Laboratory was sponsored by the U. S. Department of Energy, Conservation and Renewable Energy, as part of a DOE program to develop electric power technology, under Contract W-31-109-ENG-38.

• Present address: Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210

MASTER

DN

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A STUDY OF PARAMETERS THAT INFLUENCE GROWTH AND STABILITY OF THE $(Bi_{1-x}Pb_x)_2Sr_2Ca_2Cu_3O_y$ PHASE

J. S. LUO,* N. MERCHANT,* V. A. MARONI,* D. M. GRUEN,* B. S. TANI,*

W. L. CARTER,** G. N. RILEY,** AND K. H. SANDHAGE,**

*Argonne National Laboratory, Argonne, IL 60439

**American Superconductor Corporation, Watertown, MA 02172

ABSTRACT

The growth and stability of the $(Bi_{1-x}Pb_x)_2Sr_2Ca_2Cu_3O_y$ (Bi-2223) phase contained in silver-sheathed wires has been investigated by a combination of x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and transmission electron microscopy. Silver tubes loaded with Bi-2223 precursor powders were processed into filaments using established metallurgical techniques. The filaments were then heat-treated at selected temperatures (800 to 845°C) for a range of times (10 to 6000 min) in a 7.5% oxygen atmosphere. From these studies it has been possible to investigate the time-temperature-oxygen pressure domains wherein $Bi_2Sr_2CaCu_2O_8$ (Bi-2212) + second phases transform to Bi-2223. Fractional conversion (Bi-2212 \rightarrow Bi-2223) versus time data show good conformance to the kinetic model for a diffusion-controlled reaction at the interface between thin sheets and a fine powder or a fluid. Quenching experiments also reveal that the Bi-2223 phase is stable in a limited temperature interval between 810 and 830°C.

INTRODUCTION

(Bi,Pb)-Sr-Ca-Cu-O superconducting wires produced by the oxide-powder-in-tube (OPIT) method have demonstrated the ability to support large critical currents in high magnetic fields when the superconducting oxide is $(Bi_{1-x}Pb_x)_2Sr_2Ca_2Cu_3O_{10}$ (Bi-2223) [1,2]. However, the preparation of single phase Bi-2223 is still difficult due to poor understanding of its complex phase diagram and melting behavior [3-5]. Moreover, the rate of formation of the Bi-2223 phase can be exceptionally sluggish, often requiring several hundred hours to achieve complete conversion [4,5]. In this paper, we report the results of an isothermal kinetics study of the formation of Bi-2223 in silver-sheathed wires. We show that the measured fractional conversion, C, versus time, t, curves fit a diffusion-controlled, two-dimensional, nucleation-growth equation, through comparisons of a series of measured (C, t) values and the various theoretical functions derived for different kinetic models. Finally, we present data that map the temperature interval of single-phase Bi-2223 stability and describe its decomposition behavior at higher and lower temperatures in 7.5 % oxygen.

EXPERIMENTAL PROCEDURE

Precursor powders having a composition of $\text{Bi}_{1.7}\text{Pb}_{0.3}\text{Sr}_{1.9}\text{Ca}_{2.0}\text{Cu}_{3.0}\text{O}_y$ were loaded into silver tubes and processed into wires using established metallurgical forming techniques [6]. X-ray diffraction (XRD) measurements on the powders revealed that $\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_3$ (Bi-2212) was the major phase with no diffraction peaks due to Bi-2223. The tape samples used in the experiments were typically 8 mm wide, 0.25 mm thick, and ~25 mm long. They were heat-treated in a stainless steel chamber surrounded by a resistively-heated furnace with three independently programmable heating zones [7]. Temperatures were monitored using a calibrated Pt/Pt-Rh thermocouple positioned close to the samples and stabilized to within $\pm 1^\circ\text{C}$. Samples were initially kept in a cooled baffle above the hot zone at temperatures below 50°C , immersed into the preheated furnace, equilibrated at the chosen temperature for a fixed time, and quenched in a silicone oil bath held at room temperature. All experiments were carried out in 7.5% oxygen (the balance being nitrogen).

XRD measurements were made on peeled sections of each quenched tape sample using a Philips diffractometer with $\text{Cu K}\alpha$ radiation. The fractional conversion, C, of the Bi-2223 phase was calculated on the basis of the XRD intensity ratios of the $(0010)_{2223}$ and $(008)_{2212}$ peaks [8]. The resulting samples were examined by scanning electron microscopy (SEM) on a JEOL 35U equipped with an energy-dispersive x-ray analyzer (EDX). Transmission electron microscopy (TEM) was carried out on a Philips CM30 analytical microscope. Specimens were prepared from slides by mechanical polishing and dimpling to ~20 μm thickness, followed by argon ion milling at 5 kV with a gun current of ~1 mA.

RESULTS AND DISCUSSION

Figure 1 shows a typical C-t plot summarizing characteristic kinetic behavior observed for isothermal formation of the Bi-2223 phase from Bi-2212 + second phases at 825°C in 7.5% O_2 . Evidence for the onset of formation of the Bi-2223 phase typically appeared after an initial induction period of ~100 minutes. Once the reaction started, the C-t curve followed an S-shaped profile that plateaued in $\leq \sim 5300$ minutes. The presence of an induction period indicates a slow process preceding establishment of the main transformation, which may be due to either the development of stable Bi-2223 nuclei in the system or some chemical reorganization of the second phases. It should be pointed out that the growth behavior is very sensitive to a number of processing conditions, most notably the nature of any heat-treatment procedures used on the precursor powder [8].

In order to obtain information concerning the reaction mechanism, the experimental data were compared with theoretical functions derived for kinetic models based on various reaction interface geometries and rate-limiting phenomena. A summary of such models has been provided by Hulbert [9] for solid-state reactions limited by

different mechanisms, including nuclei growth (NG), diffusion (D), and phase boundary (PB) reactions. It was found that the fractional conversion data could be fitted well with a simple two-dimensional (2D), diffusion-controlled, nucleation-growth equation (Fig. 2), which can be expressed [9] as

$$\{-\ln(1-C)\}^{1/n} = k_0 t \exp(-E/RT)$$

where $k_0 = 1.71 \times 10^{-22}$ is the rate constant, E is the activation energy, R is the universal gas constant, T is the annealing temperature in degrees Kelvin, t is the annealing time, and n is an exponent parameter which is dependent on the nature of the reaction mechanism, the nucleation rate, and the geometry of the nuclei (for this work we chose n = 1, corresponding to a constant and/or deceleratory nucleation).

TEM observations strongly support a two-dimensional reaction model. Side-view micrographs taken from the direction parallel to the wire surface (i.e., beam direction perpendicular to the rolling force direction) show partially converted zones of Bi-2223 within 2212 grains (Fig. 3). Projection of the reacting zone to the observation plane reveals a needle-like shape (see Fig. 3) which corresponds to a thin plate or a thin sheet in the full grain. This indicates that the reaction zone is indeed two-dimensional, presumably because the growth of the product in another dimension is limited by the platelike microstructure of its precursor, i.e., the 2212 phase. The product is undoubtedly the Bi-2223 phase, as evidenced by its larger interplanar spacing (~1.85 nm) compared with the smaller spacing (~1.5 nm) of the surrounding 2212 phase [8].

The reaction appears to start at the grain boundary (where an amorphous phase is observed by TEM) and gradually extend into the 2212 precursor grain by diffusion of the required Ca^{2+} and Cu^{2+} into the reactant interface to form the Bi-2223 phase (see Fig. 3). The extra Ca^{2+} and Cu^{2+} are transported from Ca- and/or Cu-rich phases, such as Ca_2CuO_3 and CuO , through grain boundaries. It is clear that the presence of a liquid phase would enhance significantly the diffusion of Ca^{2+} and Cu^{2+} due to the absence of the stabilizing influence of the regular lattice. However, even if interdiffusion is dramatically accelerated by a liquid phase, the formation of the Bi-2223 could still be sluggish due to the slow solid-state diffusion of extra Ca^{2+} and Cu^{2+} from grain boundaries to the reactant surface. In this sense, reduction of the initial reactant grain size should be helpful in promoting Bi-2223 formation, as has been the case for samples that were subjected to intermediate grinding [10].

The activation energy, E, is derived from the slope of the plot $\ln(-\ln(1-C))$ against $1/T$ (Fig. 4). The data appear to fall on a pair of intersecting lines, with the line in the lower temperature sector having a steeper slope that evidences a higher activation energy than the line in the higher temperature sector. One possible interpretation of this result is that the conversion rate in the temperature sector below the crossing point (~819°C) is controlled by a solid-state reaction (thus a high diffusional activation energy), while the rate at temperatures

above the intersection point is controlled by a liquid phase reaction having a much lower diffusional activation energy.

Finally, we have determined the stability range of single phase Bi-2223 and studied its decomposition behavior. In this case, samples were subjected to a two-step heat treatment. They were first immersed and annealed at 825°C (i.e., to convert the precursor powder to single phase Bi-2223), stepped to lower (810°C, 800°C) or higher (840°C, 845°C) temperatures, and held for 3000 minutes before quenching. After these treatments, XRD revealed that non-2223 peaks, which were mainly due to 2212, appeared for the sample annealed at 800°C (Fig. 5). For samples annealed at 840 and 845°C, peaks located at $\theta = 21.9^\circ$ and 29.3° , corresponding to the (006) and (008) reflections of the $\text{Bi}_2\text{Sr}_2\text{CuO}_6$ (2201) phase, were clearly present (Fig. 5). It can be concluded from these observations that the Bi-2223 phase in silver-sheathed wires has a limited thermostability range with a lower boundary between 800 and 810°C and an upper boundary between 830 and 840°C in 7.5% oxygen.

ACKNOWLEDGEMENT

The authors wish to acknowledge the support and encouragement of Drs. R. B. Poeppel and A. Malozemoff. The work at Argonne National Laboratory was sponsored by the U. S. Department of Energy, Conservation and Renewable Energy, as a part of a DOE program to develop electric power, under Contract W-31-109-ENG-38.

REFERENCES

1. K. Sato, T. Hikata, H. Mukai, M. Ueyama, T. Kato, T. Masuda, M. Nagata, K. Iwata, and T. Mitsui, IEEE Trans. Magn. 27, 1231 (1991).
2. Y. Yamada, B. Obst, and R. Flukiger, Supercond. Sci. Technol. 4, 165 (1991).
3. R. S. Roth, C. J. Rawn, B. P. Burton, and F. Beech, J. Res. NIST 95, 291 (1990).
4. P. Majewski, B. Hettich, H. Jaeger, and K. Schulze, Adv. Mater. 3, 67 (1991).
5. J. S. Luo, F. Faudot, J-P. Chevalier, R. Portier, and D. Michel, J. Solid State Chem. 89, 94 (1990).
6. K. H. Sandhage, G. N. Riley, Jr., and W. L. Carter, JOM 3, 21 (1991).
7. N. Merchant, J. S. Luo, V. A. Maroni, D. M. Gruen, B. S. Tani, S. Sinha, K. H. Sandhage, and C. Creven, (submitted to J. Mater. Res.).
8. J. S. Luo, N. Merchant, V. A. Maroni, D. M. Gruen, B. S. Tani, W. L. Carter, G. N. Riley, Jr., and K. H. Sandhage, (submitted to Appl. Phys. Lett.).
9. S. F. Hulbert, J. Br. Ceram. Soc. 6, 11 (1969).
10. W. Zhu and P. S. Nicholson, J. Mater. Res. 7, 38 (1992).

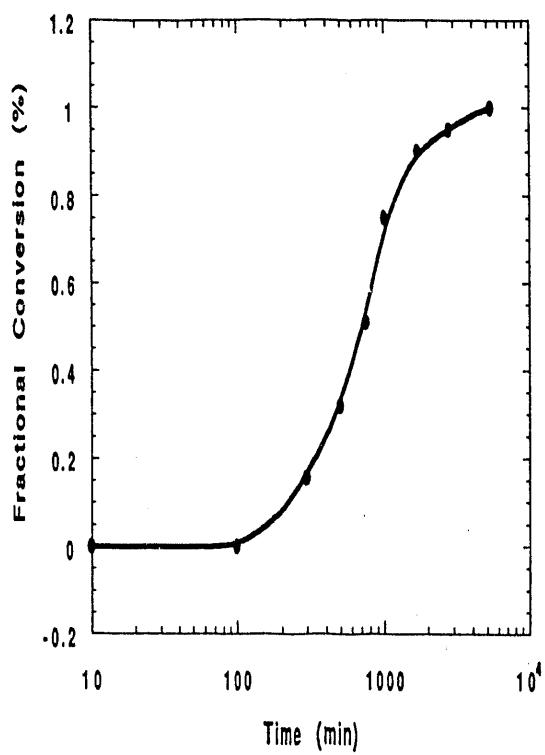


Figure 1. C-t plot of as-processed sample.

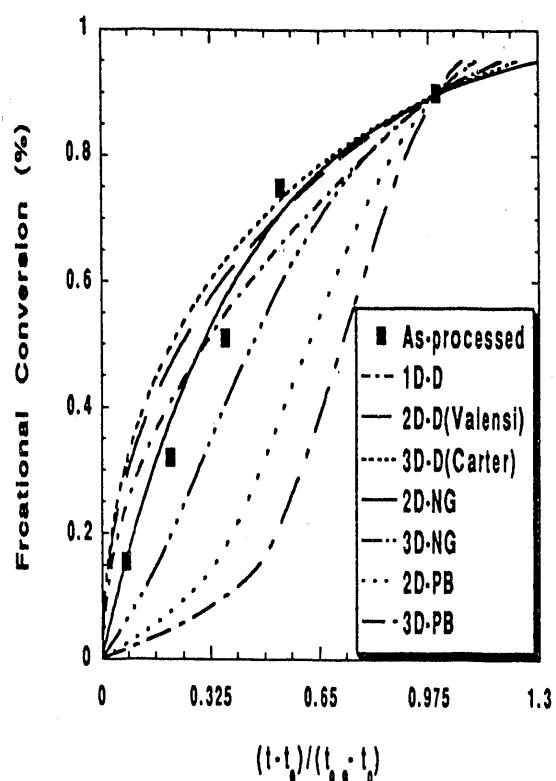


Figure 2. The comparison of reduced time ($t_r = t/t_{0.9}$) plots.

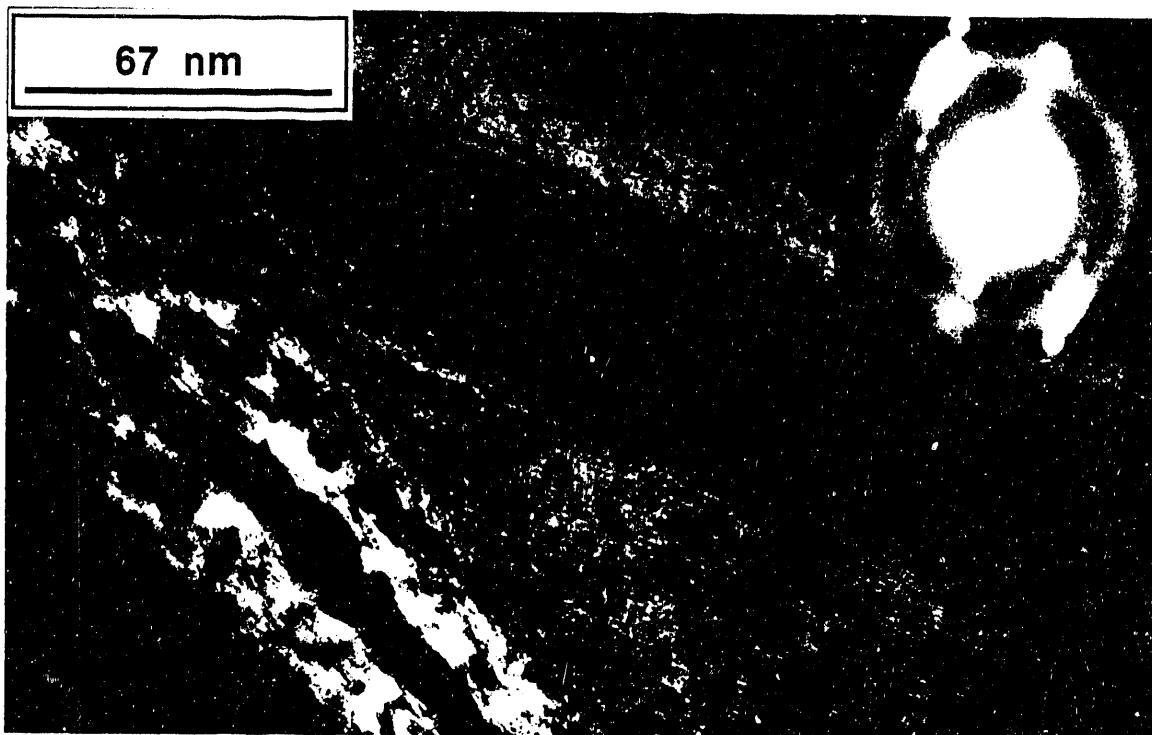


Figure 3. TEM image of a partially reacted zone.

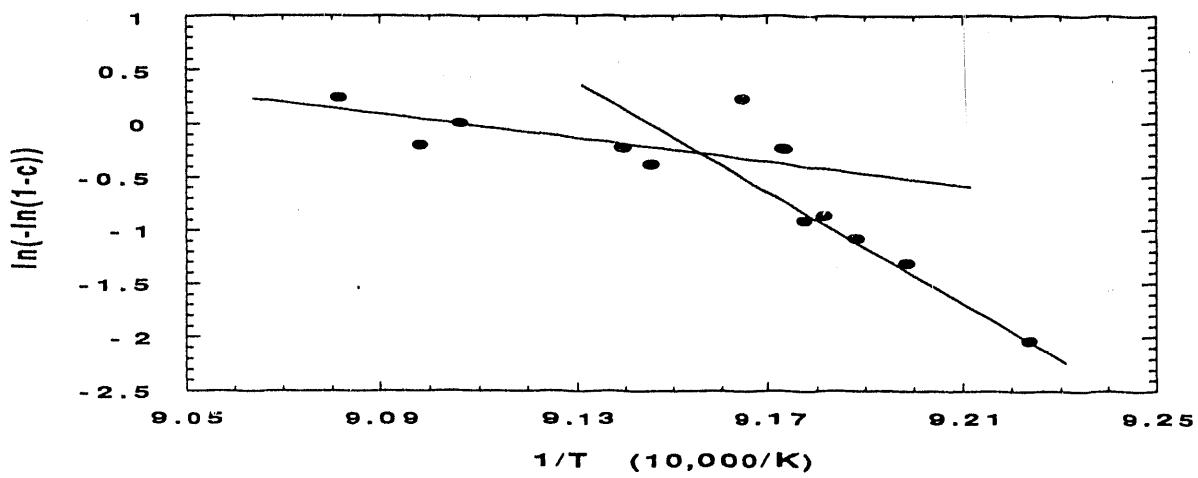


Figure 4. $\ln(-\ln(1-C))$ against $1/T$ for various temperatures using a fixed equilibration time of 1000 min.

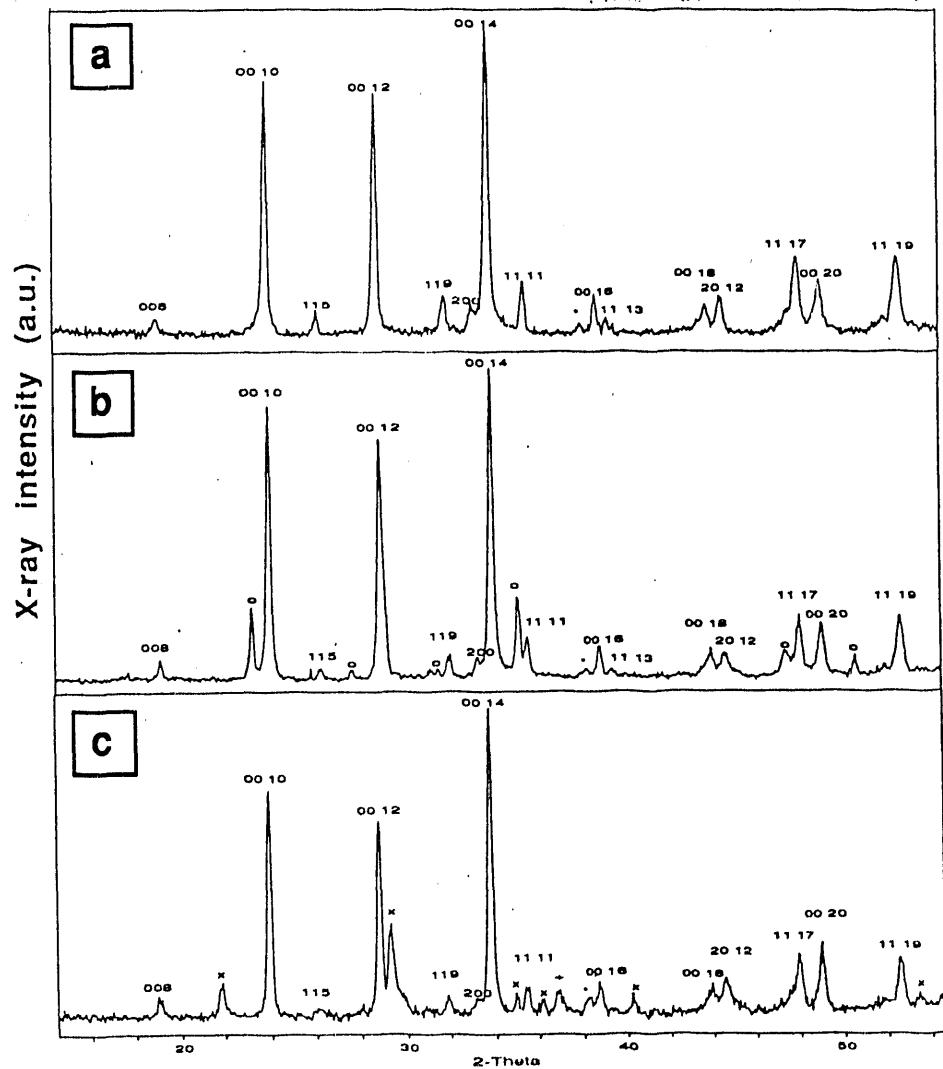


Figure 5. X-ray diffraction patterns (Cu $K\alpha$ radiation) of (a) the sample annealed at 825°C , (b) the sample annealed first at 825 and then at 800°C , and (c) the sample annealed first at 825 and then at 845°C . Peaks due to 2212 , 2201 , and Ag are indicated by (o), (x), and (*).

END

DATE
FILMED
7/20/92

