

MASTER

UCRL- 86691
PREPRINT

CONF-811117--4

A Review of 1064-nm Damage Tests of
Electron-Beam Deposited Ta_2O_5/SiO_2
Antireflection Coatings

D. Milam, F. Rainer
W. H. Lowdermilk and J. E. Swain
Lawrence Livermore National Laboratory

C. K. Carniglia and Trudy Tuttle Hart
Optical Coating Laboratory, Inc.

This paper was prepared for submittal to
1981 Boulder Damage Symposium
Boulder, Colorado
November 17, 1981

December 18, 1981

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

 Lawrence
Livermore
Laboratory

A Review of 1064-nm Damage Tests of Electron-Beam Deposited
 Ta_2O_5/SiO_2 Antireflection Coatings

D. Milam, F. Rainer, W. H. Lowdermilk and J. Swain*

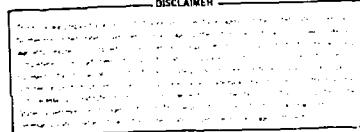
Lawrence Livermore National Laboratories
P.O. Box 5508, L-470
Livermore, California 94550

and

UCRL--86691

C. K. Carniglia and Trudy Tuttle Hart

DE82 010405


Optical Coating Laboratory, Inc.
P.O. Box 1599
Santa Rosa, California 95402

ABSTRACT

Damage tests of Ta_2O_5/SiO_2 antireflection films deposited under a variety of conditions showed that thresholds of films deposited at 175 C were greater than thresholds of films deposited at either 250 C or 325 C. Deposition at high rate and low oxygen pressure produced highly absorptive films with low thresholds. Thresholds did not correlate with film reflectivity or net stress in the films, and correlated with film absorption only when the film absorption was greater than 10^4 ppm. Baking the films for four hours at 400 C reduced film absorption, altered net film stress, and produced an increase in the average damage threshold.

*Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

DISCLAIMER -

1064-nm damage test results are preliminary

1. Introduction

This study was conducted to determine the influence of deposition parameters on laser damage thresholds of silica/tantala antireflection (AR) coatings, and to determine what, if any, correlation exists between damage threshold and 1) the substrate material and the method of substrate polishing, 2) the net film stress, 3) the average absorption of the film, and 4) the reflectivity of the film.

2. Samples

The samples were four-layer silica/tantala AR films deposited by electron-beam evaporation. An undercoat¹ layer of silica with an optical thickness of a halfwave at 1064-nm was deposited between the AR film and the substrate.

Three sets of coatings were produced. The first set (A) of coatings was deposited in separate runs under each of eighteen different deposition conditions corresponding to the unique combinations of three deposition temperatures (175 C, 250 C and 325 C), three values of oxygen pressure during the deposition of the tantalum layers (0.5×10^{-4} , 1.0×10^{-4} and 2.0×10^{-4} Torr) and two rates of deposition (1.5 Å/sec and 5 Å/sec). In each run, coatings were deposited on two fused silica substrates to be used for damage samples, and on thin fused silica substrates to be used in measurements of coating stress and absorption. These eighteen runs were then repeated to provide information on the reproducibility of the results. These repeat samples constitute the second set (B) of coatings.

The third set (C) of samples was fabricated after damage tests of coatings in sets A and B indicated that the optimum deposition parameters were a substrate temperature of 175 C, an oxygen pressure of 1×10^{-4} Torr, and a rate of 1.5 Å/sec. Using these deposition parameters, three additional coating runs were made. In each of these runs, coatings were deposited onto two conventionally polished fused silica substrates, two conventionally polished BK-7 glass substrates, and two bowl-feed polished BK-7 substrates.

Substrates were made of Suprasil II fused silica (a product of Amersil, Inc.) or PH-3 quality BK-7 glass. Bowl-feed polishing was done by Optical Coating Laboratory, Inc. In the bowl-feed process, the slurry is recirculated and breaks into successively finer particles.² Details of the process are proprietary and may vary among vendors. Conventional polishing was done by Zygo, Inc., using standard fresh-feed procedures specified by LLNL for high power laser components.

3. Data and Discussion

Laser-damage thresholds were measured³ with 1-ns, 1064-nm pulses focused to provide an approximately Gaussian beam which was 2.5 mm in diameter at the sample surface. Each test site on a sample was irradiated once. The sites were examined and photographed before and after irradiation, using a Nomarski microscope at a magnification of 100 X. Damage was defined to be any permanent alteration of the surface that was detectable by the Nomarski inspection.

For each shot, we recorded the beam profile and the pulse energy, and computed the peak on-axis fluence. Threshold was defined to be midway between the lowest fluence that caused damage and the highest fluence that caused no damage.

Damage thresholds for samples in sets A and B are shown in Table 1. Films deposited at 175 C had thresholds that were generally greater than thresholds of films deposited at 250 C or 325 C. The films with the lowest thresholds were those deposited at the greatest rate (5 Å/sec) and lowest oxygen pressure (0.5×10^{-4} Torr).

Thresholds for samples in set C are given in Table 2 and summarized in Table 3. For both fused silica and BK-7 substrates, thresholds were greatest for films deposited on bowl-feed-polished surfaces.⁴

The absorption and net stress of the films in sets A and B were determined by measurements made on thin witness samples that were coated in each run. Film absorption was measured by laser calorimetry.⁵ Net stress was determined by using a Fizeau interferometer to measure stress-induced deformation⁶ of the witness. Measured values of stress and absorption are given in Table 4. Absorption was largest for films deposited at the higher rate and at low oxygen pressure, which suggests that the absorption was due to incomplete oxidation of the film materials. Net stress was greater in films deposited at 175 C than in films deposited at either 250 C or 325 C, but not strongly dependent on either deposition rate or oxygen pressure.

After these initial tests, we baked a subset of the films in air for four hours at 400 C and remeasured the damage threshold, absorption, and stress. Values measured before and after baking are shown in Table 5.

As a result of the bake, stress was reduced in magnitude and converted from compressive to tensile. Absorption was greatly reduced in some films and thresholds were, on the average, slightly increased. However, inspection of the data in Table 5 indicates slight, if any, correlation between thresholds and either net stress or film absorption in either baked or unbaked films.

Finally, a Beckman DK2A two-beam spectrophotometer was used to measure the reflectance of each film in sets A and B. Reflectance values ranged from 0.01 to 0.18 percent except for one film with large absorption whose reflectance was 0.33 percent. This demonstrates that, low reflectance can be obtained in films deposited under a variety of deposition conditions; however, measurement of reflectance does not identify films with high damage thresholds.

4. Conclusions

Thresholds of silica/tantala antireflection films deposited by electron-beam evaporation on bowl-feed polished silica substrates were greatest when the films were deposited at low temperature (175 C) at low rate (1.5 \AA/sec), and in the presence of adequate oxygen (1×10^{-4} Torr). Thresholds did not correlate with the measured net stress or the film reflectance, and correlated with film absorption only when the film absorption was greater than 10^4 ppm. Baking films for four hours at 400 C reduced film absorption, altered film stress, and produced some increase in the average damage threshold.

We are grateful to S. E. Peluso and G. Murphy for assistance in maintaining and operating the laser damage facility, to F. Robinson and W. P. Klapp, who deposited the coatings, to G. W. Dodds for making calorimetric measurements of film absorption, and to T. Janssen for assistance in preparation of the manuscript.

References

1. Apfel, J. H.; Enemark, E. A.; Milam, D.; Smith, W. L.; and Weber, M. J., The Effects of Barrier Layers and Surface Smoothness on 150-ps, 1.064- μm Laser Damage of AR-Coatings on Glass; *Laser-Induced Damage to Optical Materials: 1977*, proceedings of the 1977 Boulder Damage Conference, NBS Spec. Publ. 509, p. 255-260 (1977).
2. Dietz, R. W.; and Bennett, J. M., Bowl-feed Technique for Producing Supersmooth Optical Surfaces; *Appl. Opt.*(5): 881-882; 1966.
3. Lowdermilk, W. H.; and Milam, D., Laser-Induced Surface and Coating Damage; *IEEE J. Quant. Elect.* QE-17; 1888-1903; 1981.
4. Lowdermilk, W. H.; Milam, D.; and Rainer, F., Damage to Coatings and Surfaces by 1.06- μm Pulses; *Laser-Induced Damage to Optical Materials: 1979*, proceedings of the 1979 Boulder Damage Conference, NBS Spec. Publ. 568, p. 391-403 (1980).
5. Allen, T. H.; Apfel, J. H.; and Carniglia, C. K., A 1.06- μm Laser Absorption Calorimeter for Optical Coatings; *Laser-Induced Damage to Optical Materials: 1978*, proceedings of the 1978 Boulder Damage Conference, NBS Spec. Publ. 541, p. 33-36 (1978).

6. Ledger, A. M.; and Batista, R. C., Intrinsic and Thermal Stress Modeling for Thin-Film Multilayers; Laser-Induced Damage to Optical Materials: 1977, proceedings of the 1977 Boulder Damage Conference, NBS Spec. Publ. 509, p. 230-244 (1977).

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government thereof, and shall not be used for advertising or product endorsement purposes.

Table 1.

Damage Thresholds (1-ns, 1064-nm) of Ta_2O_5/SiO_2 AR coatings with $\lambda/2 SiO_2$ undercoats deposited onto bowl-feed polished fused silica at three substrate temperatures, three oxygen pressures, and two deposition rates.

Deposition Rate (\AA/s)	O_2 Pressure $\times 10^{-4}$ Torr	Substrate Temperature of 175 C		Substrate Temperature of 250 C		Substrate Temperature of 325 C	
		Sample*	Threshold (J/cm^2)	Sample	Threshold (J/cm^2)	Sample	Threshold (J/cm^2)
1.5	0.5	A-1a	13.0 \pm 3.0	A-4a	7.1 \pm 0.7	A-7a	6.6 \pm 0.7
	"	A-1b	9.6 \pm 1.0	A-4b	6.6 \pm 1.0	A-7b	6.8 \pm 1.0
	"	B-1	9.0 \pm 1.4	B-4	5.7 \pm 1.3	B-7	3.5 \pm 0.4
"	1.0	A-2a	18.7 \pm 1.9	A-5a	6.9 \pm 0.7	A-8a	4.7 \pm 0.5
	"	A-2b	14.9 \pm 1.5	A-5b	8.0 \pm 0.8	A-8b	8.1 \pm 0.8
	"	B-2	10.3 \pm 1.0	B-5	6.1 \pm 1.4	B-8	6.3 \pm 0.7
"	2.0	A-3a	12.9 \pm 1.4	A-6a	6.7 \pm 0.7	A-9a	6.6 \pm 0.7
	"	A-3b	9.5 \pm 1.5	A-6b	11.0 \pm 1.1	A-9b	-
	"	B-3	11.1 \pm 1.2	B-6	7.3 \pm 0.9	B-9	5.8 \pm 0.9
5.0	0.5	A-10a	7.1 \pm 0.8	A-13a	2.2 \pm 0.3	A-16a	1.8 \pm 0.6
	"	A-10b	6.8 \pm 0.9	A-13b	3.0 \pm 0.4	A-16b	-
	"	B-10	4.9 \pm 1.3	B-13	6.0 \pm 0.6	B-16	3.9 \pm 0.5
"	1.0	A-11a	6.7 \pm 1.0	A-14a	5.3 \pm 0.5	A-17a	5.4 \pm 0.7
	"	A-11b	6.9 \pm 0.7	A-14a	8.0 \pm 0.8	A-17b	5.5 \pm 0.6
	"	B-11	9.0 \pm 1.0	B-13	6.9 \pm 0.9	B-17	5.9 \pm 0.8
"	2.0	A-12a	11.3 \pm 1.1	A-15a	9.5 \pm 1.4	A-18a	6.5 \pm 0.6
	"	A-12b	9.3 \pm 1.2	A-15b	8.5 \pm 0.8	A-18b	6.4 \pm 0.6
	"	B-12	5.5 \pm 1.0	B-15	5.1 \pm 0.5	B-18	5.5 \pm 0.8

*Samples are designated by a symbol which indicates the coating set (A or B), the particular coating run (1 through 18), and an additional designator (a or b) to distinguish two parts made in a single coating run.

Table 2

Damage thresholds (1-ns, 1064-nm) of Ta_2O_5/SiO_2 AR coatings with $\lambda/2$ SiO_2 undercoats deposited on three types of substrates at $T = 175$ C, Rate = 1.5 Å/sec, and O_2 pressure = 1.0×10^{-4} torr. Eighteen coatings were made in three separate runs.

Sample*	Substrate Material	Substrate Polish	Damage Threshold (J/cm ²)
C1-a	fused silica	conventional	9.2 \pm 0.9
C1-b	"	"	6.8 \pm 1.3
C1-c	BK-7	"	5.5 \pm 0.9
C1-d	"	"	8.5 \pm 1.2
C1-e	"	bowl feed	6.3 \pm 0.6
C1-f	"	"	9.0 \pm 1.0
C2-a	fused silica	conventional	5.8 \pm 1.0
C2-b	"	"	3.7 \pm 0.6
C2-c	BK-7	"	7.0 \pm 0.8
C2-d	"	"	5.8 \pm 0.6
C2-e	"	bowl feed	10.2 \pm 1.0
C2-f	"	"	13.1 \pm 1.3
C3-a	fused silica	conventional	9.4 \pm 1.0
C3-b	"	"	11.4 \pm 1.2
C3-c	BK-7	"	6.0 \pm 0.8
C3-d	"	"	7.7 \pm 0.8
C3-e	"	bowl feed	7.7 \pm 0.8
C3-f	"	"	11.3 \pm 1.2

*Sample designation indicates the coating run (C1, C2 or C3) and the particular substrate (a-f).

Table 3.

Summary of damage threshold data (1-ns, 1064-nm) for Ta_2O_5/SiO_2 AR coatings with $\lambda/2$ SiO_2 undercoats deposited on four types of surfaces. ($T = 175$ C, rate = 1.5 Å/sec, O_2 pressure = 1×10^{-4} Torr)

Material	Polish	Number of Samples	Median Threshold (J/cm ²)	Range of Observed Thresholds (J/cm ²)
fused silica	bowl-feed	3	14.9	10.3 - 18.7
BK-7	"	6	9.6	6.3 - 13.1
fused silica	conventional	6	8.0	3.7 - 11.4
BK-7	"	6	6.5	5.5 - 8.5

Table 4.

Coating absorption and net coating stress measured from witness samples coated in the eighteen coating runs comprising set A.

Deposition Rate (Å/sec)	Substrate Temperature (°C)	O ₂ Pressure (x10 ⁻⁴) Torr	Absorption Set A	(ppm) Set B	Net Stress Set A (KPSI)	Set B
1.5	175	0.5	100	67	50	46
"	"	1.0	365	166	49	48
"	"	2.0	91	79	34	44
"	250	0.5	573	88	48	45
"	"	1.0	54	41	48	45
"	"	2.0	27	46	37	41
"	325	0.5	308	1770	37	47
"	"	1.0	38	22	38	40
"	"	2.0	26	29	-	46
5.0	175	0.5	2770	547	53	61
"	"	1.0	1730	1030	53	62
"	"	2.0	2180	1390	53	57
"	250	0.5	9450	4620	-	52
"	"	1.0	294	898	47	47
"	"	2.0	2240	46	49	48
"	325	0.5	23000	2300	26	25
"	"	1.0	39	44	39	-
"	"	2.0	27	692	49	44

Table 5.

Damage thresholds (1-ns, 1064-nm), net stress and absorption for fourteen Ta_2O_5/SiO_2 AR coatings measured before and after the coatings were baked in air for four hours at 400 C.

Sample*	Rate (\AA/sec)	Deposition Temp (C)	O_2 Pressure ($\times 10^{-4}$ Torr)	Thresholds (J/cm^2) pre-bake	Thresholds (J/cm^2) baked	Net Stress*(KPSI) pre-bake	Net Stress*(KPSI) baked	Absorption (ppm) pre-bake	Absorption (ppm) baked
A-1a	1.5	175	0.5	13.0 \pm 3.0	17.4 \pm 2.0	50	-12	100	16
A-3a	"	"	2.0	12.9 \pm 1.4	20.1 \pm 2.0	34	-1	91	20
A-4a	"	250	0.5	7.1 \pm 0.7	4.7 \pm 0.5	48	-16	573	22
A-5a	"	"	1.0	6.9 \pm 0.7	7.6 \pm 0.8	48	-13	54	22
A-6a	"	"	2.0	6.7 \pm 0.7	12.7 \pm 1.3	37	-1	27	25
A-7a	"	325	0.5	6.6 \pm 0.7	6.8 \pm 0.7	37	-14	308	23
A-8a	"	"	1.0	4.7 \pm 0.5	5.0 \pm 0.8	38	-15	38	30
A-10a	5.0	175	0.5	7.1 \pm 0.8	8.4 \pm 0.8	53	-17	2770	43
A-11a	"	"	1.0	6.7 \pm 1.0	9.0 \pm 1.0	53	-16	1730	31
A-12a	"	"	2.0	11.3 \pm 1.1	13.0 \pm 1.3	53	-10	2180	12
A-14a	"	250	1.0	5.3 \pm 0.5	3.9 \pm 0.7	47	-20	294	41
A-15a	"	"	2.0	9.5 \pm 1.4	4.9 \pm 1.2	49	-18	2240	30
A-17a	"	325	1.0	5.4 \pm 0.7	5.6 \pm 0.6	39	-14	39	26
A-18a	"	"	2.0	6.5 \pm 0.6	6.1 \pm 0.8	49	-13	27	11

* By convention, a positive value indicates compressive stress and a negative value indicates tensile stress.