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RICHTMYER-MESHKOV INSTABILITIES IN STRATIFIED FLUIDS*

Karnig 0. Mikaelian

Lawrence Livermore National Laboratory
University of California

Livermore, California 94550

Abstract

We present an analytic theory of Richtmyer-Meshkov instabilities in an
arbitrary number N of stratified fluids subjected to a shock. Following our
earlier work an Rayleigh-Taylor instabilities, the theory assumes
incompressible flow in which a shock is treated as an impulsive acceleration,
g =Av St - rs), Av being the jump velocity induced in the system
by a shock at time Tge We discuss the special cases N =2 and N = 3, and
illustrate both Rayleigh-Taylor and Richtmyer-Meshkov instabilities by

examples patterned after Inertial Confinement Fusion implosions.

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.



I.  INTRODUCTION

The Ray]eigh-Taylor‘]‘2 instability occurs in svstems undergoing a
constant acceleration, while the Richtmyer-Meshkov3’4 instability occurs in
systems which have been impulsively accelerated by a shock. For both types of
instabilities the classical case is a system of two semi-infinite fluids of
densities Py and Pos with perturbations of wavelength X at their
common interface. If the acceleration is constant (R-T case) then these

perturbations grow exponentially in time,
n/mlo) = e , y = /gkA (R-T case) (1)

where g 1s the acceleration directed from Py tc oy, k = 2n/x, and
A = (pz - p])/(p7 + o]) is the Attwood number. If the acceleration is
impulsive (R-M case) then the perturbations grow linearly in time,

n/mo) =1 +vy1 , vy = AvkA (R-M case) (2)

where Av is the jump velocity caused by the passage of a shock from Ch
to Py In Egs. (1) and (2) n is the amplitude of the sinusoidal
perturbations and 1 stands for time.

Equation (2), derived by Richtmyer,3 is based on the same assumptions
that go into the derivation of the classical Rayleigh-Taylor result, Eq. (1).
Both equations are valid only in the small amplitude, or linear, regime. The
fluids are assumed to be incompressible with no viscosity or surface tension,
and heat transfer is neglected. Detailed numerical calculations by
Richtmyer3 showed good agreement with Egq. (2) if the instantaneous reduction
in amplitude due to shock compression was taken into account. Experiments by
Meshkov4 confirmed the prediction that amplitudes grow linearly with time

after the passage of a shock. As the amplitude grows the Tinear approximation




and hence Eg. (2) are no longer valid: torbulent mixing takes place.
Subsequent experiments5 observed this mixing and a semi-empirical model was
developed.

Recently we generah‘zed6 the results of the classical R-T instability
to a system of an arbitrary number N of stratified fluids (see Fig. 1). In
this paper we derive the corresponding equations for the R-M instability. The
classical results, Egs. (1) and (2), will be special cases given by N = 2.

We would like to point out that our work is still based on the six
simplifying assumptions (linearity, incompressibility, etc.) that go into the
derivation of the classical Egs. (1) and (2). Our theory only extends the
simple classical density profile of two fluids with one interface to an
arbitrary density profile of N fluids with N - 1 interfaces. In actual
applications, for example in Inertially Confined Fusion (ICF) targets where
density gradients arise naturally, these six assump*ions must be kept in mind.

The plan of the paper is as follows: 1in Section Il we derive the general
equation describing how perturbations evolve in time after the passage of a
shock. In Section III we consider the special cases N =2 and N = 3. In
Section IV we make several numerical applications involving various
combinations of shocks and constant accelerations patterned after ICF
implosions. Finally, a number of comments and conclusions are given in

Section V. /

IT. DERIVATION OF THE GENERAL EQUATION

Figure 1 shows the system and some of our notation: N fluid layers of

densities P1s Pos «xvs Dy and thicknesses t], t2’ cres tN.
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There are N - 1 interfaces and n; is the amplitude of perturbations (of

wavelength ) ) at the interface between p, and p; , 4.

We showed in Ref. 6 that there are N - 1 eigenvalues Yy and

associated eigenfunctions W obtained by solving

Mw=9—5-w (3)
Y

where M is a (N - 1) x (N - 1) tri-diagonal dimensionless matrix, the elements

of which depend only on kti and the ratios Di/oi Expanding in

+ ]
terms of these eigenfunctions we derived7 a general equation which describes
how the amplitude n; at interface i evolves in time:

N-1 N-1

z_] W(i,e) w'] (2,3) {nj(o) cosh(y

T)
1] L

+ [nj(o)/ v, 1 siah(y )} (4)
(for more details see Refs. 6 and 7). We have assumed so far that the
acceleration g is constant, so that Eq. (4) is the generalization of Eq. (1)
for the R-T case.

To obtain the corresponding equation for the R-M case, we use a technique

similar to the one used by Richtmyer3 in obtaining Eq. (2). From Eq. (4),
—L— =g 1 5 TZW(.L) W (1.3) {n(o) coshly,T)

+ [ﬁj(o)le] sink(y )} (5)

where we have defined yg = grf. With this definition, T, is

independant of g since yg is proportional to g (see Eg. (3)).
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Following Ref. 3 we represent a shock by an impulsive acceleration,
i.e., let g =avS(r - TS), where T is the shock arrival time. ~
This implies that g = 0 immediately before (t < TS) and immediately after
(1 > TS) the shock. Actually we can treat the case where the shock is
immediately preceded and/or followed by a finite acceleration (see Section IV)
but in this Section we treat the case of an isolated shock for clarity.

Substituting g = Av 8§ (v - TS) in Eg. (5) and integrating twice,

we get
. NN K
nilt) =n,(0) +n;(o)r +av I Ty WOLLW T (2,3) x
g=1 = -
{Wﬁo)+6ﬂohJ {1 —TJ 8(t -TJ . (6) l

This is the equation which generalizes Eq. (2) for the case of the R - M
instability.

Before considering special cases and applications of Eg. (6) we note a
few points. As in Eq. (4) we see that all the modes, indicated by the
summation over L, contribute to the time evolution of ni(r) at each
interface i =1, 2, ..., N - 1. Similarly, the initial conditions at all the
interfaces, indicated by the summation over j, contribute to ”1(T)‘

Note that since nj(o) + ﬁj(o)-rS = nj(rs), it is actually

the instantaneous values of ”j at shock time Ty that influence

ni(T) (of course, this instantaneous value is related to the initial
conditions).

As seen from Eq. (6), the effect of the shock is ta change the rate of
change dni/dt: the amplitude n; itself is not “.imediately affected by the

shock: ni(TS+) = ”i(Ts-) where Toy refer to times immediately before and



after the shock. The amplitude remains the same but its slope is changed
suddenly so that ﬁi(Ts+) 7 hi(Ts—)' As discussed in the above paragraph, this
change depends on the instantaneous values of the amplitudes at all the
interfaces including the one in question (the sum over j includes j = i).

We now consider special cases of Eq. (6) which illustrate the above

remarks and also have interesting properties.
I11. SPECIAL CASES

This is the classical case considered by Richtmyer.3 The density
profile is shown in Fig. 2a. Since there is only one interface and only one

term in the sum indicated in Eq. (6), we drop the subscripts. Of course

2

= Yglassical/g =kA = kloy - 09)/lo, *pq), and ve get

02“0_]_ +-
o, * p]>{n(0) n(O)TS} It - TS} o(t -1

)

a(e) = nl0) + nlo) + av k< S

We are considering a system of two semi-infinite fluids moving under the
action of an isolated shock: between T =0 and t = T the system is coasting
at some constant velocity v(o). At t = T a shock induces a jump velocity Av
and after t = T the system coasts with velocity v{o) + Av. The jump occurs
instantiﬁeous1y att = Tg- Perturbations at the interface, which may have been
increasi&g/decreasing linearly with time until ¢ = Tgs continue to evolve
linearly in time but with a new slope given by n(o) + AVkA”(Ts)' If the

initial conditions read n{o) = T = 0, then

nit)mio) =1 + avkAr (R-M case) (8)

which agrees with the result derived in Ref. 3.
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It is clear from Eq. (8) that, following a shock, perturbation amplitudes
can increase or decrease depending on the sign of AvA. If the shock
proceeds from low to high density (AvA > 0) then perturbations increase,
while a shock proceeding from high to low density (AvA < 0) causes
perturbations to decrease. However, if the system continues to coast,
perturbations in the second case simply vo through zero, i.e., change phase,
and continue to grow in absolute magnitude.

For the Rayleigh-Taylor case of constant acceleration g, Eq. (8) is

replaced by

n(t)/m(o) = cosh(/kgA 1) (R-T case) (9)

again assuming n{o) = 0. For gA < 0, j.e., high density fluid
accelerating low density fluid, the system is stable and n(r) oscillates
in time and never grows any larger than its initial value as long as the
system centinues to accelerate in the same direction. We conclude that while
the distinction between stable and unstable cases gA < 0 and gA> 0 is
clear for R-T instabilities, tnat distinction becomes somewhat blurred for
R-M instabilities where perturbations grow in magnitude for both cases AvA > 0
and AvA < Q.

We now take advantage of Eq. (7), which is general and accommodates
arbitrary initial conditions, to analyze all possible cases of how n(t)
can evalve after the passage of a shock at 1 = Tg- There are 15
possibilities, not all of which are allowed for a given sign of AvA. These
are shown in Fig. 3. For a "stable" shock, i.e., AVA < 0, Fig. 3a - 3i
are allowed while the rest are not allowed. For an “unstable” shock, i.e.,

AvA > 0, only Figs. 31 - 30 are allowed. The two simplest cases with

n(o) = 0 are shown in Fig. 3a and Fig. 3j; the rest are obtained by



considering & positive or negative ﬁ(o) and short or long shock arrival time
Ty One may imagine, for example, that the initial conditions were set by

a first shock at t = 0 and the perturbations evolve until a second shock
arrives at t = Tg- The effect of this second shock is to change n by

an amount equal to Avan(rs).

We will discuss only a few out of the 15 cases shown in Fig. 3. Figure
3i is the case n(TS) = 0 in which case neither a "stable" shock nor an
“unstable" shock has any effect on the perturbation. Of course, this happens
if the second shock is timed to arrive exactly at T T - n{o)/n(o) .

Perhaps the more interesting cases are shown in Figs. 3c, 39 and 3n,
where the amplitude is "frozen out" and remains constant after the shock.
Obviously this 1s achieved when the slope change caused by the second shock
exactly cancels the slope set by the previous one. Timing must be such that
the interval time between the two shocks is

* _nlo) + avkAn(
s . OAvaﬁzo?n ol . (10)

1

It is interesting to point out that this "freezing out" of the amplitude can
be achieved with a "stable" shock (AvA < 0) in both cases of n{o) > 0 or
n(o) < 0, as indicated in Figs. 3c and 3g, while an "unstable" shock (AvA > 0)
can freeze out an amplitude only if it previously was decreasing, i.e.,
n(o) < 0, as indicated in Fig. 3n.

Finally, we point out that it is, unfortunately, impossible to "freeze
out" an amplitude as it passes through zero.

B, N=3
The system consists of three fluid layers of densities P1s O and

P3s with t] = t3 = w. The eigenvalues and eigenfunctions for

-7-
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arbitrary densities were given previouslyﬁ’7 and will not be repeated here.
Instead, we will consider the more specialized case of Py =p3 = 0,

i.e., a single fluid with two free boundaries as shown in Fig. 2b. This
system was treated by Tay]or2 for the case of a constant acceleration.

As indicated in Fig. 2b, we let p and t denote the density and
thickness respectively of the "middle" layer (p2 = p and t2 =t), The
results are independent of p since the eigenvalue equation, Eq. (3),
involves only the rati,s of densities. Furthermore, t appears only in the
combination kt.

The two eigenvalues are rf = -FZ =k, and the

2
eigenfunctions are W(1, 1) = W(2, 2} =1, W(1, 2) = W(2, 1) =e™™" The

elements of the inverse matrix Wl are

R D
1-e
-kt
w]u,z)ﬂﬂ(z,n:-]eW : (1)
-e

Substituting these expressions in Eq. (6) we obtain

1) = my(o) +nqlofe + L5 {1+ ) ny(0) 4y o))

_ Ze-kt(

nz(o)-*ﬁz(ohs)}h -'rs)e(T -TS) s

nalt) =nyl0) +nylok - TACZV;T {1+ &) (n,00) +n,y(0)ry)

) ot -Ts).

(12



Clearly, nZ(T) = n](r) with 1 ++ 2 and Av+ - Av. Our convention
is that a positive Av indicates a shock directed from N to CPY
At short wavelengths )\ or, equivalently, at large thicknesses t, i.e.,
kt >> 1, the two interfaces decouple and the two Egs. (12) and (13) each
reduce to Eq. (7) with an Attwood number of + 1. In the opposite limit of
long wavelength or small thickness t, i.e. kt << 1, the two interfaces "see”
each other and the evolution at one interface depends very much on the other.
Let us consider the case ﬁ](o) = ﬁz(o) = ”2(0) =1, =0,

The system is shaown in Fig. 4: initially only one of the free surfaces is

perturbed with amplitude Mg while the other surface is perfectly smooth.

Then,
n -
perturbed _ 1+ Avk (1+e 2kt)T , (18)
n -2kt
0 1-e
n -kt
smooth Avke
- 2 e T (15)
0 1-e

The corresponding equations for the case of R-T instability, i.e., g =

constant, are

n . - —
perturbed _ 12kt {Cosh(/gk ) - e 2K oo T)} , (16)
Mo 1-e
n -kt _ —
smeath _ _e i {coshﬁ/gk 1) - cos{/gk 1) } . (17)
L 1-e

Egs. (14)-(17) illustrate how an initial perturbation at one interface
can induce perturbations at the other interface. The convention in Egs.
(14)-(17) is that a positive Av or g indicates a shock or a constant

acceleration directed from the perturbed surface towards the smooth surface.




In this case perturbations at both surfaces grow with the same phase as the
initial amplitude Noe

For a shock or a constant acceleration in the opposite direction, i.e.,
from a smooth surface towards a perturbed surface, Av or g is negative.
Equations (14)-(17) show that in this case perturbations at the initially
smooth surface develop in phase opposite to N, while the perturbations at
the other surface decrease, go through zero, and eventually grow in phase
opposite to their original amplitude Tig: In the case of R-M instability,
the decrease is linear in time, while in the case of R-T instability, the
amplitude may oscillate a few times (depending on the value of kt} before it
grows large with a phase opposite to No*

It is ciear that even in this simple case of 3 single fluid with two free
surfaces the perturbations at each surface can evolve in a rather complicated
manner. This is particularly true if the system is subjected to a series of
shocks or accelerations in different directions. We illustrate with a number

of numerical applications in the next Section.

IV. APPLICATIONS

In this Section we illustrate the numerical application of our technigue
with the case N = 5. We have written a code that can handle an arbitrary
number of fluid layers undergoing an arbitrary velocity history, and a brief
description of it will be useful.

The input tglfhe code consists of the following four items: (i) the
density profile, which is specified as densities (p], Pos +res pN)

and thicknesses (t], ty «eey ty); (i) the wavelength x. Using the

ratios Di/pj and ti/x the code calculates N - 1 eigenvalues Y

-10-



and their associated eiyenfunctions W(i, %), and then inverts the matrix W.

Next we need (iii) the velocity history of the system, which must consist of

e I P Y TR PR T ey

either constant or impulsive accelerations - this will tell the code to use
Eg. (4) or Eg. (6) to evolve the perturbations in time. Finally, we need (iv)
the initial conditions “i(o) and ﬁi(o), the initial amplitude and its

initial rate of change at each interface i.

The output of the code consists of ni(T), the amplitude of the
perturbation at each interface i at time t. We also keep track of the
distance covered by the system. @

We now turn to a specific example with N = 5. The densities are (0, 1,
2, 4, 0) and the thicknesses are {», t/3, t/3, t/3, »). This density

profile is shown in Fig. 2c. It was chosen for two reasons: first, it is

representative of the density profile in ICF capsules where a shell of i
thickness t is driven from one side by low density plasma and compresses low
density fuel on the other side. With this picture in mind, we will call the
first interface, betweenp =0 and p = 1, the "outer surface" of the

shell, and the last interftace, between p = 4 and p = 0, will be called the

“inner surface". The reader must keep in mind that the geometr ' assumed 1in

all our calculations is planar (see Fig. 1) and not spherical as suggested by
the terms "inner" and "outer".

The second reason for choosing this admittedly simple density profile is
that we can obtain analytic expressions for its four eigenvalues. Two of the
eigenvalues are given by Yz/gk =+ 1 and - 1, and the other two are

2

y% _S(L+ST)(R® - 1) £ SIR - 1] /R
o R+ R +1+S°(R +1)°

(18)

-11-



where S = sinh(kt/3) and T = tanh(kt/6), and R is the common ratio of
densities R =, /05 = 03/0, which is equal to 2 for the

density profile shown in Fig, 2c. We used these equations as a check of our
numerical calculation.

We have not specified the units for the densities since an gverall scale
is immaterial: the density profile (0, 1, 2, 4, 0) is equivalent, for
example, to (0, 3, 6, 12, 0).

For our next input, the wavelength, we chose X = 3t. Several
considerations led to this choice: as expected, very long (A >> t)
wavelength perturbations grow too slowly, while very short (A << t)
wavelength perturbations grow very fast. For reasonable assumptions on
surface finish, as discussed below, the very short wavelength perturbations
grow so large that they are well outside the linear regime where our theory is
applicable. Furthermore, the time evoiution of very short wavelength
perturbations is given to a good degree of accuracy by the classical
expressions, Eqgs. (1) and (2), applied at each interface independently. The
interaction among the various interfaces, which is the main feature of our
approach, becomes dominant at relatively longer wavelengths.

For our initial conditions, we chose the initial perturbations to be
statjonary, i.e., ﬁ](o) = 52(0) = 53(0) = 54(0) = 0. As to
the amplitudes themselves, we chose n,(0) #nzl0) = 0 and ny(o) =
(o) = nylo) = n,

Noutside inside
start with no perturbation within the fluids and with equally rough initial

(0) =n{o), that is we chose to

surface finish n{o) on the "inside" and "outside" surfaces. As the surface

perturbations n; and n, evolve in time the fluid develops internal

-12=



perturbations, i.e. N, and Ny Grow from their initial zero value to
rather large values as they are driven by the surface perturbations.

~s another possible set of initial conditions we chose all ”i(o) =0
except n4(o), corresponding to a shell whose outer surface is prlished
perfectly smooth and which starts with perturbations only on the inside. We
found that this did not necessarily suppress the late time growth of the
perturbations.

The Tinal input, the velocity history, consisted of five different cases
shown as diagram (a} in Figs. 5 to 9. These velocity histories illustrate
possible ICF capsule implosions though, as mentioned earlier, the geometry
assumed in Eqs. (4) and (6) is planar.

A1l our velocity histories are combinations of shocks and constant
acceleraiions. In all cases we assumed that a final shock at t = 5 brings
the shell to rest (v = 0), though of course in a capsule the shell would slow
down, turn around and move out. Our velocity histories represent fuel burn at
about T = 5, though we will continue to evolve our equations up tot = 6
to show the effect of a large shock which proceeds from "inside" to the
"outside".

We have chosen our unit of length by setting t = 1. The units of time
are arbitrary. In Figs. 5-9 negative velocity indicates motion directed
“inward", i.e., fromp =1 top = 4. An example will clarify these
points: a shell 10 um thick with perturbations of A = 30 pm on its
outer and inner surfaces is stationary at t = 0. Assume that it moves
according to Fig. 6a, and that time is measured in nanoseconds. Then at t =
1 ns the shell jumps irward with speed 20 um/ns, and immediately afterwards

accelerates inward with |g| = 20 um/ns2 until t = 4 ns, at which time it

-13-
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is moving inwards at 80 ym/ns. We will call this maximum speed its

"implosion velocity". At T = 4 ns the shell decelerates with |g| = 30

um/ns2 until T = 5 by which time its speed is reduced to 50 uym/ns. A

shock at T = 5 ns brings the shell to rest; it has covered a total distance
of 215 um.

The results of our calculations corresponding to the velocity histories .
of Fig. 5a, 6a, 7a, 8a, and 9a are shown in Fig. 5b, 6b, 7b, 8b, and 9b
respectively. In all these calculations the density profile is given in
Fig. 2c, » = 3t, and n](o) = n4(o) = n{o), with other n's and
n's equal to zero initially. In these figures we show n1(r)/n(o)
and n4(r)/n(0), the "outside" and "inside" perturbations, as functions
of time 1.

We do not show the internal perturbations, “Z(T) and n3(1),
which start from zero and by T = 5 are of the same order as the average of
n and Nge

For a number of cases we carried out a parallel calculation in which we -
used the classical equations, &qs. (1) and (2), to evolve the perturbations at
each interface. This reproduced the outs{de perturbations to within an order
of magnitude, but the inside perturbations were off by more than an order of
magnitude, and sometimes by two orders of magnitude by the time v ~ 5. Of
course, according to the classical expression Eg. (1), the inner surface,
having Attwood number -1, is stable during the inward acceleration phase and
oscillates, while according to Eq. (4) the inner surface is coupled to the L

outer unstable surface where perturbations grow and drive perturbations in the

rest of the fluid.



The coupling between interfaces is most clear at t = 5, by which time
the outer perturbation grows very large and "takes aver": the phase reversal
of this outer perturbation immediately after the last shock (which brings the
system to rest) is expected on classical grounds, since the shock, directed
from inside out, proceeds from a high (p = 1) to low (p = 0) density at
the outer surface. What is difficult to explain is the phase reversal at the
inner surface where the shcck proceeds from low density (p = 0) to high
density (p = 4). This phase reversal can be understood if we remember that
by this time the large outer perturbation controls the rest of the
perturbations; in other words, the inner perturbations reverse their phase
because the outer perturbations have.

Figures 5-9 show that by t = 5 perturbations have increased almost by a
factor of about 103. As mentioned earlier, shorter wavelength perturbations
grew even more, particularly on the outer surface, and our choice of A = 3t
was partly motivated by reasonable estimates of surface finish and how much
growth can be tolerated because our calculation breaks down when non-linear
effects come into play. Going back to our example of a shell 10 pm thick,
it is reasonable to assume an initial surface finish of n{o) » 100 &.

Growing thousand-fold this amplitude reaches n » 10 um and is barely
within the linear regime since A = 30 um. C(learly, choosing a shorter
wavelength which grows faster would have taken us well beyond the linear
regime and the validity of our theory unless, of course, we assumed a much
smaller initial amplitude.

In Figs. 5-9 three out of the four inputs are kept fixed (same density
profile, same‘wave1ength, and same initial conditions on the ni). Only

the fourth input, viz. the velocity history, is varied in Figs. 5-9. The

-15-
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growth of the perturbations clearly depends on the velocity history of the
shell, as these figures illustrate.

Finally, we show an exampie of how a perfectly smooth outer surface
develops perturbations as large as the case of an initially rough outer
surface. In Fig. 10 we show how perturbations evolve from the initial values

(o) = 0 and n.,

inside = n{o), i.e., all surfaces start

Noutside
perfectly smooth except for the inside surface. The velocity history is that
of Fig. 6a. Comparing Fig. 6b and Fig. 10b we see that an initially smooth
outer surface does not necessarily suppress the growth of perturbations at

later times - a perturbation at only one interface can act as seed for

perturbations throughout the fluid.

V.  COMMENTS AND CONCLUSIONS

(i) We ran a number of tests to check the code: first, at short
wavelengths the interfaces decouple because the off-diagonal matrix elements
of M in Eq. (3) go to zero like ]/sinh(kti), and the results agree with the

classical expressions. Second, for N = 3 the code gives the same results as

in Egqs. (12) and (13) for the case pq =03 =0. Third, the four

eigenvalues calculated by the code for the density prcfile shown in Fig. 2c
and for A = 3t are y#g = 1.447, 0.821, 0.553, and 1.4471; these numbers

agree very closely with the expressions given in the previous Section (see Eq.
(18) and the discussion preceeding it). Finally, Figs. 5 and 9 show that if
the velocity histories are sufficiently similar, then the perturbations evolve
similarly. In fact, Fig. 9 was run just to check if a series of small shocks
can imitate a constant acceleration: the velocity history shown in Fig. 5(a)

is a combination of shocks and accelerations, hence thc perturbations were

-16-



evolved using both Eg. (4) and (6), while the velocity history of Fig. 9(a)
consists entirely of shocks, and is similar to Fig. 5(a) except that the
constant acceleration between T = 2 and v = 4 is replaced by a number of

small shocks. Hence only Eq. (6) is used to evolve the perturbations, and the
result, shown in Fig. 9(b), is quite similar to Fig. 5(b).

Clearly, an acceleration history that varies continuously with time can
also be treated in this fashion by breaking it down into a series of small
shocks and constant accelerations and using the appropriate equation in each
time step.

{ii) Before applying our technigues to an actual system, one must of
course check if the assumptions of linearity, incompressibility, no heat
transfer, no viscosity and no surface tension are satisfied. The examples
treated in the previous section were inspired from ICF implosions. A number
of complex processes are involved, and no doubt our technigues will never
replace full 2D hydro calculations of the Rayleigh-Taylor instability as
reported in the 1iterature.8 Instead, our code can serve as a
post-processor code in which density profiles and velocity histories are read
from a 1D hydro code. That information, combined with reasonable estimates of
initial surface finish, is used to evolve perturbation amplitudes in time.
Such post-processing will require much less computing time and effort though
the results, of course, will not be as reliable as the full 2D hydro results
because of all the assumptions that go intc the derivation of the evolution
equations, Egs. (4) and (6).

For ICF implosions, while surface tension and viscosity are practically
absent, realistic initial amplitudes can quickly evolve into the non-linear

regine where our equations break down. Furthermore, we cannot justify the
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assumption of no heat transfer in ICF capsules since the shells are driven by
ablation. A number of ca1cu1ation59’8 indicate that ablation reduces the
growth rates for Rayleigh-Taylor instabilities, in which case we would be
overestimating the growth at the outer surface. This would have important
consequences since, as discussed in the previous Section, the inner
perturbations are driven largely by the growth of the outer perturbations. If
a mechanism stabilizes the outer surface, then we have reason to expect that
the inner perturbations also will not grow very large. We must point out,
however, that other 2D hydro ca]cu1at1‘ons]O do not show a reduction in the
growth rate and that there is no clear experimental evidence for such
stabilization.

While our calculations do not take this possible effect into acccunt,
they highlight its importance. Indeed, when we artificially put a limit of 50
on the outer perturbation, the inner perturbation also grew less.

(i11) Finally, we discuss the assumption of incompressibility. For the
case of the Rayleigh-Taylor instability it is not yet clear whether the effect
of compressibility is to cause an increase or decrease in the growth rate (see
Ref. 11). In the case of the Richtmyer-Meshkov instability the effects of
compressibility would be even more important, since real fluids invariebly get
compressed upon the passage of a shock.

One approximate remedy is to change the density profile also as a
function of time. Of course, this involves more calculations since the
eigenvalues and eigenfunctions have to be calculated all over again with each
new density profile, but in principle it can ba done within our formalism.
Another effect that has to be taken into account is the finite shock transit

time: clearly a real shock starting at the outer surface takes a finite
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period of time to break through the inner surface, while in our formalism the
system as a whcle acquires an instantaneous velocity jump,

It is difficult to estimate how much our theory suffers because of the
underlying assumption of imcompressibility. On ore hand we probably
overestimate the effect of interface coupling: an interface that has not yet
been shocked should not affect the perturbation at interfaces that have
already been shocked; but in our formalism all interfaces feel the shock
simultaneously and hence the eigenfuncticns W({i,2) are established
instantaneously. On the other hand, we probably underestimate the effect of
interface coupling because our eigenfunctions decay exponentially at long
distances, while in a compressible theory we expect them to decay as some
power law. It could be that these two opposing tendencies cancel each other
out to some extent, but at present we have no means of estimating the net
effect.

Given the assumptions that go into the derivation of the classical
expression

P2 ™ P
CPI

dn _ nAvk

Y

it is indeed surprizing that experiments and numerical calculations with
compressible fluids gave results consistent with it: Richtmyer's numerical
ca]cu]ations3 were consistent with Eg. (19) provided he used the post=-shock,
i.e., compressed amplitude and the post-shock densities in this equation. He
considered a shock proceeding from a light to a heavy fluid. Subsequent
numerical calculations by Meyer and B]ewett]2 agreed with Richtmyer's

results and, for the case of a shock proceeding from a heavy to a light fluid,

they suggested using the average of pre-shock anu post-shock ampliZudes in Eq.
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(19) (of course, for incompressible fluids these prescriptions give the same
answer since pre-shock and post-shock densities and perturbation amplitudes
are the same). Experiments by Meshkov4 were also consistent, within a
factor of ~2, with Eq. (19), and confirmed the fact that perturbations grow
linearly with time whether the shock proceeds from 1ight to heavy or from
heavy to light fluids.

Thus there is some evidence that the classical expression, in which a
shock is treated as an impulsive acceleration, does a reasonably good job for
the case N = 2. Whether our extension to arbitrary N is also reasonable

remains to be seen by new calculations and experiments.
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Fig. 1

Fig. 2

Fig. 3

FIGURE CAPTIONS

N fluid layers of density Ops vves Py and thickness t1,

. tN which are stacked in the direction of acceleration 8 = 9,
where g = constant Tor Ray?zigh-Taylor and g = Av (1 - TS) for
Richtmyer-Meshkov instabilities. Unperturbed densities are unifarm
in the x and z directions, and vary only in the y direction., The
amplitude of sinusoidal perturbations at each interface i is denoted
by n;- The wavelength of the perturbations is A.

(a) The density profile for the classical case N = 2 with one
interface. (b) The density profile for N = 3 and for the special
case py =pg = 0, Py =0 and t1 = t3 = o, t2 =t.

(c) The density profile for N = 5 with densities (0, 1, 2, 4, 0) and
thicknesses {», t/3, t/3, t/3, =). The amplitudes n

outside

and n. refer to perturbations at the first and last

inside
interfaces, respectively.

Possible evolution patterns of the amplitude for the classical case
N =2. n is the amplitude of perturbations at the interface
between P and o, {see Fig. 2a). The system is assumed to

be coasting until time Tes at which time a shock induces a jump
velocity Av. Only diagrams (a) to (i) are allowed if the shock
proceeds from a high to a Tow density. In the opposite case where
the shock proceeds from a Tow to a high density, only diagrams (i)
to (o) are allowed. It is possible to “freeze out" an amplitude as

indicated in diagrams (c), (g) and (n).

-@P=



R e

Fig. 4 The simplest case for N = 3: a fluid layer of density ¢ and

thickness t having two free boundaries (see Fig. 2b). Initially one

P R e Lt

surface is perturbed while the other is perfectly smooth.

Perturbations at each surface evolve according to Egs. (14) and (15).

Fig. 5 (a) A velocity history describing the motion of a shell whose
density profile is shown in Fig. 2(c). Negative velocities are
directed from outside to inside. The shell thickness t is chosen as
scale for length or distance. Units of time t are arbitrary.

D = j6vdT. In this case the shell covers a distance D of 12.0
timeg its thickness. (b) Evolution of perturbations at the outer
and inner surfaces of the shell, assuming the velocity history of
diagram (a). Initially the outer and inner surfaces have
perturbations of amplitudes n{o) and wavelength » = 3t.

Fig. 6 Same as Fig. 5 for a different velocity history. The system covers
a distance of 21.5 times the shell thickness.

Fig. 7 Same as Fig. 5 for a different velocity history. The distance
covered is 20.0 times the shell thickness.

Fig. 8 Same as Fig. 5 for a different velocity history consisting entirely
of shocks. The distance covered is 19.0 times the shell thickness.

Fig. 9 Same as Fig. 5 for a velocity history similar to Fig. 5a in which
the constant acceleration between 1 = 2 and t = 4 is replaced by
a series of five small shocks. Compare with Fig. 5.

Fig. 10  Same as Fig. 6 but with different initial conditions: only the

inner surface has initial perturbations; the outer surface starts

perfectly smooth., Compare with Fig. 6.




[

Fig.

1
<t
o

[




Fig. 2

-25-

Toutiide Tinside
4
L.
3
2
Lt
1 3
t
03~ 0
(c)




N W = —
: Ts T Ts T 7'5 T /s 7
! (a) (b) (c) (d)
n
Ts T
(e}

{n

TS T T, T YS T
{m) {n)
(o)

Fig. 3

-26~-



-

— npenurbed

) «— Tsmooth

Fig. 4

-27-

1
e
£




i
i

Velocity

n {r)/n o)

1000

100

10

-10

~100

TTTUUTTT I T T T
, -
. D=120 _]
- .

[=2]

TT

T

L Illﬂl] |Hll‘

IRAREA ARERA

Ay
%

gy

mTTT

RN
o —



_62-

9 By

7 {r)/n (o)

'
= 1 -
(=] ~ i = Q
Q Q — | -_ Q o
o] o o - O - (=} o o
LR ITTIIIII I IIIIHTI T lllll [RLRE T l'lﬂllll ‘I’Il‘iTUIl TTT
g
%y
%

—
— ~
g it g Db 11 Lol

Velocity
R S Y A -
| il I f i I
0 @]
- I —_—
~
n
|
| ! | J

T



_OE -

[ ‘bt

n {r)/n {0}
1
—_ ] —_
(=] - I —_ o
=] o - ; = o =}
o o o - O - o o o
Q T T L] ]IHTTFT T THII T 1 l'ﬂlll] T IHIIll T 1 TTI
=z
P —
0‘, i
N —
e
CY7
T
W —
b { p
& |
N ]
fe) ety (¢ llllllll 1 LllHlll ! phLy Illll lLllIlIIl i llllm

Velocity

b & A oW N
o7 i : I T
B o
- 1
[~}
o
. o
=
w —
Hn—
|
ol
L L

9




- lE_

g b4

000L-
00L-

o
TITTTT‘I‘T_[THHH UL

(q)

n{r)/n {o) Velocity
—
: =] 8 ! 1 1 1 ] 1
—
[T T AR R AL S T T i T Y
- —'I’ - i —
-
%, | o
> <L | = :
& S N = _
3 ® |
& ? |
|
w b .
|
i |
- -Df—— —
: !
: !
i ! .
— o —
i | ‘
| ] i
' B 1 1 !
wets b Jwe s bbb e oud o ! —




_ZE_

6 ‘Bt

000t~

n {r}/n (o)
' -
— | - Q
o — t - o Q
o o - O - o o [}
TTT URBALLLY

o L LN LR N ELRA

(q)

Qy "Ue

RERLLLL IR '

e

Velocity
1 ! ] | ! ! [} t
i) o] ~! [o)] &) o %] Ny -
< j T " !
Pow o ‘
- = I ;
i - ,
j N !
' Q
N — i
|
W — —
? ;
o r—— A
: !
{
i |
[$2] -
‘, i
! !
1 1
ol 1 | A N _



-88-

oL bty

(010]0] By

~

ooL-

mlllll T

7 {r)/n (o) Velocity
—
t - [=)
—_ 1 Y o o t 1 1 | |
S - o —_ o o o fe] ~l (o2} [4; &
[T LNLELEELILH e R LLALL N MRS T T T T T
s
a — - 1
i N
——
(4]
—
L |
e o o o m e 0 W U G5 IJ_LLI||1| i l i ! L

S 1Y

!

N N




