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Abstract 

We present an analytic theory of Richtmyer-Meshkov instabilities in an 
arbitrary number N of stratified fluids subjected to a shock. Following our 
earlier work on Rayleigh-Taylor instabilities, the theory assumes 
incompressible flow in which a shock is treated as an impulsive acceleration, 
g = Av 6 (T - T ), Av being the jump velocity induced in the system 
by a shock at time x . We discuss the special cases N = 2 and N = 3, and 
illustrate both Rayleigh-Taylor and Richtmyer-Meshkov instabilities by 
examples patterned after Inertial Confinement Fusion implosions. 
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I . INTRODUCTION 

1 2 The Rayleigh-Taylor ' i n s t a b i l i t y occurs in systems undergoing a 

constant accelerat ion, while the Richtmyer-Meshkov"3' i n s t a b i l i t y occurs in 

systems which have been impulsively accelerated by a shock. For both types of 

i n s t a b i l i t i e s the classical case is a system of two semi- in f in i te f l u i d s of 

densit ies p •, and p ? , with perturbations of wavelength X at the i r 

common in te r face . I f the acceleration is constant (R-T case) then these 

perturbations grow exponentially in time, 

n/n(o) = e y T , y ~- ̂ g^A (R-T case) (1) 

where g is the acceleration directed from p, tc P 2 > k = 2n/\, and 
A = ' vp, - p J / ( p 0 + p,) is the Attwood number. If the acceleration is 
impulsive (R-M case) then the perturbations grow linearly in time, 

TIAI(O) = 1 + yx , y = AvkA (R-M case) (2) 

where Av is the jump velocity caused by the passage of a shock from p, 
to p_. In Eqs. (1) and (2) n is the amplitude of the sinusoidal 
perturbations and x stands for time. 

Equation (2), derived by Richtmyer, is based on the same assumptions 
that go into the derivation of the classical Rayleigh-Taylor result, Eq. (1). 
Both equations are valid only in the small amplitude, or linear, regime. The 
fluids are assumed to be incompressible with no viscosity or surface tension, 
and heat transfer is neglected. Detailed numerical calculations by 
Richtmyer showed good agreement with Eq. (2) if the instantaneous reduction 
in amplitude due to shock compression was taken into account. Experiments by 

4 Meshkov confirmed the prediction that amplitudes grow linearly with time 
after the passage of a shock. As the amplitude grows the linear approximation 
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and hence Eq. (2) are no longer valid: turbulent mixing takes place. 
Subsequent experiments observed this mixing and a semi-empirical model was 
developed. 

Recently we generalized the results of the classical R-T instability 
to a system of an arbitrary number N of stratified fluids (see Fig. 1). In 
this paper we derive the corresponding equations for the R-M instability. The 
classical results, Eqs. (1) and (2), will be special cases given by N = 2. 

We would like to point out that our work is still based on the six 
simplifying assumptions (linearity, incompressibility, etc.) that go into the 
derivation of the classical Eqs. (1) and (2). Our theory only extends the 
simple classical density profile of two fluids with one interface to an 
arbitrary density profile of N fluids with N - 1 interfaces. In actual 
applications, for example in Inertially Confined Fusion (ICF) targets where 
density gradients arise naturally, these six assumptions must be kept in mind. 

The plan of the paper is as follows: in Section II we derive the general 
equation describing how perturbations evolve in time after the passage of a 
shock. In Section III we consider the special cases N = 2 and N = 3. In 
Section IV we make several numerical applications involving various 
combinations of shocks and constant accelerations patterned after ICF 
implosions. Finally, a number of comments and conclusions are given in 
Section V. / 

II. DERIVATION OF THE GENERAL EQUATION 
Figure 1 shows the system and some of our notation: N fluid layers of 

densiti es p-i, pp, ..., pii and thicknesses t-,, tp» •••> t.,. 

-2-



There are N - 1 interfaces and n- is the amplitude of perturbations (of 

wavelength X) at the interface between p. and p. + y 

We showed in Ref. 6 that there are N - 1 eigenvalues y and 

associated eigenfunctions w obtained by solving 

MW = S i W (3) 
Y 

where M is a (N - 1) x (N - 1) tri-diagonal dimensionless matrix, the elements 

of which depend only on kt. and the ratios pJo< + y Expanding in 

terms of these eigenfunctions we derived a general equation which describes 

how the amplitude n^ at interface i evolves in time: 

N-l N-l . 
n,(x) = I I W(i,JL) W"1 (l,j) {r\Ao) COSHCY.T) 

1 S>=1 j = l J Z 

+ [nj(o)/Y4] sinh(YjlT)} (4) 

(for more details see Refs. 6 and 7). We have assumed so far that the 

acceleration g is constant, so that Eq. (4) is the generalization of Eq. (1) 

for the R-T case. 

To obtain the corresponding equation for the R-M case, we use a technique 

similar to the one used by Richtmyer in obtaining Eq. (2). From Eq. (4), 

d V ( t ) N-l N-l . 
V - = 9 z i Tf W(i,£,) W"1 (JUJ) in,(o) cosh(Y(,T) 

dr 11=1 j=l % J "• 

+ [n-(o)/Ya] s1nh(Yjr)} (5) 

2 2 where we have defined y. = gi\ . With this definition, r. is 
o independant of g since y. is proportional to g (see Eq. (3)). 
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Following Ref. 3 we represent a shock by an impulsive acceleration, 
i.e., let g = Av5(x - T ), where T is the shock arrival time. 
This implies that g = 0 immediately before (x < x ) and immediately after 
(x > x ) the shock. Actually we can treat the case where the shock is 
immediately preceded and/or followed by a finite acceleration (see Section IV) 
but in this Section we treat the case of an isolated shock for clarity. 

Substituting g = Av 6(x - x ) in Eq. (5) and integrating twice, 
we get 

N-l N-l ? , 
n,(T) =n,(o) + n-(oh + Av I 1 rf W(i,5,)W"'(5.,j) x 

1 1 1 !l=l j=l l 

flj(o) +nj(oK s} {T - x s } 9(x - T S ) • (6) 

This is the equation which generalizes Eq. (2) for the case of the R - M 
instability. 

Before considering special cases and applications of Eq. (6) we note a 
few points. As in Eq. (4) we see that all the modes, indicated by the 
summation over I, contribute to the time evolution of r)At) at each 
interface i = 1, 2, ..., N - l . Similarly, the initial conditions at all the 
interfaces, indicated by the summation over j, contribute ton.(x). 
Note that since n.(o) + fi.(o)x = n .(T ), it is actually 

J J -1 J 5 

the instantaneous values of n, . at shock time x that influence 
l-jOr) (of course, this instantaneous value is related to the initial 
conditions). 

As seen from Eq. (6) 9 the effect of the shock is to change the rate of 
change dn^/dr: the amplitude n . itself is not -"nimediately affected by the 
shock: n.j(Ts+) = p^ (T ) where T + refer to times immediately before and 
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after the shock. The amplitude remains the same but i t s slope is changed 

suddenly so that n - (T 5 + ] i n^ (x s _) . As discussed in the above paragraph, th is 

change depends on the instantaneous values of the amplitudes at a l l the 

interfaces including the. one in question (the sum over j includes j = i ) . 

We now consider special cases of Eq. (6) which i l l u s t r a t e the above 

remarks and also have in terest ing properties. 

I I I . SPECIAL CASES 

A. N = 2 
3 This is the classical case considered by Richtmyer. The density 

profile is shown in Fig. 2a. Since there is only one interface and only one 
term in the sum indicated in Eq. (6), we drop the subscripts. Of course 
p 2 = T classical 9 = k A = k ( p 2 " Pl ) / (P2 + p l ^ ' a n d u e g e t 

n W =n(°) +n(°)x + A V kf^-^-^Mo) + n(o)xs} {x - x J e (x - T S) (7) 

We are considering a system of two semi-infinite fluids moving under the 
action of an isolated shock: between T = o and T = x the system is coasting 
at some constant velocity v(o). At T = T a shock induces a jump velocity Av 
and after T = x the system coasts with velocity v(o) + Av. The jump occurs 
instantaneously at T = T . Perturbations at the interface, which may have been 
increasing/decreasing linearly with time until x = T , continue to evolve 
linearly in time but with a new slope given by f|(o) + AvkAn(x s). If the 
initial conditions read fi(o) = x = 0, then 

n(-r)/n(o) = 1 +AvkAx (R-M case) (8) 

which agrees with the result derived in Ref. 3. 
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It is clear from Eq. (8) that, following a shock, perturbation amplitudes 
can increase or decrease depending on the sign of AvA. If the shock 
proceeds from low to high density (AvA> 0) then perturbations increase, 
while a shock proceeding from high to low density (AvA < 0) causes 
perturbations to decrease. However, if the system continues to coast, 
perturbations in the second case simply uo through zero, i.e., change phase, 
and continue to grow in absolute magnitude. 

For the Rayleigh-Taylor case of constant acceleration g, Eq. (8) is 
replaced by 

TI(T)/TI(O) = cosh(/iTgAT) (R-T case) (9) 

again assuming n(o) = 0. For gA < 0, i.e., high density fluid 
accelerating low density fluid, the system is stable and n(r) oscillates 
in time and never grows any larger than its initial value as long as the 
system continues to accelerate in the same direction. We conclude that while 
the distinction between stable and unstable cases gA < 0 and gA > 0 is 
clear for R-T instabilities, tnat distinction becomes somewhat blurred for 
R-M instabilities where perturbations grow in magnitude for both cases AvA > 0 
and AvA < 0. 

We now take advantage of Eq. (7), which is general and accommodates 
arbitrary initial conditions, to analyze all possible cases of how n(x) 
can evolve after the passage of a shock at T = T . There are 15 
possibilities, not all of which are allowed for a given sign of AvA. These 
are shown in Fig. 3. For a "stable" shock, i.e., AvA < 0, Fig. 3a - 3i 
are allowed while the rest are not allowed. For an "unstable" shock, i.e., 
AvA > 0, only Figs. 3i - 3o are allowed. The two simplest cases with 
n(o) = 0 are shown in Fig. 3a and Fig. 3j; the rest are obtained by 
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considering a positive or negative n(o) and short or long shock arrival time 
T . One may imagine, for example, that the initial conditions were set by 
a first shock at T = 0 and the perturbations evolve until a second shock 
arrives at x = x . The effect of this second shock is to change n by 
an amount equal to AvkAn(x ). 

We will discuss only a few out of the 15 cases shown in Fig. 3. Figure 
3i is the case n(x ) = 0 in which case neither a "stable" shock nor an 
"unstable" shock has any effect on the perturbation. Of course, this happens 
if the second shock is timed to arrive exactly at x = - n(o)/n(o) . 

Perhaps the more interesting cases are shown in Figs. 3c, 3g and 3n, 
where the amplitude is "frozen out" and remains constant after the shock. 
Obviously this is achieved when the slope change caused by the second shock 
exactly cancels the slope set by the previous one. Timing must be such that 
the interval time between the two shocks is 

* _ n(o) + AvkAn(o) n n , 
a s AvkA?f(o) • ( 1 0 ) 

It is interesting to point out that this "freezing out" of the amplitude can 
be achieved with a "stable" shock (AvA < 0) in both cases of n(o) > 0 or 
n(o) < 0, as indicated in Figs. 3c and 3g, while an "unstable" shock (AvA > 0) 
can freeze out an amplitude only if it previously was decreasing, i.e., 
f|(o) < 0, as indicated in Fig. 3n. 

Finally, we point out that it is, unfortunately, impossible to "freeze 
out" an amplitude as it passes through zero. 

B. N = 3 
The system consists of three f l u i d layers of densit ies p p p 2 and 

p , , with t , = t , = oo. The eigenvalues and eigenfunctions for 
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arbitrary densities were given previously ' and will not be repeated here. 
Instead, we will consider the more specialized case of p, = p-, = 0, 
i.e., a single fluid with two free boundaries as shown in Fig. 2b. This 
system was treated by Taylor for the case of a constant acceleration. 

As indicated in Fig. 2b, we let p and t denote the density and 
thickness respectively of the "middle" layer (p ? = p and t ? = t). The 
results are independent of p since the eigenvalue equation, Eq. (3), 
involves only the ratios of densities. Furthermore, t appears only in the 
combination kt. 

2 2 The two eigenvalues are r, = -T- = k, and the 
eigenfunctions are W(l, 1) = W(2, 2) = 1, W(l, 2) = W(2, 1) = e" k t. The 
elements of the inverse matrix W~ are 

W" 1 (1, 1) = W"1 (2, 2) = - ' 
e-2kt 

i i D " k t 

W _ l (1, 2) = W"1 (2, 1) = - - § m . (11) 
1 - e " m 

Substituting these expressions in Eq. (6) we obtain 
n^x) = n i ( o ) +n 1 (oK + A ! k

2 k t {(1 + e " 2 k t ) (^(o) + ^ ( 0 ) ^ ) 

- 2 e - k t ( n 2 ( o ) + n 2 ( o ) x s ) } ( T - T S ) e(x - x s ) , (12) 

H 2 ( T ) = n 2 ( o ) + n 2 ( o h - - ^ { ( 1 + e - 2 k t ) ( n 2 ( o ) + n 2 ( o h s ) 

- 2e" k t (n 1 (o ) + ^ ( 0 ^ 5 ) } ( T - X S ) e(x - T S ) . (13) 



Clearly, n ?(t) = n-id) with 1 *-*• 2 and Av •+ - Av. Our convention 
is that a positive Av indicates a shock directed fromp, to p„. 

At short wavelengths X or, equivalently, at large thicknesses t, i.e., 
kt » 1, the two interfaces decouple and the two Eqs. (12) and (13) each 
reduce to Eq. (7) with an Attwood number of +_ 1. In the opposite limit of 
long wavelength or small thickness t, i.e kt << 1, the two interfaces "see" 
each other and the evolution at one interface depends very much on the other. 

Let us consider the case n-i(o) = rulo) = io(o) = T = 0. 
The system is shown in Fig. 4: initially only one of the free surfaces is 
perturbed with amplitude T) , while the other surface is perfectly smooth. 
Then, 

^perturbed , . Avk , , , -2kt, 
-*- = 1 + — • — T T T (1 + e IT n ' , -2kt 

'o 1-e 

(14) 

nsmooth Q Avke" /,,-» 
— = 2 T - ^ 2 k t T • ( 1 5 ) 

o 1-e 

The corresponding equations fo r the case of R-T i n s t a b i l i t y , i . e . , g = 

constant, are 

V r t u r b e d . ^ 1 cosh(/7gTT) - e ' 2 k t c o s ( / g E T ) } , (16) 

nsmooth e " k t 

\ ' l - e " 2 k t 

|cosh(/gk T ) - -cos^gk x ) i . (17) 

Eqs. (14)-(17) i l l u s t r a t e how an i n i t i a l perturbation at one inter face 

can induce perturbations at the other interface. The convention in Eqs. 

(14)—(17) i s that a posi t ive Av or g indicates a shock or a constant 

acceleration directed from the perturbed surface towards the smooth surface. 
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In this case perturbations at both surfaces grow with the same phase as the 
initial amplitude n • o 

For a shock or a constant acceleration in the opposite direction, i.e., 
from a smooth surface towards a perturbed surface, Av or g is negative. 
Equations (14)-(17) show that in this case perturbations at the initially 
smooth surface develop in phase opposite to n while the perturbations at 
the other surface decrease, go through zero, and eventually grow in phase 
opposite to their original amplitude r, . In the case of R-M instability, 
the decrease is linear in time, while in the case of R-T instability, the 
amplitude may oscillate a few times (depending on the value of kt) before it 
grows large with a phase opposite to n • 

It is clear that even in this simple case of a single fluid with two free 
surfaces the perturbations at each surface can evolve in a rather complicated 
manner. This is particularly true if the system is subjected to a series of 
shocks or accelerations in different directions. We illustrate with a number 
of numerical applications in the next Section. 

IV. APPLICATIONS 
In this Section we illustrate the numerical application of our technique 

with the case N = 5. We have written a code that can handle an arbitrary 
number of fluid layers undergoing an arbitrary velocity history, and a brief 
description of it will be useful. 

'i > 
The input to the code consists of the following four items: (i) the 

density profile, which is specified as densities (p,, p-, ..., p^) 
and thicknesses (t,, t„, ..., t..); (ii) the wavelength X. Using the 
ratios P,-/p,- and t./X the code calculates N - 1 eigenvalues v. 
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and their associated eigenfunctions W(i, l ) , and then inverts the matrix W. 
Next we need (iii) the velocity history of the system, which must consist of 
either constant or impulsive accelerations - this will tell the code to use 
Eq. (4) or Eq. (6) to evolve the perturbations in time. Finally, we need (iv) 
the initial conditions rij(o) and n,(o), the initial amplitude and its 
initial rate of change at each interface i. 

The output of the code consists of H ^ T ) , the amplitude of the 
perturbation at each interface i at time T. We also keep track of the 
distance covered by the jystem. 

We now turn to a specific example with N = 5. The densities are (0, 1, 
2, 4, 0) and the thicknesses are (°°, t/3, t/3, t/3, <»). This density 
profile is shown in Fig. 2c. It was chosen for two reasons: first, it is 
representative of the density profile in ICF capsules where a shell of 
thickness t is driven from one side by low density plasma and compresses low 
density fuel on the other side. With this picture in mind, we will call the 
first interface, between p = 0 and p = 1, the "outer surface" of the 
shell, and the last interface, between p = 4 and p = 0 , will be called the 
"inner surface". The reader must keep in mind that the geometr assumed in 
all our calculations is planar (see Fig. 1) and not spherical as suggested by 
the terms "inner" and "outer". 

The second reason for choosing this admittedly simple density profile is 
that we can obtain analytic expressions for its four eigenvalues. Two of the 

2 eigenvalues are given by y /gk = + 1 and - 1, and the other two are 

Y 2 - S(l + ST)(R 2 - 1) ± S|R - 1| /R ( ] 8 

g k R 2 + R + 1 + S2(R + l ) 2 
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where S = s inh(kt /3) and T = tanh(k t /6 ) , and R i s the common ra t i o of 

densit ies R = P 4 / P 3 = P 3 / p ? which is equal to 2 fo r the 

density p r o f i l e shown in F ig . 2c. We used these equations as a check of our 

numerical ca lcu la t ion . 

We have not specif ied the units for the densi t ies since an overa l l scale 

is immaterial : the density p r o f i l e (0, 1. 2, 4 , 0) is equivalent, f o r 

example, to (0, 3, 6, 12, o ) . 

For our next input, the wavelength, we chose A = 3t . Several 

considerations led to th is choice: as expected, very long (x » t ) 

wavelength perturbations grow too slowly, while very short [\ « t ) 

wavelength perturbations grow very fast . For reasonable assumptions on 

surface f i n i s h , as discussed below, the very short wavelength perturbations 

grow so large that they are well outside the l inear regime where our theory is 

appl icable. Furthermore, the time evolution o f very short wavelength 

perturbations is given to a good degree of accuracy by the c lass ical 

expressions, Eqs. (1) and (2 ) , applied at each inter face independently. The 

interact ion among the various interfaces, which is the main feature of our 

approach, becomes dominant at re la t ive ly longer wavelengths. 

For our i n i t i a l condi t ions, we chose the i n i t i a l perturbations to be 

stat ionary, i . e . , f|-j(o) = f .Jo ) = fu(o) = n 4 (o ) = 0. As to 

the amplitudes themselves, we chose T)JO) ~ n 3 ( o ) = 0 and n i (o ) = 

O u t s i d e * 0 * = n 4 ( o > = ^ i n s i d e ^ = r l ( o ) ' t h a t i S W 6 C h o s e t o 

s ta r t wi th no perturbation wi th in the f lu ids and wi th equally rough i n i t i a l 

surface f i n i s h n(o) on the " ins ide" and "outside" surfaces. As the surface 

perturbations n 1 and n 4 evolve in time the f l u i d develops internal 
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perturbations, i.e. n? and n^ grow from their initial zero value co 
rather large values as they are driven by the surface perturbations. 

As another possible set of initial conditions we chose all n,,(o) = 0 
except n 4(o), corresponding to a shell whose outer surface is p^ished 
perfectly smooth and which starts with perturbations only on the inside. We 
found that this did not necessarily suppress the late time growth of the 
perturbations. 

The final input, the velocity history, consisted of five different cases 
shown as diagram (a) in Figs. 5 to 9. These velocity histories illustrate 
possible ICF capsule implosions though, as mentioned earlier, the geometry 
assumed in Eqs. (4) and (6) is planar. 

All our velocity histories are combinations of shocks and constant 
accelerations. In all cases we assumed that a final shock at T = 5 brings 
the shell to rest (v = 0), though of course in a capsule the shell would slow 
down, turn around and move out. Our velocity histories represent fuel burn at 
about T = 5, though we will continue to evolve our equations up to T = 6 
to show the effect of a large shock which proceeds from "inside" to the 
"outside". 

We have chosen our unit of length by setting t = 1. The units of time 
are arbitrary. In Figs. 5-9 negative velocity indicates motion directed 
"inward", i.e., from p = 1 to p = 4. An example will clarify these 
points: a shell 10 urn thick with perturbations of X = 30 urn on its 
outer and inner surfaces is stationary at T = 0 . Assume that it moves 
according to Fig. 6a, and that time is measured in nanoseconds. Then at T = 
1 ns the shell jumps ir.ward with speech 20 um/ns, and immediately afterwards 

p accelerates inward with |g| = 20 um/ns until T = 4 ns, at which time it 
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is moving inwards at 80 ym/ns. We will call this maximum speed its 
"implosion velocity". At x = 4 ns the shell decelerates with |g| = 3 0 

2 ym/ns until T = 5 by which time its speed is reduced to 50 ym/ns. A 
shock at T = 5 ns brings the shell to rest; it has covered a total distance 
of 215 ym. 

The results of our calculations corresponding to the velocity histories 
of Fig. 5a, 6a, 7a, 8a, and 9a are shown in Fig. 5b, 6b, 7b, 8b, and 9b 
respectively. In all these calculations the density profile is given in 
Fig. 2c, X = 3t, and ii,(o) = T)AO) = n(o), with other n's and 
n' s equal to zero initially. In these figures we show n-i (x )/n(o) 
and T\AT)/T]{O) , the "outside" and "inside" perturbations, as functions 
of time x. 

We do not show the internal perturbations, n?(x) and rintt), 
which start from zero and by x = 5 are of the same order as the average of 
n-j and n^. 

For a number of cases we carried out a parallel calculation in which we 
used the classical equations, Eqs. (1) and (2), to evolve the perturbations at 
each interface. This reproduced the outside perturbations to within an order 
of magnitude, but the inside perturbations were off by more than an order of 
magnitude, and sometimes by two orders of magnitude by the time x = 5. Of 
course, according to the classical expression Eq. (1), the inner surface, 
having Attwood number -1, is stable during the inward acceleration phase and 
oscillates, while according to Eq. (4) the inner surface is coupled to the 
outer unstable surface where perturbations grow and drive perturbations in the 
rest of the fluid. 
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The coupling between interfaces is most clear at x = 5, by which time 
the outer perturbation grows \jery large and "takes over": the phase reversal 
of this outer perturbation immediately after the last shock (which brings the 
system to rest) is expected on classical grounds, since the shock, directed 
from inside out, proceeds from a high (p = 1) to low (p = 0) density at 
the outer surface. What is difficult to explain is the phase reversal at the 
inner surface where the shock proceeds from low density (p = 0) to high 
density (p = 4 ) . This phase reversal can be understood if we remember that 
by this time the large outer perturbation controls the rest of the 
perturbations; in other words, the inner perturbations reverse their phase 
because the outer perturbations have. 

Figures 5-9 show that by x = 5 perturbations have increased almost by a 
3 factor of about 10 . As mentioned earlier, shorter wavelength perturbations 

grew even more, particularly on the outer surface, and our choice of X = 3t 
was partly motivated by reasonable estimates of surface finish and how much 
growth can be tolerated because our calculation breaks down when non-linear 
effects come into play. Going back to our example of a shell 10 um thick, 
it is reasonable to assume an initial surface finish of n(o) >, 100 A. 
Growing thousand-fold this amplitude reaches n > 10 um and is barely 
within the linear regime since X = 30 um. Clearly, choosing a shorter 
wavelength which grows faster would have taken us well beyond the linear 
regime and the validity of our theory unless, of course, we assumed a much 
smaller initial amplitude. 

In Figs. 5-9 three out of the four inputs are kept fixed (same density 
profile, same wavelength, and same initial conditions on the n,-)- Only 
the fourth input, viz. the velocity history, is varied in Figs. 5-9. The 
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growth of the perturbations clearly depends on the velocity history of the 
shell, as these figures illustrate. 

Finally, we show an example of how a perfectly smooth outer surface 
develops perturbations as large as the case of an initially rough outer 
surface. In Fig. 10 we show how perturbations evolve from the initial values 
noutside^ = ° a n d ninside = n^ o )' i - e -' a 1 1 s u r f a c e s s t a r t 

perfectly smooth except For the inside surface. The velocity history is that 
of Fig. 6a. Comparing Fig. 6b and Fig. 10b we see that an initially smooth 
outer surface does not necessarily suppress the growth of perturbations at 
later times - a perturbation at only one interface can act as seed for 
perturbations throughout the fluid. 

V. COMMENTS AND CONCLUSIONS 
(i) We ran a number of tests to check the code: first, at short 

wavelengths the interfaces decouple because the off-diagonal matrix elements 
of M in Eq. (3) go to zero like l/sinh(kt.), and the results agree with the 
classical expressions. Second, for M = 3 the code gives the same results as 
in Eqs. (12) and (13) for the case p-, = p 3 = 0. Third, the four 
eigenvalues calculated by the code for the density profile shown in Fig. 2c 
and for X = 3t are y//g = 1.447, 0.821, 0.553, and 1.447i; these numbers 
agree very closely with the expressions given in the previous Section (see Eq. 
(18) and the discussion preceeding it). Finally, Figs. 5 and 9 show that if 
the velocity histories are sufficiently similar, then the perturbations evolve 
similarly. In fact, Fig. 9 was run just to check if a series of small shocks 
can imitate a constant acceleration: the velocity history shown in Fig. 5(a) 
is a combination of shocks and accelerations, hence the- perturbations were 
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evolved using both Eq. (4) and (6), while the velocity history of Fig. 9(a) 
consists entirely of shocks, and is similar to Fig. 5(a) except that the 
constant acceleration between x = 2 and T = 4 is replaced by a number of 
small shocks. Hence only Eq. (6) is used to evolve the perturbations, and the 
result, shown in Fig. 9(b), is quite similar to Fig. 5(b). 

Clearly, an acceleration history that varies continuously with time can 
also be treated in this fashion by breaking it down into a series of small 
shocks and constant accelerations and using the appropriate equation in each 
time step. 

(ii) Before applying our techniques to an actual system, one must of 
course check if the assumptions of linearity, incompressibility, no heat 
transfer, no viscosity and no surface tension are satisfied. The examples 
treated in the previous section were inspired from ICF implosions. A number 
of complex processes are involved, and no doubt our techniques will never 
replace full 2D hydro calculations of the Rayleigh-Taylor instability as 

o 

reported in the l i t e r a t u r e . Instead, our code can serve as a 

post-processor code in which density prof i les and ve loc i ty histor ies are read 

from a ID hydro code. That information, combined wi th reasonable estimates of 

i n i t i a l surface f i n i s h , is used to evolve perturbation amplitudes in t ime. 

Such post-processing w i l l require much less computing time and e f f o r t though 

the r esu l t s , of course, w i l l not be as re l iab le as the f u l l 2D hydro resu l ts 

because of a l l the assumptions that go into the der ivat ion of the evolut ion 

equations, Eqs. (4) and (5 ) . 

For ICF implosions, while surface tension and v iscos i ty are p rac t i ca l l y 

absent, r e a l i s t i c i n i t i a l amplitudes can quickly evolve into the non-l inear 

regi.ne where our equations break down. Furthermore, we cannot j u s t i f y the 
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assumption of no heat transfer in ICF capsules since the shells are driven by 
9 8 ablation. A number of calculations ' indicate that ablation reduces the 

growth rates for Rayleigh-Taylor instabilities, in which case we would be 
overestimating the growth at the outer surface. This would have important 
consequences since, as discussed in the previous Section, the inner 
perturbations are driven largely by the growth of the outer perturbations. If 
a mechanism stabilizes the outer surface, then we have reason to expect that 
the inner perturbations also will not grow very large. We must point out, 
however, that other 2D hydro calculations do not show a reduction in the 
growth rate and that there is no clear experimental evidence for such 
stabilization. 

While our calculations do not take this possible effect into account, 
they highlight its importance. Indeed, when we artificially put a limit of 50 
on the outer perturbation, the inner perturbation also grew less. 

(iii) Finally, we discuss the assumption of incompressibility. For the 
case of the Rayleigh-Taylor instability it is not yet clear whether the effect 
of compressibility is to cause an increase or decrease in the growth rate (see 
Ref. 11). In the case of the Richtmyer-Meshkov instability the effects of 
compressibility would be even more important, since real fluids invariably get 
compressed upon the passage of a shock. 

One approximate remedy is to change the density profile also as a 
function of time. Of course, this involves more calculations since the 
eigenvalues and eigenfunctions have to be calculated all over again with each 
new density profile, but in principle it can be done within our formalism. 
Another effect that has to be taken into account is the finite shock transit 
time: clearly a real shock starting at tht outer surface takes a finite 
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period of time to break through the inner surface, while in our formalism the 
system as a whole acquires an instantaneous velocity jump. 

It is difficult to estimate how much our theory suffers because of the 
underlying assumption of imcompressibility. On one hand we probably 
overestimate the effect of interface coupling: an interface that has not yet 
been shocked should not affect the perturbation at interfaces that have 
already been shocked; but in our formalism all interfaces feel the shock 
simultaneously and hence the eigenfunctions W(i,i,) are established 
instantaneously. On the other hand, we probably underestimate the effect of 
interface coupling because our eigenfunctions decay exponentially at long 
distances, while in a compressible theory we expect them to decay as some 
power law. It could be that these two opposing tendencies cancel each other 
out to some extent, but at present we have no means of estimating the net 
effect. 

Given the assumptions that go into the derivation of the classical 
expression 

da = n A v k ^2_i^l ( 1 9 ) 

dx p 2 + P 1 

it is indeed surprizing that experiments and numerical calculations with 
compressible fluids gave results consistent with it: Richtmyer's numerical 
calculations were consistent with Eq. (19) provided he used the post-shock, 
i.e., compressed amplitude and the post-shock densities in this equation. He 
considered a shock proceeding from a light to a heavy fluid. Subsequent 

1 ? numerical calculations by Meyer and Blewett agreed with Richtmyer's 
results and, for the case of a shock proceeding from a heavy to a light fluid, 
they suggested using the average of pre-shock and post-shock amplitudes in Eq. 
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(19) (of course, for incompressible fluids these prescriptions give the same 
answer since pre-shock and post-shock densities and perturbation amplitudes 
are the same). Experiments by Meshkov were also consistent, within a 
factor of ^ 2 , with Eq. (19), and confirmed the fact that perturbations grow 
linearly with time whether the shock proceeds from light to heavy or from 
heavy to light fluids. 

Thus there is some evidence that the classical expression, in which a 
shock is treated as an impulsive acceleration, does a reasonably good job for 
the case N = 2. Whether our extension to arbitrary N is also reasonable 
remains to be seen by new calculations and experiments. 
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FIGURE CAPTIONS 

Fig. 1 N f l u i d layers of density p ^ . . . , p N and thickness t , , 

. . . , t . . which are stacked in the direct ion of acceleration g = y , 

where g = constant for Ray1 ' igh-Taylor and g = Av 6 (T - x ) fo r 

Richtmyer-Meshkov i n s t a b i l i t i e s . Unperturbed densit ies are uniform 

in the x and z d i rec t ions, and vary only in the y d i rec t ion . The 

amplitude of sinusoidal perturbations at each interface i is denoted 

by n.j- The wavelength of the perturbations is X. 

F ig. 2 (a) The density p ro f i l e f o r the classical case N = 2 with one 

in te r face , (b) The density p ro f i le for N = 3 and for the special 

case p, = p., = 0, p~ = P and t-, = t , = « , t = t . 

(c) The density p ro f i l e f o r N = 5 with densi t ies (0, 1, 2, 4, 0) and 

thicknesses (°°, t / 3 , t / 3 , t / 3 , » ) . The amplitudes n o u 1 ; s i c j e 

and l-j-c-jde refer to perturbations at the f i r s t and last 

in ter faces, respect ively. 

F ig . 3 Possible evolution patterns of the amplitude f o r the classical case 

N = 2. n is the amplitude of perturbations at the interface 

between p, and pp (see F ig . 2a). The system is assumed to 

be coasting un t i l time x , at which time a shock induces a jump 

ve loc i t y Av. Only diagrams (a) to ( i ) are allowed i f the shock 

proceeds from a high to a low density. In the opposite case where 

the shock proceeds from a low to a high densi ty , only diagrams ( i ) 

to (o) are allowed. I t is possible to "freeze out" an amplitude as 

indicated in diagrams ( c ) , (g) and (n) . 
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Fig. 4 The simplest case for N = 3: a fluid layer of density p and 
thickness t having two free boundaries (see Fig. 2b). Initially one 
surface is perturbed while the other is perfectly smooth. 
Perturbations at each surface evolve according to Eqs. (14) and (15). 

fig. 5 (a) A velocity history describing the motion of a shell whose 
density profile is shown in Fig. 2(c). Negative velocities are 
directed from outside to inside. The shell thickness t is chosen as 
scale for length or distance. Units of time T are arbitrary. 

6 
D = J vdr. In this case the shell covers a distance D of 12.0 

0 
times its thickness, (b) Evolution of perturbations at the outer 
and inner surfaces of the shell, assuming the velocity history of 
diagram (a). Initially the outer and inner surfaces have 
perturbations of amplitudes n(o) and wavelength X = 3t. 

Fig. 6 Same as Fig. 5 for a different velocity history. The system covers 
a distance of 21.5 times the shell thickness. 

Fig. 7 Same as Fig. 5 for a different velocity history. The distance 
covered is 20.0 times the shell thickness. 

Fig, 8 Same as Fig. 5 for a different velocity history consisting entirely 
of shocks. The distance covered is 19.0 times the shell thickness. 

Fig. 9 Same as Fig. 5 for a velocity history similar to Fig. 5a in which 
the constant acceleration between x - 2 and T = 4 is replaced by 
a series of five small shocks. Compare with Fig. 5. 

Fig. 10 Same as Fig. 6 but with different initial conditions: only the 
inner surface has initial perturbations; the outer surface starts 
perfectly smooth. Compare with Fig. 6. 
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