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NOMENCLATURE

the molal heat of vaporization'of the process fluid

the mean value of hfg in the'temperature range between T0 and Tc
the number of moles of a constituent of the vented mixture

the number of moles of noncondensable gases

the number of moles of process vapor

absolute pressure

the pressure in the condenser

"the partial pressure of the noncondensable gases in the vented .

mixtgre

the partial pressure of the process vapor in the vented mixture
the gas constant

absolute temperature

the saturation temperature of the process fluid at PC

the temperature at which the vented mixture leaves the condenser
molal volume

the molal volume of vaporization of the process fluid

the molal volume of the noncondensable gases

the molal volume of the process fluid

a volume of the vented mixture, nv

compressibility, Pv/RT

the compressibility of vaporization of the process fluid,

Pp vfg/RT

the mean value of zfg in the temperature range between T0 and TC

the compressibility of the noncondensable gases, Pn vn/R To

the compressibility of the process vapor, PP vP/R To

{
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THE COPOSITION'OF GASES VENTED FROM'A' ‘CONDENSER
‘ R N Lyon o

ABSRACT
Des1gners of systems that 1nvolve condensers often need to .
predlct the amount of process vapor that accompaniés' the non-
condensable gases that are vented from: the condensers..

- The following approximation’ appears to provide, in many

’ cases, reasonably accurate values for:the mole ratio of process .

vapor to noncondensab]e gases in the vented m1xture

n RT. T Lt S
B B e ,?v,,,:l.o o (1)
" g ",hf ,(Tc "7Toz,; 2

The approx1mation is partlcularly app11cab1e to flash and dlrect- 4t
contact power systems: for geotherma] br1nes and ocean therma] ’
energy convers1on (OTEC) . L .

More rigorous relat1onsh1ps are: ava11ab1e for: except1ona1 ;
Cases . . . o K

INTRODUCTION

‘ Well des1gned condensers flow the process vapor from the condenser

.....

gases can be removed cont1nuous]y, or accumu]ated for period1c remova]
When the process fluid is used in a closed Rankine cycle entirely above
atmospheric pressure, the principal. source: of noncondensable gas will be
that dissolved in make-up fluid, and venting is usually not a serious
problem, ; At the opposite extreme is:a- subatmospher1c ‘condenser for .
vapor being condensed by:direct contact with a stream of water, or other
cool fluid, that is saturated with gas at atmospheric pressure and where

* . ‘ - '
- Consultant, Energy Division.



the vapor originates either from or in direct contact with warm fluid
that is also saturated with noncondensable gases.

The latter situation occurs, for example, in flash and direct- ' ’
contact systems for geothermal power plants and for ocean thermal energy

{

conversion (OTEC).

The gaseous mixture that is withdrawn from condensers will be sat-
urated with the process-fluid vapor-at the temperature of withdrawal,
and this can pose several problems: '

1. If the vapor is flammable, it must be recovered or flared to
avoid the danger of fire or explosion.

2. The process fluid may be sufficiently valuable to require
recovery from vented mixture. :

3. If the condenser operates below atmospheric pressure, a vent
compressor will be required. The power required by the first stage or
two of a mechanical compressor will usually be dominated by the power
required for adiabatic compression of the process vapor in the mixture
that is being compressed in that stage, and the bulk of the heat removed
in the first few interstage coolers will be the latent heat of the !
condensing process vapor. Water-jet and barometric-leg compressors
tend, in principle, to approach isothermal compression, but the size of
the compressor is determined by the volume flow rate of the incoming
mixture from the condenser.

P

For these and perhaps other reasons, designers need to estimate the
amount of process vapor in the effluent mixture as a function of Pc’ the

condenser pressure, and To’ the temperature at which the mixture leaves
the condenser. |

ANALYSIS

In those cases where the constituents of the vented mixture all be-
have as ideal gases, we find, as described below, that
EE_ . RT. T, _

n, | hfg (Tc __To)

1
- (]) -
2
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where n o/n, is the mole ratio of process vapor:to' noncondensable gas in
the m1xture, R is the gas constant, T is the saturation temperature of
the pure process vapor at P the pressure of the oondenser, and F;;

is a mean value of the mo]al heat of vaporization of the process fluid
in the temperature range between T and T -

DeveTopment of Approximat1on (T) d1scloses the assumpt1ons that 1t ;
-includes, and indicates more rigorous equat1ons or approx1mat1ons for
"nonideal gases and vapors: = - R o

We start by defining the "compressibility" of any gas or vapor as

Pv |
z:z— |, (2)
R T fr TR R T R R
where, of course, P and T are the absolute pressure and absolute temper-
ature of the gas, and v 1s its moTaT volume. The compress1b111ty will
be unity for an ideal gas and its: value for saturated vapors does not
change as rapidly with temperature as does the specific volume.

We next make the assumption that each constitutent gas fills the
volume, V = n v, that 15 occup1ed by the- mixture and that it has no
interaction with any of the other constitutent gases, except that the
sum of the individual part1a1 pressures of the constituent gases is P s
the total pressure in the condenser.

We also assume that the noncondensable gases are’insufficiently’
soluble in the liquid process fluid to effect a serious change in the
saturat1on temperature of the 11qu1d These are both reasonable as-
gases, and if water, Freon, or a Tight hydrocarbon is-the process -fluid. ,

It follows from those assumpt1ons ‘that

SRR .n.P. Cs Zn ppf"%f=",ﬁ Z P 2y & ‘i (3)

I Ty P s e ) oo
R L ) P)r -

where, agaln, the subscr1pts P and n refer to the process fluid and non-
condensable gases. B N
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We now draw on the Clapeyron equation:

h
oT saturation T vfg
where Veg is the increase in molal volume of the process fluid when it
vaporizes. | ‘

If Qefdefine a compressibility of vaporization as

Pv —
’ - 0 (5)

zfg = R
RT

we obtain a modified Clausius-Clapeyron equation:

Pp = P exp[h—fz T 7T ] (6)
ng R To Tc
and :
- — k (7)
. % exp[ff_g (Te - To)] 1
zfg R Tc T0
Next, we note that
1 1 1
T )

within about 10% or less, when x < 0.9:

X 0 0.1 0.3 0.5 0.7 0.8 0.9 1.0
1/(e* = 1) 9.51 2.86 1.54 0.99 0.82 0.69 0.58
1/x —1/2 = 9.50 2.83 1.50 0.93 0.75 0.61 0.50
% error — . =0.09 -0.9 -3 -6 -8 -1 -14

8

Thus, we find that

.
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‘ ~(;;1n'f;a,'z ‘R T T TR K T T
_E L [ fg R ""] Gl - (9)
o sl T2 ( |
and when the compreSS1b111t1es all approach un1ty,
...E. '\.. Gla s LT ‘ (])
5 nn LT (T 0) ) 2 EEGEE D RS

. -~DISCUSSION AND .CONCLUSIONS v '+

o At 300°K (80°F) hf /RT = 18 for water and 8 for 1sobutane Thus,
with water as’ the process f1u1d we need to keep (T =T )/T to 1ess .
than about 0.05 if we use Approximation (1)

In the case of isobutane, the error can be held to 10% or less if
(Tc —-TO)/T is 0.1 or less; but we need to check to see whether we should
use Approximation (9), since for isobutane at that temperature, zp = 0.90

and zfg = 0.88. At 278 K (40°F), z_ for isobutane is 0.94 and zfg is 0.93.

In OTEC systems the value of (T -T )/T will usually be less than
0.02. This means that if water is the process fluid, and if the non-
condensables are nitrogen, oxygen, and any other gases that behave like
ideal gases, the mole ratio of the vented mixture will be greater than
2.3 moles of water to one mole of noncondensable gas. If, as is more
likely, (Tc -T°)/T is 0.01, then the effluent mixture will contain 5.1
moles of water vapor per mole of noncondensable:

hf , Moles, Precess Fluid/Mole, Noncondensables

a9 . ' - = 0.1 - =

Temperature - 2, | 2 (Te To)/T = 0.02 | (T, =T, )/T = 0.01
Appr. (9)| Appr. -(1)! Appr. (9)! Appr. (1)

Water ,

300 K (80°F)| 18 1 2.3 2.3 5.1 5.1

278 K (40°F) | 19 |1 1 2.]7 2.1 4.8 4.8

Isobutane | V ,

300 K (80°F)| 8 10.90| 0.88" 5.6 5.8 11.7 - 12.0

278 K (40°F) | 9 [0.94| 0.93 5.0 5.1 10.5 10.6




In the above calculations, we have not differentiated between Tc’
To;'and an intermediate temperature at which we calculate hfg and zfg.
It appears from the results, however, that only a few percent error is
involved in that lack of rigor.

The compressibilities of saturated vapors are always unity or less.
Thus, the vaporization compressibility and the simple compressibility of
the process vapor will always tend to cancel each other in Eq. (7) and
Approximation (9). That fact is illustrated by the close agreement between

the results for isobutane using Approximations (9) and (1).
On the other hand, as seen in Eq. (7) and Approximation (9), the mole

ratio in the vented mixture will be exactly proportional to the'compressi-
bility of the noncondensable gases.
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