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NOMENCLATURE 

the molal heat of vaporization of the process f l u i d  

the mean value of h 

the number o f  moles of a constituent of the vented mixture 

the number of moles o f  noncondensable gases 

the number of moles o f  process vapor 

. hfg - 
i n  the temperature range between To and Tc 

f g f g 
h 

n 

'n 
n 

P absolute pressure 
P 

the pressure i n  the condenser 
PC 

' the partial pressure of the noncondensable gases i n  the vented 
mixture 'n 

the partial pressure o f  the process vapor i n  the vented mixture 

R the gas constant 

T absolute temperature 

pP 

the saturation temperature of the process f l u i d  a t  Pc 

the temperature a t  which the vented mixture leaves the condenser 
Tc 

TO 

V molal volume 

f g 

'n 

V 

P 
V 

V 

Z 

Z 
f g 
- 
Zfg 

Z n  

P 
Z 

the molal volume o f  vaporization of the process f l u i d  

the molal volume of the noncondensable gases 

the molal volume of the process fluid 

a volume of the vented mixture, nv 

compressibility, Pv/RT 

the compressibility of vaporization of the process f l u i d ,  
P v /RT 

P f g  
the mean value of z i n  the temperature range between To and Tc 

f g 

the compressi b i  1 i ty of the noncondensabl e gases, Pn vn/R To 

the compressibility o f  the process vapor, Pp vp/R To 

rc 

c 
b 

b 
1 

f 

c 
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THE COMPOSITION OF GASES VENTED FROM . A  'CONDENSER 

ABSRACT 

Designers o f  s 
p r e d i c t  the  amount^ of process' vapor that  acc 
condensable gases t h a t  are vented from: the condensers. 

The fo l l ow ing  approximation' appears t o  provide,' i n  many 
cases, reasonably accurate values f o  
vapor t o  nonco l e  gases i n  the nted mixture: 

he mole r a t i o  of process I 

* .  

n 

II 

. .  . ' / . I  L .  

0' 

The approxima t i on 
contact  power systems for geothermal br ines and ocean thermal 
energy conversion (OTE 

INTRODUCTION 

process vapor+ from the condenser 
n where noncondensabl e 
f o r  per iod ic  removal. 

When the process f l u i d  i s  used i n  a closed Rankine cyc le  e n t i r e l y  above 
atmospheric pressure, the p r i n c i p a l  
t h a t  d issolved i n  make-up f l u i d ,  an 
problem,: A t  the opposite extreme i s  a sub 
vapor being condensed by d i r e c t ' c o n t a c t  with a-stream o f  w 
cool f l u i d ,  t h a t  i s  saturated w i t h  gas a t  atmospheric pressure and where 

e o f  noncondensable gas w i l l  be 
n o t  a serious 

* 
Consultant, Energy Div is ion.  
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the vapor originates either from or i n  direct  contact w i t h  warm f l u i d  
t h a t  i s  also saturated with noncondensable gases. 

contact systems for geothermal power plants and for  ocean thermal energy 
conversion (OTEC) .  

urated w i t h  the process-fluid vapor a t  the temperature of withdrawal , 
and this  can pose several problems: 

If the vapor is flammable, i t  must be recovered o r  flared t o  
avoid the danger of f i r e  or explosion. 

2. The process f l u i d  may be sufficiently valuable to  require 
recovery from vented mixture. 

3.  If  the condenser operates below atmospheric pressure, a vent 
compressor will be required. The power required by the f irst  stage or 
two of a mechanical compressor will usually be dominated by the power 
required for  adiabatic compression of the process vapor i n  the mixture 
t h a t  i s  being compressed i n  that stage, and the bulk of the heat removed 
i n  the f i r s t  few interstage coolers will be the la tent  heat of the 
condensing process vapor. Water-jet and barometric-leg compressors 
tend, i n  principle, to  approach isothermal compression, b u t  the size of 
the compressor is determined by the volume flow rate  of the incoming 
mixture from the condenser. 

For these and perhaps other reasons, designers need to  estimate the 
amount of process vapor i n  the effluent mixture as a function of Pc, the 
condenser pressure, and To, the temperature a t  which the mixture leaves 

The l a t t e r  situation occurs, for example, in flash and direct- 

The gaseous mixture that i s  withdrawn from condensers will be sat- 

1. 

the condenser. 

ANALYSIS 

In those cases where the 
have as ideal 'gases, we f i n d ,  

constituents of the vented mixture a l l  be- 
as described below, t h a t  

s 

a 
v 

4 
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where n /n i s  the mole r a t i o  of process Vapor e t 0  noncondensable gas i n  
the mixture, R i s  the gas constant, Tc i s  the saturat ion temperature o f  
the pure process vapor a t  P i ,  the pressure o f  the .condenser, and h 
i s  a mean value o f  the molal heat of Vaporization o f  the process f l u i d  
i n  the temperature range between To and Tc. 

i nc l  udes , and i ndi cates more r igorous equa 

+ P n  

b2 
- 
f g 

pproximation (1) discloses the assumptions t h a t  i t  

roximations for  
' nonideal gases and vapors. 

We s t a r t  by defining the "compressibi l i ty"  o f  any gas o r  vapor as 

P v  

A 

9 

where, o f  course, P and T are the absolute pressure and absolute temper- 
a ture o f  the gas, and v i s  i t s  molal volume, The compress ib i l i ty  w i l l  
be u n i t y  fo r  an i dea l  gas, and i t s  value f o r  saturated vapors does no t  
change as r a p i d l y  w i t h  temperature as does the spec i f i c  volume. 

volume, V = n v, t h a t  i s  occupied by the mixture and t h a t  i t  has no 
i n t e r a c t i o n  w i t h  any o f  the other cons 
sum o f  the i nd i v idua l  p a r t i a l  pressures o f  the const i tuent  gases i s  Pc, 

the t o t a l  pressure i n  the condenser. 
We a lso assume t h a t  the noncondensable gases are i n s u f f i c i e n t l y  * 

soluble i n  the l i q u i d  process f l u i d  t o  e f f e c t  a serious change i n  the 
saturat ion temperature of the-  l i q u i d .  These are t h  reasonable as- 

sumptions, for  example, if oxygen and n i t rogen a the noncondensabl e 
gases, and if water, Freon, o r  a l ight,hydro , 

It fo l lows from those assumptions t h a t  

We next make the assumption t h a t  each cons t i t u ten t  gas f i l l s  the 

u ten t  gases, except t h a t  the _ .  

l u i d .  

/ '  
< .  

(3)  

_ -  
where, again, the subscr ipts p and n r e f e r  t o  the process f l u i d  and non- 
condensable gases. 
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We now draw on the Clapeyron equation: 
it 

h 

T v  
- -3, 

fg satura ti on 
(4) 

where v 
vaporizes. 

i s  the increase i n  molal volume o f  the process f l u i d  when i t  
fS 

If we define a compress ib i l i ty  o f  vapor izat ion as 

V f g  
9 

RT 
Zfg 

we obta in  a modif ied Clausius-Clapeyron equation: 

hfa (To - Tc) 
Pp = Pc exp 

and 
1 'n n 4.1- - 

P - 1  
Z 'n 

Next, we note t h a t  

1 1 1 
% - - - ,  

ex - 1 X 2 

w i t h i n  about 10% o r  less, when x < 0.9: 

X 0 0.1 0.3 0.5 0.7 0.8 0.9 1 .o 
l / ( e x  - 1) 00 9.51 2.86 1.54 0.99 0.82 0.69 0.58 
l / x  - 1/2 00 9.50 2.83 1.50 0.93 0.75 0.61 0.50 
% e r r o r  - -0.09 -0.9 -3 -6 -8 -1 1 -14 

Thus, we f i n d  t h a t  

(5) 

P 
r 

(7) 
4 
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Temperature 

Water 
300 K (80°F) 
278 K (4OOF) 

I so bu tane 

278 K (4OOF) 

- 

300 K (8OOF) 

* 

2 
i 

, 
Moles , Process F1 uWMo1 e, Noncondensabl es 

(Tc - To)/T = 0.02 (Tc - To)/T = 0.01 
f g 

llfs, z 
RT 

Appr. (9) Appr. ( 1 )  Appr. (9)  Appr. (1) 

18 1 1 2.3 2 .3  5.1 5.1 
19 1 1 2.1 2.1 4.8 4.8 

8 0.90 0.88 5 .6  5.8 1 1 . 7  12.0 
9 0.94 0.93 5 .0  5.1 10.5 10.6 

a 

T 
'c 

t 
4 
J 

'3 2 .  (9)  

z .  

and when the compress ib i l i t ies  a l l  approach uni ty ,  

DISCUSSION AND CONCLUSIONS 

= 18 f o r  water utane. Thus, 
,'we need t o  keep t o  less 

than about 0.05 i f  we use Approximation (1). 

(Tc - To)/T i s  0.1 o r  less; bu t  we need t o  check t o  see whether we should 

use Approximation ( 9 ) ,  since for  isobutane a t  t h a t  temperature, z = 0.90 
and z = 0.88. A t  278 K (4OoF), z for  isobutane i s  0.94 and z i s  0.93. 

I n  OTEC systems the value of (Tc - To)/T w i l l  usual ly  be less than 
0.02. This means t h a t  if water i s  the process f l u id ,  and i f  the non- 
condensables are nitrogen, oxygen, and any other gases t h a t  behave l i k e  
ideal  gases, the mole r a t i o  of the vented mixture w i l l  be greater than 

2.3 moles of water t o  one mole of noncondensable gas. 
l i k e l y ,  (Tc - T,)/T i s  0.01, then the ef f luent mixture w i l l  contain 5.1 
moles of water vapor per mole o f  noncondensable: 

I n  the case of isobutane, the e r r o r  can be held t o  10% o r  less i f  

P 

f g P f g 

If, as i s  more 

I I 
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I n  the above calculat ions,  we have no t  d i f f e r e n t i a t e d  between Tc, 

To, and an intermediate temperature a t  which we ca l cu la te  h 
It appears from the resul ts ,  however, t h a t  only a few percent e r r o r  i s  
involved i n  t h a t  lack o f  r i g o r .  

The compress ib i l i t ies  o f  saturated vapors are always u n i t y  o r  less. 
Thus, the vapor izat ion compress ib i l i ty  and the simple compress ib i l i ty  o f  
the process vapor w i l l  always tend t o  cancel each other i n  Eq. (7) and 
Approximation (9) .  

the r e s u l t s  f o r  isobutane using Approximations (9)  and (1). 

On the other hand, as seen i n  Eq. (7)  and Approximation (9), the mole 
r a t i o  i n  the vented mixture w i l l  be exact ly  proport ional  t o  the compressi- 
b i  1 i ty of the noncondensabl e gases. 

- 
and 

f g fg' 

That f a c t  i s  i l l u s t r a t e d  by the close agreement between 

i. 

1 
f 
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