

*32
3-27-80
JLW*

ORNL

ORNL/TM-7400

OAK
RIDGE
NATIONAL
LABORATORY

UNION
CARBIDE

**The Composition of Gases
Vented from a Condenser**

R. N. Lyon

MASTER

OPERATED BY
UNION CARBIDE CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A02; Microfiche A01

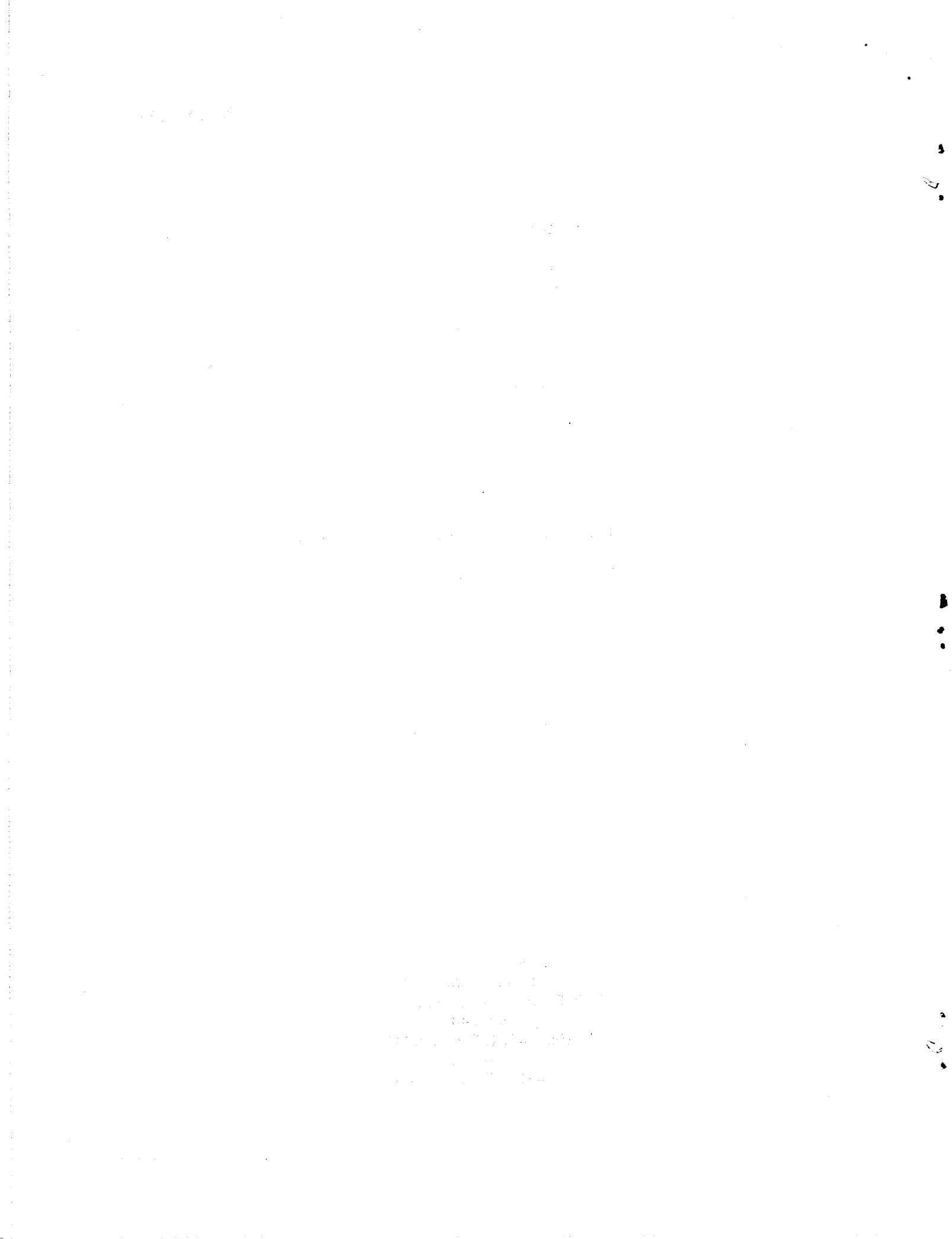
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Contract No. W-7405-eng-26

Energy Division

THE COMPOSITION OF GASES VENTED FROM A CONDENSER

R. N. LYON


Date Published: August 1980

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
Operated by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

built according to the recommendations of the code. The code
of the U.S. Federal Energy Commission (FEC) is the standard
code that is used in the U.S. and is considered to be the most
widely used standard for commercial buildings.

CONTENTS

NOMENCLATURE	iv
ABSTRACT	1
INTRODUCTION	1
ANALYSIS	2
DISCUSSION AND CONCLUSIONS	5

Chapter 1 is a brief introduction to the code and the analysis.

Chapter 2 is a brief introduction to the analysis.

Chapter 3 is a brief introduction to the analysis.

Chapter 4 is a brief introduction to the analysis.

Chapter 5 is a brief introduction to the analysis.

Chapter 6 is a brief introduction to the analysis.

Chapter 7 is a brief introduction to the analysis.

Chapter 8 is a brief introduction to the analysis.

Chapter 9 is a brief introduction to the analysis.

Chapter 10 is a brief introduction to the analysis.

Chapter 11 is a brief introduction to the analysis.

Chapter 12 is a brief introduction to the analysis.

Chapter 13 is a brief introduction to the analysis.

Chapter 14 is a brief introduction to the analysis.

Chapter 15 is a brief introduction to the analysis.

Chapter 16 is a brief introduction to the analysis.

Chapter 17 is a brief introduction to the analysis.

Chapter 18 is a brief introduction to the analysis.

NOMENCLATURE

h_{fg}	the molal heat of vaporization of the process fluid
\bar{h}_{fg}	the mean value of h_{fg} in the temperature range between T_o and T_c
n	the number of moles of a constituent of the vented mixture
n_n	the number of moles of noncondensable gases
n_p	the number of moles of process vapor
P	absolute pressure
P_c	the pressure in the condenser
P_n	the partial pressure of the noncondensable gases in the vented mixture
P_p	the partial pressure of the process vapor in the vented mixture
R	the gas constant
T	absolute temperature
T_c	the saturation temperature of the process fluid at P_c
T_o	the temperature at which the vented mixture leaves the condenser
v	molal volume
v_{fg}	the molal volume of vaporization of the process fluid
v_n	the molal volume of the noncondensable gases
v_p	the molal volume of the process fluid
V	a volume of the vented mixture, nv
z	compressibility, Pv/RT
z_{fg}	the compressibility of vaporization of the process fluid, $P_p v_{fg}/RT$
\bar{z}_{fg}	the mean value of z_{fg} in the temperature range between T_o and T_c
z_n	the compressibility of the noncondensable gases, $P_n v_n/R T_o$
z_p	the compressibility of the process vapor, $P_p v_p/R T_o$

THE COMPOSITION OF GASES VENTED FROM A CONDENSER

R. N. Lyon

Energy and Geothermal Division, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

ABSTRACT

Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers.

The following approximation appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture:

$$\frac{n_p}{n_n} \approx \frac{R T_c T_o}{h_{fg} (T_c - T_o)} = \frac{1}{2} \quad (1)$$

The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC).

More rigorous relationships are available for exceptional cases.

To evaluate the number of moles of vapor that is vented, it is necessary to determine the volume of vapor, and the partial pressure of vapor.

INTRODUCTION

Well designed condensers flow the process vapor from the condenser and inlet across the condensing region to a vent region where noncondensable gases can be removed continuously, or accumulated for periodic removal. When the process fluid is used in a closed Rankine cycle entirely above atmospheric pressure, the principal source of noncondensable gas will be that dissolved in make-up fluid, and venting is usually not a serious problem. At the opposite extreme is a subatmospheric condenser for vapor being condensed by direct contact with a stream of water, or other cool fluid, that is saturated with gas at atmospheric pressure and where

*Consultant, Energy Division.

the vapor originates either from or in direct contact with warm fluid that is also saturated with noncondensable gases.

The latter situation occurs, for example, in flash and direct-contact systems for geothermal power plants and for ocean thermal energy conversion (OTEC).

The gaseous mixture that is withdrawn from condensers will be saturated with the process-fluid vapor at the temperature of withdrawal, and this can pose several problems:

1. If the vapor is flammable, it must be recovered or flared to avoid the danger of fire or explosion.
2. The process fluid may be sufficiently valuable to require recovery from vented mixture.
3. If the condenser operates below atmospheric pressure, a vent compressor will be required. The power required by the first stage or two of a mechanical compressor will usually be dominated by the power required for adiabatic compression of the process vapor in the mixture that is being compressed in that stage, and the bulk of the heat removed in the first few interstage coolers will be the latent heat of the condensing process vapor. Water-jet and barometric-leg compressors tend, in principle, to approach isothermal compression, but the size of the compressor is determined by the volume flow rate of the incoming mixture from the condenser.

For these and perhaps other reasons, designers need to estimate the amount of process vapor in the effluent mixture as a function of P_c , the condenser pressure, and T_0 , the temperature at which the mixture leaves the condenser.

ANALYSIS

In those cases where the constituents of the vented mixture all behave as ideal gases, we find, as described below, that

$$\frac{n_p}{n_n} \approx \frac{\frac{R T_c T_0}{h_{fg} (T_c - T_0)} - \frac{1}{2}}{2}, \quad (1)$$

where n_p/n_n is the mole ratio of process vapor to noncondensable gas in the mixture, R is the gas constant, T_c is the saturation temperature of the pure process vapor at P_c , the pressure of the condenser, and \bar{h}_{fg} is a mean value of the molal heat of vaporization of the process fluid in the temperature range between T_0 and T_c .

Development of Approximation (1) discloses the assumptions that it includes, and indicates more rigorous equations or approximations for nonideal gases and vapors.

We start by defining the "compressibility" of any gas or vapor as

$$z \equiv \frac{P v}{R T}, \quad (2)$$

where, of course, P and T are the absolute pressure and absolute temperature of the gas, and v is its molal volume. The compressibility will be unity for an ideal gas, and its value for saturated vapors does not change as rapidly with temperature as does the specific volume.

We next make the assumption that each constituent gas fills the volume, $V = n v$, that is occupied by the mixture and that it has no interaction with any of the other constituent gases, except that the sum of the individual partial pressures of the constituent gases is P_c , the total pressure in the condenser.

We also assume that the noncondensable gases are insufficiently soluble in the liquid process fluid to effect a serious change in the saturation temperature of the liquid. These are both reasonable assumptions, for example, if oxygen and nitrogen are the noncondensable gases, and if water, Freon, or a light hydrocarbon is the process fluid.

It follows from those assumptions that

$$\frac{n_p}{n_n} = \frac{z_n P_p}{z_p P_n} = \frac{z_n P_p}{z_p (P_c - P_p)}, \quad (3)$$

where, again, the subscripts p and n refer to the process fluid and noncondensable gases.

We now draw on the Clapeyron equation:

$$\left(\frac{\partial P}{\partial T} \right)_{\text{saturation}} = \frac{h_{fg}}{T v_{fg}} , \quad (4)$$

where v_{fg} is the increase in molal volume of the process fluid when it vaporizes.

If we define a compressibility of vaporization as

$$z_{fg} \equiv \frac{P v_{fg}}{RT} , \quad (5)$$

we obtain a modified Clausius-Clapeyron equation:

$$P_p = P_c \exp \left[\frac{h_{fg} (T_o - T_c)}{z_{fg} R T_o T_c} \right] \quad (6)$$

and

$$\frac{n_p}{n_n} = \frac{z_n}{z_p} \frac{1}{\exp \left[\frac{h_{fg} (T_c - T_o)}{z_{fg} R T_c T_o} \right] - 1} \quad (7)$$

Next, we note that

$$\frac{1}{e^x - 1} \approx \frac{1}{x} - \frac{1}{2} , \quad (8)$$

within about 10% or less, when $x < 0.9$:

x	0	0.1	0.3	0.5	0.7	0.8	0.9	1.0
$1/(e^x - 1)$	∞	9.51	2.86	1.54	0.99	0.82	0.69	0.58
$1/x - 1/2$	∞	9.50	2.83	1.50	0.93	0.75	0.61	0.50
% error	-	-0.09	-0.9	-3	-6	-8	-11	-14

Thus, we find that

$$\frac{n_p}{n_n} \approx \frac{z_n}{z_p} \left[\frac{z_{fg} R T_c T_o}{h_{fg} (T_c - T_o)} - \frac{1}{2} \right] \quad (9)$$

and when the compressibilities all approach unity, i.e., $z_p = z_n = 1$,

$$\frac{n_p}{n_n} \approx \frac{R T_c T_o}{h_{fg} (T_c - T_o)} - \frac{1}{2} \quad (1)$$

and (9) reduces to $n_p = n_n - \frac{h_{fg}}{R} \frac{(T_c - T_o)}{T}$.

3.1 DISCUSSION AND CONCLUSIONS

At 300°K (80°F), $h_{fg}/RT = 18$ for water and = 8 for isobutane. Thus, with water as the process fluid, we need to keep $(T_c - T_o)/T$ to less than about 0.05 if we use Approximation (1).

In the case of isobutane, the error can be held to 10% or less if $(T_c - T_o)/T$ is 0.1 or less; but we need to check to see whether we should use Approximation (9), since for isobutane at that temperature, $z_p = 0.90$ and $z_{fg} = 0.88$. At 278 K (40°F), z_p for isobutane is 0.94 and z_{fg} is 0.93.

In OTEC systems the value of $(T_c - T_o)/T$ will usually be less than 0.02. This means that if water is the process fluid, and if the non-condensables are nitrogen, oxygen, and any other gases that behave like ideal gases, the mole ratio of the vented mixture will be greater than 2.3 moles of water to one mole of noncondensable gas. If, as is more likely, $(T_c - T_o)/T$ is 0.01, then the effluent mixture will contain 5.1 moles of water vapor per mole of noncondensable:

Temperature	$\frac{h_{fg}}{RT}$	z_p	z_{fg}	Moles, Process Fluid/Mole, Noncondensables			
				$(T_c - T_o)/T = 0.02$		$(T_c - T_o)/T = 0.01$	
				Appr. (9)	Appr. (1)	Appr. (9)	Appr. (1)
<u>Water</u>							
300 K (80°F)	18	1	1	2.3	2.3	5.1	5.1
278 K (40°F)	19	1	1	2.1	2.1	4.8	4.8
<u>Isobutane</u>							
300 K (80°F)	8	0.90	0.88	5.6	5.8	11.7	12.0
278 K (40°F)	9	0.94	0.93	5.0	5.1	10.5	10.6

In the above calculations, we have not differentiated between T_c , T_0 , and an intermediate temperature at which we calculate $\overline{h_{fg}}$ and $\overline{z_{fg}}$. It appears from the results, however, that only a few percent error is involved in that lack of rigor.

The compressibilities of saturated vapors are always unity or less. Thus, the vaporization compressibility and the simple compressibility of the process vapor will always tend to cancel each other in Eq. (7) and Approximation (9). That fact is illustrated by the close agreement between the results for isobutane using Approximations (9) and (1).

On the other hand, as seen in Eq. (7) and Approximation (9), the mole ratio in the vented mixture will be exactly proportional to the compressibility of the noncondensable gases.

INTERNAL DISTRIBUTION

1. H. G. Arnold	17. G. H. Lewellyn
2. H. M. Braunstein	18-22. R. N. Lyon, Consultant
3. F. C. Chen	23. L. McCold
4. W. L. Cooper	24. G. S. Mailen
5. F. A. Creswick	25. V. C. Mei
6. G. A. Cristy	26-30. J. M. Michel
7. N. Domingo	31. R. W. Murphy
8. D. M. Eissenberg	32. R. C. Robertson
9. W. Fulkerson	33. David J. Rose, Consultant
10. A. Golshani	34. W. Kerry Smith, Consultant
11. R. Eugene Goodson, Consultant	35. I. Spiewak
12. H. W. Hoffman	36. ORNL Patent Section
13. W. B. Huxtable	37-39. Central Research Library
14. Tood R. LaPorte, Consultant	40. Document Reference Section
15. C. G. Lawson	41-42. Laboratory Records
16. D. W. Lee	43. Laboratory Records - RC

EXTERNAL DISTRIBUTION

44. Assistant Manager for Office of Energy Research and Development, DOE/ORO
45. James H. Anderson, Jr., Sea Solar Power, Inc., 2422 S. Queen Street, York, PA 17402
46. William H. Avery, Applied Physics Laboratory, Johns Hopkins University, Johns Hopkins Road, Laurel, MD 20810
47. Eugene Barsness, Westinghouse Electric Corporation, Steam Turbine Division, Lester Branch Box 9175, Philadelphia, PA 19113
48. Kenneth J. Bell, School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74074
49. A. F. Charwat, University of California, Department of Mechanics and Structures, 5731 Boelter Hall, Los Angeles, CA 90024
50. Dr. D. Chisholm, National Engineering Laboratory, Glasgow, Scotland
51. Robert S. Cohen, Division of Central Solar Technology, Department of Energy, 600 E Street, NW, Washington, DC 20585
52. Roland L. Coit, Electric Power Research Institute, Post Office Box 10412, Palo Alto, CA 94303
53. Robert H. Douglass, TRW, Inc., Systems and Energy Group, 1 Space Park, Redondo Beach, CA 90278
54. Gordon L. Dugger, Applied Physics Laboratory, Johns Hopkins University, Johns Hopkins Road, Laurel, MD 20810
55. Michael B. Foley, System Planning Department, Florida Power Corporation, 3201 34th Street, South, St. Petersburg, FL 33733
56. Sigmund Gronich, Division of Central Solar Technology, Department of Energy, 600 E Street, NW, Washington, DC 20585
57. R. Philip Hammond, R&D Associates, 4640 Admiralty Way, Post Office Box 9693, Marina del Rey, CA 90291

58. M. I. Kay, Center for Energy and Environmental Research, University of Puerto Rico, College Station, Mayaguez, Puerto Rico 00708
59. E. H. Kinelski, Division of Central Solar Technology, Department of Energy, 600 E Street, NW, Washington, DC 20585
60. Abraham Lavi, Department of Electrical Engineering, Carnegie-Mellon University, Schenley Park, Pittsburgh, PA 15213
61. Paul J. Marto, Department of Mechanical Engineering, Naval Post-graduate School, Monterey, CA 93940
62. Jon G. McGowan, Mechanical Engineering Department, University of Massachusetts, Amherst, MA 01003
63. A. E. Molini, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
64. W. L. Owens, Lockheed Missiles and Space Company, Post Office Box 504, Sunnyvale, CA 94088
65. Dr. Chandrakant Panchel, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
67. H. F. Poppendiek, Geoscience, Ltd., 410 South Cedros Avenue, Solano Beach, CA 92075
68. Thomas Rabas, Westinghouse Electric Corporation, Steam Turbine Division, Lester Branch Box 9175, Philadelphia, PA 19113
69. Kenneth F. Read, 448 Ferry Point Road, Annapolis, MD 21403
70. Stuart L. Ridgway, R&D Associates, 4640 Admiralty Way, Post Office Box 9695, Marina del Rey, CA 90291
71. Dr. J. W. Rose, Queen Mary College, University of London, London, England
72. Robert R. Rothfus, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
73. Cullen M. Sabin, Geoscience, Ltd., 410 South Cedros Avenue, Solano Beach, CA 92075
74. Norman Sather, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
75. Lloyd A. Spielman, Department of Civil/Chemical Engineering, University of Delaware, Newark, DE 19711
76. Benjamin Shelpuk, Solar Energy Research Institute, 1536 Cole Boulevard, Golden, CO 80401
77. Anthony Thomas, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
78. Graham B. Wallis, Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
79. A. D. Watt, Engineering of Physics Department, Colorado School of Mines, Route 1 Box 183-1/2, Cedaredge, CO 81413
80. Laskar Wechsler, Hydraonautics, Inc., Pindell School Road, Laurel, MD 20810
81. Alvin Weinberg, Institute for Energy Analysis, Post Office Box 117, Oak Ridge, TN 37830
82. Clarence Zener, Physics Department, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
- 83-109. Technical Information Center, Post Office Box 62, Oak Ridge, TN 37830