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1. Introduction . 
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Considerable new work has been done in the field ·of probability 

density estimation since the survey.paper and simulation study.done 

·'· 

by Wegman (1972a,b). ~... Notable in this work is the introduction 

of some new methods, such as the polynomial and spline methods 

and. the·~· nearest: neighbob ~ethod. • In addition 8 the asymptotic ·.:• 

properties have' been·· studied' in. depth and with unified results .. · 

in the work of Farrell ;·(1972) -and Wahba (197§b).~, ·.I,//_, (! 

·. ·.· >" ) .· ••.• j 

Part of the comparisons done ·in this~ paper will be a·;s~ary-:of 

this work. In addition, the computational complexity of the various 

algorithms will be analyzed, along with an analysis of some slm~-
. . . . . . . 

. lations. Here the .. objective is to compare the performance of the 

various methods in small samples, their sensitivity to change in 

their parameters, and also to attempt to discover at what point a 

smaple is so small that density estimation can no longer be worth-

while. 

./ 
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2. Common Methods of Estimation 

The problem considered here is the estimation of an unknown 

probability density.function f(x) (assumed to exist) from a sample 

X., i = l, ••• ,N arising from a distribution with such a density. 
J. . . 

In the histogram method, the support of the distribution is broken 

into inter-Vals •. For x in interval j, the estimate of the density 

is ~(x) = Y./N.£. where _y_ observations-fell in the.interval 
. . J J J 

length J. •• 
J 

For OrthoqonO.l series estimation ('l:arter-an·d· .• Kr.··· ~n:~ ~1--~···76)·--a-·n·-·d·-··--·~/- t 
refe·renc·a·s··crted ·the-re)---, f. is- ass .. um---e---d~ .. --:t...,-o.,.,·be · t abl th - 1 square.· 1.n egr e · Wl. ...-:..'-;;:.::::·.· .. 

. respect to a weight .-fu~ction r. Let {cp} be _an orthonormal basis·:.:_ ·:T 
for .. L2 (r). · then f can be expanped in its Fou~i.,er S~ries: \ 

··---·-·---... -... _J 

f{x) = ~ aj q:>j (i) ~ ·-·(:.:, ·-_:'. 
J . 

The Fourier coefficients are then estimated by . :, . .:. ·.? . 
..·.· · ... 
.· '. 

·for 

by 

j = 1, ••• ,M, 

1\ 

' ,, . ' 

-1 
= N 2: cp . {X. ) r (X. ) 

i J J. J. 

for· j > M; hence the density is ·estimated 

M 
:f(x) = /\ 

2: a .N cp. (x). 
j=l J J 

In the spline method (see Wahba (1975a, 1976) and references 
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cited there), the empirical distribution function is interpolated 

through M .regularly spaced points (or regularly chosen order 

statitstics) usin(g a cubic spline. The boundary conditions are 

made on f at the endpoints either a priori or estimated, say, usini 

the histogram method. The density estimate is the spline's derivative. 

To use the polynomial metho:i (Wahba, 1971), M regularly 

spaced order statistics are chosen. The estimate of f(x) is 

obtained by interpolating the empirical distribution function with 

th an r degree polynomial through r + 1 order statistics near x 

and differentiating. 

The kernel method (Pa~en, 1962) can be viewed as a smoothing 

of the lumps of. probability in the empirical d.f. The estimate is 

given by. 

~ (x) = (HN)-l ~ k((x- X.)/H(N)) 
l. . •i 

and H .... 0 (less smoothing) as N -+ <D. 

The nearest neighbor method (see Loftsgaarden and Quesenberry 

(1965) and references in Moore and Yackel {1977)) is a modification 

of the kernel method where the convergence of H depends on the.data. 

Here, given r, H(x,N) is the distance from x to the rth closest 

observation. 
One criterion for· comparing estimates may be on aesthetic 

grounds. An estimator which is smooth, nonnegative on its support 

and zero elsewhere and normalized, i.e. integrates to l,is highly 

preferred. However, the histogram is.not 11 Smooth" and is limited 
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to distributions of finite support, though is nonnegative· and 

integrates eo 1. Orthogonal series estimates can be negative, but 

with the appropriate choice of l~.} such as trigometric series 
~ 

or Legendre. polynomials on a finite interval or Hermite· polynomials 

for R
1 

can handle any type of support. They are smooth, but need 

not integrate to 1 although this may be enforced with an appropriate 

choice of cpl and r. Both spline and polynomial methods are smooth 

. . 
and integrate to 1 but they might be negative. For the kernel method, 

if the kernel is chosen to be a density function, the density estimate. 

is a density. .However, a minor drawback is that some smoothing may 

shay beyond the boundaries of a finite support. The nearest neighbor 

method is not normalized even if the kernel is. a dens.ity function. -

The kernel, though, may not be chosen this way, and while gaining 

some asymptotic properties, it loses others. As a result, the 

histogram is the only "clean" estimate, but its use is limited and 

it is riot as smooth as could be preferred. 
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CII. Computational Complexity 

The criteria here for comparison are the time and space com-

?Uting requirements for large problems .. Large· problems vary in 

;ize depending on the capabilities of machines. What are important 

re the orders of magnitude because these decide whether a certain 

:ask is feasible: scalar factors are important in dollars and 

:ents. 

We are concerned here with the computation required to obtain 

:he estimate of a density at L points with a sample of N observa-

:ions. The orders of magnitude for the tasks required by the vari-

•us methods are given in Table 1. Although many of the entries 

.n the table are self~·eviden~·; :there are t:wo · advances. in computer · 

.cience which are·useful here. First is that the work required 

e.g. comparisons) to sort a list of N numbers is O(NlgN) (l~ = 

·ase ·2 logarithm} . Second is that to place an element in a sorted 

ist or to check for membership in such a list·requires anadditional 

(lgN } . A useful tool for statisticians~ fast order statistics 

lgorith.ms, taking O(N) are not applicable here. The reader 
( ·. , . ·.· \ 

s- referred to Knuth (197.3} , or ·Abo, Upcrof.t and. Ullman · {1974) . for the 

erivation and eXJ?lanation·of these algorithms. 

Evident from the table 5_s .... that some methods can be costly to 

se. ·First to be noted is the storage requirements. The kernel 

ethod, hence, nearest neighbor, requires that all of the data 



-6-

be stored. ·For the other methods, the storage needed is c.onsider-

ably smaller. If L is small, the set-up and sorting cost pre-

ponderate and the orthogonal series becomes costly and the kernel 

method cheap. If L is large, say for doing detailed plotting, 

the last line of the table tells the tale. The kernel method is 

2 
most costly, N ; with the use of a finite kernel and sorting the 

data drop the cost to N3/ 2 , the same as orthogonal.se~ies. ·The 

polynomial method is next, marginally more costly than the histo-

gram and spline methods. The price paid for smoothing the histo-

gram by using the spline method is only a scalar factor. The 

nearest neighbor method, riot included in the table, requires sort-

ing of the data in addition to the same costs as the kernel 

method. · 

Finally, the human cost of coding, checking and using these 

algorithms is usually .avoided by computer scientists, but is very 

important in the field of statistical computing. We are happy to 

report .that, in the opinion of one of the authors, most of the 

methods are very easy to code, debug and use. The only non-trivial 

problems are the O{NigN} ·sort, the spline method and the evalua-

tion in the polynomial method. Code for the first is ubiquitous; 

·the last one takes only a few minutes following perusal of a good 

numerical analysis text. ·The spline method does require some re-

search but less than one man-day and appropriate code is available 

in many program libraries. 



Method 

Parameter 

Sort? 

Storage 

-Set-up 

·Density 

Parameter 
rate 
m=l, p=2 

Total 

L=N 
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Table 1 · · 

Computational. Complexity 

Order of magnitude of calculations for 

evaluating density estimate at L points 

Orthog. 
Hi.§.:t.. SeJ;:ie~ S:eline· Kernel *· 
M= M=# M= 

# .. bins terms # knots H :: Scale Factor 

No No No No Yes 

M -·M M N. N 

N MN N+M None None 

L LM ·L. LN HNL+" 
LJ.gN 

rf2 J2 N~ N-~ N-~ 

L+N ufl+ L+N LN r:;r}l+ 
N3/2 NJ.gN 

N N3/2 N N2 N3/2 

*Kernel with finite support 

Poly-
uomisl. 

M = # 
Intervals 

Yes 

M 

M 

L+· 
.LJ.gM 

.J2 

LJ.gN+ 
NJ.gN 

NJ.gN 
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IV. Asymptotic Behavior of the Density Estimators 

It is "indicated in a recent paper by Wahba (1975) that the 

mean squared errors of density estimators obtained using poiy-

nomial, kernel, and orthogonql series methods have the same. optimal 

order of magnitude when some appropriate assumptions on the true 

density function and the selected kernel etc. are s.atisfied. To 

be more explicit, we define 

where m , 

less than 

{f 
~·f(v} · (m) 

= _ abs. conti., v=O,l, ... ,m-llf eL }, 
. p 

is a positive integer, p is a real number and is no 

1, and let W(m) (A) = {f: fe:W(m) and rl f (m} ll ~A J, 
p p ,. ·P 

where 11 .!lp means the L -norm. The:t;1 if the true density func- -·--:· · 
.P 

tion f belongs to W(m) · (1"1) for some A 1 . the density estimators 
p . 

by the orthogonal series method and the kernel method have their 

mean squared errors optimally in the order of magnitude of 

·o(N-~(m,p)), · h 1 · d ( ) where N ~s t e samp e s~ze an ~ m1 p = 

(2m-2/p) I (2m+·l-2/p) . In addition, if it is also assumed that 1 at 

the ~oint of interest Xi there exists A such that 0 < A ~ f(u) 

~ 1\ for u in a neighborhood of. x, . I uF (u) I bounded for us=x 1 

. and ju(l-F(u)) I bounded for u~x, then the density estimator by 

the polynomial method has its mean squared error optimally in the 

order of magnitude of O(N-~(m,p)). 

The generalized nearest-neighbor method is similar to , 

·the kernel method, except that the sample-independent scale 
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parameter H, is replaced by a sample-dependent scale. Therefore, 

though not yet proved in lit~rature, it is conjectured that the 

mean. squared error of density estimator by this method has an 

optimal order of magnitude of O_(N~~ (m,p)) also. 

The order of magnitude of the mean squared error 

strongly depends on the smoothness of the true density function. 

. . ' 

The histogram method utilizes little 'O£ ·the:>:· smoothness of the 
. . . . . ' 

true density function. For this reason, the density estimator by 

the histogram method has the optimal order of magnitude· O(N-;.(l,p)} 

for its mean squared error . 

.. The density estimator obtained by using cubic spline interpola­

tion has been. anc:llyz~d by Wahba (1975a, ·b) • :Its·· mean ::squared· :error 

has the optimal order of magnitude O(N-~(m,p)) for (i) m=l, 

p=2 or c» 6 (ii) m=2, l~p~2 or p=c», and (iii) m=3, 

l~p~2 or p=c».. (These are the only cases having been proved so 

far.) It is conjectured that this optimal order of magnitude 

may hold for cases when m>3 if corresponding m-degree spline 

polynomial is used. 

Let ~- be the density estimator for the true density f, 

then the mean squared error E(~ -f)
2 

is the sum of two terms, 

" which are the variance V(f ) and the square of bias 
2 

b-= 
·N 

" Since·reduci.ng V·( f) . :increases 
.·. 2 
· bN· , -and vice,··:: .. ;· 

. ·'\ 
.. v(£J '. ( versa·, then optimality will be rEeached when 
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·and b~ have the same order of magnitude. In doing so, . asymptotic 

normality for.the obtained density estimator is not attained. In 

fact, it is attained only when the square of bias is negligible as 

compared against the variance as the sample size tends to infinity 

(i.e. Nevertheless, to attain asymptotic 

normality for the density estimators derived using-these available 

methods is practically unnecessary. The reason is in what follows. 

One of the major advantages to attain asymptotic normality is to 

enable us to obtain confidence interval.for the true density. The 

confidence interval .obtained· through asymptotic· normality and the 

standard-normal table has a width in the order of magnitude of 

1\ ~ · .. · 2 A ·· . 
· (V (f ) ; for which'- (i) .. li~ b;('V(f:) . :::.0 . has to· be satisfied, 

N4= . 

and we assume it is· of 0 (vN). On the other band, the confidence 

interval obtained using an argument on the optimal asymptotic 

mean squared error and the Tchebyshev's inequality has a width in 

the order of magnitude of (v(2N))~ for which (ii) 

c > 0 is satisfied, ahd we assume it is. of O(uN}. Then, since 

from the conditions of (i) and (ii) we can see that 

~vN ~ 0 as N ~=,we thus find that asymptotically.(as N ~ =) 

.a better confidence interval (namely, ·with narrower width but 

with same confidence coefficient} may be obtained by using·tbe . . 

optimal mean squared error and the Tchebyshev's inequality. 
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Accordingly, there seems to be no need for dealing with the.· 

asymptotic n~rmality for these density estimators. 

Results on pointwise consistency properties of density esti-

mators under various assumptions are available in literature no-

ticeably for kernel, nearest-neighbor, and histogram type methods. 

For the methods considered in this paper, the pointwise weak con-

sistency ·is attain.ed by the density estimators each of which has· 

the· optimal asymptotic mean squared error for its corresponding 

method. This is easily seen using Tchebyshev's inequality that 

gives 

" for any e>O. In fact, the estimator f may have the pointwise 

weak convergence property as long a~ both the variance and the 

1\ 
bias of f tend to 0 as N ~ =· From the.fact that ¢(m,p} ~ 1 

for all m and .. p as defined the pointwise strong consistency 

property does not.necessarily hold for the density estimator with 

optimal asymptotic mean squared error, since for the harmonic series 

~- 1/N diverges. Van Ryzin (1969} proved for the pointwise strong 

consistency of the kernel type density estimator, where a form of 

Lipschitz condition on the kernei was required. Strong uniform 

consistency was proved to hold under the additional assumptions 

:: 
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that the continuity of f is uniform and the kernel K has 

. 
absolutely integrable characteristic function. Accordingly, such 

a proof does not apply to uniform kernel. Most recently Moore and 
, • ( ' .' I . , ~ • . . ~ ; 

Yackel (1977) ~.on~tructed the. proof for uniform. kernel. while .·investiga-

ting consistency properties of generalized nearest-neighbor density 

estimators. The nearest-neighbor density estimator ~reposed by 

Loftsgaarden and Quesenberry (1965) is the special case·when uni-

form kernel is taken for the generalized nearest-neighbor density 

estimator. They showed that the nearest-neighbor density estimator 

is pointwise weak consistent ·at continuity point of f 1 while Moore · 

and Yackel (1977) came up with the extensive conclusion that, 

roughly .. stat.~d , ___ any cons~stency __ theorem true for t}1e kerne~ type 

density estimator (including t}1e case of uniform kernel) remains 

true for the generalized nearest-neighbor density estimator. In 

this manner the properties of weak and strong consistency, point-

I 

wise and uniform, for the generalized nearest-neighbor density esti-

mater may easily be observed by refe~ring to· that for the kernel· 

type density estimators. 

For the histogram-type density estimators, Van Ryzin (1973) 

proposed a.method and proved for the pointwise weak and strong 

consistency properties of the estimators that are obtained from 

the method. Strong uniform consistency for the same histogram-

type density estimators was later proved by Van Ryzin and Kim 

(1975). 
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To investigate the behavior of density estimates when the sample 

size is, sma·l'l,. a simulation experiment was performed. The objectives 

were to compare the performance of the various methods, their sensi-

tivity to changes in their parameters and to discover at what 

point a sample is so small that density estimation is not worthwhile. 

The computations were done on a CDC 6600 computer ill Fortran 

under Scope 3o4.4 and COPE. The source of pseudorandom numbers 
.•. ( ·; ; \.'! '::) 

was the uniform generator GFSR due to Lewis and Payn~. (i973) •. :·Five. i!',: .;._ ''): 

methods 'were ·~se\d :: : histogram, spline with. equispaced 'kiiots·r ~orthogonal 

series using·cosines; and·thekernel method 'using triangular·and 

. 
··uniform 'kernels~ Samples numbering 25, 50, ·and 200 were ·obtained 

from three distr-ibutions on (-1,. +1), 

f
1

(x) = 1-lxl 

f
2 

(x) = ! · (1-x
2

} 

1 . X 
f {x} = - + - • 

3 2 4 

A finite support was chosen to place all of the methods on an 

equal footing. one thousand replications \17ere done for each corn-

bination of method, parameter values and sampling distribution, 

{except for the exPeriments with Kernel method with N = 200, where 

250 replications were performed) • Four types of error were 

.recorded. 



1) 

2) 

-1 
N L: 

i 

-1 " N r.. 

i 

~ 
f 
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(X.) n l. ·~ Jl~ - fldx (X.) - 1 Ll 
]. 

3) N-l L: I~ (X;))- f(X.) 12 
.• .I·, l_. . . ]_ 

:::::: Jl~ - fl.
2
fdx Average Square 

error 

. ·~ .. 

:' •, . \ '; \\ I ~·; ~ '! . ' .• : . ( J 

4) sup i I Jxi ~ .. (x) dx - F n (Xi) I App.~?.ximate Kolmogorov~smrnov.,:,. 
Q) .··:,,~: _;_(~:~:·_..-·,:~·-.~-:~ .;_ 

The. parameters fo~ _the diff4:rent ~ethods .. were chosen according_ to 

an optimal search policy, either a golden section search for the 

scale parameter in the kernel method or a lattice search for the 

·number of terms or number of intervals. While in reality four 

criteria are used, they typically moved in unison with changes in 

the parameters~ -

In examination of the results given.in table 2, a few general 

comments can be made. First, note that a trivial estimate, such as~ 

~(x) = 0.5, yields L2 
errors of 

1 1 1 
6 

, 
10

, and 
24 

for f
1

, f
2

, and 

f
3

, respectively. Note that for f
3

, 25 observations is just too 

few to do density estimation, since·one could do nearly as well with 

~(x) = 0.5. However, the performance of kernel estimates for f 1 

and f
2 

is quite commendable. The spline and orthogonal series do 



well for f
1 

while the histogram does well on some of the dis­

tributions ~hen the sample sizes is quite small. 

For small (SO) and moderate (200) sample sizes the picture 

appears cloudy. But note that the ordering of the best for each 

distribution is nearly the same for the two sample sizes. In 

general, note that the histogram never does very well. The orthogonal 

series method place high consistently, but it can be very sensitive 

to parameter changes, i.ee, the number of·terms. The spline method 

_never does poorly or extremely well, and is stable to parameter 

changes. The kernel method seems ·handicapped when the true density 

is very smooth, like f
3

, but does well for f less smooth and for 

very small (25) sample sizes. 
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·-· ··:----.!""·.~---· . . . ····- ... . .... ---····., 
.. :-... 

Legend for Table % . · · .. . : . 

1. Entries·are means ·for 1000 replications (%50 
for kernel, N ""' 200) o.f · ·· 

.. . . .. 
. . . . . ·. . · .. 

.· N 
1 
- I: 
N i=-1 

.. . ~(Xi) 
l· f(Xi) 

2. All stand~rd errors for these entries are 
less thaD 7.n .. 

3. Parameters 
Histogram 
Orthogonal _5erie~ .. 
Spline- · · · 
Kernel 

M ,. N~~ of Intervals 
M.= No •. of-Terms .. 
M = No. of· Intervals 
H ~ Scale Factor 

'· .. I 

. 4. The means and standard errors from all 4 . 1· 
error criteria are available from the authorsi 

.. ) . 
j 
1• . 

I 
t l 

. -I 
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i 

I ,, 
! 

. :. " ·:.:·, --;: ·-:-·~ 7''"'7 -;:. -:-. ;;-:, - ·,::. i 
----~ 

Mean Approximate L2 En-or . 

.· .... ~ . ·. 

N=25 

M•2 .. 18196 
. 3 .• 08730 

. f
1

(x) = ~L~xl_ -:-~ y;~.i=i:/j 
Histogr&u~~<. t· ... · ~: . :.:.·}:· ,. :~'>.·.,.! 
.... 07037 · ·M•S · .:· .03222· :·· .. 

_: .06101 .'·.· .. 6 ... ~ .03074. ... : :·· 
.. · 4 . . .09881 . 

M-4 
5 
6 
7 

· ...• 07107 ·. --~ 7 ·: .. · .02751 ·· .. . 
.07544 ·_, '-.~ 8 .•.• 02831' .::··: 

Mal · .18902 M•l .17769 .. ~1 . -:' . 16603 · -.: j,·- ... ·:.-·. -·~:·· .. · 
2 . . .02632 2 .01474 . 2 ·. :.· .• 00567 ··i" 

·•3 · .. · .05196 :·3 -~ .02749·~.: .. 3 :·.(·.:.oo847 :<··-:--
4 . .03906 ·: ::~; 5 '• .. ~: .01427 :.- ·> 

M-. · .06057 M-4 
. ·s: ~ri79~2 .· 5 

Spline · · ... ·. · :--~ ·: ·,_:· .. =::::_ •• _.,. •• ·.: · 

;.04o6l M:.4 _.; .. ·.02509.·-· 
~04510 5 ·.01811 .. 

H•.23 . .06404 
.38 .03332 
.47 .03072 

.• 61 .03914 

. H=-.38 · 

. .52 
.61 
.76 

.05551 

.03372 

.02884 

.02890 

6 
8 

• 05209 .:· . 6 ..• 01811 .· .. 
.07644 ·:··_..: 8 '• .02071 .· 

· Uniform. Kernel ~··.:. ::::· ·. · :-,.:::;·. > .. 
R=-.23 .• 03196. · H•~l4. ·. :.01443 .. 

· .38 .o3oo4 ·.·:_ .23 .• oo877 .·._;-
1 .47 .02189 . · .• 38 .• 00986 . i 

.• 6t ... o3423 . ·· .61 · .• o3ot4 : ·- 1 

·.··· .· 

·· Triangular Kernel . : 

H~.38 

.52 

.61 

.76 

.02638 

.-01872 

.. 01837 

.02280 

H•. 23 .0117.3 . ·I 
.3a · .• oo743- . · . I 

.• 47 .oo1s6 · · I 
.61 .01094 I 

i 
I 
I 

' 

I 
I 
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Mean Approximate L
2 

Error 

. . . 

N=25 

M=2 .16065 
3 .• i6569 
4 .17509 

·.18.361 
.11923 
.15918 

. . 
.. .. 

.15927 M=r4 
5 ·.18751 

H=-.38 .07198 
.52. .04168 
.61 .03522 
• 76 .· .03791 . 

.· .. ·.· .. 

. H=.38 .13560 
.61 .06390 
.76 .04437 
.85 .03786 

. M:::o3 · 
4 
5 
7 

N=50 

Histogram 

.12043 M•l 

.10687 ... 4 
• 12011 . 5 
e15348 7 

Orthogonal Series 

M:al .15310 . M•l 
2 e06869 2 
3 .09014 3 
5 • 12974 5 

... 

·.· Spline .. 

M-4 '10633 M-4 
5 .10895 s 
6 .• 12407 6 

.8 .• 16402 8 

· Uniform_Kernel · 

N=200 

.09039 
..• 06548 . 

.06672 
.• 06672 

.13471 
' .,04036 
.04956 
.05530 

.. 

. ~. ·. 

.. 
·.··· 

.·.= •: 
... 

. :-:·· 

.. 
' 
.. . . 

.• 07141 
.06050 
.06304 
.06622 

H=-.38 .04338 H=-.38- .02420 
.52 . .02586 .52 .01634 

. • 61 .02343 .61 .01704 
.76 .03104 . : .76 .• 02771 ··:' I 
Triangular Kernel . I . 

H•.38· .07477 H=-.38 .03621 
. I 

I 
.61. .03719 .61 .02059 I ..• 76 o02668 .76 .01637' 

I 
.85 .02389 .85 .01616 I 

I 
! 
\ 



•. 

--I 

.. -: .. •-

Mean· Approximate L2 Error .. _ 

:··--. .... .. - ... 
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