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1. Introddction

Considerablé ﬁew work has been done.in.the field of probability
density estimation sinée the survey paper and simulation study done
by Weéman (l972a,b)"l*‘ Notable in this work is the‘ihtrqduction-“
of_some new methods, such as the'polynomial and spline ﬁéthods‘i
andﬁthé?ﬁeéresﬁ:neighboifﬁethod.liIn addition,'theﬂaéympt&tié T¥
bropértieé‘ﬁaQéygeen"studied’in,dépth and with-unifiea-éésﬁiféj,’
in the work ofaEarrelle(l972)ﬁand Wahba'(1975b);e e Q}m:

Part of the compari#&géféonelin thisrbaper will be‘aﬁéﬁﬁﬁéryﬁof -
this work. In addition, the computational complexity of the various
algorithms wi;lAbe-ahaIYZed, aldhg‘with_an analysis of some simu-
lations. Here ‘the.objective is to compare théAperformancelof thé
varioué methéds in small samples, their sensitivity tovchange'in~
their parameters, and also to attempt to discover at what point'a

smaple is so small that density estimation can no longer be worth-

while.



2. Common'Methods of Estimation
The problem considered here is the estimation of an unknown

probability density'fﬁnction f(x) (assumed to exist) from a sanmple

X;0 1= 1'f"'N arising.from aAdistributioﬁ with such a density.

In the histogram‘method, the suéport of the distribution is broken
into intervals. For x in interval j, the estimate of the density

is ‘%(X)A=4Yj/NLj whe;e'.Yj observations-fell in the'ipteivé;
length Lj;

For orthogonal series estimation (Tarter and Kronmal (1976) and '§>

-

referencés Cited there), £ is assumed rable -

'ﬁéﬁbe'éqﬁgfeiiﬁ&éérablefﬁithfzgﬂ;f_
_respect to a weight function r. Let {p} be an orthonormal basis'. .. |

 for uLz(r). -then £ can be expanded in its Fourier Series:.

—— e —— .
e e

E(x) = Z a. p.(X): 0
(x) . : a, ‘03‘ )| T

The Fourier coefficients are then estimated by - ‘ol - 30

A _ -1

i

for j=1,...,M, éjN = 0 for j > M; hence the density is estimated
by

A M /\ .

f(x) = ¢ a._o.(x).

C g=1 JN "3 :

In the spline methqd (see Wahba (1975a, 1976) and‘references



cited there),-the empirical distribution function is interpolated
.through M-reghlarly spaced points (or regularly choseﬁ order
statitstics) using a cuﬁic spline. The boundafy conditions are
méde on £ at the endpoints either a pfiori or estimated, say, usinéw

the histogram method. The density estimate is the spline's derivative.

To use the polynomial method (wWahba, 1971), M regularly
spaced order sﬁatistics are éhosen. The estimate of f£(x) is
obtained by interpolating the émpirical distribution function with
an rth- degree polynomial“throﬁgh r + 1 order statistics near X
and differentiating.

The kérnél metﬁod (Pamem,iSGZ) canAbé viewed és a smootﬁing
of the lumpg of4probability4in'thé empiricél d.f. The éstima;e is
..-gifen b?l’ | | |

2o = (197 T K((x - %) /HM)

and H ?.0 (less smoothing) as N = =.

The nearest neighbor method (seeuLoftggaardgn and Queseﬁbérry:'
»(1965) and references in Moore and Yackel (1977)) is a modification‘
of the kernel method where the convergence of H depends on.the;data.
Here, givenir, H(x,N).is the distance from x to the rth closest

observation.
One criterion for comparing estimates may be on aesthetic

grounds. An estimator which is smooth, nonnegative on its support
and zero elsewhere and normalized, i.e. integrates to 1, is highly

preferred. However, the histogram is not "smooth" and is limited



to distfibutions of finite support; thoﬁgh is.nonnegatiVe~and
integratgs to 1. Orthogonal series estimates can be negative, but
with the appropriaté_choiée'of {mi} such as trigometric series-

or Legend:e.- polynomials on a finite interval or Hefmite:polynomials
fgr R1 can handle any type of support. They are smooth, but need
nét_integrate to 1 although this may be enf&rced with an appropriate
choice of P and r. Both spline and polynomial methods‘aré smoocth
and ihﬁegra;e ﬁo 1 but they ﬁight be negative. For the kernel method,
if the kernel is chosen to be a density_function, the density estimate
is a density. _ﬁowever; a minoxr drawback is that some smoothing mgy
stray ﬁeyond the boundarieé of a finite éuppért. The nearest neighbor
‘ méthpd is not normalized éveh-if the kernel is.a aensiﬁy fungtion. -
Thé kernel; though, ﬁay not be chosen‘this way, and while gaining

- some asymptotic propérties; it loses others. As a result, the
histogram is the only “clean"Aestimate,,but:ﬁs use is limited and

it is not as smooth as could be preferred.



II. Véomputational Complexity

| The‘criteria herelfot comparison are the time and space com-
>utin§ requirementsifor large prdblems, .Large-problems vary in
:izé depending on the capabilities of machines. What are important
re the orders of magpitude because these decide whether a certain
ask is fsasible; scalar factorsbare important.in dollars and
ents. |

We are soncerned here with thelcompﬁtation required to obtain
;he estimate of a density at'L points with a saﬁple of NisbserVa-
:iops; The_orders of magnitude for the tasks required by tﬁe'Vari—
»us:methods are given in Table 1. Although many of the entries
n the tabls ate.sélfnsvidsntytthere‘are two' advances in computer -
cience which até'useful here. First is that the work requiréd.
e.g. comparisons) to so;t_a list of N numbers is O(Nngj (2g =
‘asé'Z-logarithm). Second is that to place an element in a sbrted
ist or to checklfot meﬁbership ia:such‘a list’ requires an’ additional
(ng ). A useful tool for statisticians, fast ordet statistics |
lgorithms, taking O(N) are not applicable hefe. The readarA
s referred to Knuth.(i973):or3Aho, Upcroft aAd_ﬁliman'(l974).fst the
erivation and explanation'of tﬁese algorithms.
Evident from the table is..that some méthods_san be costly to

se. 'First to be noted is the storage requirements. The kerﬁel

ethod, hence, nearest neighbor, requires that'all of the data
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be stored. For ihe'other methods, the étorage neededvis consider-
ably smaller. If L is small, the set-up and sorting cosf ére-‘
ponderate aﬁd the.ofthogonal series beéomés costly and the kerﬁel
méthod cheap. If L is lérge, say for doing detailed plotting,

the last line of the table tells thg tale. The kernel method is
mést costly, Nz, witﬁ the use of a fiﬁite kernel and sorting the

3/2, the same as orthogonal. series. The

dgta drop the cost to N
polynqmial method is ne#t)vmarginally more costly than the histo-
grﬁm‘and spline methéds. The price’paid-for smoothing the histo-
gram by using the spline method is only a scélar factqr. The
nearestvneighbor method, not included in'the-table, requires sort-
ing of tﬁe data in addition to‘the same cqstsuas,the kernei.A
.'method, 2 ' o

4‘Finaily, the human cost of coding, checking and using these
algbrithms is usually avoided by computer scientists, but_is very
important in the field of st;tistiéal computing. We are happy to
:epqrt that, in the opinion of one of the authors, most of the
me;hods are very easy to code, debug and use. The only non-trivial
problems are the O(N4gN) "sort, the spline mefhod aﬁd the evalua-
- tion in the polynomial method. Code for the first is ubiquitous;
‘the last one takes only a few minutes following perusal of a good
numerigal analysis text. The spline method does require some re;

search but less than one man-day and appropriate code is available

in many program libraries.



Table 1 -

Computétional.Compiexity

Order of magnitude of calculations for

evaluating density estimate at L points

' . o Orthog. Poly¥
" Method Hist. Sexies Spline’ Kernel *. nomial
- M = M=# M= = M= #
Parameter # bins terms # knots =~ H = Scale Factor Intervals
Sort ? No No °~° No . No Yes  Yes
Storage M M M N, N M
Set~up N MN N+M . None None =~ M
Density L M- L IN - HNIL+ L+
o S : . A LegN  LigM
parameter N? B . N4 ' ‘N'% e
rate o :
m=1, p=2
' Total . 14N LN + I+N LN IN?+ . LggN+
' n3/2 - : N2gN N2gN
L=N N N3/2 N N2 N3/2 N4gN

*Kernel with finite support



IV. Asymptotic Behavior ef the Density Estimators

It is ‘indicatéd in a recent paper by Wahba'(1975) that the
.mean squared errors of aensity estimators optained using poly-
nomial, kernel, and orthogonal series methods have the same- optimal
order of magnitude when sohe appropriate assump;ions on the true
density function and the selected kernel etc. are.satiefied. To

be more explicit, we define

(m) ) . | (m)

Wp = {f:f abs. conti., v=0,1,...,m=1,f eLP},
where m . is a positive integer, p ‘ie a real number and is no
less than 1, and let W( )(A) {£: feW( m) ~and '”f(m)up.s,\},
where Il lp means the Lp-norm Then if the true density- func— | AN

. tlon‘ f belongs to‘ W;m) (A) for some A, the den51ty estlmators
by the orthogonal series method and the kernel method have their
mean squared erpors optimaliy in the order of magnitude of
'O(N—¢(m’p’), where N is the sample size apd '¢(m,p) =

(2m-2/p)/ (2mr+1-2/p) . ‘In addition, if it is also assumed that, at
the point of interest x, there exisfs A sqch that 0 < s £ (u)
< A for u in a neighberhood of x, .]uF(u)l' bounded‘for usx,

. and lu(l—F'(g))l bounded for u2x, then the density estim'ater by
the polynemial method has its mean squared errpr optimally in the
order of magnitude of O(N_é(m'p)). .

The,generalized nearest-neighbor method is - similar to-

‘the kernel method, except that the sample-independent scale



parameter H, is replaced by a sample-dependent scale. Therefore,
though not yet proved in literature, it is conjectured that the
mean squared error of density estimator by this method has an

¢(mlp))

optimal order of magnltude of O(N also.
The order of magnitude of the mean squared error
‘strongly depends”on the smoothness of the true density-function.'
The_histogram'method utilizes 1ittie‘ofAtheﬁn‘smoothness of the
true density function For thls reason, the den51ty.est1mator by
the hlstogram method has the optlmal order of magnltude O(N ¢(l'P))
for 1ts mean squared error. o |
.Theddensity estimator-obteined by using cubic spline interpola-
tion has Been'aneiyéed by Wahba (197dé,fb);:'Ite]meaﬁusqueredWérror:
has the optlmal order of magnitude O(N = (m, p)) for (i) w=1l,
p=2 or o, (11) "m=2, 1l<p<2 or p=o, and (1ii) m=3,'
l<sp<2 or p=o. (These are the only cases having been proved so
far;) It is codjectured that this.optimal oxrder of magnitude
'may hold for cases when'm?B if corresponding m-degree spline
polynomial is used.
Let'-gl' be the density estimator for the true density £,
then the meen:squared error E(f/E\__-f)2 is the sum of two terms,
‘which are the variance ‘V(g ) and the square of bias 4b§ =

A ' . A 22 ; S
(B -f)z. Since reducing V{£f) ‘increases ‘bN',’-and vice: iile ..

. . ' . A . . ot
versa, then optimality will be reached when . V(£f) - . “(
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and b; haVé the same order of magnitude. In doing so, -asymptotic
normality for the obtained dénsity estimator is not attained. In
fact, if-is.attainedvonly when'the squére of bias-is negligible as
»compared aéainst the Variancé.as the sample<size teﬁds to infinity -

. s 2,..2 ' ' ' . . .
"(i.e. 1lim bN/V(fN) = 0). Nevertheless, to attain asymptotic
Noo . :

normality'fo; the density éstimators derived using these available
methods is practically:unhecessary. The reason is iq‘what fo;lows.A
One of the major advantaéeé'to attain #symptotic normgliﬁy is to
enable us to obtain confidencg inter#al‘for thé true density. The
_confidenée-interval.oﬁtaiqed-thfbugh’asymptdtié"ndrmality‘and'thé _
standard-hormal-table_has a width in.thé order of maénitude-of

‘(V(f._);;5 for which _ (i) - limAb;/V(fn).:EO--has to -be satisfied,

and we ‘assume it is of O(YN). Oon the other hand, the confidence
 interval obtained using an argument on the optimal asymptotic
.mean squared error and the Tchebyshev's inequality has a width in

' O A -
the order of magnitude of: (V(?N))2 for which (ii) 1im b;/v(fN)=
» - Now

c >0 is satisfied, and we assume it is of O(ug). Then, since
from the conditions of (i) and (ii) we can see that‘

'uﬁ/VN 4 0 as N.é.é, we thus fihd that ésymptotically'(és.N - m,
a bettéf_coﬁfidehce interval (namely,-with narrower width but
with same.coﬁfidence cqefficiént) may be obtained by using the

éptimal mean squared error and the Tchebyshev's inequality.
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Accordingly, there seems to be no need fér dealing with the
asymptotic nbrmality.for theseldensity estimators.

Results‘on pointwise consistency préperties of density esti-
mators under vaﬁious assuméfions are availéblé'in literature'no_
ticéably for kérnel, nearesﬁ-neighbor, and hisﬁogram ﬁype ﬁethods.'
For the methods considered in this paper, thé pointwise weak éonf
sistency'is attained_by the dehsify estimators each pwahich‘has‘
thg'oétimal ééymptotic meanvsquared error for its cof;esponding
method. This is easily seen using Tchebyshev's‘inequality that‘-
éives | |

A2
.ng-—fl2

p(i%—f|>¢) s 2 = o(efzn""”(mfp)) +0as N ®
for éhy gSO. Ain fact, the estimator € may have the pointwise
weak.coﬁvergence prbperty as long‘és both the varianceAand the
biaé of g tend to O as N # =. From the. fact thaf‘ f(m,p) < 1
for all m ana..p a§ defined the pointwise.sfrong consistency
éropefty doés not‘qecessarily hold for tﬁé density estimator With'
optimai asymptotic mean séuafed érror, since for the ha;ﬁdnic series
ZN'l/Ngdivergés, Van Ryzin (1969) proved for the-p§ithise strong
consistency of the kernel t?pe.density gstimator, where a formuof

Lipschitz condition on the kernel was required. Strong uniform

consistency was proved to hold under the additional assumptions
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that the continuity{of £ is uniform and the kernel K has
absolutéiy iﬁtegrable characteristic,functién. Accordingly, such
a proof does not apply‘to uniform kernel; Most recently Moore and
Yackel (1977’6;695;£ué;ed tﬁe.proof for.uniform.kernelﬁwhilefinvestiga—
ting consistency prope:ties of generalizedvneéﬁest—neighbor dehsity'
estimators. The nearest-neighbor density estimator pféposed by
Loftsgaardén and Quesénbérry (1965) is the special case when uni-
form kernel is taken fof'the generalized nearest—neighbof'density
estimator. They showed thét the nearest-neighbor density estimator
ié pointwisg QeakAconsisteht'ai éontinuity point of f,‘ while Moore-A
and Yackel (1977) came up with fhe éxtensive conciusion that;
roughly"statgdhhanyAcqnsistencyntheoremAtrue‘for,tbe kérnel typé
aens;ty estimafor (ihcluding the case of uhiform kernel)‘remains
true for the generalized nearest-neighbor dénsity estimator. 1In
this manner £he properties of weak ana strong consistency, point-
wise and uniférm, for the generalized_nearest;neighbéf density esti-
mator may easily be obsérved by referring to that for the kernél
type density estimators. | | |

For ﬁhe histogfam—type density estimato?s; Van Ryzin (1973)
proposed a. method gnd proved for thekpointwise.weak and stroné
consistency properties of the.estimators that are obtained from
the method. Strong uniform consistency fof the same'histogram-

type.density estimators was later proved.by Van Ryzin and Kim

(1975).
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To investigate the behavior of density estimates when theAeample
size is.small, a simulation experimént was performed.‘ The objectives
were to compare the performance of the various methods, their'sensi—
‘tivity to changes in their paremeters }ﬁ'and to discover at what:
'point a sample is'so sﬁall thet:density estimation is not Qorthwhile.A

The-computations were dene onta‘CDd 6600 eeﬁputer in Fortran-
under Scepe 3.4.4 and COPEﬂ The source of pseqdorandemAnuﬁbers
was the uniform generator GFSR due to Lewis and P;;Ae/(;973)..l?%veﬂ%,guy
methods were'asegzgrhlstogram,45p11ne.with-eéuispeced'knots#”Orthogonal
series using~cb$ines. and'theikernel method using trianéular‘éhd
*‘uhiforﬁ'kernels; - Samples humbering'zs, 30;=end'260 wefe?otteined‘

from three distributions on (-1, +1),

£,(x) = 1-| x|

fz(x)' = %'(l-xz)
oy = £ 4 X

£5(x) =274

A finite support was chosen to place all of the ﬁetheds on an
equal footing. One thousand replications were done for eaeh com-—
bination of method, parameter values and sampling dietrlbutlon,
(except for the experiments with Kernel method‘with N ; 200, where.
‘250 replications were.perfdfmed). Four'types of error were

.recorded.
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Wrnova.

[

-1 %n(xl) : . % -

1) N | £ X, -1 | ~ [ - flax L,
. 2 (X.) A _ A
— ni L2, N 2

2) N ? | 2 &, 1| f(xi) ~ jl%n - £]“ax L,

-1 _ - .
3) N % l%‘(Xi))f f(}_(i)l2 ~ fl? - flzfdx Average Square

e - ' error

4) sup, |fxi %h(x)dx - Fn(xi)lAApbféQimﬁféAqumogoroﬁes'

fa—

an optimal.searéh policy,-eitﬁér a golden section
scale parameter in the kernel method or a lattice
- number of terms or number of intervéls. while in
criteria are used, they ﬁypically moved in'unison
the parémeters;“

In examination of the resulﬁs given in taEle

comments can be made. First, note that a trivial
| 11

1
6 * 10° 2nd

errors of >4

0}5, yields L2

Note that ior

%(x)

f3, respectively. f3,

TR N

KA

The,parameters fo; the different methods were chosen according to

search for the
search for the
reality four
with changes in
"2, a few general
estimaté; such as,
£

for £_, and

1 2’

25 observations is just too

few to do density estimation, since one could do nearly as well with

'?(x) = 0.5. However, the performance of kernel estimates for fl

and f2

is quite commendable. The spline and orthogonai series do

‘.



‘well for fl while the histogram does well on some of the dis-
tributions wvhen the sample sizés is quite small.

For small'(so) and moderate (200) sample siées the picture
appears c;ouay. But note that the ordering of the best for each
distriﬁution is néatly‘the same fof the two sample sizes. 1In
: genéral, note that the histogfam never does very well. ‘The orthogonal
series method place high consistently, butvit can 5; veﬁy sensitive
to parameter changes, i.e., the number of terms. The spline method
_never doés pqorly or extremely well, and is stable to parameter
changes% Thé kernel method_segmshhandiéapped'wﬁen the true dehsity

is very smooth, like £ but does well for £ 1less smooth and for

3l

véry small (25) sample sizes.



Entries are means for 1000 replicacions (250

| All standard errors for these entries are

. Histogram M = No. of Intervals
Orthogonal Series. M = No. of.Terms . -
Spline. o . - M = No, of Intervals
Kernel S H = Scale Factor

e aat o meeam s

Legend for 'rable 2  '4 |

for kernel, N = 200) of

: N ?(x) | o
1 i
1 121 l 1._ e l f(Xi)e

less tban 7. TZo

Parame ters

The means and standard errors from all 4
error criteria are available from the authors:

o ————— et im0 ve
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H=,38 .03395 H=.23 .01842 .|
.52 .02865 .38  .01727 =
.61 .02839  .47. .01875 .
.76 °.03032 .61 -.02259 -
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