

DISCLAIMER

This work was prepared at an official work financed by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represented in this report. Reference herein to any specific commercial products or services by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply a recommendation, endorsement, or favoritism by the United States Government or any agency thereof. The views and conclusions contained herein are solely those of the United States Government or any agency thereof.

UCRL-87290
PREPRINT

CONF-820351--1

UCRL-87290

THE FUSION BREEDER

DE32. 012386

Ralph W. Moir

MASTER

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE.
If has been reproduced from the best
available copy to permit the broadest
possible availability.

This paper was prepared for submittal to:
The National Science Foundation Policy Workshop
Washington, DC
March 4-5, 1982

February 22, 1982

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

85
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

THE FUSION BREEDER*

Ralph W. Moir
Lawrence Livermore National Laboratory
P.O. Box 5511, L-644
Livermore, CA 94550

February 9, 1982

This material was prepared for a National Science Foundation Policy Workshop, "End-Use Products of Fusion Energy: Alternatives and Their Implications to the Fusion R and D Strategy"; March 4 and 5, 1982; Washington, DC.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

ABSTRACT

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Studies by many organizations over the last two decades have examined many approaches to breeding blankets, fuel cycles, economics, safety, deployment, and so forth. From these studies, there is wide agreement that many approaches will work and will produce fuel for five equal-sized LWR's, and some approach as many as 20 LWR's at electricity costs within 20% of those at today's price of uranium (\$30/lb. of U_3O_8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories or just fusion breeders, will have safety characteristics more like pure fusion reactors and support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type. This point of view is not agreed upon by everyone and hence should be discussed thoroughly. There is, however, wide agreement that, to meet this market price with either blanket type, fusion components can cost several-fold more than would be allowed for fusion to meet the goal of making electricity alone at 20% of today's fission costs.

Also widely agreed is that the critical-path-item for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices force other more costly choices.

SYNOPSIS

The purpose of the fusion breeder (fusion-fission reactor) is the production of fissile fuel for fission reactors. Fusion breeders whose blankets are designed using a fission-suppressed concept, promise unusually good safety features as well as the ability to provide make-up fuel for a large number of fission reactors of the same nuclear power as the fusion breeder. This number, called the support ratio, is 12 for LWR's on the U-Pu cycle, 15 for LWR's using ^{233}U mixed with ^{238}U and recycling Pu (U-Pu cycle) and about 20 LWR's using ^{233}U mixed with thorium (thorium cycle). Even more heavy water- or gas-cooled graphite-moderated reactors can be supported. Such high support ratios and good safety results from the use of beryllium to multiply neutrons. If beryllium is not used, ^7Li can be used with about a 20% lower support ratio. The introduction of fusion breeders will require minimal changes in the fission fuel cycle because Pu and ^{233}U can easily be substituted for ^{235}U .

The fusion breeder is primarily a fuel source and secondarily a power source. A fusion breeder can fuel 10 to 20 - 1 GWe LWR's while itself making 1 GWe. The high support ratio and the fact that the product is fissile fuel means a large number of fission reactors can be constructed and operated based on the knowledge of an assured fuel supply. This would allow utility planners to use mined uranium as long as it was economical and then switch over to fuel from the fusion breeders, rather than necessitate an early major commitment to fission breeders which, being primarily power producers, must replace conventional fission reactors.

The critical path item in development of the fusion breeder is the neutron-producing fusion reactor. The breeding blanket and fuel cycle development are apparently modest extensions of similar developments for fission reactors.

INTRODUCTION

This paper is arranged in self-contained sections which the reader can selectively read.

- Section 1: Status report on the fusion breeder.
- Section 2: Research and development needs for the fusion breeder.
- Section 3: Fusion breeders impact on the export market--an opportunity for suppliers of reactors, of fuel, and of fuel services.
- Section 4: Fusion breeders impact on the fusion research and development program--an early application of fusion would help justify research and development expenditures on fusion science and engineering, bringing the feasibility of fusion-produced power at affordable cost closer to reality.
- Section 5: Fusion breeders impact on the fission breeder program--the fusion breeder is a back-up to the fission breeder. If the fusion breeder proves successful, the expensive commitment to a new fission-power system will be unnecessary. We won't know if fusion will be successful for some time, so we recommend carrying the fission breeder to the deployment stage and carry fusion through the engineering feasibility stage. The fusion breeder can compliment the fission breeder by producing initial fuel inventory if that turnabout is economically advantageous.
- Section 6: Fusion breeders impact on process heat and synfuel market--gas cooled reactors have already made helium gas at 950°C. This high-temperature gas can be used for a number of industrial applications, if their price rises sufficiently. The fusion breeder can supply an almost inexhaustible supply of ^{233}U to operate HTGR's or pebble-bed reactors for this application.

Section 7: Fusion breeders impact on the heavy-water cooled and moderated reactor developed by Canada, the CANDU. This reactor needs very little make up ^{233}U on the thorium cycle (similarly for Pu on the U-Pu cycle). It has some safety advantages over LWR's because of the pressure tubes integrity over large pressure vessels and has a higher availability because of on-line refueling. An almost inexhaustible fuel supply would make the CANDU reactor an attractive system for selling on the world market along with fuel services.

Section 8: Fusion breeders impact on LWR's--the reactor of choice in most countries is now the LWR. A fuel supply from the fusion breeder, when mined uranium becomes too expensive, will assure LWR owners their investment will be protected against the possibility of an expensive switch-over to another fission reactor type.

Section 9: Summary of fusion breeders role relative to fission reactor types.

Section 10: Engineering problems of the fusion breeder.

SECTION 1: Status Report on the Fusion Breeder

1. INTRODUCTION

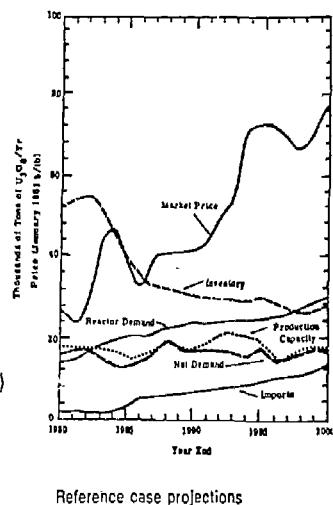
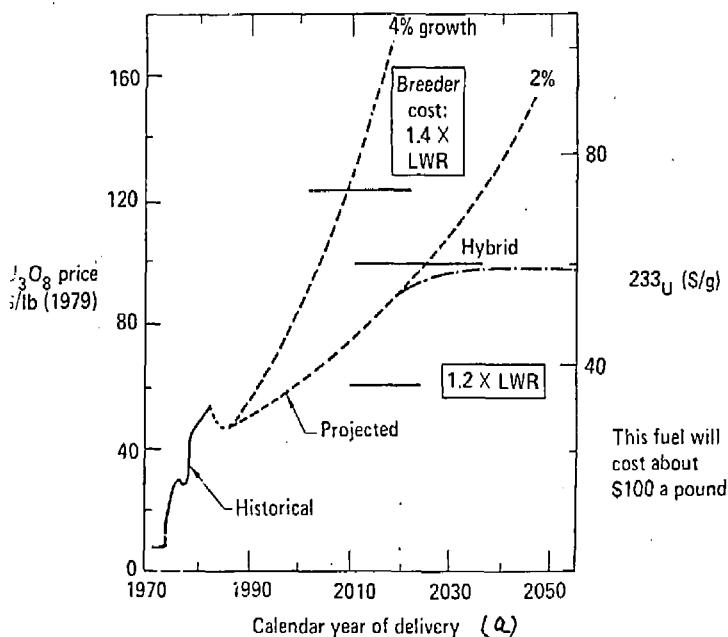
Since the beginning of the fusion program, people have been considering the use of fusion neutrons to breed fissile material (^{233}U , ^{239}Pu) from fertile material (^{232}Th , ^{238}U). The rationale behind this is simply that uranium, the only source of fissile material today, is scarce; the few rich mineral deposits will be depleted rapidly, leading to the mining of ever lower grades of ore, and as a consequence, pushing uranium prices ever higher. Any enterprise based on the use of uranium must find means for making more efficient use of it in the next few decades.

The problem stems from the fact that the fissile isotope of uranium (^{235}U) constitutes only 0.7% of natural uranium. Therefore, the idea behind the breeder reactor is to absorb the neutrons derived from the fission of ^{238}U or ^{232}Th and produce as many or more fissile atoms than those consumed by fission, thus making use of all the uranium (or thorium) mined, rather than less than 1%. Thorium is four times more abundant than uranium.

Neutrons from both fusion and breeder fission reactors can be used to produce fissile material at a cost which may be competitive with that of mined uranium. The breeder uses initial inventories of fissile material, which puts additional demands on uranium supplies during the introduction phase. The fusion reactor would require an exceedingly small amount of uranium. None at all, if thorium is used to produce ^{233}U .

Figure 1 illustrates the point long recognized in the nuclear community that eventually the upward thrust of uranium prices will be stopped by breeders. That is, there will be an "indifference price" for uranium where

power can be made for the same cost either by using mined uranium and fissioning the ^{235}U in conventional fission reactors (LWRs, for example) or by using ^{238}U (or thorium) to both breed and fission ^{239}Pu (or ^{233}U) in a breeder reactor. The time in the future when one is indifferent as to which way to utilize uranium to make power is the time when breeders can begin to produce benefits relative to the old ways of conventional nuclear power. The speculation is that when the fusion breeder becomes available it will result in a lower indifference price for uranium, which is one aspect of the rationale for the fusion approach to fuel production. The data for Fig. 1 is partly derived from Refs. 1 and 2. The introduction dates for the hybrid will be discussed later.

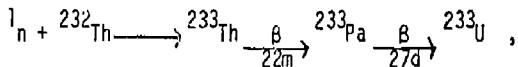
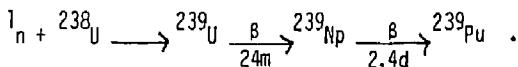
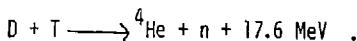
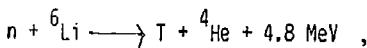

FIG. (b)

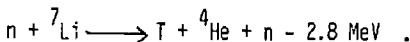
FIG. 1.a Future price of uranium or equivalent ^{233}U . The price of mined uranium will increase due to resource depletion until eventually either breeder reactors, fusion breeders plus conventional reactors, or both become economical.


Fig 1b. Taken from the January issue of Nuclear News p 61, there is an error in the projection which is consistent with Fig 1a.

2. NUCLEAR REACTIONS


The two fissile material breeding reactions are:


and


These reactions occur only for slow neutrons. The fusion reaction that is easiest to initiate is the D-T reaction:

The T breeding reactions are:

and

The first reaction occurs for slow neutrons, while the second occurs only for fast neutrons, breeds tritium, and also preserves a neutron for further breeding. Thus, it is uniquely suitable for fissile breeding (as will be discussed later).

3. IDEAL BLANKET CONFIGURATIONS

A neutron produced by the D-T reaction has a spectacularly high energy and can be used to produce several slower neutrons. For example, Table 1

shows neutron multiplication for each 14-MeV source neutron in an infinite medium (Ref. 3).

TABLE 1. Neutron multiplication for each 14-MeV source neutron in an infinite medium.

	^{238}U	^{232}Th	Be	^7Li	Pb
Number of neutrons captured (produced)	4.2	2.5	2.7	1.8 ^a	1.7

^aOf the 1.8, 1.0 is an equivalent neutron represented by a bred tritium.

Uranium-238 is by far the most effective neutron multiplier due to the fast-fission reaction, which is less important in ^{232}Th . Beryllium is unique because of its large neutron multiplication with essentially no radioactivity, contrary to the case with uranium and thorium. Lithium-7 is also unique, as stated before, in that it breeds tritium and still preserves one neutron for breeding. Lead is one of the better neutron multipliers, but after subtracting one neutron for breeding tritium, it is a significantly poorer multiplier than either beryllium or ^7Li .

Two classes of hybrids emerge based on different characteristics of the multiplier: fast-fission and fission-suppressed. The fissile material to be bred, ^{239}Pu or ^{233}U from either ^{238}U or ^{232}Th , further specifies the class of hybrid.

The most interesting combinations are given in Table 2. As shown in the table, the energy released in the blanket is the energy multiplication M of the blanket and F is the number of fissile atoms bred per fusion neutron. The

values in Table 2 are derived from design studies where many practical considerations reduced the breeding from ideal performance. The breeding rate per unit of fusion power and per unit of power in the blanket are also given in Table 2. The relative breeding rate is equal to the ratio of the breeding rate to the breeding rate of a fission breeder whose breeding ratio is equal to 1.3.

In a recent report, Jakeman (Ref. 4) discusses how various blanket types produce similar performances, and he also recommends using beryllium or ^7Li in a fission-suppressed mode.

TABLE 2. Classes of hybrids and typical performance parameters.

	Fast-fission U-Pu cycle Multiplier-- ^{238}Pu , Breeder-- ^{238}U , ^6Li	Fast-fission Th-U cycle Multiplier-- ^{232}Th or ^{238}U Breeder-- ^{232}Th , ^6Li	Fission- suppressed U-Pu cycle Multiplier-- ^3Be , ^7Li Breeder-- Pu, ^6Li	Fast Fission Breeder Reactor
Energy released in blanket (E), MeV	154.0	70.0	22.4	
Breeding ratio, T/F	2.5	1.8	1.7	1.3
F/E (T=1), atoms per MeV	0.01	0.01	0.03	0.0015
Breeding rate				
kg/MW _{fusion} year	6.6	3.5	3.1	
kg/MW _{blanket} year	0.77	0.88	2.57	
kg/MW _{nuclear} year	0.73	0.83	2.2	0.13
Relative breeding rate	5.6	6.4	17.0	1.0

By examining a number of ideal infinite-medium examples, as shown in Table 3, one can get an idea of the breeding potentials. More examples are given and discussed in Ref. 3.

In practice, however, the results are usually degraded due to a number of effects, such as:

- o parasitic neutron capture in structural materials and coolants,
- o neutron leakage,
- o lack of complete wall coverage,
- o fissioning of bred fissile material before removal,
- o decay of tritium before removal, and
- o heterogeneous effects (that are sometimes good).

TABLE 3. Infinite homogeneous results for each 14-MeV Neutron.

Case	Medium	Product atoms	Energy release (MeV)
1	$^{238}\text{U} + 7.6\% \text{ }^6\text{Li}$	$3.1 \text{ }^{239}\text{Pu} + 1.1 \text{ T}$	193
2	$^{232}\text{Th} + 16\% \text{ }^6\text{Li}$	$1.3 \text{ }^{233}\text{U} + 1.1 \text{ T}$	49
3	$^9\text{Be} + 5\% \text{ }^6\text{Li}$	2.72 T	22
4	$^9\text{Be} + 5\% \text{ }^{232}\text{Th}$	$2.66 \text{ }^{233}\text{U}$	30
5	$^9\text{Be} + 1\% \text{ }^{238}\text{U}$	2.4 Pu	29
6	$^9\text{Be} + 3\% \text{ Th} + 2\% \text{ }^6\text{Li}$	$1.6 \text{ }^{233}\text{U} + 1.1 \text{ T}$	27
7	$^9\text{Be} + 1\% \text{ U} + \sim 0.02\% \text{ }^6\text{Li}$	$1.6 \text{ Pu} + 1.1 \text{ T}$	28
8	$^7\text{Li} + 0.8\% \text{ Th} + 0.02\% \text{ }^6\text{Li}$	$0.7 \text{ }^{233}\text{U} + 1.1 \text{ T}$	17
9	$\text{Pb} + 5\% \text{ }^6\text{Li}$	1.7 T	18
10	$\text{Pb} + 5\% \text{ Th}$	$1.58 \text{ }^{233}\text{U}$	21

4. ENGINEERED BLANKET CONFIGURATIONS*

The geometry of the breeding blanket is shown in Fig. 2. An example of a fast-fission blanket based on either the U-Pu fuel cycle or the Th-U fuel cycle is shown in Fig. 3. The fuel form is the ceramic U_3Si or metallic thorium and is helium-cooled. Some recent criticism of U_3Si may suggest another choice such as the alloy U-7% Mo.

The performance parameters for this blanket are given in Table 4. Note the significant loss in breeding due to the low wall coverage appropriate to the Standard Mirror. The remaining space is used for neutral-beam ports and for ports serving the open ends of the standard yin-yang coil mirror geometry. For the tandem mirror, we expect the central-cell solenoid to be almost 100% covered. Losses due to the ends may be as low as 5%, thus giving a very high coverage of 95%.

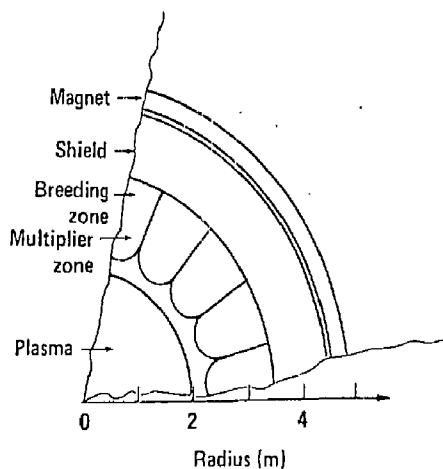
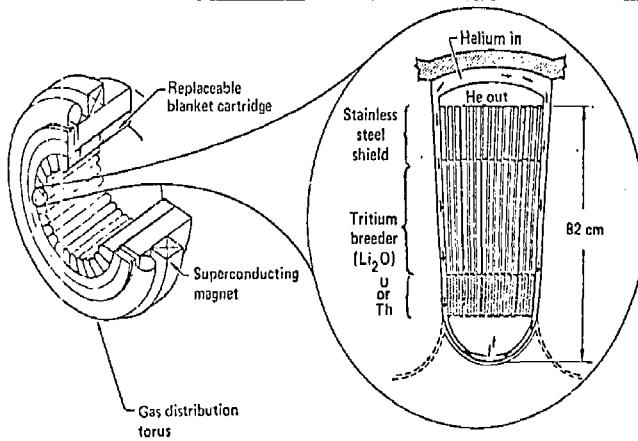



FIG. 2. Breeding blanket geometry.

*This section and the next have not included work carried out in the last year.

MISSIONING BLANKET CAN PRODUCE FUEL FOR
1 LWR'S ON U-Pu CYCLE AND 9 LWR'S ON Th-U CYCLE

Pu PRODUCTION

2700 kg Pu/YEAR
2000 MW THERMAL (MAX)
400 MW FUSION
350 W/CC PEAK FUEL POWER DENSITY
(AT WL=1.3 MW/m²)

²³³U PRODUCTION

2800 kg ²³³U/YEAR
4000MW THERMAL (MAX)
800 MW FUSION
120 W/CC PEAK FUEL POWER DENSITY
(AT WL=1.5 MW/m²)

Fig. 3. Fast-fission blanket design

TABLE 4. Performance parameters for the U_3Si blanket.

Pu ^a	T ^a	M	Blanket coverage (%)
1.5	1.0	11	86
1.7	1.2	13	100

^aAtoms bred for each 14-MeV neutron.

The geometry of the tandem mirror hybrid is shown in Fig. 4.

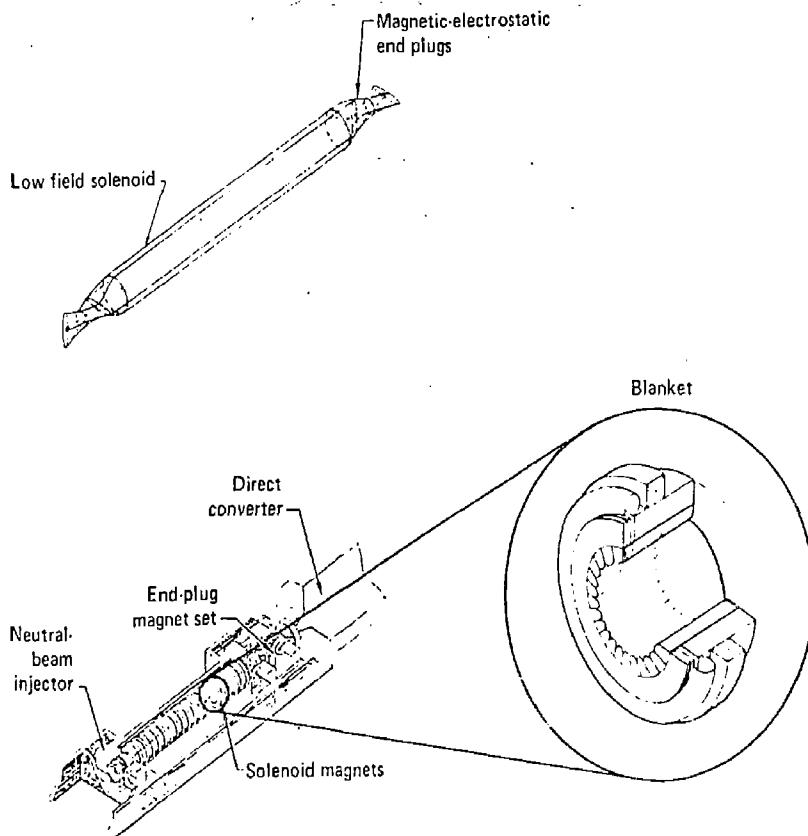
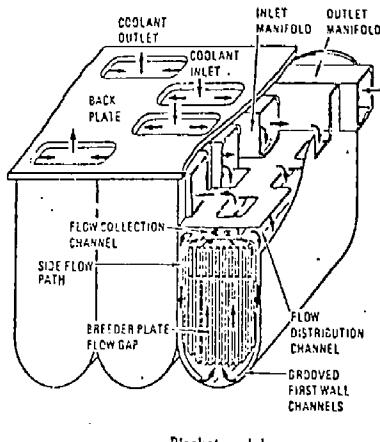
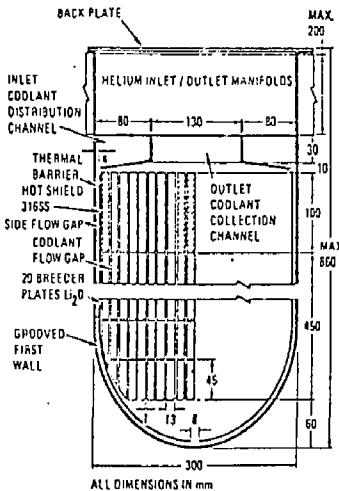
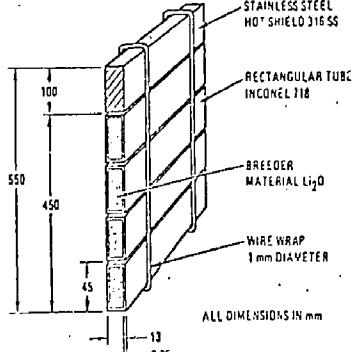
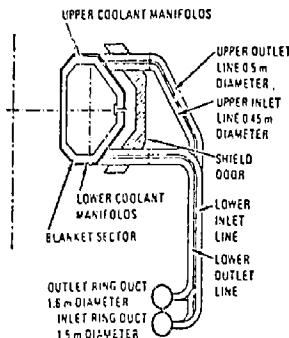



FIG. 4. Tandem mirror hybrid configuration: (a) the plasma shape determined by the magnetic flux surface and the corresponding magnetic-field, plasma-density, and potential profiles for the conventional tandem plasma mode; and (b) the main components of the hybrid reactor.


Various blanket types were considered in design studies of the tokamak configuration (Ref. 1). A pressure-cylinder blanket concept was worked out for the tokamak (Ref. 7). This same plate fuel concept^{ref 3} has been worked out for the tokamak in a pure fusion version in a recent paper by Huggenberger and Schultz GA-A16456 as shown in Figure 5.

An example of an engineered blanket based on a fast-fission Th-U cycle using helium-cooled metallic thorium is shown in Fig. 3 and discussed in Ref.


(2). The performance for this blanket is given in Table 5.


Blanket module.

Blanket module cross section.

Breeder plate design.

Blanket sector coolant supply,
fit into the STARFIRE design

Fig. 5 Example of a plate fuel gas cooled blanket worked out for a Starfire Tokamak. This could be with minor or thorough changes used for a pure fusion design.

TABLE 5. Performance of the fast-fission thorium blanket.

$^{233}\text{U}^a$	T ^a	M
0.84	1.07	5.2

^aAtoms bred for each 14-MeV neutron.

A fission-suppressed blanket design (Table 2) using nonfissioning neutron multipliers (Table 1) could use beryllium or ^7Li for the multiplier and could be cooled with He, Li, or molten salt. The fission suppressed blanket should have materials arranged as in Fig. 6.

The front part of the blanket should contain mostly ^7Li or beryllium. A small amount of ^6Li is used to outcompete structural materials for slow neutrons and beryllium for slow neutron capture. To minimize fast fission, and as a safety precaution, thorium should not be present at all. In the back part of the blanket, where the 14-MeV incident flux has been moderated and multiplied into more of the slower neutrons, ^6Li and thorium should be placed in sufficient concentration to outcompete structural materials for slow neutrons. Bred ^{233}U and ^{233}Pa must be removed often to prevent captures in ^{233}U . An example of a fission-suppressed blanket cooled by molten salt is shown in Fig. 7.

The requirement for large quantities of beryllium brings up the question of an adequate resource. Since relatively few hybrids will be needed, as discussed in Sec. 6, present resources appear to be adequate. However, for this use alone, an increase in the production of beryllium would be required. This subject is discussed further in Ref. 8.

The performance of this design is given in Table 6.

Note that the breeding performance of the fission-suppressed blanket is almost as good as that of the fast-fission thorium blanket, but the heat generation by the blanket is 3 times less. The fission power of the blanket is a small part of the total heat generation, and, because the thorium in the blanket is much more diluted, the fission power density is very small. Because the after-heat cooling requirements are so relaxed, we believe that fission-suppressed blankets can be so designed that no active after-shutdown cooling systems will be required, as illustrated in Table 7. The subject of the safety of hybrids is further discussed in Refs. 9 and 10.

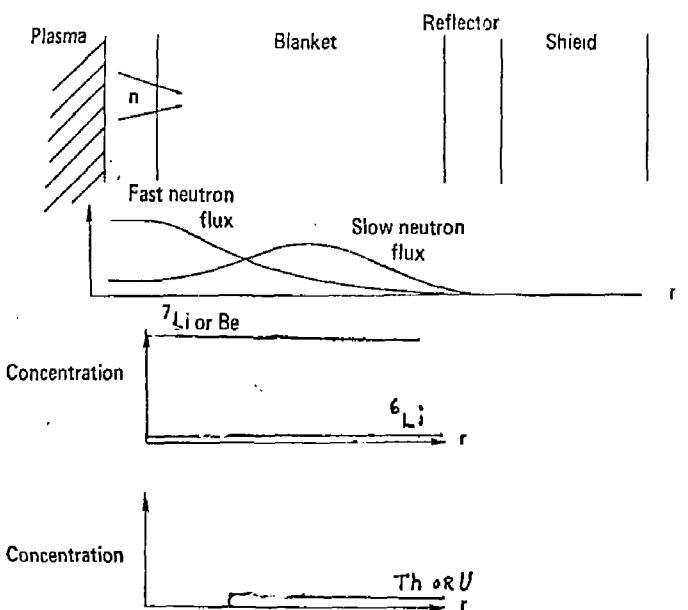


FIG. 6. Anatomy of a fission-suppressed blanket.

FIG. 7. Example of a fission-suppressed blanket cooled by molten salt.

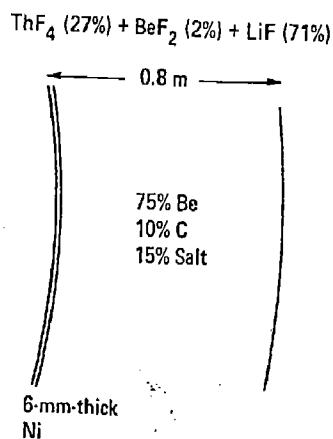


TABLE 6. Performance parameters of fission-suppressed blanket.

$^{233}\text{U}^a$	T^a	M
0.83	1.04	1.62

^aAtoms bred for each 14-MeV neutron.

TABLE 7. Time for fuel damage with no active cooling after shutdown.

Blanket type	Fission power density (W cm^{-3})	Time to fuel damage
Fast-fission U-Pu cycle	350	1 min
Fast-fission Th-U cycle	105	11 min
Fission-suppressed Th-U cycle	5	16 h

Another remarkable distinction fission-suppressed blankets have over fast-fission blankets is a very high support ratio. Support ratio is defined as the number of fission reactors one hybrid can supply with makeup fuel, when the nuclear power of the hybrid and of each fission reactor is the same. The advantage of a high support ratio is that few hybrids need to be built. The ones that are built can be located in a few nuclear fuel centers that would be well guarded and yet open for international inspection to ease diversion and proliferation problems. The support ratio for the fast-fission U-Pu cycle is 5, for the fast-fission Th-U cycle is 10, and for the fission-suppressed blankets on the Th-U cycle is about 25. For example, if a country had 300 LWRs of 1000 MW_e on the Th-U cycle by the turn of the century, these LWRs

could be sustained indefinitely by only 12 hybrids of the same size. Jakeman Ref. (4) quotes support ratios of 50 to 100 for advanced converter reactors such as the Canadian natural uranium (CANDU) reactor. The ideas behind the fission-suppressed blanket are discussed further in Ref. 11.

5. RESULTS OF THE TANDEM-MIRROR FISSION-SUPPRESSED HYBRID DESIGN STUDY

The results of this ongoing study are discussed in two extensive reports (Refs. 20 and 12) and two summary reports (Refs. 8 and 13). Related work on a fission-suppressed inertial-confinement reactor is discussed in Ref. (14). The geometry of the tandem-mirror hybrid is shown in Fig. 4. The basis for the design was the conventional tandem mode (sometimes called the thermal mode as contrasted to the thermal barrier mode). A parametric analysis was carried out which showed the Q value dropping with increasing Γ , where Q is the ratio of fusion power to the injected and absorbed power and Γ is the neutron wall loading. A cost analysis showed the minimum-cost fissile fuel to occur at an intermediate value of Q shown in Fig. 8.

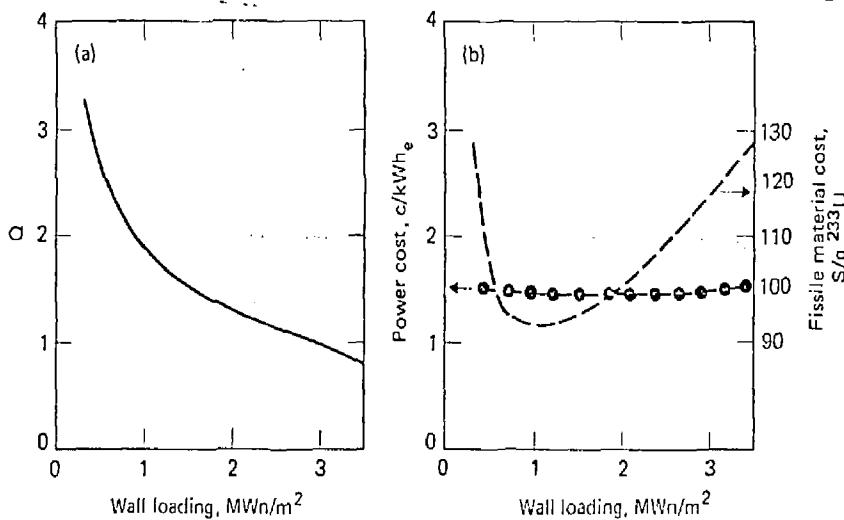


FIG. 8. Q versus wall loading tradeoff.

The design parameters that resulted from the analysis are given in Tables 8 and 9.

TABLE 8. Fusion driver performance parameters.

	Molten-salt blanket
Q	2.2
$r, \text{ MW/m}^2$	2.0
$R_{\text{first wall}}, \text{ m}^a$	2.1
$R_{\text{solenoid magnet}}, \text{ m}^a$	4.2
$L, \text{ m}^a$	90
$P_{\text{nuclear}}, \text{ MW (max)}$	4000
$P_{\text{fusion}}, \text{ MW}$	3000
Blanket energy multiplication, M	1.4

^aFor comparison, the proposed Mirror Fusion Test Facility (MFTF-B) employs similar magnets 2.2 m in radius, 25 m long, and has a plasma radius of 0.4 m at 1.5 T (1.7 T for the hybrid).

TABLE 9. Hybrid plant parameters (with molten-salt blanket).

$P_{\text{nuclear}}, \text{ MW}$	4000
$P_{\text{fusion}}, \text{ MW}$	2700
$P_{\text{electric}}, \text{ MW}$	360
Electrical efficiency, %	9
kg $^{233}\text{U}/\text{yr}$ rate	9600
kg $^{233}\text{U}/\text{MW nuclear year}$	2.4
Total estimated direct cost, millions of \$	4100
Estimated \$/g	59
Number of fission reactors (LWR's)	25
(at 303 kg/GW _e yr) of 4000 MW nuclear supported	

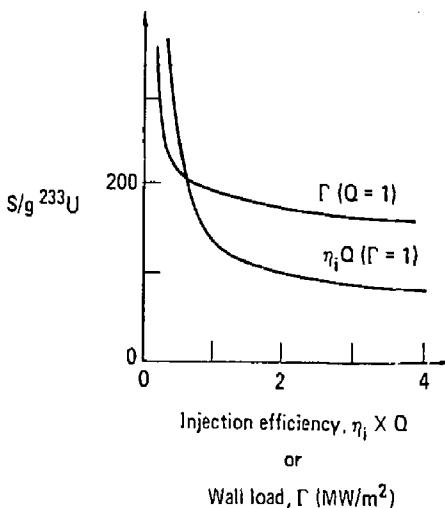


FIG. 9. Cost of fissile fuel versus $\eta_i Q$ and Γ . When the wall load Γ is varied, Q is kept fixed at 1; when Q is varied, Γ is kept fixed at 1.

In order to see the sensitivity to Q and Γ separately, these parameters were varied independently of each other. This is, of course, not a real model and is sometimes called a "no-cost Q enhancer." The results shown in Fig. 9 show that Q should be 3 or greater and Γ should be 1 or greater. More accurately, the product $\eta_i Q$ is the proper figure of merit, where η_i is the injector efficiency. For our work, we assumed a 60% efficient injector, therefore, the product $\eta_i Q$ should be greater than about 2.

The same kind of analysis was performed where Q was increased "at no cost," and we plotted the cost of electricity under two conditions: where the fuel was used in LWRs, and where the blanket produced no fuel (thus it was a pure-fusion case). These results are discussed more fully in Ref. 13 and are shown in Fig. 10.

The conclusions that can be drawn from Fig. 10 are threefold:

1. The hybrid can supply fuel to LWRs so that their electricity costs are increased due to fuel cost by only about 25% for Q values of 2 or more,
2. Q values need be 2 or more for hybrids but must be 15 to 20 or more for pure fusion, and
3. for pure fusion to compete economically, the reactor must have a higher power density (or the cost must be reduced) as well as have very high Q values.

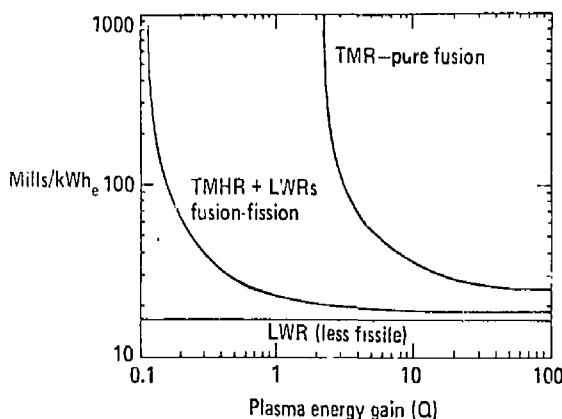


FIG. 10. Cost of electricity versus Q for the hybrid with its LWRs and for a pure-fusion tandem reactor (TMR).

The above conclusions can be substantiated by looking at cost estimates. The hybrid designed with the fission-suppressed blanket, discussed above, was estimated to cost \$6.5 billion for a 4000 MW nuclear power unit producing 7200 kg of ^{233}U each year and supplying the fuel makeup needs for 25 LWRs of the same size. This LWR has a 1280-MW_e capacity and consumes 303 kg of ^{233}U each year at a 75% capacity factor. We have estimated the cost of each LWR at \$1.15 billion. These 25 LWRs then would cost an estimated \$28.8 billion. The capital cost ratios C are interesting where we mean "cost per unit power":

$$\frac{C_{\text{hybrid}}}{C_{\text{LWR}}} = \frac{6.5}{1.15} = 5.7 ,$$

and

$$\frac{C_{\text{hybrid}} + 25 \text{ LWRs}}{C_{\text{LWR}}} = \frac{6.5 + 28.8}{28.8} = 1.23 .$$

These ratios show that even for an expensive hybrid (by LWR standards) the system electricity costs are near those of the LWR without fuel charges. We can expect that the same improvements that will reduce the costs of pure fusion will also considerably reduce the hybrid cost figure quoted here of \$6.5 billion. We conclude these arguments by noting that fusion development might find a practical use as soon as the following conditions are met:

1. $\eta_i Q > 2$
2. $\Gamma > 1, \text{ MW} \cdot \text{m}^{-2}$
3. Breeding ratio, $T+F > 1.6$
4. Wall coverage $\gtrsim 90\%$
5. Capacity factor $\gtrsim 2/3$
6. $C_{\text{hybrid}}/C_{\text{LWR}} \lesssim 4$
7. The demand for LWR fuel drives the price sufficiently high (\$200/kg).

6. INTRODUCTION RATES OF HYBRID AND LWRs

As mentioned before, the fission-suppressed hybrid with its fueled fission reactors has unique advantages in that it can be introduced at a rate that is historically unprecedented for a new technology. This is due to the large support ratio. The new part of the system is a very small part of the total. The large LWR part will be well known by the time of the first hybrid introduction. With a support ratio of 25 ($^{232}\text{Th} - ^{233}\text{U}$ cycle), we could

build over 20 LWRs for each hybrid if first core-fuel loadings were provided by ^{235}U . However, this might put a strain on uranium resources. These initial cores could be provided by the hybrid with an attendant slower LWR construction rate than 20:1.

In a previous version of this paper (Ref. 17), I have considered a hypothetical introduction scenario that supplied fuel to 210 LWRs of 1000 MW_e each. This introduction scenario is appropriate for a medium size country. In this paper I discuss another hypothetical introduction plan appropriate to supply the world's nuclear fuel needs exclusive of the centrally planned-economy countries.

The performance assumptions for the hybrids and fission reactors are given in Table 10. The assumed hybrid introduction rates are given in Table 11.

The first machine was sized at 200 MW_{fusion} because that was close to the value assumed for the Tandem Mirror Next Step (TMNS) study, (Ref. 15). This machine would be a developmental machine operating only 30% of the time with an average of only 50% of the possible blanket area utilized for breeding. Construction could begin on such a machine in 1984 with fuel production beginning in 1990.* We assume that a 1000 MW_{fusion} demonstration plant could be built starting in 1990. Before large expenditures are made, results from the 200 MW plant will be known.

*When this scenario was constructed (Fall 1980), 1984 seemed like a reasonable start date given the favorable budget predictions then; however, budgets have been falling short of the predictions, but for a machine in the 50-200 MW_{fusion} size, 1992 is probably even now a reasonable possibility.

TABLE 10. LWR and hybrid parameters for the introduction scenario.

LWR	1000 MW _e 75% capacity factor 239 kg ²³³ U each year 2400 kg ²³³ U first core
Hybrid	9600 kg ²³³ U per year rate 75% capacity factor 7200 kg ²³³ U produced per year 4000 MW nuclear 2700 MW fusion

TABLE 11. Hybrid introduction rate assumption.

Number and Size	Start construction (year)	Begin fuel production (year)	Begin fueling new reactor (year)	LWR fueling ²³³ U (tonnes/year)
1-200 MW _{fusion} 1/2 blanket coverage; CF-30%	1984	1990 (phased out by 1998)	1992	0.10
1-1000 MW _{fusion} full blanket coverage; CF-60%	1990	1998 (phased out by 2006)	2000	2.13
1-2700 MW _{fusion}	1998	2006	2008	7.2
2-2700 MW _{fusion}	2004	2012	2014	21.6
2-2700 MW _{fusion}	2008	2016	2018	36.0
1-2700 MW _{fusion}	2009	2017	2019	43.2
1-2700 MW _{fusion}	2010	2018	2020	50.4
2-2700 MW _{fusion}	2011	2019	2021	64.8

The first commercial plant could be constructed starting in 1998; criteria for the design of this plant would be based on operational results from the demonstration plant. Two units are started six years later in 2004, two more units four years later in 2008, one unit one year later in 2009, one unit in 2010, and then two units per year until 2014. The number of hybrid construction starts per year are plotted in Fig. 11. Using data from Table 10, the introduction rates are shown in Fig. 11. The high and low demand projections were taken from Ref. 16. From 2008 to 2019 the new construction starts is about 20% of the hybrids under construction. This introduction rate seems rather high and should be reexamined.

The delay time, from the introduction of the plants supplying fuel to a significant number of reactors, is apparent from Fig. 11. Small quantities of fuel (100 kg/yr) can be produced by 1990, but it will be 2014 before there is enough fuel for a significant number of reactors (~ 30). Note that this is less than 10 years after the introduction of the first commercial hybrid! There would be 100 reactors supported by 2020 and 2000 by the year 2042. The schedule could be foreshortened if a sense of urgency should develop. A group from the University of Wisconsin and Karlsruhe Nuclear Research Center (Ref. 16) studied hybrid introduction rates and they found that fission-suppressed hybrids (high support ratio) are best from an introduction standpoint. Also, they find it necessary to introduce them before the year 2020.

^{233}U -Thorium Gas Cooled Reactors

One could develop another introduction scenario where only new plants of the high-temperature gas type would be hybrid fueled. Since these reactors use ^{233}U on the thorium cycle considerably more efficiently than LWRs and since there is no readily available alternate source of ^{233}U , this scenario has merit.

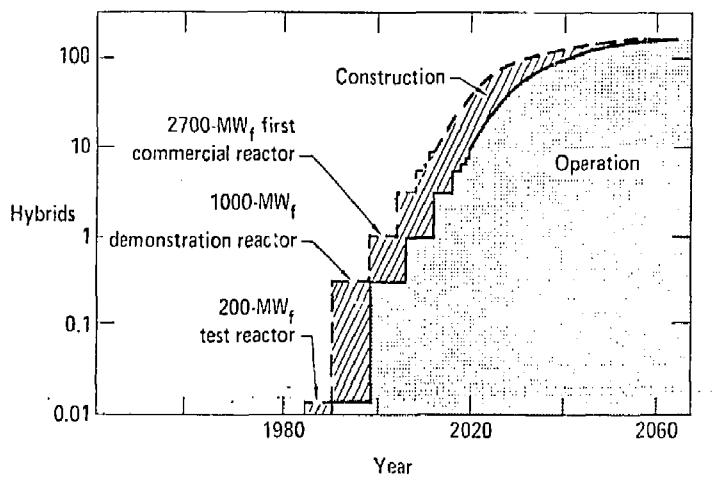
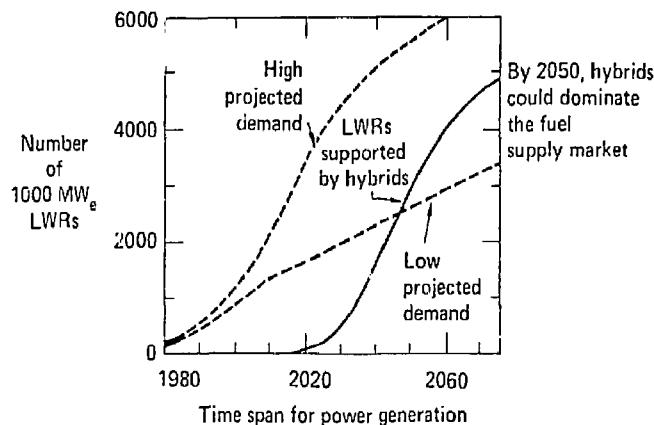



FIG. 11. Introduction rates of LWRs and their hybrid fuel suppliers.

The plans for gas cooled reactors that are based on very uncertain assumptions call for a lead plant of 800 MW_e to go online about 1995, the next one scheduled two years later, and multiple units after the year 2000.

As we can see from the tables and figures, the first reactors would have to use ²³⁵U, but one per year could be started after the year 2000 and about three a year after 2008 on ²³³U from hybrid reactors. More studies of hybrid introduction should be carried out in order to help assess the need for hybrids relative to other fuel supply scenarios.

7. FUTURE WORK

A study of the fusion breeder based on the tandem mirror and the tokamak is underway at the Lawrence Livermore National Laboratory; portions of the work are being carried out by industrial firms. The feasibility of the fusion breeder and its associated fuel cycle to impact the use of nuclear fission power is the paramount goal of this study. Further goals are given in Table 12.

TABLE 12. Goals of future work on fission-suppressed blanket concept.

Produce an engineered blanket design that has:

Outstanding safety features

- no significant afterheat cooling problem
- low radioactive inventory

Outstanding deployment features

- rapid expansion possible due to high support ratio
- minimum development due to fission suppression

Economics that compete with fuel from mined uranium

REFERENCES

1. J. L. Kelly, W. C. Brenner, D. L. Chapin, R. B. Chianese, G. Collier, M. E. Culbert, H. J. Garber, G. Gibson, L. Green, F. M. Heck, H. R. Howland, E. M. Iwinski, J. Jedruch, J. S. Karbowski, A. Y. Lee, F. S. Malick, P. S. Marinkovich, J. Miller, G. W. Ruck, D. A. Sink, G. S. Smeltzer, N. Sinderman, and T. F. Yang, "Status Report on the Conceptual Design of a Commercial Tokamak Hybrid Reactor (CTHR)," Westinghouse Electric Corporation, WFPS-TME-79-022 (1979).
2. R. W. Moir, ed., B. M. Boghosian, R. S. Devoto, J. L. Erickson, J. H. Fink, J. D. Lee, J. O. Myall, W. S. Neef, J. W. Feldmann, A. E. Dubberlay, W. H. Harless, D. W. Jeter, M. Kangilaski, L. Nemeth, T. C. Osborne, C. Shatmeier, K. R. Schultz, E. T. Cheng, R. L. Creedon, V. H. Pierce, C. P. C. Wong, R. E. Aronstein, S. K. Chose, C. A. Shorts, and S. L. Thompson, "Tandem Mirror Hybrid Reactor Design Study Annual Report," Lawrence Livermore National Laboratory, Livermore, CA, UCID-18808 (1980).
3. R. W. Moir, "The Fusion-Fission Fuel Factory," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84011; also prepared for book, Fusion, Dr. Edward Teller, ed.
4. D. Jakeman, "Energy Multiplication and Fissile Material Production in Fission-Fusion Systems," AEE Winfrith, UK, AEEW-R 1301 (1979).
5. J. D. Bender, ed., "Reference Design for the Standard Mirror Hybrid Reactor," Lawrence Livermore National Laboratory, UCRL-52478 (1978), and General Atomic Company, GA-A14796 (1978); joint report.
6. J. D. Lee, "Mirror Fusion-Fission Hybrids," Atomkernenergie/Kerntechnik (ATKE), Vol. 32.

7. J. S. Karbowski, W. C. Brenner, C. A. Flanagan, A. Y. Lee, T. V. Prevenslik, G. W. Ruck, P. B. Mohr, T. J. Huxford, T. E. Shannon, and D. Steiner, "Tokamak Blanket Design Study FY78 Summary Report," Oakridge National Laboratory, ORNL-TM-6847 (1979).
8. R. W. Moir, "The Tandem Mirror Hybrid Reactor, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84117 (1980); prepared for Nucl. Eng. Design.
9. I. Maya, K. R. Schultz, R. Katz, and F. S. Dombeck, "Safety Evaluation of Hybrid Blanket Concepts," in Proc. ANS Topical Meeting on the Technology of Controlled Nuclear Fusion, 4th, King of Prussia, PA (1980); also General Atomic Company, GA-A16101 (1980).
10. W. E. Kastenberg, D. Okrent, V. Badham, S. Caspi, C. K. Chan, W. J. Ferrell, T. H. K. Frederking, J. Grzesik, J. Y. Lee, T. E. McKone, G. C. Pomraning, A. Z. Ullman, T. D. Ting, and Y. I. Kim, "On the Safety of Conceptual Fusion-Fission Hybrid Reactors," Nucl. Eng. Design, 51, 311-359 (1979).
11. J. D. Lee and R. W. Moir, "Fission Suppressed Blankets for Fissile Fuel Breeding Fusion Reactors," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84104 (1980); also submitted to J. Fusion Energy.
12. R. W. Moir, ed., "Interim Report on the Tandem Mirror Hybrid Design Study," Lawrence Livermore National Laboratory, Livermore, CA, UCID-18078 (1979).
13. J. D. Lee, "Tandem Mirror Fusion-Fission Hybrid Studies," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84108, Rev. 1 (1980); also Atomkernenergie/Kerntechnik (ATKE), Vol. 36.

14. D. H. Berwald, R. H. Whitley, J. V. Massey, W. O. Allen, J. A. Blink, and R. T. McGrath, "Suppressed Fission Blanket Concept for Inertial Confinement Fusion," in Proc. ANS Topical Meeting on the Technology of Controlled Nuclear Fusion, 4th, King of Prussia, PA (1980).
15. R. W. Moir, "Status Report on the Fusion Breeder," in Proc. Miami International Conference on Alternate Energy Sources, 3rd, Miami Beach, Florida (1980); see also Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84436 (1980).
16. C. C. Damm, J. N. Doggett, R. H. Bulmer, W. S. Neef, C. W. Hamilton, A. E. Sherwood, S. Szybalski, B. M. Boghosian, C. A. Carlson, R. W. Moir, W. L. Barr, J. L. Erickson (G.A.C.), R. S. Devoto, T. H. Batzer, and C. L. Hanson, "Preliminary Design of the Tandem Mirror Next Step Facility," Lawrence Livermore National Laboratory, Livermore, CA, UCRL-84269 (1980).
17. S. I. Abdel-Khalik, P. Jansen, G. Kessler, and P. Klumpp, "Impact of the Fusion-Fission Hybrids on World Nuclear Future, University of Wisconsin, UWFD-333 (1980); also published in Atomkernenergie/Kerntechnik (ATKE), Vol. 36.

SECTION 2: Research and Development Needs for the Fusion Breeder.

Project Goals for FY83

1. Plan Development and Testing Program

Plan experiments and studies to give data, which is needed to either determine feasible fusion-breeding approaches (e.g., is use of beryllium feasible?, can we use fuel and beryllium in the form of pebbles?, can we use liquid metal heat coupling and coolants?) or to determine optimal approaches (e.g., H_2O cooling versus liquid metal cooling or aqueous reprocessing versus pyrochemical reprocessing). The results of this work would be the generation of RFP modules (request for proposals) on the tasks such as those listed below. This Task was planned for FY82 but was not funded. We believe the planning of experiments called for in this task should precede launching the experimental program. We are confident experimental tasks 1-6 or ones very similar should be carried out, but we are less sure of the cost and relative priority at this time of Tasks 7 and 8, although we think these two are of high priority for being initiated some time in the next 3 years.

2. Experimental tasks

There are common features of recent blanket designs, both for fission-suppressed and fissioning blankets which have resulted in superior performance, that need experimental work rather than relying on paper studies alone. Use of beryllium, liquid metals and pebbles are common elements where screening-type experiments or proof-of-principle experiments are needed. A preliminary list of the experimental tasks is given below:

1. Integral neutronic experiments on mockup blankets (14 MeV)
2. Corrosion tests, static and convective

3. Fabrication of beryllium
4. Mock-up pebble transport experiments, non-nuclear
5. Pressure drop experiments of liquid-metal flow in a magnetic field through pebbles
6. Corrosion test of coated beryllium pebbles in molten salt
7. Blanket mock-up experiments in a test reactor
8. Irradiation of beryllium in a fission reactor

3. Studies

The purpose of the studies is to guide the experimental work and help define the role of the fusion breeder. The study tasks are listed below:

1. Demo blanket design
2. Fuel cycle study
3. Safety study
4. Reference tokamak blanket design
5. Generic blanket design
 - 5.1 Liquid metal cooled
 - 5.2 Helium cooled
 - 5.3 Water cooled
 - 5.4 Salt cooled
 - 5.5 Fissioning blanket
6. Economic studies
7. Pyrochemical reprocessing of U and Th metal
8. Deployment study
9. Study of relationship of the fusion breeder to the fission program.

The goal of this experimental work and systems studies is to assess the technical and economic feasibility of producing fissile (U-233 or Pu-239) fuel in tandem mirror and tokamak reactors.

SECTION 3: Fusion breeders impact on the export market--an opportunity for suppliers of reactors, of fuel and fuel services.

The U.S. has pioneered the development of peaceful uses of the atom. Indeed, U.S. industries have a lead in the nuclear business as well. However, due to a number of factors this lead is slipping away rapidly, and in fact many say the industry is dying. With no new orders for many years and all too many cancellations, the outlook of the industry looks bleak. Three conditions could provide the climate for a strong return to nuclear reactor construction starts: an improvement in the economy, a normalization of regulatory action, and a favorable government support for nuclear energy sustained over successive administrations. If coal become less favorable due to environmental effects, the growth in the nuclear industry could be even greater. When this return to nuclear occurs, there will have already been a great deal of experience built-up in conventional reactors, and by comparison almost no experience in fission breeder reactors. The orders should pour in for construction of and fuel cycle services for conventional fission reactors (LWR's in the U.S. and many other countries, but also HWR's and HTGR's in some countries) with one exception--the vendors or purchasers may not be able to guarantee a supply of fuel over the economic life of the reactor. Reactors ordered in 1990 will reach their economic life in 2030!

If a new reactor type which breeds its own fuel is going to be needed (i.e., orders beginning in 1990), then the great experience built-up in conventional reactors is in a sense wasted. However, if a new fuel source could be made available from the fusion breeder and already in 1990 the

proposition had considerable basis even before operation of a large demonstration fusion breeder, then the conventional fission reactor and fuel cycle could be relied on and expanded rather than switching over to a new technology. To the extent one is sure the fusion breeder will provide fuel at a future date--or for that matter any new fuel source such as new ore deposits developed at a future date--then new reactors could be ordered with guaranteed fuel from existing sources up until the time when the fusion breeder is deployed.

Is it reasonable to order a fission reactor in 1990 whose fuel can not be guaranteed beyond 2020, based on the prediction in 1990 with confidence* that a fusion breeder will or can be operational in 2015? That is, from first operation in 2000 the owner would have 20 years to obtain secure fuel futures to cover the period 2020 to 2030. These futures could either be uranium ore or fuel from the fusion breeder.

The fusion breeder is used as an argument for staying with the product now being produced. Industry could sell LWR's or any other reactor types, they could sell fuel and fuel services such as fabrication, transportation, reprocessing, waste preparation, and disposal. All these things, now rather well known, could be greatly expanded and have no connection with the fusion breeder except confidence based on the assurance of not having to make major changes in the near-planning timeframe future.

Some predict the French will sell liquid-metal, fast-breeder reactors around the world when fuel becomes scarce and expensive. This may be so, but

*Assuming a vigorous fusion program and low-level research and development were carried out on the fusion breeder between now and 1990.

we would argue that the reasons for the change-over would have to be compelling.* New sources of fissile fuel--the fusion breeder being only one--will tend to support expanded use and refinement of the present technology.

On the technical side, fusion-breeder-produced material, ^{239}Pu or ^{233}U , should be usable in LWR's, CANDU's or HTGR's with only modest changes from present use based on ^{235}U .

The opportunities are:

- 1.) Sales of conventional reactor components or licensing foreign manufactures
- 2.) Selling engineering services and design skills
- 3.) Selling fissile material
- 4.) Selling manufactured fuel assemblies
- 5.) Buying back spent fuel
- 6.) Disposing of wastes for a fee.

Buyers will only enter into long term contracts with reliable suppliers.

Since the federal government must regulate nuclear materials, it is essential for the government to guarantee the reliability side of these long-term supply contracts for any of this to make sense. Independently of whether U.S. industries enter into the nuclear market world-wide or not, foreign-based industries surely will.

* The development of the fission breeder up to the point of deployment is a prudent policy. To be deployed in significant numbers, it must compete with conventional fission reactors obtaining fuel from mined uranium or from the fusion breeder.

SECTION 4: Fusion breeders impact on the fusion research and development program

Heretofore, the fusion research and development program has been supported for its ultimate use in electrical power production. Having another application--the fusion breeder--could result in more support; the earlier this application, the more urgency there is to develop the long-lead time part, which is fusion itself.

It is likely that early fusion reactors will cost significantly more than other power sources and this greater cost will discourage early use. Conversely, the fusion breeder can cost three to four times that of an LWR and still produce fissile fuel at costs competitive with mined uranium at about \$200/kg.

SECTION 5: Fusion breeder's impact on the fission breeder program.

The fusion breeder will not be a reality until fusion is proven both feasible and economical enough to produce competitive fissile fuels. The fission breeder has already been proven feasible, while not yet economical, with mined uranium and conventional reactors. We can easily imagine scenarios in which it would be economical. If the fusion breeder proves to be both feasible and economical, the fission breeder would have to compete economically with other types of fission reactors fueled from the fusion breeder or mined uranium which ever was more economical. Since the fusion breeder may not succeed, we must make sure the fission breeder remains an option. Fusion breeders may continue to be needed because they are less disruptive and faster to deploy, and more economical. One can think of scenarios where fission breeders can compete but have too long a doubling time. If so, the fusion breeder could be used to help provide initial inventories. This would be especially the case for high nuclear growth, lower resources and if the ultimate breeding ratio along with other parameters result in a very long doubling time.

SECTION 6: Fusion breeders impact on process heat and synfuel market

In the next century when we will have had to all but abandon use of petroleum, and where coal and natural gas are unavailable or unusable, there will be tremendous incentives to develop new sources of synthetic fuels (synfuels). Already we know how to produce these fuels from hydrogen produced by water splitting at high temperatures. The processes are called thermo-chemical and electrochemical processes. Heat from a nuclear power source would drive such a synfuel plant. Helium-cooled fission reactors have run for years at 950° C outlet temperature. Such reactors are realistically predicted to cost within 20% of that of an LWR, which means the energy is going to be relatively low cost (although higher than todays energy cost from natural gas). High temperature reactors (HTGR's using prismatic graphite blocks or graphite pebbles) could be nearly inexhaustible if they had a source of ^{233}U for start-up (about 2.4 Tonnes) and for annual make-up (0.1 Tonnes/year for 2500 MW_{Th}) and as a fertile material used Thorium. The fusion breeder could thus be used as a fuel supplier to synfuel plants. Demonstration synfuel plants could use ^{235}U , with later plants using ^{233}U after fusion breeders become deployed in fuel centers.

SECTION 7: Fusion breeders impact on the heavy-water cooled and moderated reactor developed by Canada, the CANDU. This reactor needs very little make up ^{233}U on the thorium cycle (similarly for Pu on the U-Pu cycle). It has some safety advantages over LWR's because of the pressure tubes integrity over large pressure vessels and has a higher availability because of on-line refueling. An almost inexhaustible fuel supply would make the CANDU reactor an attractive system for selling on the world market along with fuel services.

SECTION 8: Fusion breeders impact on LWR's--the reactor of choice in most countries is now the LWR. A fuel supply from the fusion breeder, when mined uranium becomes too expensive, will assure LWR owners their investment will be protected against the possibility of an expensive switch-over to another fission reactor type.

SECTION 9. Summary of Fusion Breeders Role Relative to Fission Reactor Types

If one asks what is the best fission power reactor type, the answer depends strongly on the need to breed fuel or not.

Candidates for breeder fission reactors are:

1. LMFBR
2. MSBR
3. LWBR

The breeding ratio is best for 1 and lowest for 3. Number 2 and #3 barely breed at all but are thermal reactors. For the long term U.S. policy (as well as U.K., France, USSR, Japan) has been to rely on heavy use of the LMFBR.

If an external source of fissile material existed such as ^{239}Pu or ^{233}U , and unlike ^{235}U , could be produced essentially independent of resources, then the choice of the best fission reactor types for long term heavy use could be examined in a new light.

New reactor types might be considered with less changeover than would be the case if the reactor vendor production plants were at full capacity, since no new fission reactor orders have been placed for many years.

Without the virtual necessity to deploy the LMFBR, we could consider new strategies. Rather than proceeding with the expensive deployment of LMFBRs (recent nuclear news article reports the second generation commercial breeder in France, Super Phenix II, is expected to cost 40% more than an LWR), we could keep the breeder program active by designing a superior, cost-competitive breeder, but not deploy a series of inferior reactors to that of the French Super Phenix. If the French LMFBR turns out to be cost-competitive and needed, we could license the design here much like the French licensed the LWR (through FRAMATOM, from Westinghouse).

One can make the analogy to the supersonic transport. The French-British version, the Concorde, was of low technology (aluminum) and was expensive on a cost per passenger mile basis, but they proceeded ahead with the project. The American version was based on titanium, was bigger and would have been lower in cost per passenger mile, but we didn't proceed ahead and in retrospect saved considerable money by building more efficient subsonic planes. A lesson may be learned from history by carefully studying the similarity between the supersonic transport and the LMFBR. I believe the LMFBR is a "bird in the hand" and nothing should be done to "take this bird out of the hand" until an alternate fuel source is assured, but just the same I believe we should also take seriously the very likely prospect for fusion providing this fuel source in a timely way and with more desirable characteristics.

For the U.S. the light water reactor or slightly improved versions could be considered for long term use. Even such diverse reactor types as the graphite moderated-sodium cooled reactor should be reexamined.

The high temperature reactor of the HTGR or Pebble bed-type likewise could be reconsidered in the light of a new fuel source. The present government policy towards HTRs seems to be for process heat. The electricity application should be reexamined in light of no LMFBR. The question of loss of cooling accident should be reexamined and HTRs and LWRs compared. The question of U-Pu or Th-U fuel cycle choice should be reexamined for the case of an external fuel source.

In foreign countries other reactor types could be considered with little change as the long term reactor to rely on. In Canada the CANDU is such an option. Canada should seriously consider the fusion breeder's relationship to their export market of the CANDU and fuel services.

The CANDU could be built in the U.S. and surely should be given consideration. Not-invented-here syndrome, the problem of developing licensing standards, royalties and industrial tooling would have to be considered carefully.

SECTION 10.

Engineering Problems of the Fusion Breeder*

R.W. Moir, J.D. Lee, W.L. Barr, G.W. Hamilton, W.S. Neef, W.N. Kumai
Lawrence Livermore National Laboratory, University of California
P.O. Box 5511, Livermore, CA 94550

W.R. Grimes

Oak Ridge National Laboratory
P.O. Box X, Oak Ridge, TN 37830

J.A. Maniscalco, D.H. Berwald, R.B. Campbell, R.H. Whitley, J.K. Garner
TRW, One Space Park
Redondo Beach, CA 90278

K.R. Schuliz, E.T. Cheng, R.L. Creedon, I. Maya, P.W. Trester, C.P.C. Wong
General Atomic Company
P.O. Box 81608, San Diego, CA 92138

R.P. Rose, J.S. Karbowski, D.L. Chapin, J.W.H. Chi
Westinghouse Electric Corp.
P.O. Box 10864, Pittsburgh, PA 15236

Abstract/Summary

A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to ^7Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation. Molten salt reprocessing was compared to aqueous solution reprocessing (thorex). The molten salt reprocessing cost is \$3.4/g fissile, whereas aqueous reprocessing cost \$24 or \$43/g for the thorium metal or oxide fuel form.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

The cost of bred fissile material (^{233}U) expressed as an equivalent U_3O_8 cost was \$91/lb for the Li case with molten salt reprocessing, \$76/lb for the beryllium case with aqueous reprocessing; and \$63/lb for the beryllium-molten salt design. \$75/lb for U_3O_8 is equivalent to \$50-60/g of ^{233}U . We plan to pursue (in 1982) a relatively low technology hybrid which uses beryllium and thorium (or uranium) pebbles cooled by liquid metal ($\text{Li}_{17}\text{Pb}_{83}$, for example) with fissile costs expected to be \$75/lb equivalent. At a lower level we plan to pursue a higher technology hybrid which uses beryllium and molten salt with an expected cost of \$60/lb. All costs are in 1980 dollars. All of these results are based on the hybrid costing approximately 3.5 times a light water reactor for the same nuclear power. Advances which lower the cost of the fusion reactor will lower the cost of fissile material produced.

A hybrid whose nuclear power rating is 4000 MW can produce 6000 kg/y of ^{233}U . This is enough to provide make up fuel for 15 LWR's containing no thorium (only ^{238}U plus recycled ^{233}U and ^{239}Pu) each rated at 4000 MW nuclear. The system of 15 LWR's plus 1 hybrid (estimated to cost 3.5 times that of an LWR) would produce electricity at a cost of less than 10% more than an LWR which bought U_3O_8 at \$45/lb. The electricity would cost the same for an LWR using U_3O_8 costing \$75/lb during its first year of operation and assuming a U_3O_8 escalation rate of 3% per year above inflation over the 30 year life time of the LWR.

The Tandem Mirror configuration offers the potential as an attractive hybrid reactor because the simple linear geometry allows easy access. Using a fission-suppressed hybrid blanket, an ideal "fissile fuel factory" can be obtained by suppressing fission of both the fertile and bred fissile material. This maximizes the amount of fuel produced per unit nuclear power, thus maximizing the number of burner reactors which the fusion breeder can support. In addition, the fission-suppressed blanket has a low fission product inventory and a low afterheat level. Safety analysis shows that these blankets might be passively cooled, greatly enhancing the safety features of the designs.

1. Introduction

During fiscal year 1981 a study was carried out to determine the feasibility of producing fissile material for fission reactors using the fission suppression concept. The context was the tandem mirror reactor but the emphasis was on blanket engineering. This paper will cover selected topics from that study. Our emphasis here is on conclusions. A complete project report¹ is available upon request.

2. Highlights of 1981 Study

2.1 Tandem Mirror Hybrid Reactor (TMHR)

The reactor made up of a 129 m long cylindrical breeding region and a complex, high technology region at each end is shown in figure 1 without buildings, heat transport systems and plant facilities. One end is shown in fig. 2. The other end is similar except without a direct converter.

2.2 Blanket Engineering

2.2.1 One-region beryllium/helium cooled design.

2.2.2 Two-region blanket Li-molten salt.

2.2.3 One region pebble bed blankets using beryllium as a neutron multiplier.

Beryllium/Thorium Pebbles Blanket Option. A schematic diagram of a beryllium/thorium pebbles blanket option is shown in Fig. 6 and more fully discussed in references 1 and 4. This option features only one neutronic zone and utilizes beryllium pebbles as the neutron multiplier. In this design, nonreactive lead-lithium is substituted for liquid lithium as the primary coolant since the neutron multiplication occurs primarily in the beryllium spheres and liquid lithium is not required for

neutron multiplication. The fertile fuel form in this design would be metallic thorium pebbles much smaller than the beryllium pebbles. The thorium pebbles would be randomly packed between the larger beryllium pebbles. The remaining voids are filled with a liquid metal (e.g., sodium) to improve heat transfer.

This design option offers several potentially attractive features:

1. excellent fissile breeding performance;
2. one-zone mechanical design;
3. conventional liquid-metal and pebble-bed technologies;
4. possibility for nonreactive primary coolant;
5. continuous recycling of both beryllium and thorium pebbles in mobile fuel form;
6. excellent heat transfer capabilities;
7. fuel cycle flexibility (i.e., fertile pebbles can be thorium metal, thorium oxide, or uranium oxide);
8. separation of fissile and tritium breeding.
9. structural temperatures below 350°C ensure long life.

The principal design issues to be encountered in the beryllium/thorium pebbles blanket option are:

1. adequate pipe clearances and pebble flow;
2. limiting MHD pressure drops;
3. achieving satisfactory pebble mixing and packing fractions.
4. heterogeneous effects on fissile breeding.
5. Coatings may be required to prevent solid state reactions with structure.
6. Impurity control.

An artist's drawing of this blanket module is shown in figure 7.

2.2.4 The updated 1979 beryllium/molten salt (Be/MS) reference blanket design. The combination of beryllium (Be) and molten salt (MS) for a fissile breeding, fission-suppressed blanket is even more attractive if materials concerns can be circumvented, because beryllium gives the highest fissile breeding ratio (F), and molten salt, the lowest cost reprocessing. For the two blanket concepts examined in this study, the Be/ThO₂ blanket has an F of 0.73 and a reprocessing cost of 46\$/g U233, while the Lithium/molten salt has an F of 0.49 and a reprocessing cost of 3.1\$/g. Combining the advantage of Be and molten salt would be most desirable.

A schematic drawing of the updated Be/MS design is shown in Figure 10. The walls are cooled to keep the salt frozen to protect the steel from corrosion. Since the wall is made up of two layers, separately cooled, it serves as an independent first wall, as in the separate first wall of the 1979 Be/MS designs.

There are several key issues which may be go/no-go items. They are:

1. Coating of Be pebbles which will adequately impede corrosion by the fluoride salt and accommodate swelling, mechanical abrasion, and other radiation damage effects.
2. A feasible mechanical design which will allow occasional removal of the Be pebbles and adequate heat removal and avoid MHD enhanced galvanic corrosion.
3. Maintaining a frozen salt layer on steel structure.
4. Tritium removal requires development.

The combination of beryllium and molten salt makes such an attractive fissile breeding blanket, assuming we are successful in circumventing the materials concerns, that development of the Be/MS blanket should remain a goal of the hybrid program.

3. Conclusions

We have shown that the fusion breeder has the potential to produce unprecedented quantities of fissile fuel. The resulting high LWR support ratio leads to several important advantages. The high support ratio relaxes both the fusion performance required and the economic constraints for commercial feasibility. It reduces the number of fusion breeders that must be deployed, and it enhances the fusion breeders' ability to rapidly impact our energy needs. We are convinced that by producing fuel for LWRs, fusion can have a significant impact on our energy needs in an even earlier time frame than the LMFBR although the technology of fusion is not as developed as that of the LMFBR.

The timely development of the fusion breeder requires an aggressive fusion engineering development program such as the one called for by the Magnetic Fusion Energy Engineering Act of 1980. This aggressive program in engineering should be pursued as soon as possible and it should be supplemented with a fusion breeder development program aimed at identifying and developing the technologies that are specific to the fusion

breeder and its interface with the existing fission reactors. Elements of this fusion breeder development program during the next five years should include:

1. detailed design studies;
2. integral neutronics experiments to verify nuclear performance;
3. blanket testing in existing fission test reactors;
4. technology requirements definition;
5. fuel cycle technology development; and
6. blanket material development including coating development and corrosion tests.

The long lead times and large capital investments required to develop and commercially introduce this new technology establish the need to determine the feasibility of the fusion breeder and the incentives at the earliest possible date.

References

1. Moir, R.W., et al., Feasibility Study of a Fission Suppressed Blanket for a Tandem Mirror Hybrid Reactor, Lawrence Livermore National Laboratory, in preparation (1981).
2. Moir, R.W., et al., "Engineering Problems of the Tandem Mirror Reactor," these proceedings.
3. Carlson, G.A., et al., Designs of Tandem Mirror Fusion Reactors, Lawrence Livermore National Laboratory, UCRL-86576 (1981).
4. Maniscalco, J.A., Berwald, D.H., Campbell, R.B., Moir, R.W., and Lee, J.D., Recent progress in fusion-fission hybrid reactor design studies, Nuclear Technology/Fusion, 1, 419 (1981).
5. Moir, R.W., The tandem mirror hybrid reactor, Nuclear Engineering and Design, 63 375 (1981).

TABLE I.
Neutronic Performance
for Beryllium and Lithium Blankets
(basis: per fission neutron generated in blanket region)

	Beryllium Blanket	Lithium Blanket
<u>Thorium Fission</u>		
θ_{Li} concentration in lithium	0.025 (natural)	0.002 (depleted)
$\theta_{\text{Li}}(n, t)$	1.028	0.359
$\theta_{\text{Li}}(n, n')$	0.005	0.661
$\theta_{\text{Be}}(n, t)$	0.017	
Thorium breeding ratio	1.05	1.05
<u>Fissions and Breeding</u>		
$^{232}\text{Th}(n, f)$	0.007	0.002
^{233}U enrichment	0.002	0.001
$^{233}\text{U}(n, f)$	0.019	0.024
Total fissions	0.026	0.027
$^{232}\text{Th}(n, x)$	0.751	0.319
$^{233}\text{U}(n, x)$	0.002	0.004
Net fissile breeding	0.730	0.491
<u>Energy Generation</u>		
Neutron energy deposited, E $E_n = L/14.1$	26.7 1.89	21.3 1.51

Fig. 1. Tandem Mirror Hybrid Reactor (TMH). The breeding region of the reactor is 129 m long and is composed of 20 modules of the type shown in figure 3 and similar to that in figure 5.

AXI-CELL END PLUG FOR TANDEM MIRROR REACTOR

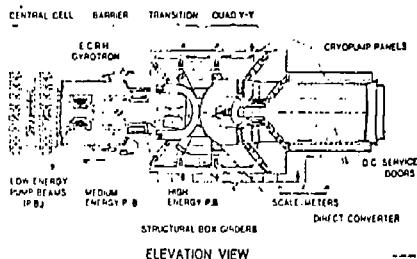


Fig. 2. Axial-cell end plug - elevation view. The electron cyclotron resonant heating (ECRH) microwave tubes located in the first mirror cell are shown. Neutral beams used to pump (remove unwanted ions) the thermal barrier region are also shown.

DISCLAIMER
The document may contain material supplied by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any representation, warranty, or guarantee, express or implied, as to the accuracy, completeness, or usefulness of the data contained in this document. It is the property of the United States Government, is loaned to the University of California, and is to be returned to the University of California when no longer needed for the purpose for which it was loaned. It is to be used for reference purposes only and is not to be sold, given away, or otherwise disposed of.

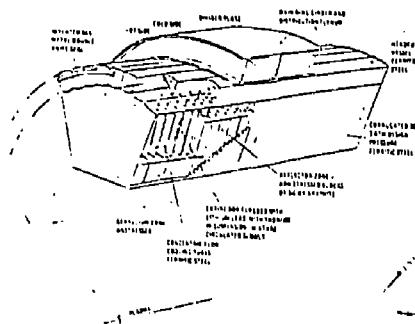


Fig. 3. One region Beryllium multiplier blanket with ThO_2 microspheres suspended in a mixture of LiPb cooled by helium in concentric tubes.

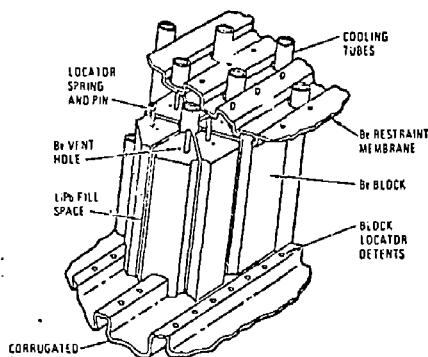


Fig. 4. Beryllium zone showing the prismatic blocks.

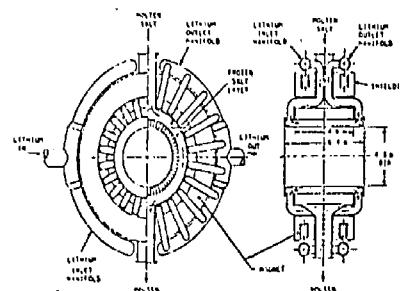


Fig. 5. Two region lithium neutron multiplier blanket with a molten salt second region for the breeding media.

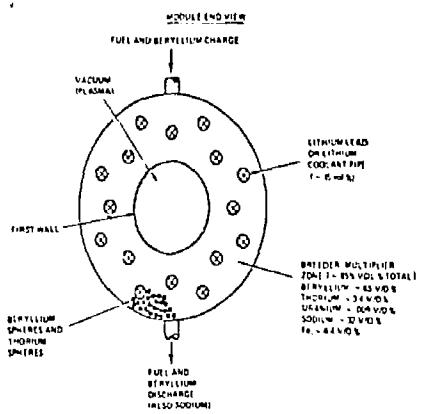


Fig. 6. One region beryllium/thorium (or uranium) pebble blanket cooled by liquid metal.

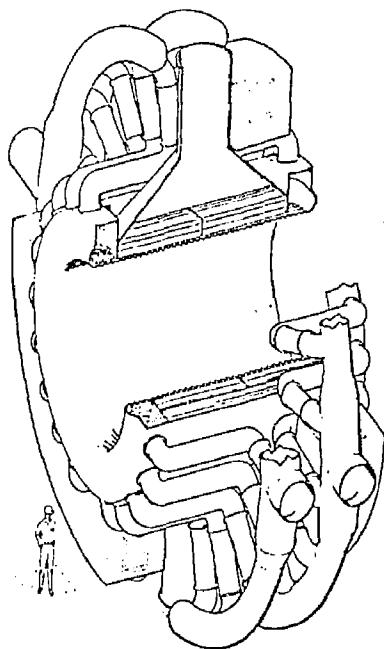


Fig. 7. Artist's drawing of the one region beryllium/thorium blanket showing the coolant ducts similar to those in Figure 3.

Fig. 10. Schematic arrangement of updated 1979 Be/molten salt reference blanket design. The molybdenum structure is replaced by steel projected from corrosion by a frozen salt layer and the beryllium is in the form of pebbles coated with molybdenum, graphite or other material.

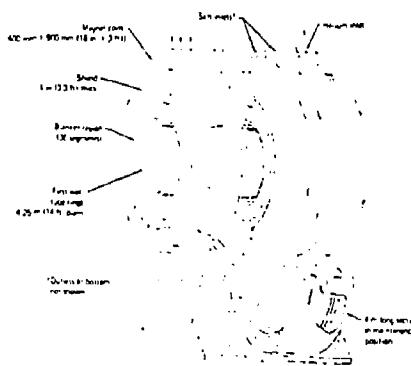


Fig. 8. 1979 beryllium/molten salt reference blanket design.

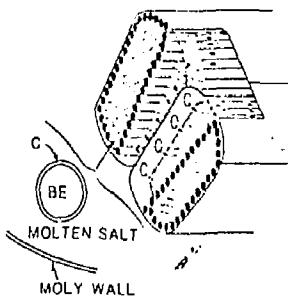
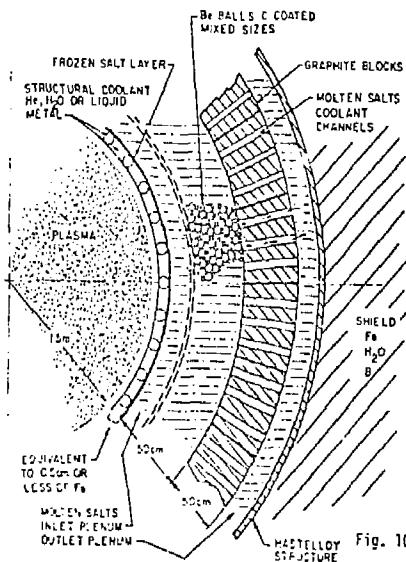



Fig. 9. Cut-away of the 1979 beryllium/molten salt reference blanket design. The updated version of this design uses steel.

