LBL-14264

g Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

Submitted to the SHARE 59 Meeting, New Orleans, LA
August 22-27, 1982

A FORTRAN IMPLEMENTATION OF A NETWORK EXECUTIVE
UNDER IBM'S VM/CMS

Martin S. Itzkowitz

March 1982 DO NOT MICROFILM
COV 9999991]

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

CISTPIBDTION or #2¢ OOCOKHT IS miMITEB



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



LEGAL NOTICE

This book was prepared as an account of work
sponsored by an agency of the United States
Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their
employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use would not
infringe privately owned rights. Reference herein
to any specific commercial product, process, or
service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency
thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect
those of the United States Government or any
agency thereof.

~awrence Berkeley Laboratory is an equal opportunity employer.



To be submitted to LBL-14264
SHARE 59 Meeting, New Orleans, LA
August 22-27, 1982

LBL-=-14264

DE82 014990

A FORTRAN Implementation of a Network Executive under IBM's VM/CMS*

Martin S. Itzkowitz

Lawrence Berkeley Laboratory
University of California
Berkeley, California

March 1982

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government
Newther the United States Government nur any agency thereof, noe any of their emcioyees, makes any
warranty, express or implied, or assumes any legal tiability or responsibility for the accuracy,
completentss, or usefuiness of any infarmation, apparatus, product, or process disclused, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, ar otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, The views and opinions of authors expressed herein do not
necessarily state or reflect those ot the United States Government or any agency thereof.

* This work was supported by the U.S. Department of Energy under contract
number DE-AC03-76SF00098.

PETRIRUTION OF THIS DOCUMENT IS UNUIMFFED

oA



A FORTRAN Implementation of a Network Executive under IBM's VM/CMS*

Martin S. Itzkowitz

Computation Department
Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

The Lawrence Berkeley Laboratory Computation Department has
attached an IBM-4331 to a heterogeneous local network. The network,
named THC, uses Network Systems Corporation HYPERchannel hardware to
implement a general process-to-process communication scheme. It appears
to the user as an extension of the local operating system accessed by a
subroutine call. The executive multiprocesses requests from different
user virtual machines and exchanges messages with other nodes on the
network. We describe an assembly-language module, occupying one page of
memory, which allows the straightforward CMS-FORTRAN implementation of
such an executive as a virtual machine, requiring no modifications what-
soever to the standard operating system. We then describe our network
executive as an example of its use.

This work was supported by the U.S. Department of Energy under con-
tract number DE-AC03-76SF00098.



Introduction

In the Spring of 1980, Lawrence Berkeley Laboratory purchased an
IBM 4331 to provide a gateway service to our existing local network. A
Network Systems Corporation HYPERchannel adapter, model A220, was
attached to a block-multiplexor channel on the machine, and connected to
our existing CDC and DEC machines. For our purposes, it is used as two
independent devices: one device and subchannel is used for sending mes-
sages to other machines; another is used to receive messages from other

machines,

The network protocol, named THC, establishes an interprocess com-
munication scheme which requires only three functions: establishing a
connection (i.e., virtual circuit), sending data over it, and closing
it. Functions are performed in response to requests; a request contains
a block of up to 3840 bytes of data, and may return to the user another

similar block. The network protocol is described elsewherel,

To the user, the network executive appears to be an extension of
the local operating system; it must multiprocess requests from user vir-
tual machines, exchange messages with other machines, dynamically allo-

cate buffers and queues, and provide information to a console operator.

In other implementations, modifications to the operating system
have been necessary to recognize and process network requests; however,

VM provides the necessary tools so that, as suggested in the System

' Knight, Jeremy and Marty Itzkowitz, THC - A Simple High-
Performance Local Network, LBL Report 11426, August,1980.




Programmer's Guide2 sych an extension may be written as an independent

virtual machine interacting with user machines by means of the VMCF
interprocess communication protocol. The CMS system allows direct
access to dedicated I/0 devices, external interrupts, a real-time clock,
and, using the diagnose interface to CP, services such as VWMCF and pag-
ing. These features are all that are needed to implement a network exe-
cutive, but, unfortunately, they are accessible only to the assembly-

language programmer.

CMS supports several higher-level languages, among them FORTRAN.
Although wusually considered less than ideal for implementing complex
systems, FORTRAN does have several advantages. It is compiled into
relatively efficient object code, it is familiar to most scientific pro-
grammers, and it has a simple interface to assembly language subrou-
tines. We here describe a set of FORTRAN-callable subroutines providing
graceful access to the full resources of the virtual machine with no

modifications to either CP or CMS.

The package is a single assembly-language module, named BKYEX@,
with multiple entry points; it contains handlers for external and I/0
interrupts, occupies one page of memory, and is initialized wupon the
first call to any of its subroutines. It extends the FORTRAN language
to allow multiprocessing, to handle external interrupts, to process
requests from other virtual machines, to handle a dedicated I/0 device,
and to dynamically allocate its own memory. We will discuss each of the

subroutines in turn, and then describe the network executive as a case

2 IBM VM/SP System Programmer's Guide, publication SC19-6203-0, page
159.




study of their use.

Multiprocessing

One method of multiprocessing is based on a set of event flags,
each of which is associated with a subprocess. The main program of such
a multiprocessing system waits for an event flag to be set, determines
which flag it is, takes the necessary action for that process, and then

returns to sleep until another flag is set.

For our system, we used a set of sixty-three event flags. One sub-
routine, EXSET(I), sets the Ith flag; another, EXCLR(I), clears it. Two
functions perform test-and-clear operations on the flags. The first,
IFEXON(I), returns zero if the Ith flag is clear, and the value of I if
the flag is set. If called with I equal to zero, it will return the
value of the highest flag set, or zero if no flag is set. The second,
IWAITX(I), behaves similarly, except that it enters an enabled-wait

state for the virtual machine rather than return a zero value.

Of course, such a scheme is predicated on the ability to set flags
in response to asynchronous events. Subroutines to associate flags with
external and I/0 interrupts are described below. In order to perform
non-interruptible operations, two subroutines, DISABL(MASK), which
stores the current interrupt mask and then disables all interrupts, and

ENABLE(MASK), which restores interrupts, are supplied.



4

External Interrupts

Three resources necessary to implement the network executive are
accessible through external interrupts: a real-time clock, an operator
interrupt mechanism, and the VMCF interface. In order to provide access
to these interrupts, upon initialization, the package replaces the
External-New-PSW with a pointer to its own routine. (An earlier version
used the HNDEXT macro to interface with CMS, but the additional overhead
seemed pointless.) Interrupts are enabled for the clock comparator and
VMCF, the comparator is set to tick at the next second, and a VMCF
authorize function is issued. Since the CMS debug package also uses
external interrupts, it cannot be used in conjunction with these rou-
tines; CP debug commands are unaffected, however, and were quite ade-

quate.

When the clock comparator ticks, the external interrupt handler
updates the real-time clock and issues a diagnose '0C' instruction to
update the virtual-elapsed-time and cpu-time clocks. One subroutine,
JSEC(I), returns the real-time in Julian seconds, that is, as an abso-
lute integer count of seconds since January 1, 1980. Similar subrou-
tines, VSEC(I), and CPSEC(I), provide integer values for virtual-
elapsed-time and cpu-~-time. Another set of subroutines JCLOCK(I,J),
VCLOCK(I,J), and CCLOCK(I,J), associate flag I with an interval timer
that ticks every J seconds of their respective clocks. Formatted
strings giving the current date and time are returned by subroutines

DATE(ADATE) and TIME(ATIME).



We allow the operator to interrupt the program by associating an
external interrupt I with flag I. The terminal handler in the WM
operating system provides a simple command to generate external inter-
rupts; some are used to invoke the formatting of various displays which
are then sent to the console; others are used as commands or debugging

aids.

Interprocess Communication

The send/receive protocol of VMCF provides a mechanism which is
precisely that needed for network requests. The user virtual machine
formats the VMCF header in an ten-word array, IVBLOK; a function,
LOCF(ARG), which returns the address of its argument, is used to set up
pointers. Subroutine VCSNRC(I,IVBLOK,IRBLOK) is called to issue the
send/receive function. When the response interrupt arrives, its header
block is copied into array IRBLOK, and flag I is set. A call to
VCCNCL(I) will causes the cancellation of the pending request associated
with flag I, and, although we do not use it, a corresponding subroutine,
VCSEND(I,IVBLOK,IRBLOK), is available for the VMCF send protocol.

Unsolicited, that is, sink-type, interrupts are rejected unless the
user has established a means for handling them. A call to
VCAUTH(EXTSUB) specifies a user-provided subroutine that will be called
to process these interrupts. It will be called as EXTSUB(IVBLOK,IREJ)
with interrupts disabled; IVBLOK is an array containing the interrupt
header, and IREJ is to be set non-zero if the interrupt handler is to

reject the transmission. Neither EXTSUB nor any subroutines it may call



should ever be called with interrupts enabled. A debugging aid, subrou-
tine HANG, which immediately stops execution of the virtual machine, was

used to uncover this reentrancy bug.

Subroutines for sink functions are provided: VCRCV(IVBLOK) reads
the data corresponding to a send or send/receive call; VCRPLY(IVBLOK)
replies to a send/receive function; and VCREJ(IVBLOK) allows program-
controlled rejection of unsolicited messages. One other subroutine,
VCIDNT(IVBLOK), sends an identify block to another virtual machine; it
is used to announce the restart of a user virtual machine to the network
executive, Sendx, resume, quiesce, and unauthorize functions have not

been provided: although they are trivial to write, we did not need them.

(An additional routine, THCTOD(NAME), provides a variant of VCSNRC
specific to our network FORTRAN interface: it differs in that the
response block is unpacked at interrupt time, and the flag is specified

by the VMCF message id.)

Dedicated l{g Devices

Before any I/0 operations are performed on a dedicated device, the
program must establish a means of handling its interrupts. A subrou-
tine, IOFLAG(IFLAG,IDEV,ICSW) is used to issue a HNDINT macro for device
IDEV, defining it as device "FLii," where "ii" is the hexadecimal
equivalent of IFLAG. When an interrupt from the device is received, and
the channel status word for the interrupt contains either device-end or
unit-check flags, or has a non-zero channel status, the channel status

word 1is stored in ICSW and flag IFLAG is set. Other (intermediate)



interrupts are ignored; a simple change would allow user processing of

all interrupts.

I/0 operations are initiated by issuing an SIO instruction specify-
ing a channel program for the device. The desired channel program is
formatted in an array IPROG, which must be double-word aligned, and sub-
routine EXSIO(IDEV,IPROG,ICC,ICSW) is called to issue the SIO instruc-
tion. ICC will be set to the condition code set by the instruction, and
ICSW will contain the channel status word. For our purposes, the other
I/0 instructions were not needed and were not coded; they would be sim-

ple variants of the SIO routine.

Dynamic Memory Management

User requests and responses and messages exchanged with other nodes
of the network are quite similar. Each has a text, 0-3840 bytes in
length, a set of descriptor words giving its mode and length, and con-
trol information amounting to some thirty to fifty additional bytes. It
seemed reasonable to use a common format for all, and keep them in UuK-

byte buffers, aligned on page boundaries.

Memory for N buffers is allocated as a single block of (N+1)¥1024
integer words. Upon initialization, the program calls LOCF to obtain
the address of the block, and then computes an offset to the first word
of the next memory page. This offset is used as a base index for the
first buffer; increments of 1024 are added to compute indices for the
other buffers. Data is stored in the buffer relative to its base.

Allocation and deallocation of buffers is performed with interrupts



disabled. One 1last subroutine, DEPAGE(IFWA,LWA), which asks CP to
release any memory pages between IFWA and LWA, is called whenever a

buffer is deallocated.

The Network Executive

The THC executive has been specified in a machine-independent

form3, 1t consists of four coroutines: the request-processor interfaces
between the wuser and the network; the listener processes some incoming
messages and dispatches the remainder to the request-processor; the
driver transmits outgoing messages over the HYPERchannel and passes
incoming messages to the listener; and the housekeeper is invoked every
second to tidy things up. These routines share a pool of buffers and

interact through network tables and queues of messages.

The principal tables of the executive are the node-table, the
connection-table, and the statisties-table. Virtually all tables and
variables are kept as four-byte integer arrays in a single labeled com-

mon block; a few statistics are floating-point.

The network executive uses queues of messages and requests. Each
queue 1is associated with a flag and a list head. If the list head is
zero, the queue is empty, and the flag is left cleared. 1If it is non-
zero, it is the index of the first buffer on the queue, and the associ-
ated flag will be set. One of the buffer control arrays contains the

index of the next buffer on the queue, if any. The routines that push

3 Itzkowitz, Martin S. and Jeremy Knight, THC: Design Specifications,
LBL report 14144, October, 1981.




buffers onto a queue or pop them off maintain the associated flag.

The network virtual machine is named THC and is autologged by the
system. Its profile EXEC spools console output as an error log, bestows
some performance-related privileges on itself, dedicates the channel to
itself, resets the adapter, and then invokes the network executive. 1In
our configuration, the channel has only the one adapter attached; no
coding changes would be necessary to use a shared channel with dedicated

devices.

The initialization routine sets up the tables, assigns flags for
the console processor, the request-queue (request-processor), a one-
second julian timer (housekeeper), the input subchannel of the HYPER-
channel adapter (input-driver), the output subchannel (output-driver),
the receive-queue (listener), and the send-queue (output-driver, also).

The program then exits to its main loop.

The main loop calls IFEXON to determine the highest priority flag
set. Console, I/0 and the clock flags invoke the call of their respec-
tive coroutines. Flags for queues serve merely to wake up the execu-
tive: the queues are checked independent of the flag interrupt. When no
more flags are set, if the output-driver is idle, the main loop pops the
send-queue, and calls the output driver. Then, it pops the request and
receive queues calling the request-processor and listener, respectively.
When the queues are empty, the main loop calls IWAITX(0) to await

further action.

The network virtual machine normally runs disconnected; if neces-
sary, an operator or programmer may connect to it. Some CP external

interrupts are used to invoke displays of system tables. Displays are



10

available giving the status of the whole network, information about the
connections currently open or pending, and statistical information about
traffic and resources. Other external interrupts are commands to turn
any down nodes up, to reset the HYPERchannel adapter, or to reinitialize

statistics.

Message traffic between machines is handled by the two subchannels
of the HYPERchannel adapter. After initialization, the output subchan-
nel on the device is idle, and the input subchannel is executing a chan-
nel program which waits for an incoming message, reads it into a preal-
located buffer, and generates a final interrupt when the message has
been read. When the input I/0 interrupt flag is triggered, the buffer
is queued to the listener, another buffer is allocated and a new channel

program is begun.

Buffers containing messages to be sent out are queued on the send-
queue. If the output driver is idle, and the queue non-empty, the exe-
cutive pops a buffer from the queue and formats a channel program to
send the message. When the completion interrupt is received, the next

buffer is sent, and so forth.

The VMCF sink interrupt for an incoming request invokes a subrou-
tine which allocates a buffer, reads the VMCF header into it, and places
the buffer on the request queue. When the buffer is popped from the
queue, the request-processor issues a receive function. Some requests
are completed immediately; others cause the generation of a message to
be sent to another machine, and are completed when a return message is
received. A request 1is suspended by attaching its buffer to the

appropriate connection-record. The listener, when the message arrives,



L

or the housekeeper, should the connection time-out, detaches the buffer
from the connection-record and requeues it for completion by the
request-processor. The text of user requests and replies are used
unchanged in the network messages: rather than copy the data, the net-
work executive merely switches pointers. Under some circumstances, a
request cannot be processed because no buffer is available; in such
cases, the request-processor puts the request on a delay queue which 1is

popped by the housekeeper.

Incoming messages are queued to the listener. Some are replied to
by the 1listener, others are attached to connection-records and later
used to complete user requests, and still others are discarded wupon

arrival.

Conclusions

We have described a set of subroutines that allow the FORTRAN user
access to the full resources of a virtual machine. We have shown how
these routines allow multiprocessing, external interrupt processing, I/0
device handling, and memory management. We have described an implemen-
tation of a local network executive, using this package to process
requests from other user machines, without requiring any modifications

to the underlying operating system.



