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A bstrac t

The Lawrence Berkeley L aboratory  Computation Department has 
a ttached  an IBM-4331 to  a heterogeneous lo c a l network. The network, 
named THC, uses Network Systems C orporation HYPERchannel hardware to  
implement a g en era l p ro c e ss -to -p ro c e ss  communication scheme. I t  appears 
to  th e  user as an ex tension  o f  th e  lo c a l  o p e ra tin g  system accessed by a 
sub ro u tin e  c a l l .  The ex ecu tive  m u ltip ro cesses  re q u e s ts  from d if f e r e n t  
user v i r tu a l  machines and exchanges messages w ith o th e r nodes on the  
network. We d esc rib e  an assembly-1anguage module, occupying one page o f  
memory, which allow s th e  s tra ig h tfo rw a rd  CMS-FORTRAN im plem entation o f  
such an ex ecu tive  as a v i r tu a l  m achine, re q u ir in g  no m o d ifica tio n s  what­
soever to  th e  standard  o p e ra tin g  system . We then d e sc rib e  our network 
execu tive  as an example o f  i t s  use .

»
This work was supported by th e  U.S. Department o f  Energy under con­
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In tro d u c tio n

In th e  Spring o f  1980, Lawrence Berkeley L aboratory  purchased an 

IBM 4331 to  provide a gateway s e rv ic e  to  our e x is t in g  lo c a l  network. A 

Network Systems C orporation HYPERchannel a d a p te r , model A220, was 

a ttach ed  to  a b lo ck -m u ltip lex o r channel on th e  m achine, and connected to  

our e x is t in g  GDC and DEC m achines. For our purposes, i t  i s  used as two 

independent d ev ices : one dev ice  and subchannel i s  used fo r sending mes­

sages to  o th er m achines; another i s  used to  re c e iv e  messages from o th er 

m achines.

The network p ro to c o l, named THC, e s ta b lis h e s  an in te rp ro c e s s  com­

m unication scheme which re q u ire s  only  th re e  fu n c tio n s : e s ta b lis h in g  a 

connection ( i . e . ,  v i r tu a l  c i r c u i t ) ,  sending d a ta  over i t ,  and c lo sin g  

i t .  Functions are  performed in  response to  re q u e s ts ;  a re q u e s t co n ta in s  

a b lock o f  up to  3840 by tes o f  d a ta ,  and may re tu rn  to  th e  user another 

s im ila r  b lo ck . The network p ro to c o l i s  d escrib ed  elsew here^.

To th e  u s e r ,  th e  network ex ecu tiv e  appears to  be an ex tension  o f  

th e  lo c a l  o p e ra tin g  system ; i t  must m u ltip ro cess  re q u e s ts  from user v i r ­

tu a l  m achines, exchange messages w ith o th e r m achines, dynam ically  a l lo ­

c a te  b u ffe rs  and queues, and provide in form ation  to  a console o p e ra to r .

In o th er im plem entations, m o d ifica tio n s  to  th e  o p e ra tin g  system 

have been n ecessary  to  recogn ize  and p rocess network re q u e s ts ;  however, 

VM provides th e  n ecessary  to o ls  so t h a t ,  as suggested in th e  System

 ̂ K night, Jeremy and Marty I tz k o w itz , THC -  A Simple High- 
Performance Local Network, LBL Report 11426, A ugust,1980.



Programmer’ s Guide2^ such an ex tension  may be w ritte n  as an independent 

v i r tu a l  machine in te ra c t in g  w ith user machines by means o f  th e  VMCF 

in te rp ro c e ss  communication p ro to c o l. The CMS system allow s d i r e c t  

access to  ded icated  I/O  d ev ic e s , e x te rn a l in te r r u p ts ,  a re a l- t im e  c lo ck , 

and, using  the  diagnose in te r f a c e  to  CP, s e rv ic e s  such as VMCF and pag­

ing . These fe a tu re s  a re  a l l  th a t  a re  needed to  implement a network exe­

c u tiv e ,  b u t,  u n fo rtu n a te ly , th ey  a re  a c c e s s ib le  on ly  to  the  assem bly- 

1anguage programner.

CMS supports  sev e ra l h ig h e r- le v e l languages, among them FORTRAN. 

Although u su a lly  considered  le s s  than id e a l fo r implementing complex 

system s, FORTRAN does have sev e ra l advantages. I t  i s  compiled in to  

r e l a t iv e ly  e f f i c i e n t  o b je c t code, i t  i s  fa m ilia r  to  most s c ie n t i f i c  pro­

grammers, and i t  has a sim ple in te r f a c e  to  assembly language subrou­

t in e s .  We here d e sc rib e  a s e t  o f  FORTRAN-callable su b ro u tin es  p rov id ing  

g rac e fu l access to  th e  f u l l  re so u rces  o f  th e  v i r tu a l  machine w ith no 

m o d ifica tio n s  to  e ith e r  CP or CMS.

The package i s  a s in g le  assem bly-language module, named BKYEX§, 

w ith m u ltip le  e n try  p o in ts ; i t  co n ta in s  h an d le rs  fo r ex te rn a l and I/O  

in te r r u p ts ,  occupies one page o f  manory, and i s  i n i t i a l i z e d  upon the  

f i r s t  c a l l  to  any o f  i t s  su b ro u tin es . I t  extends th e  FORTRAN language 

to  allow  m u ltip ro cessin g , to  handle e x te rn a l in te r r u p ts ,  to  process 

re q u es ts  from o th e r v i r tu a l  m achines, to  handle a ded ica ted  I/O  d ev ice , 

and to  dynam ically  a l lo c a te  i t s  own manory. We w ill  d isc u ss  each o f  th e  

su b ro u tin es  in  tu rn ,  and then d e sc rib e  th e  network execu tive  as a case

159.

p
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study  o f  th e i r  use.

M ultip rocessing

One method o f  m u ltip ro cessin g  i s  based on a s e t  o f  event f la g s ,  

each o f  which i s  a s so c ia te d  w ith  a subprocess. The main program o f  such 

a m u ltip ro cessin g  system w aits  fo r an even t f la g  to  be s e t ,  determ ines 

which f la g  i t  i s ,  tak es  th e  necessary  a c tio n  fo r th a t  p ro cess , and then 

re tu rn s  to  s le e p  u n t i l  another f la g  i s  s e t .

For our system , we used a s e t  o f  s ix ty - th re e  event f la g s .  One sub­

ro u tin e ,  EXSET(I), s e ts  th e  I th  f la g ; an o th e r, EXCLR(I), c le a r s  i t .  Two 

fu n c tio n s  perform te s t- a n d -c le a r  o p e ra tio n s  on th e  f la g s .  The f i r s t ,  

IFEXOM(I), r e tu rn s  zero i f  th e  I th  f la g  i s  c l e a r , and th e  value o f  I  i f

th e  f la g  i§  s e t .  I f  c a lle d  w ith I  equal to  zero , i t  w il l  re tu rn  th e

value o f  th e  h ig h es t f la g  s e t ,  o r zero i f  no f la g  i s  s e t .  The second,

lU A ITX (l), behaves s im ila r ly ,  except th a t  i t  e n te r s  an enab led-w ait

s ta te  fo r th e  v i r tu a l  machine ra th e r  than re tu rn  a zero v a lu e .

Of co u rse , such a scheme i s  p red ica ted  on th e  a b i l i t y  to  s e t  f la g s  

in  response to  asynchronous ev en ts . Subroutines to  a s so c ia te  f la g s  w ith 

e x te rn a l and I/O in te r r u p ts  a re  d escribed  below. In order to  perform 

n o n - in te r ru p tib le  o p e ra tio n s , two su b ro u tin e s , DISABLCMA;^) , which 

s to re s  th e  c u rre n t in te r r u p t  mask and then d is a b le s  a l l  in te r r u p ts ,  and 

ENAHJE(MASK), which r e s to r e s  in te r r u p ts ,  a re  su p p lied .



E x tern a l I n te r r u p ts

Three reso u rces  n ecessary  to  implement th e  network ex ecu tiv e  are  

ac c e ss ib le  through e x te rn a l in te r r u p ts :  a re a l- t im e  c lo ck , an o p era to r 

in te r ru p t  mechanism, and th e  VMCF in te r f a c e .  In o rder to  provide access 

to  th e se  in te r r u p ts ,  upon i n i t i a l i z a t i o n ,  th e  package re p la c e s  the  

External-New-PSW w ith  a p o in te r  to  i t s  own ro u tin e .  (An e a r l i e r  v ersio n  

used the  HNDEXT macro to  in te r fa c e  w ith CMS, bu t th e  a d d itio n a l overhead 

seemed p o in t le s s .)  In te r ru p ts  a re  enabled for th e  c lo ck  comparator and 

VMCF, the  comparator i s  s e t  to  t i c k  a t  th e  next second, and a VMCF 

a u th o riz e  function  i s  is su e d . Since the  CMS debug package a lso  uses 

e x te rn a l in te r r u p ts ,  i t  cannot be used in  con junction  w ith th e se  rou­

t in e s ;  CP debug commands a re  u n a ffe c ted , however, and were q u ite  ade­

quate .

When th e  c lo ck  comparator t i c k s ,  th e  e x te rn a l in te r ru p t  handler 

updates th e  re a l- tim e  clock  and is s u e s  a d iagnose 'OC in s tru c t io n  to  

update the  v ir tu a l-e la p s e d - tim e  and cpu-tim e c lo c k s . One su b ro u tin e , 

JS E C (l), re tu rn s  th e  re a l- t im e  in  Ju lia n  seconds, th a t  i s ,  as an abso­

lu te  in te g e r  count o f  seconds s in ce  January 1, 1980. S im ilar subrou­

t i n e s ,  V S K (I ) , and CPSEC(I), p rovide in teg e r va lues for v i r t u a l -  

e lap sed -tim e  and cpu-tim e. Another s e t  o f  su b ro u tin es  JCLOCK(I,J), 

VCLOCKCljJ), and CCLOCK(I,J), a s so c ia te  f la g  I  w ith  an in te rv a l  tim er 

th a t  t ic k s  every J seconds o f  th e i r  re sp e c tiv e  c lo ck s . Formatted 

s t r in g s  g iv ing  th e  c u rre n t d a te  and tim e a re  re tu rn ed  by su b ro u tin es  

DATE(ADATE) and TIME(ATIME).



We allow  th e  o p era to r to  in te r r u p t  th e  progran by a s so c ia tin g  an 

e x te rn a l in te r ru p t  I  w ith  f la g  I .  The te rm in a l handler in  th e  VM 

o p e ra tin g  system prov ides a sim ple conmand to  g en era te  e x te rn a l i n t e r ­

ru p ts ;  some a re  used to  invoke th e  fo rm attin g  o f  v ario u s  d isp la y s  which 

a re  then se n t to  th e  conso le ; o th e rs  a re  used as  commands or debugging 

a id s .

In te rp ro c e ss  Communication

The se n d /rece iv e  p ro to co l o f  VMCF p rov ides a mechanism which i s  

p re c ise ly  th a t  needed fo r network re q u e s ts . The user v i r tu a l  machine 

form ats th e  VMCF header in  an ten-word a r ra y , IVBLOK; a fu n c tio n , 

LOCF(ARG), which re tu rn s  th e  address o f  i t s  a rg u n en t, i s  used to  s e t  up 

p o in te rs .  Subroutine VCSNRC(I,IVKi)K,IRBLXXC) i s  c a lle d  to  issu e  the 

sen d /rece iv e  fu n c tio n . When th e  response in te r ru p t  a r r iv e s ,  i t s  header 

b lock i s  copied in to  a rra y  IRBLOK, and f la g  I  i s  s e t .  A c a l l  to  

VCCNCL(I) w ill  causes th e  c a n c e lla t io n  o f  th e  pending req u e s t a sso c ia ted  

w ith f la g  I ,  and, although we do not use i t ,  a corresponding su b ro u tin e , 

VC^ND(I,IVnj(XC,IRBL(XC), i s  a v a ila b le  fo r th e  VMCF send p ro to c o l.

U n so lic ite d , th a t  i s ,  s in k - ty p e , in te r r u p ts  a re  r e je c te d  u n less  th e  

user has e s ta b lish e d  a means for handling them. A c a l l  to  

VCAUIH(E}CrSUB) s p e c if ie s  a user-p rov ided  su b ro u tin e  th a t  w ill  be c a lle d  

to  process th e se  in te r r u p ts .  I t  w il l  be c a lle d  as EXTSUB(IVBLOK,IREJ) 

w ith in te r r u p ts  d isa b le d ; IVBLOK i s  an a rra y  co n ta in in g  the  in te r ru p t  

h ead s" , and IREJ i s  to  be s e t  non-zero i f  th e  in te r r u p t  handler i s  to  

r e j e c t  th e  tra n sm iss io n . N either EXTSUB nor any su b ro u tin es  i t  may c a l l



should ever be c a lle d  w ith in te r r u p ts  enabled . A debugging a id , subrou­

t in e  HANG, which im m ediately s to p s  execu tion  o f  the  v i r tu a l  m achine, was 

used to  uncover t h i s  reen tran cy  bug.

S ubroutines fo r s in k  fu n c tio n s  a re  provided: VCRCV(IVKjOK) reads

th e  d a ta  corresponding to  a send or sen d /re ce iv e  c a l l ;  VCRPLY(IVffiX)K) 

r e p l ie s  to  a se n d /rece iv e  fu n c tio n ; and VCREJ(IVHjOK) allow s program- 

c o n tro lle d  re je c t io n  o f  u n s o lic i te d  m essages. One o th e r su b ro u tin e , 

VCIDNT(IVKX)K), sends an id e n t i fy  b lock to  another v i r tu a l  machine; i t  

i s  used to  announce th e  r e s t a r t  o f  a user v i r t u a l  machine to  th e  network 

e x ecu tiv e . Sendx, resum e, q u ie sc e , and unau thorize  fu n c tio n s  have not 

been provided: although they  are  t r i v i a l  to  w r ite ,  we d id  not need th an .

(An a d d itio n a l ro u tin e ,  IHCTCXXNAME), p rov ides a v a r ia n t  o f  VCSNRC 

sp e c if ic  to  our network FORTRAN in te r f a c e :  i t  d i f f e r s  in  th a t  th e

response b lock  i s  unpacked a t  in te r ru p t  tim e , and the  f la g  i s  sp e c ifie d  

by the VMCF message id .)

D edicated ^/O  Devices

Before any I/O o p e ra tio n s  a re  performed on a d ed ica ted  d ev ice , th e  

program must e s ta b l is h  a means o f  handling i t s  in te r r u p ts .  A subrou­

t in e ,  IOFLAG(IFLAG,mEV,ICSW) i s  used to  issu e  a HNDINT macro fo r dev ice 

IDEV, d e fin in g  i t  as dev ice ”F L ii,"  where ” i i ” i s  th e  hexadecimal 

eq u iv a len t o f  IFLAG. When an in te r ru p t  from the  dev ice  i s  re c e iv e d , and 

the  channel s ta tu s  word for th e  in te r ru p t  co n ta in s  e i th e r  device-end or 

u n it-ch eck  f la g s ,  or has a non-zero channel s ta tu s ,  th e  channel s ta tu s  

word i s  s to red  in  ICSW and f la g  IFLAG i s  s e t .  Other ( in te rm ed ia te )



in te r r u p ts  a re  ignored; a sim ple change would allow  user p rocessing  o f  

a l l  in te r r u p ts .

I/O  o p e ra tio n s  a re  i n i t i a t e d  by issu in g  an SIC in s tru c t io n  sp e c ify ­

ing a channel program fo r th e  d ev ice . The d e s ired  channel program i s  

form atted in an a rra y  IPROG, which must be double-word a lig n e d , and sub­

ro u tin e  EXSIOCIDEV,IPROG,ICC,ICSM) i s  c a lle d  to  issu e  th e  SIO in s tru c ­

t io n .  ICC w il l  be s e t  to  th e  co n d itio n  code s e t  by th e  in s t r u c t io n ,  and 

ICSW w il l  co n ta in  th e  channel s ta tu s  word. For our purposes, th e  o th e r 

I/O  in s t ru c t io n s  were no t needed and were no t coded; they  would be sim­

p le  v a r ia n ts  o f  th e  SIO ro u tin e .

Dynamic Memory Management

User re q u e s ts  and responses and messages exchanged w ith o th e r nodes 

o f  th e  network are q u ite  s im ila r .  Each has a t e x t ,  0-3840 b y tes  in 

le n g th , a s e t  o f  d e sc r ip to r  words g iv ing  i t s  mode and le n g th , and con­

t r o l  in form ation  amounting to  some t h i r t y  to  f i f t y  a d d itio n a l b y te s . I t  

seemed reaso n ab le  to  use a common form at fo r a l l ,  and keep them in  4K- 

b y te  b u f fe r s ,  a ligned  on page boundaries.

Memory fo r N b u f fe rs  i s  a llo c a te d  as a s in g le  b lock  o f  (N+l)*1024 

in teg e r words. Upon i n i t i a l i z a t i o n ,  th e  program c a l l s  LOCF to  o b ta in  

th e  address o f  th e  b lo ck , and then computes an o f f s e t  to  th e  f i r s t  word 

o f  the  next memory page. This o f f s e t  i s  used as a base index for th e  

f i r s t  b u f fe r ;  increm ents o f  1024 a re  added to  compute in d ic e s  for the  

o th e r b u f fe r s .  Data i s  s to red  in th e  b u ffe r  r e l a t iv e  to  i t s  base . 

A llo ca tio n  and d e a llo c a tio n  o f  b u f fe rs  i s  performed w ith in te r r u p ts
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d isa b le d . One l a s t  su b ro u tin e , ECPAGE(IFWA,LWA), which asks CP to  

re le a s e  any memory pages between IFWA and LWA, i s  c a lle d  whenever a 

b u ffe r i s  d e a llo c a te d .

The Network Executive

The THC ex ecu tiv e  has been sp e c if ie d  in  a m achine-independent

formŜ  I t  c o n s is ts  o f  four c o ro u tin e s : th e  request-processor in te r f a c e s  

between th e  user and th e  network; th e  listoier processes some incoming 

messages and d isp a tch e s  th e  remainder to  th e  req u e s t-p ro c e sso r; the  

driver tra n sm its  outgoing messages over the  HYPERchannel and passes 

incoming messages to  th e  l i s t e n e r ;  and th e  housekeeper i s  invoked every 

second to  t id y  th in g s  up. These ro u tin e s  share  a pool o f  b u ffe rs  and 

in te r a c t  through network ta b le s  and queues o f  m essages.

The p r in c ip a l ta b le s  o f  th e  ex ecu tive  a re  the  node-table, th e

connection-table, and the  statistics-table. V ir tu a lly  a l l  ta b le s  and 

v a r ia b le s  are  kept as fo u r-b y te  in te g e r  a rra y s  in  a s in g le  lab e led  com­

mon block; a few s t a t i s t i c s  a re  f lo a t in g -p o in t .

The network ex ecu tiv e  uses queues o f  messages and re q u e s ts .  Each

queue i s  a sso c ia ted  w ith a f la g  and a l i s t  head. I f  th e  l i s t  head i s  

ze ro , th e  queue i s  empty, and th e  f la g  i s  l e f t  c le a re d . I f  i t  i s  non­

zero , i t  i s  th e  index o f  th e  f i r s t  b u ffe r  on th e  queue, and th e  a s so c i­

ated  f la g  w ill  be s e t .  One o f  th e  b u ffe r  c o n tro l a rray s  co n ta in s  th e  

index o f  th e  nex t b u ffe r  on th e  queue, i f  any. The ro u tin e s  th a t  push
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b u ffe rs  onto a queue or pop them o f f  m ain ta in  th e  a sso c ia te d  f la g .

The network v i r tu a l  machine i s  named THC and i s  autologged by th e  

sy s tan . I t s  p r o f i le  EXEC spoo ls conso le  o u tp u t as an e r ro r  lo g , bestows 

some perfo rm ance-re la ted  p r iv i le g e s  on i t s e l f ,  d e d ic a te s  th e  channel to  

i t s e l f ,  r e s e ts  th e  a d ap te r , and then invokes th e  network ex ecu tiv e . In 

our c o n f ig u ra tio n , th e  channel has on ly  th e  one adap ter a ttach ed ; no 

coding changes would be necessary  to  use a shared channel w ith  d ed ica ted  

d ev ices .

The i n i t i a l i z a t i o n  ro u tin e  s e ts  up th e  ta b le s ,  a ss ig n s  f la g s  for 

th e  console p ro cesso r, th e  request-queue  ( re q u e s t-p ro c e s so r ) ,  a one- 

second Ju lia n  tim er (h o u sek eep er), th e  inpu t subchannel o f  th e  HYPER­

channel adap ter ( in p u t -d r iv e r ) , th e  o u tp u t subchannel ( o u tp u t- d r iv e r ) , 

th e  receive-queue ( l i s t e n e r ) ,  and the  send-queue (o u tp u t-d r iv e r ,  a ls o ) .  

The program then e x i t s  to  i t s  main loop .

The main loop c a l l s  IFEXON to  determ ine the  h ig h es t p r io r i ty  f la g  

s e t .  Console, I/O  and th e  clock  f la g s  invoke th e  c a l l  o f  th e i r  respec­

t iv e  c o ro u tin e s . F lags fo r queues se rv e  m erely to  wake up th e  execu­

t iv e :  the  queues a re  checked independent o f  th e  f la g  in te r r u p t .  When no

more f la g s  a re  s e t ,  i f  th e  o u tp u t-d r iv e r  i s  i d l e ,  th e  main loop pops th e

send-queue, and c a l l s  th e  o u tp u t d r iv e r .  Then, i t  pops th e  req u e s t and 

re c e iv e  queues c a l l in g  th e  re q u es t-p ro c e sso r  and l i s t e n e r , r e s p e c t iv e ly .  

When the  queues a re  empty, th e  main loop c a l l s  IWAITX(O) to  aw ait

fu r th e r  a c tio n .

The network v i r tu a l  machine norm ally runs d isconnected ; i f  neces­

sa ry , an o p era to r or programmer may connect to  i t .  Some CP e x te rn a l

in te r r u p ts  a re  used to  invoke d isp la y s  o f  system ta b le s .  D isplays are
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a v a ila b le  g iv ing  the  s ta tu s  o f  th e  whole network, in form ation  about th e  

connections c u r re n t ly  open or pending, and s t a t i s t i c a l  in form ation  about 

t r a f f i c  and re so u rc e s . Other e x te rn a l in te r r u p ts  a re  commands to  tu rn  

any down nodes up, to  r e s e t  th e  HYPERchannel a d a p te r , or to  r e i n i t i a l i z e  

s t a t i s t i c s .

Message t r a f f i c  between machines i s  handled by th e  two subchannels 

o f  th e  HYPERchannel ad ap te r . A fter i n i t i a l i z a t i o n ,  th e  o u tp u t subchan­

nel on th e  dev ice i s  i d l e ,  and th e  in p u t subchannel i s  execu ting  a chan­

nel program which w aits  fo r an incoming message, read s  i t  in to  a p re a l­

loca ted  b u f f e r , and g en e ra te s  a f in a l  in te r ru p t  when the  message has 

been read . When th e  inpu t I/O  in te r r u p t  f la g  i s  t r ig g e re d , th e  b u ffe r  

i s  queued to  th e  l i s t e n e r , another b u ffe r  i s  a llo c a te d  and a new channel 

program i s  begun.

B uffers co n ta in in g  messages to  be sen t ou t a re  queued on th e  send- 

queue. I f  th e  o u tp u t d r iv e r  i s  id le ,  and th e  queue non-empty, th e  exe­

c u tiv e  pops a b u ffe r  from the queue and form ats a channel program to

send th e  message. When th e  ccxnpletion in te r r u p t  i s  re c e iv e d , th e  next

bu ffer i s  s e n t,  and so f o r th .

The VMCF s in k  in te r r u p t  fo r an incoming req u es t invokes a subrou­

t in e  which a l lo c a te s  a b u f fe r ,  read s  th e  VMCF header in to  i t ,  and p laces  

th e  b u ffe r on th e  req u es t queue. When th e  b u ffe r  i s  popped fVom the  

queue, th e  req u est-p ro ce sso r is su e s  a re c e iv e  fu n c tio n . Some re q u e s ts  

a re  completed im m ediately; o th e rs  cause th e  g en era tio n  o f  a message to  

be sen t to  another machine, and a re  completed when a re tu rn  message i s  

rec e iv ed . A req u est i s  suspended by a tta c h in g  i t s  b u ffe r to  th e  

ap p ro p ria te  conn ec tio n -reco rd . The l i s t e n e r ,  when th e  message a r r iv e s .
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or th e  housekeeper, should th e  connection tim e -o u t, detaches th e  b u ffe r  

from th e  connection -reco rd  and requeues i t  for com pletion by th e  

re q u e s t-p ro c e sso r . The te x t  o f  user re q u e s ts  and r e p l ie s  a re  used 

unchanged in  th e  network m essages: r a th e r  than copy th e  d a ta ,  th e  n e t­

work ex ecu tive  m erely sw itches p o in te rs .  Under some c irc u n s ta n c e s , a 

req u e s t cannot be processed because no b u ffe r i s  a v a ila b le ;  in  such 

c a se s , th e  req u es t-p ro ce sso r pu ts  th e  re q u e s t on a de lay  queue which i s  

popped by th e  housekeeper.

Incoming messages a re  queued to  th e  l i s t e n e r .  Some are  re p lie d  to  

by th e  l i s t e n e r ,  o th e rs  a re  a ttach ed  to  co n n ec tio n -reco rd s  and l a t e r  

used to  complete user re q u e s ts ,  and s t i l l  o th e rs  a re  d iscarded  upon 

a r r iv a l .

Conclusions

We have described  a s e t  o f  su b ro u tin es  th a t  allow  th e  FORTRAN user 

access to  th e  f u l l  re so u rces  o f  a v i r t u a l  machine. We have shown how 

th ese  ro u tin e s  a llow  m u ltip ro ce ss in g , e x te rn a l in te r ru p t  p ro cess in g , I/O 

device h and ling , and memory management. We have d escrib ed  an implemen­

ta t io n  o f  a lo c a l  network ex e c u tiv e , using th i s  package to  process 

re q u e s ts  from o th e r user m achines, w ithout re q u ir in g  any m o d ifica tio n s  

to  the  underly ing  o p e ra tin g  system .


