
VY

LB L-14264

LB Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

S u b m i t t e d t o t h e SHARE 59 M e e t i n g , New O r l e a n s , LA
A u g u s t 2 2 - 2 7 , 1982

A FORTRAN IMPLEMENTATION OF A NETWORK EXECUTIVE
UNDER IBM'S VM/CMS

M a r t i n S. I t z k o w i t z

M arch 1982 DO NOT M ICROFILM
 COVER„,„,,ij

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

CISTPIBDTIOII o r mi OOCOKHT IS miMlTEB

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

LEGAL NOTICE

This book was prepared as an account of work
sponsored by an agency of the U nited States
G overnm ent. N either the U nited States Govern­
m ent nor any agency thereof, nor any of their
employees, makes any w arranty, express or im­
plied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process
disclosed, or represents that its use w ould not
infringe privately ow ned rights. R eference herein
to any specific com m ercial product, process, or
service by trade name, tradem ark, m anufacturer,
or otherwise, does not necessarily constitute or
imply its endorsem ent, recom m endation, or favor­
ing by the U nited States Governm ent or any agency
thereof. T he views and opinions o f authors ex­
pressed herein do not necessarily state or reflect
those of the U nited States Governm ent or any
agency thereof.

^awrence Berkeley Laboratory is an equal opportunity employer.

To be subm itted to
SHARE 59 M eeting, New O rleans, LA
August 22-27, 1982

LBL-14264

LBL— 1 4 2 6 4

DE82 0 1 4 9 9 0

A FORTRAN Implementation of a Network Executive under IBM's VM/CMS"*

M artin S. Itzkow itz

Lawrence Berkeley Laboratory
U n iv ersity o f C a lifo rn ia

B erkeley, C a lifo rn ia

March 1982

D IS C L A IM E R •

ork sponsored by dn dyency of United Slates Govetn-rient.
■ any agency tttereof. nor ,iny of itieir emcioyees, ma^cs ,iny
les any legal lidbiUty or responsibility lor the dtrurdi.y,
formacion, appardtus, pi'oduct, or process discliised, or

hat Its use would not infnniie privdiely owned rjyhts. Reference fterein to any spen lir
product, process, or seryire liy trade name, tradem ark, rnanufucturer, or otherwisf', Ports

not necessarily constitu te or imply its endorsem ent, recom m endation, or favoring by the United
States G overnment or any agency thereof. The views and opinions of ju tlfo rs expressed herein do not
necessarily sta te or reflect those of the United States G overnment or any agency thereof.

This book was prepared as an account o
Neither the United States Government
warrcjnty, express or implied, or as
c.ompieteness, or usefuiness o f any
represent

* This work was supported by the U.S.
number DE-AC03-76SF00098.

Department o f Energy under c o n tra c t

A FORTRAN Im plem entation o f a Network Executive under IBM's VM/CMS*

M artin S. Itzk o w itz

Computation Department
Lawrence Berkeley Laboratory

B erkeley, C a lifo rn ia 94720

A bstrac t

The Lawrence Berkeley L aboratory Computation Department has
a ttached an IBM-4331 to a heterogeneous lo c a l network. The network,
named THC, uses Network Systems C orporation HYPERchannel hardware to
implement a g en era l p ro c e ss -to -p ro c e ss communication scheme. I t appears
to th e user as an ex tension o f th e lo c a l o p e ra tin g system accessed by a
sub ro u tin e c a l l . The ex ecu tive m u ltip ro cesses re q u e s ts from d if f e r e n t
user v i r tu a l machines and exchanges messages w ith o th e r nodes on the
network. We d esc rib e an assembly-1anguage module, occupying one page o f
memory, which allow s th e s tra ig h tfo rw a rd CMS-FORTRAN im plem entation o f
such an ex ecu tive as a v i r tu a l m achine, re q u ir in g no m o d ifica tio n s what­
soever to th e standard o p e ra tin g system . We then d e sc rib e our network
execu tive as an example o f i t s use .

»
This work was supported by th e U.S. Department o f Energy under con­

t r a c t nunber DE-AC03-76SF00098.

In tro d u c tio n

In th e Spring o f 1980, Lawrence Berkeley L aboratory purchased an

IBM 4331 to provide a gateway s e rv ic e to our e x is t in g lo c a l network. A

Network Systems C orporation HYPERchannel a d a p te r , model A220, was

a ttach ed to a b lo ck -m u ltip lex o r channel on th e m achine, and connected to

our e x is t in g GDC and DEC m achines. For our purposes, i t i s used as two

independent d ev ices : one dev ice and subchannel i s used fo r sending mes­

sages to o th er m achines; another i s used to re c e iv e messages from o th er

m achines.

The network p ro to c o l, named THC, e s ta b lis h e s an in te rp ro c e s s com­

m unication scheme which re q u ire s only th re e fu n c tio n s : e s ta b lis h in g a

connection (i . e . , v i r tu a l c i r c u i t) , sending d a ta over i t , and c lo sin g

i t . Functions are performed in response to re q u e s ts ; a re q u e s t co n ta in s

a b lock o f up to 3840 by tes o f d a ta , and may re tu rn to th e user another

s im ila r b lo ck . The network p ro to c o l i s d escrib ed elsew here^.

To th e u s e r , th e network ex ecu tiv e appears to be an ex tension o f

th e lo c a l o p e ra tin g system ; i t must m u ltip ro cess re q u e s ts from user v i r ­

tu a l m achines, exchange messages w ith o th e r m achines, dynam ically a l lo ­

c a te b u ffe rs and queues, and provide in form ation to a console o p e ra to r .

In o th er im plem entations, m o d ifica tio n s to th e o p e ra tin g system

have been n ecessary to recogn ize and p rocess network re q u e s ts ; however,

VM provides th e n ecessary to o ls so t h a t , as suggested in th e System

 ̂ K night, Jeremy and Marty I tz k o w itz , THC - A Simple High-
Performance Local Network, LBL Report 11426, A ugust,1980.

Programmer’ s Guide2^ such an ex tension may be w ritte n as an independent

v i r tu a l machine in te ra c t in g w ith user machines by means o f th e VMCF

in te rp ro c e ss communication p ro to c o l. The CMS system allow s d i r e c t

access to ded icated I/O d ev ic e s , e x te rn a l in te r r u p ts , a re a l- t im e c lo ck ,

and, using the diagnose in te r f a c e to CP, s e rv ic e s such as VMCF and pag­

ing . These fe a tu re s a re a l l th a t a re needed to implement a network exe­

c u tiv e , b u t, u n fo rtu n a te ly , th ey a re a c c e s s ib le on ly to the assem bly-

1anguage programner.

CMS supports sev e ra l h ig h e r- le v e l languages, among them FORTRAN.

Although u su a lly considered le s s than id e a l fo r implementing complex

system s, FORTRAN does have sev e ra l advantages. I t i s compiled in to

r e l a t iv e ly e f f i c i e n t o b je c t code, i t i s fa m ilia r to most s c ie n t i f i c pro­

grammers, and i t has a sim ple in te r f a c e to assembly language subrou­

t in e s . We here d e sc rib e a s e t o f FORTRAN-callable su b ro u tin es p rov id ing

g rac e fu l access to th e f u l l re so u rces o f th e v i r tu a l machine w ith no

m o d ifica tio n s to e ith e r CP or CMS.

The package i s a s in g le assem bly-language module, named BKYEX§,

w ith m u ltip le e n try p o in ts ; i t co n ta in s h an d le rs fo r ex te rn a l and I/O

in te r r u p ts , occupies one page o f manory, and i s i n i t i a l i z e d upon the

f i r s t c a l l to any o f i t s su b ro u tin es . I t extends th e FORTRAN language

to allow m u ltip ro cessin g , to handle e x te rn a l in te r r u p ts , to process

re q u es ts from o th e r v i r tu a l m achines, to handle a ded ica ted I/O d ev ice ,

and to dynam ically a l lo c a te i t s own manory. We w ill d isc u ss each o f th e

su b ro u tin es in tu rn , and then d e sc rib e th e network execu tive as a case

159.

p
IBM VM/SP System Programmer*s G uide, p u b lic a tio n SC19-6203-0, page

study o f th e i r use.

M ultip rocessing

One method o f m u ltip ro cessin g i s based on a s e t o f event f la g s ,

each o f which i s a s so c ia te d w ith a subprocess. The main program o f such

a m u ltip ro cessin g system w aits fo r an even t f la g to be s e t , determ ines

which f la g i t i s , tak es th e necessary a c tio n fo r th a t p ro cess , and then

re tu rn s to s le e p u n t i l another f la g i s s e t .

For our system , we used a s e t o f s ix ty - th re e event f la g s . One sub­

ro u tin e , EXSET(I), s e ts th e I th f la g ; an o th e r, EXCLR(I), c le a r s i t . Two

fu n c tio n s perform te s t- a n d -c le a r o p e ra tio n s on th e f la g s . The f i r s t ,

IFEXOM(I), r e tu rn s zero i f th e I th f la g i s c l e a r , and th e value o f I i f

th e f la g i§ s e t . I f c a lle d w ith I equal to zero , i t w il l re tu rn th e

value o f th e h ig h es t f la g s e t , o r zero i f no f la g i s s e t . The second,

lU A ITX (l), behaves s im ila r ly , except th a t i t e n te r s an enab led-w ait

s ta te fo r th e v i r tu a l machine ra th e r than re tu rn a zero v a lu e .

Of co u rse , such a scheme i s p red ica ted on th e a b i l i t y to s e t f la g s

in response to asynchronous ev en ts . Subroutines to a s so c ia te f la g s w ith

e x te rn a l and I/O in te r r u p ts a re d escribed below. In order to perform

n o n - in te r ru p tib le o p e ra tio n s , two su b ro u tin e s , DISABLCMA;^) , which

s to re s th e c u rre n t in te r r u p t mask and then d is a b le s a l l in te r r u p ts , and

ENAHJE(MASK), which r e s to r e s in te r r u p ts , a re su p p lied .

E x tern a l I n te r r u p ts

Three reso u rces n ecessary to implement th e network ex ecu tiv e are

ac c e ss ib le through e x te rn a l in te r r u p ts : a re a l- t im e c lo ck , an o p era to r

in te r ru p t mechanism, and th e VMCF in te r f a c e . In o rder to provide access

to th e se in te r r u p ts , upon i n i t i a l i z a t i o n , th e package re p la c e s the

External-New-PSW w ith a p o in te r to i t s own ro u tin e . (An e a r l i e r v ersio n

used the HNDEXT macro to in te r fa c e w ith CMS, bu t th e a d d itio n a l overhead

seemed p o in t le s s .) In te r ru p ts a re enabled for th e c lo ck comparator and

VMCF, the comparator i s s e t to t i c k a t th e next second, and a VMCF

a u th o riz e function i s is su e d . Since the CMS debug package a lso uses

e x te rn a l in te r r u p ts , i t cannot be used in con junction w ith th e se rou­

t in e s ; CP debug commands a re u n a ffe c ted , however, and were q u ite ade­

quate .

When th e c lo ck comparator t i c k s , th e e x te rn a l in te r ru p t handler

updates th e re a l- tim e clock and is s u e s a d iagnose 'OC in s tru c t io n to

update the v ir tu a l-e la p s e d - tim e and cpu-tim e c lo c k s . One su b ro u tin e ,

JS E C (l), re tu rn s th e re a l- t im e in Ju lia n seconds, th a t i s , as an abso­

lu te in te g e r count o f seconds s in ce January 1, 1980. S im ilar subrou­

t i n e s , V S K (I) , and CPSEC(I), p rovide in teg e r va lues for v i r t u a l -

e lap sed -tim e and cpu-tim e. Another s e t o f su b ro u tin es JCLOCK(I,J),

VCLOCKCljJ), and CCLOCK(I,J), a s so c ia te f la g I w ith an in te rv a l tim er

th a t t ic k s every J seconds o f th e i r re sp e c tiv e c lo ck s . Formatted

s t r in g s g iv ing th e c u rre n t d a te and tim e a re re tu rn ed by su b ro u tin es

DATE(ADATE) and TIME(ATIME).

We allow th e o p era to r to in te r r u p t th e progran by a s so c ia tin g an

e x te rn a l in te r ru p t I w ith f la g I . The te rm in a l handler in th e VM

o p e ra tin g system prov ides a sim ple conmand to g en era te e x te rn a l i n t e r ­

ru p ts ; some a re used to invoke th e fo rm attin g o f v ario u s d isp la y s which

a re then se n t to th e conso le ; o th e rs a re used as commands or debugging

a id s .

In te rp ro c e ss Communication

The se n d /rece iv e p ro to co l o f VMCF p rov ides a mechanism which i s

p re c ise ly th a t needed fo r network re q u e s ts . The user v i r tu a l machine

form ats th e VMCF header in an ten-word a r ra y , IVBLOK; a fu n c tio n ,

LOCF(ARG), which re tu rn s th e address o f i t s a rg u n en t, i s used to s e t up

p o in te rs . Subroutine VCSNRC(I,IVKi)K,IRBLXXC) i s c a lle d to issu e the

sen d /rece iv e fu n c tio n . When th e response in te r ru p t a r r iv e s , i t s header

b lock i s copied in to a rra y IRBLOK, and f la g I i s s e t . A c a l l to

VCCNCL(I) w ill causes th e c a n c e lla t io n o f th e pending req u e s t a sso c ia ted

w ith f la g I , and, although we do not use i t , a corresponding su b ro u tin e ,

VC^ND(I,IVnj(XC,IRBL(XC), i s a v a ila b le fo r th e VMCF send p ro to c o l.

U n so lic ite d , th a t i s , s in k - ty p e , in te r r u p ts a re r e je c te d u n less th e

user has e s ta b lish e d a means for handling them. A c a l l to

VCAUIH(E}CrSUB) s p e c if ie s a user-p rov ided su b ro u tin e th a t w ill be c a lle d

to process th e se in te r r u p ts . I t w il l be c a lle d as EXTSUB(IVBLOK,IREJ)

w ith in te r r u p ts d isa b le d ; IVBLOK i s an a rra y co n ta in in g the in te r ru p t

h ead s" , and IREJ i s to be s e t non-zero i f th e in te r r u p t handler i s to

r e j e c t th e tra n sm iss io n . N either EXTSUB nor any su b ro u tin es i t may c a l l

should ever be c a lle d w ith in te r r u p ts enabled . A debugging a id , subrou­

t in e HANG, which im m ediately s to p s execu tion o f the v i r tu a l m achine, was

used to uncover t h i s reen tran cy bug.

S ubroutines fo r s in k fu n c tio n s a re provided: VCRCV(IVKjOK) reads

th e d a ta corresponding to a send or sen d /re ce iv e c a l l ; VCRPLY(IVffiX)K)

r e p l ie s to a se n d /rece iv e fu n c tio n ; and VCREJ(IVHjOK) allow s program-

c o n tro lle d re je c t io n o f u n s o lic i te d m essages. One o th e r su b ro u tin e ,

VCIDNT(IVKX)K), sends an id e n t i fy b lock to another v i r tu a l machine; i t

i s used to announce th e r e s t a r t o f a user v i r t u a l machine to th e network

e x ecu tiv e . Sendx, resum e, q u ie sc e , and unau thorize fu n c tio n s have not

been provided: although they are t r i v i a l to w r ite , we d id not need th an .

(An a d d itio n a l ro u tin e , IHCTCXXNAME), p rov ides a v a r ia n t o f VCSNRC

sp e c if ic to our network FORTRAN in te r f a c e : i t d i f f e r s in th a t th e

response b lock i s unpacked a t in te r ru p t tim e , and the f la g i s sp e c ifie d

by the VMCF message id .)

D edicated ^/O Devices

Before any I/O o p e ra tio n s a re performed on a d ed ica ted d ev ice , th e

program must e s ta b l is h a means o f handling i t s in te r r u p ts . A subrou­

t in e , IOFLAG(IFLAG,mEV,ICSW) i s used to issu e a HNDINT macro fo r dev ice

IDEV, d e fin in g i t as dev ice ”F L ii," where ” i i ” i s th e hexadecimal

eq u iv a len t o f IFLAG. When an in te r ru p t from the dev ice i s re c e iv e d , and

the channel s ta tu s word for th e in te r ru p t co n ta in s e i th e r device-end or

u n it-ch eck f la g s , or has a non-zero channel s ta tu s , th e channel s ta tu s

word i s s to red in ICSW and f la g IFLAG i s s e t . Other (in te rm ed ia te)

in te r r u p ts a re ignored; a sim ple change would allow user p rocessing o f

a l l in te r r u p ts .

I/O o p e ra tio n s a re i n i t i a t e d by issu in g an SIC in s tru c t io n sp e c ify ­

ing a channel program fo r th e d ev ice . The d e s ired channel program i s

form atted in an a rra y IPROG, which must be double-word a lig n e d , and sub­

ro u tin e EXSIOCIDEV,IPROG,ICC,ICSM) i s c a lle d to issu e th e SIO in s tru c ­

t io n . ICC w il l be s e t to th e co n d itio n code s e t by th e in s t r u c t io n , and

ICSW w il l co n ta in th e channel s ta tu s word. For our purposes, th e o th e r

I/O in s t ru c t io n s were no t needed and were no t coded; they would be sim­

p le v a r ia n ts o f th e SIO ro u tin e .

Dynamic Memory Management

User re q u e s ts and responses and messages exchanged w ith o th e r nodes

o f th e network are q u ite s im ila r . Each has a t e x t , 0-3840 b y tes in

le n g th , a s e t o f d e sc r ip to r words g iv ing i t s mode and le n g th , and con­

t r o l in form ation amounting to some t h i r t y to f i f t y a d d itio n a l b y te s . I t

seemed reaso n ab le to use a common form at fo r a l l , and keep them in 4K-

b y te b u f fe r s , a ligned on page boundaries.

Memory fo r N b u f fe rs i s a llo c a te d as a s in g le b lock o f (N+l)*1024

in teg e r words. Upon i n i t i a l i z a t i o n , th e program c a l l s LOCF to o b ta in

th e address o f th e b lo ck , and then computes an o f f s e t to th e f i r s t word

o f the next memory page. This o f f s e t i s used as a base index for th e

f i r s t b u f fe r ; increm ents o f 1024 a re added to compute in d ic e s for the

o th e r b u f fe r s . Data i s s to red in th e b u ffe r r e l a t iv e to i t s base .

A llo ca tio n and d e a llo c a tio n o f b u f fe rs i s performed w ith in te r r u p ts

8

d isa b le d . One l a s t su b ro u tin e , ECPAGE(IFWA,LWA), which asks CP to

re le a s e any memory pages between IFWA and LWA, i s c a lle d whenever a

b u ffe r i s d e a llo c a te d .

The Network Executive

The THC ex ecu tiv e has been sp e c if ie d in a m achine-independent

formŜ I t c o n s is ts o f four c o ro u tin e s : th e request-processor in te r f a c e s

between th e user and th e network; th e listoier processes some incoming

messages and d isp a tch e s th e remainder to th e req u e s t-p ro c e sso r; the

driver tra n sm its outgoing messages over the HYPERchannel and passes

incoming messages to th e l i s t e n e r ; and th e housekeeper i s invoked every

second to t id y th in g s up. These ro u tin e s share a pool o f b u ffe rs and

in te r a c t through network ta b le s and queues o f m essages.

The p r in c ip a l ta b le s o f th e ex ecu tive a re the node-table, th e

connection-table, and the statistics-table. V ir tu a lly a l l ta b le s and

v a r ia b le s are kept as fo u r-b y te in te g e r a rra y s in a s in g le lab e led com­

mon block; a few s t a t i s t i c s a re f lo a t in g -p o in t .

The network ex ecu tiv e uses queues o f messages and re q u e s ts . Each

queue i s a sso c ia ted w ith a f la g and a l i s t head. I f th e l i s t head i s

ze ro , th e queue i s empty, and th e f la g i s l e f t c le a re d . I f i t i s non­

zero , i t i s th e index o f th e f i r s t b u ffe r on th e queue, and th e a s so c i­

ated f la g w ill be s e t . One o f th e b u ffe r c o n tro l a rray s co n ta in s th e

index o f th e nex t b u ffe r on th e queue, i f any. The ro u tin e s th a t push

 5-------------------------------
Itz k o w itz , M artin S. and Jeremy K night, THC: Design S p e c if ic a t io n s ,

LBL re p o rt 14144, O ctober, 1981.

b u ffe rs onto a queue or pop them o f f m ain ta in th e a sso c ia te d f la g .

The network v i r tu a l machine i s named THC and i s autologged by th e

sy s tan . I t s p r o f i le EXEC spoo ls conso le o u tp u t as an e r ro r lo g , bestows

some perfo rm ance-re la ted p r iv i le g e s on i t s e l f , d e d ic a te s th e channel to

i t s e l f , r e s e ts th e a d ap te r , and then invokes th e network ex ecu tiv e . In

our c o n f ig u ra tio n , th e channel has on ly th e one adap ter a ttach ed ; no

coding changes would be necessary to use a shared channel w ith d ed ica ted

d ev ices .

The i n i t i a l i z a t i o n ro u tin e s e ts up th e ta b le s , a ss ig n s f la g s for

th e console p ro cesso r, th e request-queue (re q u e s t-p ro c e s so r) , a one-

second Ju lia n tim er (h o u sek eep er), th e inpu t subchannel o f th e HYPER­

channel adap ter (in p u t -d r iv e r) , th e o u tp u t subchannel (o u tp u t- d r iv e r) ,

th e receive-queue (l i s t e n e r) , and the send-queue (o u tp u t-d r iv e r , a ls o) .

The program then e x i t s to i t s main loop .

The main loop c a l l s IFEXON to determ ine the h ig h es t p r io r i ty f la g

s e t . Console, I/O and th e clock f la g s invoke th e c a l l o f th e i r respec­

t iv e c o ro u tin e s . F lags fo r queues se rv e m erely to wake up th e execu­

t iv e : the queues a re checked independent o f th e f la g in te r r u p t . When no

more f la g s a re s e t , i f th e o u tp u t-d r iv e r i s i d l e , th e main loop pops th e

send-queue, and c a l l s th e o u tp u t d r iv e r . Then, i t pops th e req u e s t and

re c e iv e queues c a l l in g th e re q u es t-p ro c e sso r and l i s t e n e r , r e s p e c t iv e ly .

When the queues a re empty, th e main loop c a l l s IWAITX(O) to aw ait

fu r th e r a c tio n .

The network v i r tu a l machine norm ally runs d isconnected ; i f neces­

sa ry , an o p era to r or programmer may connect to i t . Some CP e x te rn a l

in te r r u p ts a re used to invoke d isp la y s o f system ta b le s . D isplays are

10

a v a ila b le g iv ing the s ta tu s o f th e whole network, in form ation about th e

connections c u r re n t ly open or pending, and s t a t i s t i c a l in form ation about

t r a f f i c and re so u rc e s . Other e x te rn a l in te r r u p ts a re commands to tu rn

any down nodes up, to r e s e t th e HYPERchannel a d a p te r , or to r e i n i t i a l i z e

s t a t i s t i c s .

Message t r a f f i c between machines i s handled by th e two subchannels

o f th e HYPERchannel ad ap te r . A fter i n i t i a l i z a t i o n , th e o u tp u t subchan­

nel on th e dev ice i s i d l e , and th e in p u t subchannel i s execu ting a chan­

nel program which w aits fo r an incoming message, read s i t in to a p re a l­

loca ted b u f f e r , and g en e ra te s a f in a l in te r ru p t when the message has

been read . When th e inpu t I/O in te r r u p t f la g i s t r ig g e re d , th e b u ffe r

i s queued to th e l i s t e n e r , another b u ffe r i s a llo c a te d and a new channel

program i s begun.

B uffers co n ta in in g messages to be sen t ou t a re queued on th e send-

queue. I f th e o u tp u t d r iv e r i s id le , and th e queue non-empty, th e exe­

c u tiv e pops a b u ffe r from the queue and form ats a channel program to

send th e message. When th e ccxnpletion in te r r u p t i s re c e iv e d , th e next

bu ffer i s s e n t, and so f o r th .

The VMCF s in k in te r r u p t fo r an incoming req u es t invokes a subrou­

t in e which a l lo c a te s a b u f fe r , read s th e VMCF header in to i t , and p laces

th e b u ffe r on th e req u es t queue. When th e b u ffe r i s popped fVom the

queue, th e req u est-p ro ce sso r is su e s a re c e iv e fu n c tio n . Some re q u e s ts

a re completed im m ediately; o th e rs cause th e g en era tio n o f a message to

be sen t to another machine, and a re completed when a re tu rn message i s

rec e iv ed . A req u est i s suspended by a tta c h in g i t s b u ffe r to th e

ap p ro p ria te conn ec tio n -reco rd . The l i s t e n e r , when th e message a r r iv e s .

11

or th e housekeeper, should th e connection tim e -o u t, detaches th e b u ffe r

from th e connection -reco rd and requeues i t for com pletion by th e

re q u e s t-p ro c e sso r . The te x t o f user re q u e s ts and r e p l ie s a re used

unchanged in th e network m essages: r a th e r than copy th e d a ta , th e n e t­

work ex ecu tive m erely sw itches p o in te rs . Under some c irc u n s ta n c e s , a

req u e s t cannot be processed because no b u ffe r i s a v a ila b le ; in such

c a se s , th e req u es t-p ro ce sso r pu ts th e re q u e s t on a de lay queue which i s

popped by th e housekeeper.

Incoming messages a re queued to th e l i s t e n e r . Some are re p lie d to

by th e l i s t e n e r , o th e rs a re a ttach ed to co n n ec tio n -reco rd s and l a t e r

used to complete user re q u e s ts , and s t i l l o th e rs a re d iscarded upon

a r r iv a l .

Conclusions

We have described a s e t o f su b ro u tin es th a t allow th e FORTRAN user

access to th e f u l l re so u rces o f a v i r t u a l machine. We have shown how

th ese ro u tin e s a llow m u ltip ro ce ss in g , e x te rn a l in te r ru p t p ro cess in g , I/O

device h and ling , and memory management. We have d escrib ed an implemen­

ta t io n o f a lo c a l network ex e c u tiv e , using th i s package to process

re q u e s ts from o th e r user m achines, w ithout re q u ir in g any m o d ifica tio n s

to the underly ing o p e ra tin g system .

