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ABSTRACT

This study examines the u t i l i z a t i o n  and management of natural 

f o r e s t  lands  to  meet growing wood-energy demands. An a p p l ica t ion  o f  a 

f o r e s t  s imulat ion model i s  described f o r  assess ing  energy re tu rns  and 

long-term ecological  impacts o f  wood-energy harvest ing under four

general s i l v i c u l t u r a l  p r a c t i c e s .  Results  in d ic a te  t h a t  moderate energy 

y i e ld s  could be expected from mild c u t t i n g  operat ions  which v/ould 

s i g n i f i c a n t l y  e f f e c t  n e i th e r  the commercial t imber market nor the 

composition, s t r u c t u r e ,  o r  d iv e r s i t y  o f  these  f o r e s t s .  Forest  models 

can provide an e f f e c t i v e  tool fo r  determining optimal management 

s t r a t e g i e s  t h a t  maximize energy r e tu rn s ,  minimize environmental 

de tr iment ,  and complement ex i s t in g  land-use  plans.

INTRODUCTION

Over the  p as t  few yea rs  the demand fo r  fuel-wood has increased 

s u b s t a n t i a l l y ,  along with the r i s i n g  economic incen t ives  to  u t i l i z e  

woody biomass fo r  energy. In many areas  ( e . g . ,  e a s t  Tennessee),  

natural  f o r e s t  resources are once again being explo i ted  to  provide 

stovewood and, in some in s tan ce s ,  to  supplement or  rep lace  conventional 

fu e l s  used in small i n d u s t r i a l  opera t ions .  Regional s tu d ie s  of woody 

biomass product ion in d ica te  a tremndous wood-energy po ten t ia l  from 

n a tu ra l ly  occurr ing fo r e s t s  as well as from conversion to  biomass 

p la n ta t io n s  (Ranney and Cushman 1980). The advent of  wood-energy 

p la n ta t io n s ,  however, has not y e t  occurred due to many questionable 

f a c to r s  ( e . g . ,  c a p i ta l  o u t lay ,  crop procurement and merchandising.



species  s e l e c t io n ,  and s i t e  p repara t ion  and design among o the rs )  t h a t

tend to  be q u i te  v a r ia b le  depending on the  spec i f i c  land s i t e  and end 

use.

Recent s tud ies  reveal t h a t  much o f  the  commercial f o r e s t  lands are 

e i t h e r  u n d e ru t i l i zed  or  t h a t  f o r e s t  res idues  {e .g . ,  c u l l  t r e e s ,  tops,  

and limbs) generated from timber improvement p rac t ice s  a re  not being 

harvested (Curt is  1978, Hewlett and Gamache 1977). In ad d i t io n ,  the re  

i s  s i g n i f i c a n t  acreage o f  marginal lands ,  wood l o t s ,  and t r e e  farms 

which c u r re n t ly  lack any management a l t e r n a t iv e s  o ther  than a primary 

source o f  firewood. These lands ,  p a r t i c u l a r l y  those in  the Southeast,  

could p o t e n t i a l l y  provide a s ig n i f i c a n t  wood-energy resource  under more 

in tens ive  and e f f i c i e n t  f o r e s t  management.

In te n s i fy in g  the use of  our f o r e s t s  fo r  energy purposes i s  of  

major concern,  and warrants  a comprehensive evaluat ion o f  the 

associa ted  environmental impacts,  e s p e c ia l ly  of  i n d i r e c t  and long-term 

e f f e c t s .  Equally important to  the v/ood-energy consumer i s  the 

r e l i a b i l i t y  of  the f i e l d  source to  sus ta in  a r e l a t i v e ly  s tab le  market 

supply over  a period of  y e a r s .  These and r e l a ted  quer ies  need to  be 

addressed to f u l l y  assess  the  c o n t r ib u t io n  and consequences of 

a d d i t io n a l ly  managing our  natural  f o r e s t  lands fo r  energy production 

and use.

Fores t  s imulation models can supplement f i e l d  and labora tory  

s tu d ie s ,  p a r t i c u l a r l y  where m ul t i -use  system e f f e c t s  and m ul t i -year  

time sca les  are  considered (Shugart and West 1900). This paper 

descr ibes  an a p p l ica t ion  of  FORET, a southern Appalachian f o re s t  

s imulator ,  to  assess  the energy y i e l d  and long-term ecological  impact
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of  harvest ing  wood-energy under four  general s i l v i c u l t u r a l  p ra c t ic e s .

A comparison o f  the  r e s u l t a n t  change in  composition, s t r u c tu r e ,  and 

d iv e r s i t y  between model s imula t ions  including  wood-energy harvests  and 

the  p ro jec ted  p a t t e rn  o f  natural  f o r e s t  succession provides the basis  

fo r  t h i s  assessment.

METHODS 

Model Descrip tion

FORET, f o r e s t  succession model f o r  e a s t  Tennessee, was developed 

by Shugart and West (1977) to s imula te  the f o r e s t  dynamics of  a 

southern Appalachian f o r e s t  type on lower s lopes  in Anderson County, 

Tennessee. I t  mathematical ly mimics the  successional p a t te rn  and 

competi t ive i n t e r r e l a t i o n s  o f  indiv idual  t r e e s  fo r  a typical  1/12-ha 

p lo t  of t h i s  f o r e s t .  This s to ch a s t ic  model i s  one of a unique c la s s  of  

f o r e s t  s im u la to rs ,  whose design c o n s i s t s  of  empirical formulas 

describ ing  key ecological r e l a t io n s h ip s  of  the f o r e s t  community and i t s  

species  and environment (Shugart and West 1980).

The major model ro u t in e s ,  mainly t r e e  seeding, growth, and death, 

a re  executed a t  yea r ly  i n t e r v a l s .  The growth of  each t r e e  i s  

incremented as a funct ion  of  c l im a te ,  l i g h t  a v a i l a b i l i t y ,  t o t a l  stand 

biomass, and the  inheren t  growth c h a r a c t e r i s t i c s  of  the individual  

species .  Tree death i s  modeled as  a s to c h a s t i c  process with the 

p ro b a b i l i ty  o f  dying inverse ly  r e l a t e d  to  growth and longevi ty .  For 

d e ta i l e d  documentation of the FORET model cons truc t ion  and v a l id a t io n ,  

r e f e r  to  Shugart and West (1977).



Model Applicat ion

The p re sen t  version of  the model cons iders  32 t r e e  spec ies .  Each 

i s  assigned an average energy value o f  oven-dry v/ood expressed in 

k i l o c a l o r i e s  pe r  kilogram as shown in  Table 1. Heating values f o r  some 

species  were not found in  the l i t e r a t u r e ,  and thus shared equal value 

with t h e i r  congenerics spec ies .  Energy harves ts  were then ca lcu la ted  

by mult ip ly ing  the heating value of  each species  times i t s  t o ta l  

biomass (kg) harvested.

The simulated harves ts  were incorpora ted in to  the model in an 

addi t ional  subroutine c a l l e d  CUT. These c u t t in g  schemes were designed 

from four  general s i l v i c u l t u r a l  p r a c t i c e s ,  namely, c l e a r - c u t t i n g ,  

s e l e c t i v e - c u t t i n g ,  th inn ing ,  and high-grade c u t t in g .  All harvests  were 

implemented on a d i s c r e t e  60-year r o t a t i o n  schedule. This allowed the 

comparison of  r e s u l t s  among cu t t in g  se le c t io n s  without regard to the 

in f luence  of  varying harves t  schedules.

The c l e a r - c u t  rou t ine  involved the  removal of  a l l  t r e e s  regardless  

o f  species  o r  s iz e .  S e le c t iv e - c u t t in g  allowed the harvest ing of  a l l  

spec ies ,  but only ind iv id u a ls  with stem diameters exceeding 30 cm were 

removed. In the  in tense  th inning s imula t ion ,  a l l  species  were 

considered e l i g i b l e  fo r  c u t t i n g ,  but only t r e e s  below 30 cm dbh were 

included in the harves t .  Las t ly ,  high-grade c u t t i n g  represented a 

spec ia l ized  th inning where only noncommercial species  ( i . e . ,  

nonhickory, -oak, and -popla r  group) were harvested.  The l a t t e r  

cu t t in g  schemes are cons idered compatible a l t e r n a t iv e s  fo r  commercial 

f o r e s t  lands where the management plan includes  timber improvement 

p r a c t i c e s .  Resul ts  of  these  s im ula t ions ,  however, do not include the



f e l l i n g  of  commercially harves tab le  t r e e s  which in p ra c t ic e  would 

a c tu a l ly  be c u t .

Following each c u t ,  the  model sums the  t o ta l  biomass and energy 

harvested .  Model r e s u l t s  f o r  each simulat ion as a whole c o n s t i t u t e  the 

average of  120 p l o t s  p ro jec ted  over a 500-year per iod.  These were then 

compared with the  output  from a control  simulat ion which represented 

the  p a t t e rn  o f  natura l  f o r e s t  growth and succession in  the  absence of 

t imber management.

RESULTS AND DISCUSSION

Energy re tu rn s  ( i . e . ,  the average expected kcals  ha~^ y e a r " ^ ) from 

each of  the s imulated harves t  s e le c t io n s  are  given in Table 2. As 

expected, cons ider ing  id en t ic a l  harves t  schedules,  c l e a r - c u t t i n g  reaped 

th e  h ighes t  y i e l d ,  followed in  order  by the  s e le c t iv e - c u t t i n g ,  in tense 

th inn ing ,  and high-grade c u t t i n g .  More important than the to t a l  energy 

output  i s  the  required  harves tab le  f o r e s t  land necessary to  maintain a 

wood-energy supply on a su s ta in ed -y ie ld  bas is  fo r  sp ec i f ic  conversion 

to  e l e c t r i c i t y  o r  space heat .  Three eva lua t ions  are presented: a

10-MW e l e c t r i c  p l a n t ,  a 50-MW power f a c i l i t y ,  and a 1000-cord fuelwood 

supply (Table 2).

I t  becomes ev iden t  from these  f ind ings  t h a t  woodburning power 

f a c i l i t i e s ,  even as small as  10-MW would requ ire  considerable  land area 

to  maintain continuous operat ion  without  d i r e c t l y  competing fo r  

commercial t imber and f o r e s t  lands.  This a lso  emphasizes the 

importance of  biomass p l a n t a t i o n s ,  s h o r t - ro t a t i o n  f o r e s t ry ,  and species 

s e le c t io n  among o the r  a l t e r n a t iv e s  i f  woody biomass i s  to  provide an 

energy resource  f o r  producing e l e c t r i c i t y .



In c o n t r a s t ,  r e l a t i v e l y  l i t t l e  land area  would be needed to
3 3generate  1000 cords (3 .6  x 10 m ) of  fuelwood on a year ly  b as is .

In t h i s  ca se ,  any of  the  harvest ing  schemes become v iab le  a l t e r n a t iv e s  

reg a rd le s s  of  the use or  d i s t r i b u t i o n  o f  ava i lab le  lands.  The primary 

end use,  however, would be r e s t r i c t e d  to  re s id e n t ia l  space-heating or  

in d u s t r i a l  woodburning b o i l e r s .  The cumulative con tr ibu t ion  of  these 

d e cen t ra l i zed  end uses cannot be overlooked f o r  t h e i r  s ign i f icance  on 

the local  energy network, p a r t i c u l a r l y  in regions where fragmented 

noncommercial f o r e s t  p a rce ls  are  common and commercial t imber 

product ion i s  of  prime importance.

To account f o r  the  long-term ecological  co n s t r a in t s  of  each of the 

simulated harves t ing  measures,  we compared the r e s u l t a n t  change in  the 

composition, s t r u c t u r e ,  and d iv e r s i t y  o f  the  managed f o r e s t  with the 

pro jec ted  p a t t e r n  of natural  f o r e s t  succession.  Compositional 

d i f fe ren ces  were d is t ingu ished  by eva lua t ing  species  rank values o f  the 

stand composition the  y e a r  p r io r  to  each c u t t i n g ,  using the Spearman 

rank s t a t i s t i c a l  t e s t .  The ana lys is  required  an ordering ( i . e . ,  

numerical ranking from maximum to  minimum) of the r e l a t i v e  biomass by 

spec ies  f o r  both the  control  and ha rves t  simulat ions.  Table 3 l i s t s  

the r e s u l t s  of  t h i s  ana lys is  in  terms o f  an r^  c o e f f i c i e n t  

represen t ing  the  degree of compositional agreement between each 

simulated harves t  and the  c o n t ro l .  Because these values s ign i fy  the 

sum of species  composition fo r  a l l  p lo t s  p r io r  to  harves t ,  they also 

provide some in d ic a t io n  of  the f o r e s t ' s  a b i l i t y  to  recover  or i t s  

r e s i l i e n c y  to d is turbance .



This t e s t  ind ica ted  no s i g n i f i c a n t  d i f fe ren ces  in  the overal l  

compositions r e s u l t i n g  from any o f  the  harves t  s imulat ions vn’th  what 

might otherwise  be expected over 500 yea rs  of  f o r e s t  succession.  I t  

can be seen,  however, t h a t  the more severe cu t t in g  ro u t in es  impose a 

g r e a te r  s h i f t  in the  overa l l  species  a r ray  as well as a g r e a t e r  s t r e s s  

on system recovery. The model does not  account fo r  d i f f e r e n t i a l  

seeding e f f e c t s  t h a t  might occur with overse lec t ing  c e r t a i n  species  or  

e l im ina t ing  paren t  t r e e s .  Without t h i s  in p u t ,  the  t ru e  s h i f t  of  fo re s t  

dominance towards ea r ly  successional species  i s  probably 

underestimated. Although the  harves t  s e le c t io n s  did not appear to  

s ig n i f i c a n t l y  e f f e c t  the f o r e s t  composition over the long-term, t h i s  

does not take  in to  account the  changes in  the actual d i s t r i b u t i o n  of 

species  biomass and numbers ( e . g . ,  spec ies  d i v e r s i t y ) .

Changes in  f o r e s t  s t r u c tu r e  due to  each simulated harves t  were 

analyzed by comparing the  mean stem dens i ty  c h a r a c t e r i s t i c s  fo r  an 

average 1-ha s tand .  This t e s t  involved the  s t a t i s t i c a l  comparison of 

cumulative diameter  d i s t r i b u t i o n  of  t r e e  s ize -ranges  from a l l  p lo t s  on 

years  p r i o r  to  c u t t i n g .  In e f f e c t ,  only the  most mature s tands were 

included in the  t e s t  sample.

Diameter d i s t r i b u t i o n s  r ep resen t  the  number of  t r e e s  apportioned 

in defined diameter  s ize  c l a s se s  over the  diameter s ize  range of  the 

s tand. The s ize  c l a s s  range used f o r  t e s t i n g  the model r e s u l t s  herein 

was 4 cm. The smaller  the s ize  range,  the  more powerful t h i s  t e s t  

becomes f o r  determining s i g n i f i c a n t  d i f f e ren ce s  in f o r e s t  s t r u c tu r e .  

From one y ea r  to  the next ,  individual  t r e e s  may grow in to  l a r g e r  s ize  

c l a s s e s  or  remain in  the  same one, provided t r e e  death,  d is tu rbance ,  or



8

c u t t in g  does not occur.  The shape and pos i t ion  of  these  diameter

d i s t r i b u t i o n  curves r e l a t i v e  to  one ano ther  can give some ind ica t ion  of 

the  successional  matur i ty  and dynamics o f  a f o r e s t  s tand .  Figure 1 

shows the  r e l a t i o n  of  each simulated harves t  with t h a t  o f  the control 

simulat ion.

These stem dens i ty  f ig u re s  were then converted in to  cumulative 

percentages o f  the t o t a l  sample dens i ty  f o r  successive diameter c la s se s  

from sm al les t  to  l a r g e s t .  This r e s u l t s  in  cumulative frequency 

d i s t r i b u t i o n s  which can be s t a t i s t i c a l l y  compared by using the 

Kolmogorov-Smirnov two-sample t e s t .  Derived D|̂  values (Table 3) ,  

represent ing  the maximum d i f f e re n c es  between d i s t r i b u t i o n s ,  indicated 

t h a t  only the c l e a r - c u t  and s e l e c t iv e - c u t  samples were s ig n i f i c a n t ly  

d i f f e r e n t  from the control  sample. The d i f fe rences  in  values 

between the th inn ing  and high-grade samples are perhaps a t t r i b u t a b l e  to  

the  u n r e s t r i c t e d  s ize  c u t  of  the high-grade cu t t in g  rou t ine .

Las t ly ,  the  simulated harvest ing p ra c t ic e s  were evaluated for  

t h e i r  e f f e c t  on f o r e s t  d iv e r s i t y .  Divers i ty  has been def ined in many 

terms,  but f o r  the purposes of  t h i s  t e x t ,  i t  s i g n i f i e s  an evenness or  

e q u i t a b i l i t y  with which the f o r e s t  biomass i s  d i s t r i b u t e d  among the 

model spec ies .  The index values here in  were derived by using the 

Shannon-Weiner formula f o r  evenness. This function generates  

values ranging from 0 to  1, where 0 rep resen ts  complete dominance by 

one species  as in  a monoculture p la n ta t io n  and 1 in d ic a te s  equal 

dominance by a l l  spec ies .

Figure 2 i l l u s t r a t e s  the c o n t r a s t  of  d iv e r s i ty  through time 

between the simulated harves ts  and the control run. The most radical



s i l v i c u l t u r a l  p r a c t i c e ,  c l e a r - c u t t i n g ,  generates  the h ighes t  degree o f  

v a r i a b i l i t y  in  the  d i v e r s i t y  p a t t e r n ,  while  the remaining harvest  

measures appear d i s t r i b u t e d  s l i g h t l y  above o r  below the p a t t e rn  fo r  

natural success ion .  Table 3 l i s t s  the  average d iv e r s i t y  values fo r  a l l  

s imulat ions  and a l l  y ea rs  over a 500-year period.  Repe t i t ive  

c l e a r - c u t t i n g  and s e le c t iv e - c u t t i n g  tend to  increase  the overa l l  

d iv e r s i t y  index above the  expected normal. On the o ther  hand, 

high-grade c u t t i n g ,  s e le c t in g  only cu l l  species  fo r  h a rv es t ,  had the 

sole  d i s t i n c t i o n  of decreasing the overa l l  f o r e s t  d i v e r s i t y .  In 

genera l ,  one equates  increased species  d i v e r s i t y  with a p o s i t i v e  impact 

and decreased d i v e r s i t y  with a negative impact. However, in  t h i s  case 

we must cons ide r  the  maximum abso lu te  d i f fe ren ces  in  d i v e r s i t y  values 

as some in d ic a t io n  of the  ecological  consequence of any harvest ing 

p ra c t i c e  or  management p lan .  As a lready pointed ou t ,  the c l e a r - c u t t i n g  

and s e le c t iv e - c u t t i n g  seem to  impose the  most concern fo r  environmental 

detr iment  in t h i s  regard.

CONCLUSION

Resul ts  from the four  simulated ha rves t  s e le c t io n s  ind ica ted  th a t  

the extreme s i l v i c u l t u r a l  p r a c t i c e s ,  c l e a r - c u t t i n g  and s e l e c t iv e -  

c u t t i n g ,  y ie ld e d  higher  energy r e tu rn s  over the l e s s  severe thinning 

opera t ions .  But even a t  the h ighes t  y i e l d  values ,  cons iderable  land 

area  would be necessary to  fuel a woodburning power f a c i l i t y  from 

natural f o r e s t  resources .  Such natural  f o r e s t  expanses a re  not without 

e x i s t in g  management plans or  commercially valuable t r e e  stock to  allow 

the c u t t in g  of  t imber so le ly  fo r  energy purposes. The a l t e r n a t iv e s
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then seem to  narrow to  l e s s  extreme p ra c t i c e s  t h a t  could be 

incorpora ted in to  e x i s t i n g  land-use plans  and/or  more d i r e c t  uses of 

the  wood-energy in  small i n d u s t r i a l  b o i l e r s  or  res iden t ia l 'w oods toves .  

The l a t t e r  p ropos i t ion  appears more p r a c t i c a l  and eco lo g ica l ly  sound 

when one a lso  cons iders  the  p o ten t ia l  environmental impacts not 

previously  mentioned.

Although r e s u l t a n t  changes in  the  f o r e s t  composition from each of  

the harvest  s e le c t io n s  t e s t e d  with no s ig n i f i c a n t  d i f f e r e n c e ,  i t  was 

apparent  t h a t  c l e a r - c u t t i n g  and s e l e c t iv e - c u t t i n g  posed the  g r e a te s t  

t h r e a t  of  changes in  spec ies  composition away from the natural  

progression of  f o r e s t  success ion.  The s t ru c tu r a l  impact of  

c l e a r - c u t t i n g  and s e le c t iv e -c u t t i n g  showed a s ig n i f i c a n t  s h i f t  in  stem 

dens i ty  c h a r a c t e r i s t i c s  to fewer la rg e  t r e e s  and more abundant smaller  

t r e e s .  The th inning and h igh-grade-cu t t ing  harvests  demonstrated no 

s t a t i s t i c a l  d i f f e ren ce  in  f o r e s t  s t r u c t u r e  from t h a t  o f  the control 

s imulat ion.  Resul ts  of the  e f f e c t s  on f o r e s t  d iv e r s i t y  ind ica ted  

s im i la r  f ind ings  to  those brought out  in  the s t ru c tu re  and composition 

t e s t s ;  namely-extreme ha rves t  s e le c t io n s  a l t e r  the species  d iv e r s i ty  

much more g r e a t ly  than do milder  c u t t i n g  opera t ions .  In add i t ion ,  the 

reduced d i v e r s i t y  generated in the case of  the high-grade,  cull-removal 

th inning  lends  some cons ide ra t ion  to  the  e f f e c t s  of  overse lec t ing  

p re fe r red  spec ies .

C lear ly ,  the  ecological  impacts o f  in te n s iv e ly  harvest ing  fo re s t s  

fo r  energy go beyond the im pl ica t ions  given herein of the  projected 

long-term e f f e c t s .  A more thorough t rea tment  would a l so  consider  

short - te rm e f f e c t s ,  both d i r e c t  and i n d i r e c t ,  including n u t r i e n t  lo s s ,  

so i l  d is tu rbance  and compaction, stand regenera t ion ,  and even changes
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in  w i l d l i f e  h a b i t a t  (Van Hook e t  a l . 1980). Though not included here ,  

such add i t iona l  c ons ide ra t ions  could be incorporated in to  t h i s  modeling 

scheme.

Fores t  s imulation models can be e f f e c t i v e l y  applied to  examine 

po ten t ia l  energy y i e l d s  and long-term ecological  impacts o f  u t i l i z i n g  

natural f o r e s t s  f o r  energy needs. Where s in g u la r  e f f e c t s  o f  s p e c i f ic  

f o r e s t  uses ( i . e . ,  t imber,  w i l d l i f e )  are  f a i r l y  well documented, a t  

l e a s t  on the  sho r t  term, the  cumulative impacts o f  a mul t i -use  f o r e s t  

plan become extremely d i f f i c u l t  to  determine without the a id  of  

ecological  f o r e s t  models. By employing a modeling approach such as 

presented here ,  one can determine optimal o r  recommended harvest ing 

s t r a t e g i e s  which maximize the  energy r e tu rn  while minimizing any 

ecological  detr iment  to  acceptable  s tandards .  Also, models of  t h i s  

s o r t  can be used to  complement e x i s t i n g  management plans by s imulating 

the expected harves t  s e le c t io n s  and schedules,  and thereby compute the  

po ten t ia l  wood-energy r e tu rn  in  f o r e s t  res idue .

In the y ea r s  ahead, the  demands f o r  energy from woody biomass wil l  

almost c e r t a i n l y  i n t e n s i f y .  These needs wil l  l i k e ly  be met through 

more in ten s iv e  harvest ing  of  e x i s t i n g  f o r e s t s  and/or  the advent of  

biomass energy farms. New energy-use a l t e r n a t iv e s  fo r  woodlots,  t r e e  

farms, and marginal lands wil l  undoubtedly develop with the  r i s in g  

energy demands. The increased  a t t e n t i o n  drawn to  woody biomass fo r  

energy wi l l  obviously lead to  more carefu l  cons idera t ion  of  how v/e 

manage our f o r e s t  resources .  In conclus ion ,  f o r e s t  models can provide 

an e f f e c t iv e  tool f o r  t e s t i n g  and determining fores t -energy  management 

a l t e r n a t iv e s  which maximize energy r e tu rn ,  minimize environmental 

detr iment ,  and compliment e x i s t in g  land-use p lans.



12

LITERATURE CITED

Conde, Louis F . ,  and J .  B. Huffman. 1978. Energy u t i l i z a t i o n  from 

biomass-fuel p l a n t a t i o n s ,  p.  43-64. Ijl Energy in  fo re s t ry  -  

product ion and use:  Proceedings o f  the  10th Spring symposium fo r

the  F lo r ida  s e c t io n .  Society of  American F o res te r s .  (Gainesvi l le ,  

F lo r id a ,  May 30-31 , 1978) Univers i ty  o f  F lor ida  Resources Report 

5, 155 p. School of Fores t  Resources and Conservation, 

G a in e sv i l l e ,  F lo r ida .

C u r t i s ,  A. B. 1978. Fores t  res idues  in  the  South, p.  21-33. ^  

Energy f o r e s t ry  -  production and use: Proceedings o f  the 10th

Spring symposium f o r  the  F lor ida  sec t io n .  Society o f  American 

F o res te r s .  (G a inesv i l le ,  F lo r id a ,  May 30-31, 1978) Universi ty  of 

F lo r ida  Resources Report 5, 155 p. School o f  Fores t  Resources and 

Conservation, G a in esv i l le ,  F lo r ida .

Howlett, K.,  and A. Gamache. 1977. S i lv i c u l tu r a l  biomass farms:

Forest  and mill  res idues  as p o ten t ia l  sources of  biomass. MITRE 

Tech. Rep. 7347, Vol. VI, 124 p. MITRE Corp., McLean, Va.

Ranney, J .  W., and J .  H. Cushman. 1980. Regional eva lua t ion  of

woody biomass product ion f o r  f u e l s  in  the Southeast ,  p. 109-120. 

2n^Biotechnology in energy production and conservat ion :

Proceedings of  the  10th symposium on Biotechnology and 

Bioengineer ing.  (Gatl inburg,  Tennessee, October 3-5, 1979)

354 p. John Wiley and Sons, Nev/ York, New York.

Shugart,  H. H., and D. C. West. 1977. Development of  an Appalachian 

deciduous f o r e s t  succession model and i t s  a p p l ic a t io n  to 

assessment of  the  impact of  the ches tnu t  b l i g h t .  J .  Environ. 

Manage. 5:161-179.



13

Shugart,  H. H . , and D. C. West. 1980. Forest  succession models.

BioScience 30:308-313.

Van Hook, R. I . ,  D. W. Johnson, D. C. West, and L. K. MannI 1980. 

Environmental e f f e c t s  of harvest ing  f o re s t s  fo r  energy, 

p.  537-541. Jjn Proceedings o f  the  Bio-energy '80  World Congress 

and Exposit ion.  {Atlanta,  Georgia.  April 21-24, 1980) 587 p. 

The Bio-Energy Council , Washington, D. C.



Table 1. Heating values  f o r  each o f  the  species  included in 
the  FORET model parameter l i s t .  These values 
r e p re sen t  the  energy con ten t  fo r  dry wood as 
compiled from many sources by Conde and Huffman 
(1 978) and Howlett and Gamache (1977)

Species Heat value (kcal/kg)

Aaer rubrum 4604
A cer Saaoharum 4604
A esculus oatandra  4444
Carya oovd-Lformis 4693
Carya g la b ra  4693
Carya ova ta  4693
Carya tom entosa  4693
C ercis Canadensis 4444
Comus f lo r id a  4444
D iospyros v irg in ia n a  4444
Fagus g r a n d ifo lia  4697
Fraxinus americana 4758
Juglans n igra  4444
Juniperus v irg in ia n a  5389
Liquidambar s ty r a c i f lu a  4563
Liriodendron  tu l ip i f e r a  4786
Nyssa s y lv a t ic a  4650
Oxydendron arborenm 4444
Finns ech in a ta  5195
Finns s tro b u s  5195
Finns v irg in ia n a  5195
Frunns s e r o tin a  4790
Queraus a lba  ^
Quercus coocinea  4644
Queraus fa la a ta  4644

• 4644Quercus prvnus
Queraus rubra  4644
Queraus s t e l l a t a  4644
Queraus v e lu tin a  4644
R obinia pseudoaaaaia  4444
S a ssa fra s  albidum
T i l ia  h e te ro p h y lla 4586



Table 2. Expected energy y i e ld  and required  harvestab le  f o re s t  
land (ha) as  detenmined f o r  each harves t  se lec t ion

Harvest 
s e lec t io n

Energy y i e ld  
(k c a l /h a /y r )

Required harvestable  
f o r e s t  land (ha)

10-MW 50-MW 103 corda

Clear  c u t t i n g 1.19 X 10^ 1414 7777 120

S e le c t i  v e - c u t t i  ng 1.02 X 10^ 1649 9096 140

Thinning 2.23 X 10® 7517 41343 450

Hi gh-grade c u t t i  ng 1.46 X 10® 11533 63316 700

1̂ cord = 3.62 ni^.



Vable 3. Ecological index values  in d ica t in g  a l t e r a t i o n  of  
f o r e s t  composition, s t r u c tu r e  and d i v e r s i t y .

Harvest
s e le c t io n

Composition 
(r^  value)

S truc ture  
(D|  ̂ value)

Di v e r s i ty
(S., value) w

C le a r -c u t t i  ng 0.81 0.20 0.66706

S e le c t iv e - c u t t i n g 0.88 0.19 0.67742

Thinning 0.89 0.02 0.58406

High-grade c u t t i n g 0.94 0.05 0.52896

Control 1.00 0.00 0.59691


