

MH5MP-71-87

28

INPUT RESEARCH AND TESTING OF CODE TOODY

G. A. Haynie

DEVELOPMENT DIVISION

July - September 1971

MASTER

For
Systems Division, Department 112

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Mason & Hanger-Silas Mason Co., Inc.
Pantex Plant
P. O. BOX 647
AMARILLO, TEXAS 79105
806-335-1581

operated for the
ATOMIC ENERGY COMMISSION
under
U. S. GOVERNMENT Contract DA-11-173-AMC-487 (A)

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

INPUT RESEARCH AND TESTING OF CODE TOODY

G. A. Haynie

DEVELOPMENT DIVISION

July - September 1971
Systems Division, Department 112

Section Y

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

INPUT RESEARCH AND TESTING OF CODE TOODY

The purpose of this report is to simplify and further explain input instructions for Code TOODY and to demonstrate the ability of the code to reproduce cylinder test results. This input is intended to be a supplement to, and not a replacement for, the existing TOODY manual. The TOODY manual should be read and understood before attempting to read this report.

Problems arise in the preparation of the input data in four areas: material definition, initial shape definition, the restart feature, and the limiting of output. Aside from these areas, the code is adequately discussed in the manual, "TOODY, A COMPUTER PROGRAM FOR CALCULATING PROBLEMS OF MOTION IN TWO DIMENSIONS."^a

The material definition tells the program what position each material will occupy. Each material has a number, a minimum and maximum I value, and a minimum and maximum J value. The material numbers are as follow:

MAT NUMBER	MEANING
0	Empty Space
1	Material #1
2	Material #2
.	.
.	.
.	.
10	Material #10
11	Free Boundary
12	Applied Stress Boundary
13	Symmetry Plane Boundary
14	Fixed Boundary

Material numbers one through ten are the materials used in the problem and are supplied by the user. Numbers eleven through fourteen are boundary conditions which are supplied by the program. Any material used must be completely surrounded by boundary meshes. Meshes referred to on no card will retain the value MAT = 0 indicating that they are outside the problem. To define the position each material will occupy, one first gives the program the material number. Then by giving the program the values i_s , i_e , j_{so} , j_{si} , j_{eo} , and j_{ei} which stand for minimum and maximum I values, the minimum J value and its multiplying factor, and the maximum J value and its multiplying factor respectively. With these values the program can define the position of every mesh needed to represent each material by using the following double nested loop.

^aB. J. Thorne and W. Herrmann, Sandia Report No. SC-RR-66-602, July 1971.

^bIBID, "Boundary Conditions," p. 52 - 54.

```

DΦ 100 I = is, ie
js = jso + jsi * I
je = jeo + jei * I
DΦ 100 J = js, je

```

```
100 MAT (J, I) = K
```

If one wants the material to be rectangular, j_{si} and j_{ei} should be set to zero.

If the variables j_{si} and j_{ei} are given a value, it causes the material to be stairstepped. In setting up the material definition, it is sometimes useful to have a scaled drawing of the figure. With the scaled drawing, one can very easily pick off the I MAX and I MIN and the J MAX and J MIN values of each material and boundary condition used.

The initial shape definition goes along very closely with the material definition. The material definition projects the object into j, i - space, while the initial shape definition gives dimensions to the object. The program uses a variable called ISET to determine the type of coordinates to be used. If ISET = 1, rectangular coordinates are used and i indexes along the z axis (axis of abscissas) and j indexes along the x axis, (axis of ordinates). If ISET = 2, polar coordinates are used and i indexes along a radius vector while j indexes angular increments. If ISET = 3, polar coordinates are again used with the roles of i and j interchanged. If one uses ISET = 1, the problem shown in Fig. 1 could be set up in this manner. The lower left-hand corner becomes the origin for x_o , z_o , I_o , and J_o for all materials as long as the mesh size in both the X and Z directions is constant. With the mesh size constant, the values for x_o , z_o , I_o , and J_o at the origin becomes 0, 0, 1, and 1 respectively. The variables A_x and A_z have the roles of ΔX and ΔZ . Deciding on a mesh size of 0.1 by 0.1, the values of A_x and A_z both become 0.1 in all materials. By having a scaled drawing such as Fig. 1, one can pick z , x points off the figure and use the equations:

EQUATION SET I

$$\begin{aligned}
 a_{j,1} &= z_o + a_z (i - i_o) + b_z (i - i_o) (j - j_o) + f(j, i) + k_z (j - j_o) \\
 x_{j,i} &= x_o + a_x (j - j_o) + [b_x + c_x (j - j_o)] (z - z_o) \\
 &\quad + g(j, i, z) - k_x (i - i_o).
 \end{aligned}$$

where $f(j, i)$ is taken to be

$$f(j, i) = \begin{cases} 0 & \text{if } i \leq i_o \\ 1/2 c_z (i - i_o)(i - i_o - 1) & \text{if } i > i_o \end{cases}$$

while $g(j,i,z) = d_x(z - z_o)^2$.

One can then form a system of linear equations in Z and X and solve them for the variables b_x , c_x , d_x , k_x , b_z , c_z , d_z , and k_z . As long as the meshes are rectangular, all of these variables become zero. In Fig. 1, if material 2 is taken to be impacting on materials 1 and 3, we would have an initial component velocity of u^x and $u^z = 0$ for materials 1 and 3, while material 2 would have an initial component velocity of $u^x = 0$ and $u^z = -v$, where v is the velocity of impact. In this manner, we have been able to define all the materials needed to set up the initial shape definition for Fig. 1. If we decide to change mesh sizes in any one direction, such as in Fig. 2, where we have doubled the size of the meshes in the X direction for materials 1 and 3 and doubled the mesh size in both the X and Z direction for material 2, one should go about setting up the shape definition in the same manner as before with one exception. The mesh size is no longer constant in the Z direction, and it is necessary to have a new origin for every change in mesh size. For materials 1 and 3 the origin is still at $X_o = Z_o = 0$ and $I_o = J_o = 1$, but for material 2 the origin becomes $X_o = .4$, $Z_o = .8$, $I_o = 9$, and $J_o = 3$.

This puts the origin at a point which is in the same relative position to material 2 as the first origin was to materials 1 and 3. When using $ISET = 2$ or 3 , one follows the same general procedure using the following equations:

EQUATION SET II

$$R = r_o = r_1 + r_2(i - i_o - 1) (i - i_o)$$

$$x_{j,i} = R \sin (\omega_o + (j - j_o) \omega_1) + x_o$$

$$z_{j,i} = R \cos (\omega_o + (j - j_o) \omega_1) + z_o$$

$$u^x = u^r \sin (\omega_o + (j - j_o) \omega_1)$$

$$u^z = u^r \cos (\omega_o + (j - j_o) \omega_1).$$

The variables r_0 , r_1 , r_2 , u^r , ω_0 , and ω_1 assume the roles of a_x , b_x , c_x , u^x , and a_z , and b_z respectively.

Caution must be used in limiting computer run time and output of Code TOODY. The activity test is one way of limiting computer run time. This test first causes the program to perform calculations only on the meshes specified by $IACT$ in the first time cycle. After the first cycle, the program uses $PACT$ or minimum pressure and checks to see if the pressure is greater than or equal to the minimum pressure. If it is, the program increases the value of $IACT$ to the i value of the mesh to allow the shock wave to move to the next column. If the minimum pressure is greater than the mesh pressure, then the program doesn't perform any calculations on the rest of the meshes. It is also desirable to use the minimum meshes needed to adequately represent the problem of the 2260 meshes provided by the program. This not only cuts down on the run time but it has been

found that over-zoning often produces unreliable answers. The program also has a restart feature which can be used to break up a long run into several shorter runs. However, at the time this report was written the restart feature would not reproduce answers received from one long run when broken up into several shorter runs using the restart feature. In order to limit the number of printed pages, it has been found that it is better to look at just a portion of the problem rather than the whole problem. For every column asked for there will be at least a page of output depending on how many rows asked for as there are two lines printed for every row. If the user is interested in seeing more columns than rows, he can set alpha = 0 and interchange the roles of X and Z. In doing so, the user is also interchanging the roles of pages and lines per page and thus cutting down on pages of output. The user should pick his minimum and maximum edit times carefully. One must remember that at every time increment between the minimum and maximum edit times, one will get at least a page for every column asked for depending on how many rows are asked for by the user. If one were to ask for the printout of just five columns at twenty-five time increments one would have at least 125 pages of output.

The main reason for researching Code TOODY was to find out how well the code could reproduce two dimensional test results. The one inch cylinder test was chosen as a problem for TOODY to reproduce. The code was able to reproduce the CJ Pressure to within two percent using LX-04-1 as the HE in the cylinder. Two cylinder shots of LX-04-1, P108-4-21-1 LOT 92-5 and P108-7-3-1 LOT 92-9 were used as measured values for comparison to Code TOODY's answers. In both cases the wall movement as predicted by TOODY reproduced the measured values very closely as shown in Table II. If the code is able to reproduce all tests as well as it reproduced the cylinder test, it will, at worse, give the user a starting value so he will know if he is obtaining reasonable experimental results. If the user gets good agreement with his measured values, the code will provide further insight into the test by showing him the roles artificial viscosity, stress, and energy play in the test, values that would be difficult to measure experimentally.

Also included in this report are Appendix A which has input instruction for Code TOODY, Appendix B, which contains some of the material and HE constants needed by the code, and Appendix C which contains operating instructions and listing of a short Wang 700-B program used in analyzing the results from TOODY.

- 1 - Material No. 1
- 2 - Material No. 2
- 3 - Material No. 3
- 4 - Free Boundary
- 5 - Symmetry Plane Boundary

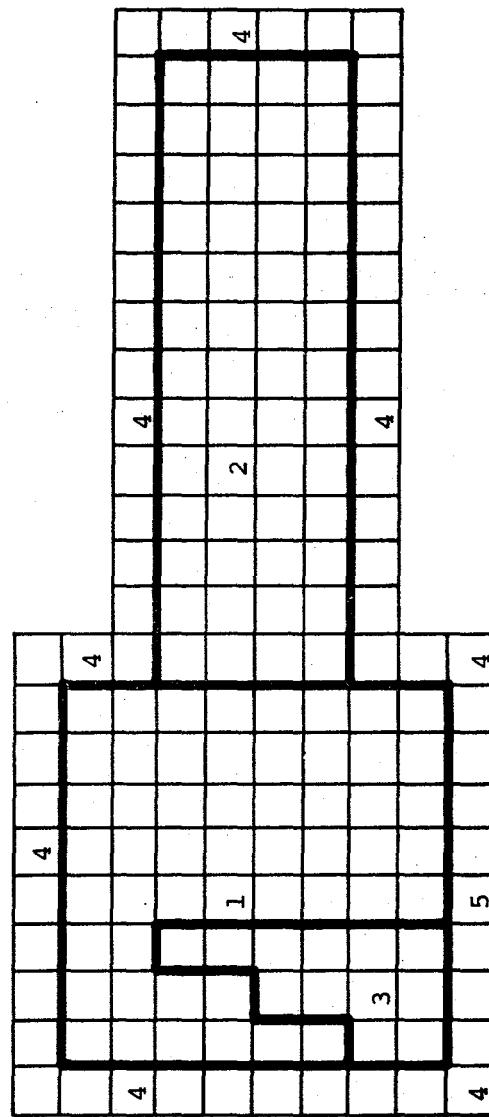


FIG. 1

- 1 - Material No. 1
- 2 - Material No. 2
- 3 - Material No. 3
- 4 - Free Boundary
- 5 - Symmetry Plane Boundary

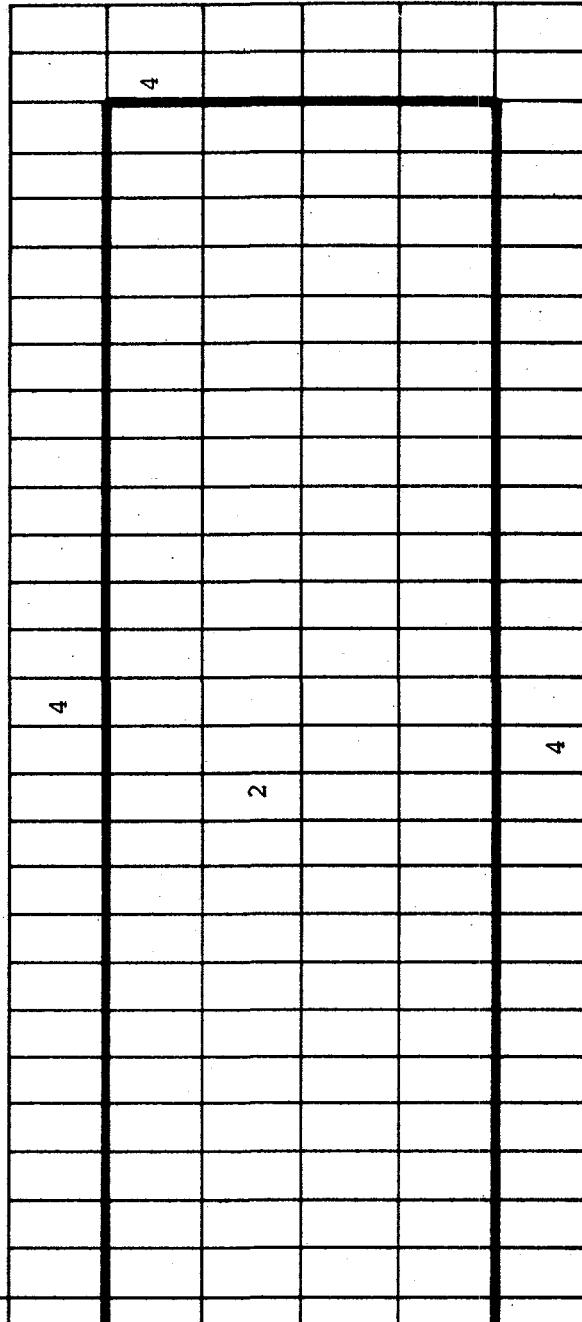
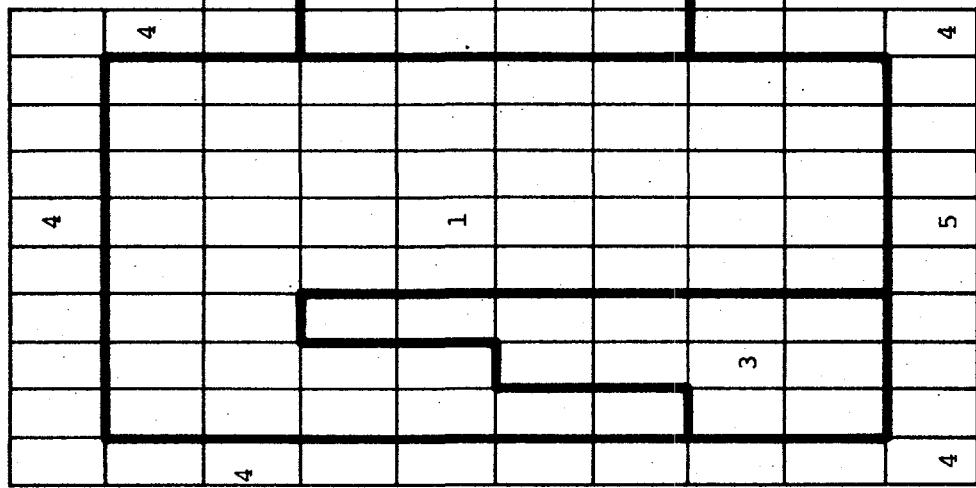



FIG. 2

Table I

P 108-4-21-1 Lot 92-5

&

P 108-7-3-1 Lot 92-9

Lot 92-5		Lot 92-0	
<u>X</u>	<u>T Average</u>	<u>X</u>	<u>T Average</u>
0.0	0.0299	0.0	-0.0727
0.50	0.5694	0.50	0.5765
1.00	1.0597	1.00	1.1085
1.50	1.5105	1.50	1.5672
2.00	1.9299	2.00	1.9809
2.50	2.3244	2.50	2.3674
3.00	2.6996	3.00	2.7374
3.50	3.0597	3.50	3.0967
4.00	3.4083	4.00	3.4485
4.50	3.7482	4.50	3.7945
5.00	4.0815	5.00	4.1353
5.50	4.4098	5.50	4.4714
6.00	4.7345	6.00	4.8029
6.50	5.0564	6.50	5.1303
7.00	5.3760	7.00	5.4541
7.50	5.6939	7.50	5.7746
8.00	6.0103	8.00	6.0923
8.50	6.3253	8.50	6.4077
9.00	6.6389	9.00	6.7212
9.50	6.9512	9.50	7.0330
10.00	7.2622	10.00	7.3434
10.50	7.5718	10.50	7.6524
11.00	7.8799	11.00	7.9601
11.50	8.1866	11.50	8.2665
12.00	8.4917	12.00	8.5714
12.50	8.7953	12.50	8.8750
13.00	9.0974	13.00	9.1770
13.50	9.3981	13.50	9.4777
14.00	9.6973	14.00	9.7770
14.50	9.9952	14.50	10.0750
15.00	10.2918	15.00	10.3719
15.50	10.5873	15.50	10.6678
16.00	10.8818	16.00	10.9629
16.50	11.1752	16.50	11.2572
17.00	11.4678	17.00	11.5509
17.50	11.7597	17.50	11.8441
18.00	12.0509	18.00	12.1366
18.50	12.3416	18.50	12.4286
19.00	12.6317	19.00	12.7199
19.50	12.9214	19.50	13.0104
20.00	13.2108	20.00	13.3001
20.50	13.4997	20.50	13.5888
21.00	13.7883	21.00	13.8766
21.50	14.0766	21.50	14.1636
22.00	14.3645	22.00	14.4498
22.50	14.6521	22.50	14.7354
23.00	14.9393	23.00	15.0208
23.50	15.2262	23.50	15.3060
24.00	15.5126	24.00	15.5912
24.50	15.7985	24.50	15.8765
25.00	16.0840	25.00	16.1618

Table II

		Lot 92-9		Lot 92-5	
X CALC.	T CALC.	X MEAS. #1 (MM)	REL. ERR. #1 (%)	X MEAS. #2 (MM)	REL. ERR. #2 (%)
(MM)	(μ sec)	(MM)		(MM)	
0.00	0.000	-	-	-	-
0.29	0.553	0.482	39.82	.458	40.18
0.73	1.013	0.910	19.77	.952	23.35
1.18	1.496	1.396	15.49	1.457	19.03
1.81	2.018	2.048	11.62	2.112	14.29
2.41	2.473	2.643	8.82	2.698	10.67
3.14	3.019	3.392	7.42	3.434	8.81
3.83	3.501	4.075	6.02	4.136	7.41
4.58	3.497	4.797	4.53	4.873	6.02
5.42	4.551	5.620	3.57	5.717	5.20
6.11	5.004	6.307	3.13	6.419	4.81
7.02	5.578	7.193	2.41	7.318	4.07
7.77	6.048	7.931	2.02	8.060	3.60
8.55	6.527	8.690	1.61	8.822	3.08
9.36	7.018	9.476	1.22	9.607	2.57
10.19	7.517	10.282	0.89	10.411	2.13
11.00	8.003	11.070	0.63	11.201	1.79
11.79	8.472	11.838	0.40	11.968	1.48
12.74	9.030	12.757	0.13	12.888	1.15
13.66	9.575	13.662	0.02	13.796	0.98
14.39	10.000	14.368	0.15	14.508	0.81
15.28	10.515	15.242	0.25	15.378	0.63
16.14	11.013	16.085	0.34	16.224	0.51
16.98	11.497	16.908	0.42	17.050	0.41
17.96	12.059	17.868	0.51	18.014	0.30
18.75	12.513	18.644	0.57	18.795	0.24
19.68	13.043	19.557	0.63	19.710	0.15
20.43	13.474	20.301	0.64	20.455	0.12
21.32	13.982	21.183	0.65	21.336	0.07
22.19	14.480	22.054	0.62	22.201	0.05
23.20	15.050	23.051	0.65	23.293	0.03
24.05	15.533	23.893	0.66	24.036	0.06

APPENDIX A

APPENDIX A

INPUT INSTRUCTIONS FOR CODE TOODY^a

Set I Main Control Parameters

Card 1 Format (9A8)

Run Identification

Card 2 Format (15I5)

IMAX ^b	Maximum of i index]	BINARY TAPE OUTPUT PARAMETERS
JMAX	Maximum of j index		
NOMAT	No. of materials involved		
ALPHA	Symmetry indicator		
IDELOUT	Usually set equal to 1		
JDELOUT	Usually set equal to 1		
IOPSW	Initial value output switch, IF IOPSW = 0, switch is "off" and if IOPSW ≠ 0, switch is "on"		
NTAP	No. of first output tape used		
NTLIM	No. of last output tape used		
IPRINT	Print switch, if IPRINT = 0 print switch is "off" and if IPRINT ≠ 0 print switch is "on"		
ISPEC	Special subroutine switch, ISPEC = 0 switch is "off" and ISPEC ≠ 0 switch is "on"		
IACT	Starting value of activity test indicator		
IECSW	Energy check switch, IECSW = 0 switch is "off" and IECSW ≠ 0 switch is "on".		
IRSSW	Write restart tape switch, IRSSW = 0 switch is "off" and IRSSW ≠ 0 switch is "on".		
IRRSSW	Read restart tape switch, IRRSSW = 0 switch is "off" and IRRSSW ≠ 0 switch is "on".		

Card 3 Format (7E 10.3)

PMAX	Maximum allowable pressure]	BINARY TAPE OUTPUT PARAMETERS
TMAX	Maximum run time (in problem time)		
K _{t1}	Stability Coefficient, usually equal to 1		
OUTMIN	Minimum output time		
OUTMAX	Maximum output time		
DELOUT	Output time increment		
PACT	Minimum allowable pressure		

^aIBID, Appendix C, Input Instruction, pp. 93-106.

^bVariables are listed in order of occurrence on card.

Card 4a Format (6E 10.3)

B ₁	Viscosity coefficient, usually equal to 1.2
B ₂	Viscosity coefficient, usually equal to 0.06
B ₃	Viscosity coefficient, usually equal to 0.4
B ₄	Viscosity coefficient, usually equal to 0.02
K _{t2}	Maximum initial time step
K _{t3}	Maximum rate of increase in time step, usually equal to 1.1

Card 4b Format (3E10.3, 7I5)

This card is present only if IPRINT ≠ 0

TPMIN	Minimum edit time	PRINTOUT PARAMETERS
TPMAX	Maximum edit time	
TPDEL	Edit time increment	
IPMAN	Starting column for printing	
IPMAX	Ending column for printing	
IPDEL	Column increment	
JPMIN	Starting row for printing	
JPDEL	Row increment	
MAXMIN	If MAXMIN = 1, minimum and maximum values of some variables are printed at the end of the run, MAXMIN = 2, only pressure values are calculated, and MAXMIN = 0, feature is bypassed	

Card 4c Format (3E10.3, 4X, 6I5)

This card is present only if ISPEC ≠ 0

TSMIN	These variables are designed to function in the same manner as the variables on card 4b; however, only the first three are handled in the main program so that the remaining six can have any function desired in the special subroutine
TSMAX	
TSDEL	
ISMIN	
ISMAX	
ISDEL	
JSMIN	
JSMAX	
JSDEL	

Card 4d Format (2E10.3, I5)

This card is present only if IECSW ≠ 0

EPE	Relative energy allowable
ECON	Value of E_R below which no energy check will be made
NSYCLE	Reference cycle

Card 4e Format (2E10.3)

This card is present only if IRRSW \neq 0 or IRRSW \neq 0

RSTIME No. of minutes to allow before restart tape is written
IGNORRSE if IGNORRSE = 0, then an error on reading the restart tape
will cause termination

Set II Material Definition

Each material used requires this Material Definition Card.

Card 1 Format (7I5)

MAT	Material or boundary type
i _s	Minimum column
i _e	Maximum column
j _{so}	Minimum row constant coefficient
j _{sl}	Minimum row linear coefficient
j _{eo}	Maximum row constant coefficient
j _{el}	Maximum row linear coefficient

Card 2 Format (10A8)

END OF MATERIAL DEFINITION

This card should be placed after all of the material definition cards

Card 2a Format (2E10.3)

This card is present after the above END CARD if MAT = 12 is present
in any of the Material Definition Cards.

P_o P = P_o exp (βt)
β Exponential rate factor in above equation

Set III Equation of State Constants

A set of Equation of State Constant Cards must be read for each
material in order of increasing NOMAT or material numbers.

Card 1 Format (1I5)

IES(MAT) Number of equation of state to be used for material number MAT

Equation of State Number 1

Card 1 Format (7E10.3)

P_o	Initial material density
C_o	Bulk sound speed
-	Not used
P_{MIN}	Minimum pressure
TDEP	Energy deposit time, if TDEP < 0 no energy is added, TDEP = 0 all the energy is added on the first cycle, and TDEP > 0 energy is deposited over the first 100 cycles.
ν	Poisson's ratio
-	Not used

Card 2 Format (I10, 6E10.3)

NOK	No. of K's, NOK = 0 the equation $pH = \frac{P_o C_o \eta}{(1-S\eta)^2}$ is used, NOK ≥ 1 the equation $pH = K_o \eta (1 + k_1 \eta + k_2 \eta^2 + \dots)$, including K_o
-	Not used
K_1 or s	If NOK = 0 this term is the s in the above equation. If NOK ≥ 2 then this is the K in the second equation.
K_2	Coefficient of the second equation
K_3	Coefficient of the second equation
K_4	Coefficient of the second equation
K_5	Coefficient of the second equation

Card 3 Format (I10, 6E10.3)

NOH	No. of terms, including Γ_o , in the equation $\Gamma = \Gamma_o (1 + h_1 \eta + h_2 \eta^2 + \dots)$
Γ_o	
h_1	
h_2	
h_3	Coefficients in the above equation
h_4	
h_5	

Card 4 Format (ILO, 6E10.3)

NOG	NOG = 0 uses the equation $G = \frac{3(1 - 2\nu)}{2(1 - \nu)} K$, NOG 1 uses the equation $G = G_o (1 + g_1 \eta + g_2 \eta^2 + g_3 \eta^3 + \dots)$, including G_o
-	Not used
g_1	
g_2	
g_3	
g_4	
g_5	Coefficients in the second equation

Card 5 Format (I10, 6E10.3)

NOY Chooses the yield strength to be used by the problem
Y₀ Coefficients of equations chosen by NOY
Y₁
Y₂
-
- Not used
-

Equation of State Number 2
High explosive equation of state

Card 1 Format (6E10.3)

c₀ Initial density
c₀ Bulk sound speed
D₀ Detonation wave velocity
γ Ratio of specific heats
B5 Wave width constant
- Not used

Card 2 Format (I10, 2E10.3)

ND Detonation option, ND = 1 detonation occurs along constant z,
ND = 2 detonation occurs along a constant x, ND = 3 detonation
occurs along the line $x = x_d$ and $z = z_d$, and ND = 4 initiation
occurs uniformly throughout the explosive

x_d X coordinate of detonation point
z_d Z coordinate of detonation point

It is possible to add equation of state numbers 3 through 6 if necessary for some
problems.⁵

Set IV Initial Shape of Definition

These cards are needed for each material in order of increasing material
number.

Card 1 Format (I5)

ISET ISET = 1, rectangular coordinates
 ISET = 2, polar coordinates
 ISET = 3, polar coordinates, interchanges the roles of i and j in
 ISET = 2

⁴IBID, See Pages 30 through 32

⁵IBID, page 104

Card 2 Format (8E10.3)

x_0 Initial X position

a_x or r_0 Coefficients in the Equations
 b_x or r_1 Set I or Set II

c_x or r_2

d_x

j_0 Initial j value

u_x Initial velocity in the x direction

k_x Coefficient in Equation Set I

Card 3 Format (8E10.3)

z_0 Initial Z position

a_z or w_0 Coefficients in the equations
 b or w_1 Set I or Set II

c_z

d_z

i_0 Initial i value

u_z Initial velocity in the z direction

k_z Coefficient in Equation Set I

APPENDIX B

APPENDIX B

This compendium has been composed to simplify the finding of constants used by several hydro-codes. Many of the constants in this compendium are at best estimates of the actual values; therefore, they should be used more as a starting point rather than an absolute value. All values given are in the centimeter-gram-microsecond system.

AIR CONSTANTS

Initial Material Density	.001292 g/cm ³
Bulk Sound Speed	.033528 cm/μs
Minimum Pressure	0
Poisson Ratio	NA
NOK	0
S	NA
NOH	NA
Γ ₀	NA
NOG	0
NOY	1
Ratio of Specific Heats	1.4

AL CONSTANTS

Initial Material Density	2.71 g/cm ³
Bulk Sound Speed	.538 cm/μs
Minimum Pressure	0.0 M bars
Poisson Ratio	.333
NOK	0
S	1.345
NOH	1
Γ ₀	2.1
NOG	0
NOY	1

BRASS CONSTANTS

Initial Material Density	8.45 g/cm ³
Bulk Sound Speed	.378 cm/μs
Minimum Pressure	0
Poisson Ratio	.33
NOK	0
S	1.434
NOH	

Γ_0	2.04
NOG	0
NOY	1

CU COEFFICIENTS (99+ PURE)

Initial Material Density	8.9 g/cm ³
Bulk Sound Speed	.392 cm/μs
Minimum Pressure	-.0015 M bars
Poisson Ratio	.333
NOK	0
S	1.4
NOH	1
Γ_0	2.04
NOG	0
NOY	1

H₂O CONSTANTS

Initial Material Density	1.0 g/cm ³
Bulk Sound Speed	.148 cm/μs
Minimum Pressure	0
Poisson Ratio	0
NOK	0
S	1.85
NOH	1
Γ_0	.28
NOG	0
NOY	1
Sublimation Energy	.0244 g/cm ³

INERT TNT

Initial Material Density	1.63 g/cm ³
Bulk Sound Speed	.257 cm/μs
Minimum Pressure	0.0 M bars
Poisson Ratio	.29
NOK	0
S	2.05
NOH	1
Γ_0	1.57
NOG	0
NOY	1

IRON CONSTANTS

Initial Material Density	7.86 g/cm ³
Bulk Sound Speed	.377 cm/μs
Minimum Pressure	0
Poisson Ratio	.26
NOK	0
S	1.92
NOH	1
Γ_0	1.46
NOG	0
NOY	1

STEEL CONSTANTS

Initial Material Density	7.84 g/cm ³
Bulk Sound Speed	.367 cm/μs
Minimum Pressure	0
Poisson Ratio	.26
NOK	0
S	1.92
NOH	1
Γ_0	1.46
NOG	0
NOY	1

HE CONSTANTS FOR BARATOL

Initial HE Density	2.55 g/cm ³
Bulk Sound Speed	.204 cm/μs
Detonation Wave Velocity	.487 cm/μs
Ratio of Specific Heats	3.32
Wave Width Constant	2.5

HE CONSTANTS FOR COMP B-3 40/60 TNT/RDX

Initial HE Density	1.75 g/cm ³
Bulk Sound Speed	.271 cm/μs
Detonation Wave Velocity	.805 cm/μs

Ratio of Specific Heats	2.95
Wave Width Constant	2.5

HE CONSTANTS FOR HMX

Initial HE Density	1.90 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.910 cm/μs
Ratio of Specific Heats	3.03
Wave Width Constant	2.5

HE CONSTANTS FOR LX-04-01

Initial HE Density	1.86 g/cm ³
Bulk Sound Speed	.274 cm/μs
Detonation Wave Velocity	.847 cm/μs
Ratio of Specific Heats	2.83
Wave Width Constant	2.5

HE CONSTANTS FOR LX-07-0

Initial HE Density	1.88 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.866 cm/μs
Ratio of Specific Heats	2.86**
Wave Width Constant	2.5

* Average of known bulk sound speeds, which range from .204 cm/μs to .286 cm/μs.

** An approximate CJ Pressure was used in obtaining the Ratio of Specific Heats from the equation

$$\gamma = \frac{10\rho_0 D^2}{P_{CJ}} - 1$$

HE CONSTANTS FOR LX-10

Initial HE Density	1.86 g/cm ³
Bulk Sound Speed	.251*
Detonation Wave Velocity	.822 cm/μs
Ratio of Specific Heats	2.859
Wave Width Constant	2.5

HE CONSTANTS FOR OCTOL

75/25 TNT/HMX

Initial HE Density	1.82 g/cm ³
Bulk Sound Speed	.240 cm/μs
Detonation Wave Velocity	.848 cm/μs
Ratio of Specific Heats	2.82
Wave Width Constant	2.5

HE CONSTANTS FOR PBX-9010

Initial HE Density	1.78 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.837 cm/μs
Ratio of Specific Heats	2.80
Wave Width Constant	2.5

HE CONSTANTS FOR PBX-9011

Initial HE Density	1.785 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.852 cm/μs
Ratio of Specific Heats	3.00
Wave Width Constant	2.5

*Average of known bulk sound speeds, which range from .204 cm/μs to .286 cm/μs.

HE CONSTANTS FOR PBX-9205

Initial HE Density	1.69 g/cm ³
Bulk Sound Speed	.274 cm/μs
Detonation Wave Velocity	.824 cm/μs
Ratio of Specific Heat	2.98
Wave Width Constant	2.50

HE CONSTANTS FOR PBX-9404

Initial HE Density	1.851 g/cm ³
Bulk Sound Speed	.286 cm/μs
Detonation Wave Velocity	.8841 cm/μs
Ratio of Specific Heats	2.86
Wave Width Constant	2.5

HE CONSTANTS FOR PBX-9407

Initial HE Density	1.60 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.791 cm/μs
Ratio of Specific Heats	2.92**
Wave Width Constant	2.5

HE CONSTANTS FOR PENTOLITE 50/50
50/50 TNT PETN

Initial HE Density	1.66 g/cm ³
Bulk Sound Speed	.223 cm/μs
Detonation Wave Velocity	.747 cm/μs
Ratio of Specific Heats	2.86*
Wave Width Constant	2.5

*Average of known bulk sound speeds, which range from .204 cm/μs to .286 cm/μs.

**An approximate CJ Pressure was used in obtaining the Ratio of Specific Heats from the equation

$$\gamma = \frac{10\rho_0 D}{P_{CJ}} - 1$$

HE CONSTANTS FOR PETN

Initial HE Density	1.70 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.830 cm/μs
Ratio of Specific Heats	2.84
Wave Width Constant	2.5

HE CONSTANTS FOR RDX

Initial HE Density	1.77 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.864 cm/μs
Ratio of Specific Heats	2.91
Wave Width Constant	2.5

HE CONSTANTS FOR TETRYL

Initial HE Density	1.71 g/cm ³
Bulk Sound Speed	.251 cm/μs*
Detonation Wave Velocity	.785 cm/μs
Ratio of Specific Heats	3.21**
Wave Width Constant	2.5

HE CONSTANT FOR TNT

Initial HE Density	1.63 g/cm ³
Bulk Sound Speed	.239 cm/μs
Detonation Wave Velocity	.693 cm/μs
Ratio of Specific Heats	2.56
Wave Width Constant	2.5

*Average of known bulk sound speeds, which range from .204 cm/μs to .286 cm/μs.

**An approximate CJ Pressure was used in obtaining the ratio of specific heats from the equation

$$\gamma = \frac{10 \rho_0 D}{P_{CJ}} - 1$$

APPENDIX C

APPENDIX C

A small program was written for the Wang calculator Model 700-B to search through a table of measured distances and times. When given a time the program will interpolate for a distance which it takes to be X_{meas} . The program is then given X_{calc} and by using the two X values the program calculates the relative error. The table values must be stored in registers 8 through 107 with the first fifty of these registers containing distance values and the second fifty registers containing the time values. By putting the end program command at step 950, one can record all Table values onto tape and thus save them for future use. The X_{meas} values and the relative errors in Table II were obtained by using this program and two cylinder shot tables 92-5 and 92-9. Operation instructions and listing follow.

INTERPOLATOR AND RELATIVE
ERROR DETERMINER

OPERATING INSTRUCTIONS

Prime
Rewind
Tape Ready
Load Program
(1) Key in Time
Go
(2) Key in X (Distance)
Go

Repeat steps (1) and (2) for all values desired
Output will be in the form.

<u>TIME</u>	<u>INTERPOLATED VALUE</u>	<u>RELATIVE ERROR</u>
-------------	---------------------------	-----------------------

PROGRAM LISTING

000	04	08	MARK	032	04	14	ST DIR Y	064	00	06	06
001	07	09	9	033	00	07	07	065	04	12	WR σ
002	04	04	ST DIR	034	04	15	Re DIR Y	066	01	08	0108
003	00	06	06	035	00	06	06	067	01	02	0102
004	07	08	8	036	05	07	SKIP Y \geq X	068	04	13	END α
005	06	04	↑	037	04	07	SEARCH	069	04	11	WRITE
006	04	08	MARK	038	07	01	1	070	07	07	0707
007	07	00	0	039	04	15	Re DIR Y	071	06	05	↑
008	07	05	5	040	00	07	07	072	04	11	WRITE
009	07	00	0	041	04	07	SEARCH	073	07	07	0707
010	06	00	+	042	07	00	0	074	05	15	STOP
011	05	05	Re IN DIR	043	04	08	MARK	075	06	06	↑↑
012	04	04	ST DIR	044	07	01	1	076	06	01	-
013	00	02	02	045	04	05	Re DIR	077	06	03	÷
014	07	05	5	046	00	03	03	078	06	05	↓
015	07	00	0	047	04	01	- DIR	079	06	07	1 x 1
016	06	01	-	048	00	05	05	080	04	11	WRITE
017	05	05	Re IN DIR	049	06	01	-	081	07	07	0707
018	04	04	ST DIR	050	04	05	Re DIR	082	05	15	STOP
019	00	03	03	051	00	05	05	083	04	07	SEARCH
020	07	05	5	052	06	03	÷	084	07	09	9
021	07	01	1	053	04	05	Re DIR	950	05	12	END
022	06	00	+	054	00	02	02				
023	05	05	Re IN DIR	055	04	01	- DIR				
024	04	04	ST DIR	056	00	04	04				
025	00	04	04	057	04	05	Re DIR				
026	07	05	5	058	00	04	Re DIR				
027	07	00	0	059	06	02	X =				
028	06	01	-	060	04	05	Re DIR				
029	05	05	Re IN DIR	061	00	02	02				
030	04	04	ST DIR	062	06	00	+				
031	00	05	05	063	04	05	Re DIR				

BIBLIOGRAPHY

1. Lawrence Livermore Laboratory, University of California, Livermore, California. High Explosives Handbook. Confidential Report.
2. Thorne & Hermann. TOODY, A Computer Program for Calculating Problems of Motion in Two Dimensions, Report No. 5C-RR-66-602.
3. U.S. Naval Ordnance Laboratory, White Oak, Maryland. Explosives Effects and Properties, Report No. NOLTR 65-218. Confidential Report.
4. Van Theil, M., Compendium of Shock Wave Data. Lawrence Livermore Laboratory, University of California, Livermore, California