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ABSTRACT

Contrary to the predictions of phonon bottleneck theories, we observe very fast subpicosecond energy
relaxation in strongly confined semiconductor nanocrystals with electron level spacing as large as 20 ID
phonon energies.
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Femtosecond chirp-free studies of energy relaxation in semiconductor quémtum dots:
Search for a phonon bottleneck

~ Victor Klimov and Duncan McBranch ‘
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Los Alamos, NM 87545, e-mail: klimov@lanl.gov

Semiconductor nanocrystals (NCs), or semiconductor quantum dots, exhibit a number of novel
physical properties not observable in bulk materials [1]. Three-dimensional (3D) carrier confinement
results in a discrete atomic-like energy spectrum with a level spacing which can greatly exceed typical
phonon energies. If the electronic energy relaxation occurs primarily by coupling to phonons, then
carrier relaxation in strongly confined systems can only occur via multi-phonon processes. This should
significantly inhibit carrier relaxation, an effect commonly referred to as a phonon bottleneck [2, 3].
However, it has been suggested recently [3] that the Coulomb electron-hole interaction, which is
strongly enhanced in systems with 3D confinement, can provide additional relaxation channels which
result in the removal of the phonon bottleneck. In this paper we report femtosecond (fs) studies of the
electron intraband relaxation in CdSe quantum dots of different sizes, with the energy spacing between

- the two lowest electron levels varying from about 2 to 20 longitudinal optical (LO) phonon energies.
Contrary to the predictions of phonon-bottleneck theories, we observe subpicosecond electron
relaxation, with a rate which is enhanced in NCs of smaller radius. These observations can be explained
by an Auger-like relaxation mechanism resulting in efficient energy transfer from the electron to the hole,
with a subsequent fast hole relaxation through its dense spectrum of states. ‘

To probe carrier relaxation dynamics we
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detection of transient absorption (TA) spectra [4]
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carrier energy distributions. Alternatively, we
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with an average radius of 2.6 nm. In this case, the 1P-1S electron energy separation is equal to 410
meV, or about 16 LO phonon energies. Under excitation with 3.1 eV photons, the TA spectra of these
NCs (Fig. 1) are dominated by two bleaching bands at 576 nm (BL,) and 484 nm (BL,). The BL,
feature marks the position of the lowest optical transition coupling the 1S electron to the 1S,,, hole state,

whereas the band BL, is due to combined contributions from the 1S(e)-2S,,(h) and the 1P(e)—1P;,(h)
transitions. The nonlinear optical response of NCs is mainly due to two effects: state filling-induced
bleaching of the optical transitions and the Coulomb two-pair interaction (biexciton effect) resulting in a
the shift of the transitions [5]. The state-filling contribution to the TA signal is dominated by the electron
population due to the degeneracy of the valence band and the much larger effective mass for the hole [6].
The temporal evolution of the biexciton-related portion of the BL, bleaching can be derived from the
analysis of the photoinduced absorption feature PA, located below the BL, band [5]. After subtracting
this contribution from the BL, signal, we get dynamics related entirely to population changes of the 1S
electron state, which are shown by open squares in Fig. 2. In addition to the contribution from the 1P(e)
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states, the BL, signal has a contribution from the

bleaching of the 15(e)~28, ,(h) transition. The latter
can be subtracted using the derived temporal
evolution of the 1S-state population. As expected,
the resulting 1P-state population dynamics (solid
circles in Fig. 2) are complementary to those of the
1S state (open squares in Fig. 2); both are
characterized by the same time constant of ~350 fs.
Given the 1P-1S energy spacing, this implies a
value for the electron energy-loss rate of ~1.2
meV/fs. This is more than twice the electron energy
relaxation rate for the unscreened polar scattering in
bulk CdSe with a quasi-continuous energy
spectrum, and exceeds by several orders of
magnitude the relaxation rate due to multi-phonon
emission expected in strongly confined systems
with a large energy-level separation [2]. Thus,
phonon relaxation mechanisms cannot explain the
high electon energy-loss rates measured
experimentally. As suggested in Ref. 3, one of the
effects of spatial confinement is an enhancement of
the Coulomb electron-hole interaction, which can
lead to the opening of new relaxation channels. In
particular, this interaction can result in the efficient
energy transfer of the electron excess energy to the
hole, with a subsequent fast hole energy relaxation
through its much denser spectrum of states. This
process is analogous to nonradiative Auger
recombination, which leads to efficient sub-
picosecond carrier decay in II-VI NCs [6].
Measurements of energy relaxation in NCs
of different sizes in a glass matrix demonstrate that

the relaxation rate decreases with increasing NC..

radius; the rise time of the 1S(e) population in NCs
with R > 5 nm is greater than 1 ps (see Fig. 3, glass
samples). This is consistent with Auger-type energy
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FIG. 2. 1S(e) and 1P(e) states population (depo-
pulation) dynamics derived from the TA data,
along with a pump-probe cross-correlation.
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FIG.3. BL, band buildup dynamics in NCs of 3
different radu R =34,4.2, and 5.6 nm.

transfer enhanced by spatial confinement, and is in obvious contradiction with phonon-bottleneck ,
theories which predict a faster relaxation for larger particles with more closely-spaced energy levels.
In addition to studies of intraband relaxation, we performed careful measurements of size-

dependent electron trapping dynamics in NCs with differently treated surfaces. These results allow us to
evaluate the role of the surface states in the trapping process. The electron trapping time varied by more
than two orders of magnitude, being up to 1.5 ns in colloidal NCs with well passwated surfaces, while
small-radius NCs in a glass matrix showed trapping times less than 10 ps.
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