LAUR- 97 < Qé@

Title:

Author(s):

Submitted to:

Los Alamos

NATIONAL LABORATORY

O oNF-271005 - -/l

A PORTABLE, PARALLEL, OBJECT-ORIENTED MONTE CARLO
NEUTRON TRANSPORT CODE IN C++

Stephen R. Lee
Julian C. Cummings
Steven D. Nolen

MAY 0 5 1357
OSTI

Joint International Conference on Mathematical
Methods & Superconducting for Nuclear Applications,
Saratoga Springs, NY, October 5-10, 1997

DISTRIBUTION OF THIS DOCUMENT 18

v eas

Los Alamos Nationa! Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or raproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratary
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 RS
ST 2629 10/91



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
refiect those of the United States Government or any agency thereof.



DISCLAIMER

Portions of this document may be illesible
in electronic image products. Images are
produced from the best avaiiable original
document.



A PORTABLE, PARALLEL, OBJECT-ORIENTED MONTE CARLO NEUTRON TRANSPORT CODE IN C++

Stephen R. Lee
Transport Methods Group
Applied Theoretical and Computational Physics Division
Los Alamos National Laboratory
MS B226
Los Alamos, New Mexico USA 87545
srlee@lanl.gov

Julian C. Cummings
Advanced Computing Laboratory
Communications, Information, and Computing Division
Los Alamos National Laboratory
MS B287
Los Alamos, New Mexico USA 87545
julianc@lanl.gov

Steven D. Nolen
Texas A&M University/Los Alamos National Laboratory
MS B226
Los Alamos, New Mexico USA 87545
sdnolen@lanl.gov

Abstract -- We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Ori-
ented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes & and o-
eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individ-
ual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for
portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of
hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates
the ability to compute o-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of
a general transport physics framework are also discussed.

I. BRIEF DESCRIPTION OF THE PROBLEM

The development of the multi-group neutron transport code MC++ has centered on criticality problems. Therefore,
MC++ currently computes static k and o-eigenvalues on computational meshes. The eigenvalue problems are formulated in
the usual wayl'2; k being calculated as the ratio of the number of neutrons in successive generations, and o being calculated as
adding absorption to the problem, iterating until the computed value for & given an ot is 1.0.

Rather than analytic surfaces for geometry descriptions (as used by MCNP3), MC++ gets its description of geometry

through a cartesian computational mesh obtained from another simulation code*. This mesh fully describes the problem
geometry in question, and each mesh element contains material information, density, and so on to fully specify the problem for
transport. MC++ transports particles through this geometry in the usual way, with particles interacting with individual mesh
cell boundaries rather than analytic surfaces.

1. COMPUTATIONAL METHODOLOGY

The k-eigenvalue algorithm is described first, since the o-eigenvalue algorithm uses the same mechanism. It should be
noted that the k-eigenvalue algorithm is similar to that of MCNP.



A. The k-eigenvalue Algorithm

The k-eigenvalue calculation is started by guessing an initial spatial distribution of neutrons. In MC++, this initial guess
is a simple scheme that places neutrons in mesh elements containing fissile material in a round-robin manner until all particles
requested by the user are exhausted. This, along with an initial guess for the system & (also user supplied) beings the first iter-
ation in MC++. This is called the first generation (or “cycle™) of our neutron population. The k-eigenvalue is nothing more
than the ratio of the number of neutrons in successive generations, with fission events being regarded as the birth event that
separates these generations. Therefore, during the calculation, the mean number of neutrons produced per fission event are
estimated and stored as source points for the next cycle. A single cycle, or generation, is therefore defined as the life of all neu-
trons in the problem from birth (by fission) to death (by escape or capture). Particles in the next cycle are started isotropically
at the location at which the birth took place. A single cycle will therefore have a series of “transport loops” in which all parti-
cles in the current generation must be disposed of before continuing to the next cycle.

The neutrons are tracked through and interact with the mesh just as they would any geometry, undergoing collisions with
isotopes that compose the material within each mesh cell, and undergoing boundary interactions with the mesh itself.

The user controls the nominal number of particles to track per cycle and the number of cycles during which to accumulate
results. The user can also specify the number of initial cycles to skip to allow the neutron population to stabilize before accu-
mulating the results. During each cycle, MC++ accumulates information about the likelihood and result of specific events into
tallies, the purpose of which is to compute estimates of k. Three different such tallies, or estimators, for k are used by MC++.
These estimators are the collision, absorption, and track-length estimators, and are the same as employed in the transport code
MCNP. Fig. 1 shows the flow of the algorithm in MC++.

POOMA Layout Bank

Initial Source ‘I Data Gather * Distance to Event

Boundary

Interactions Collision Physics

‘ Update Tallies

Fig. 1: The MC++ transport algorithm. The dashed box represents work that is done during a given generation of
particles, i.e., the transport loops. Shaded objects represent work that is done simultaneously (i.e., in parallel) on all
nodes. Note therefore that the unit of work in MC++ is not individual loops over particles , but particle generations,
that is, the transport loops.

=]
=)
=
=




This figure shows the initialization of POOMA (explained later) and the source, and the beginning of the user-requested
iteration loops, or individual neutron generations. Each neutron generation “lives” within the dashed box. That is, the previ-
ously discussed transport loops occur within the dashed box, with the created fission neutrons being stored on the “bank” (the
bank is just a POOMA Particles object). Once a generation has completed (all particles have terminated by absorption r
escape), the next iteration cycle begins with the bank particles as shown in the figure.

During the transport loops, & tallies are accumulated at different events as appropriate. For example, when a particle is
within a cell containing fissile material, and that particle undergoes a collision interaction, fission neutrons are generated and
stored to the bank. The particle then goes on to absorb, scatter, and whatever other interactions are in store for it until it leaves
the problem through escape or capture. Once all of the particles in the current generation have been disposed of, global sums
of all tallies in the problem are done, and a new iteration cycle begins.

Finally, the object labeled “Swap” in Fig. 1 refers to a POOMA member function that keeps particles and mesh data local
on individual nodes. This is explained in more detail below.

B. The a-eigenvalue Algorithm

As mentioned earlier, the o calculation is done via a series of k calculations. Therefore, this calculation uses the same
mechanism as depicted in Fig. 1. The algorithm hinges on selecting a value for o and converging the calculation, based on this
o, to k= 1.00. To achieve this, MC++ computes & using a series of settle cycles, so named to allow the initial neutron popula-
tion to stabilize, or settle, before beginning the o calculation. If after the settle cycles the system is supercritical (i.e., k> 1.0),
the o calculation begins. An initial value for o is selected using

a'=oc+(oc—l)x(a+k/tg) (H

where £, is the fission generation time defined as the time required to generate fission neutrons in a given generation, k is the
current value for the k-eigenvalue (which can come from any of the afore mentioned tallies), and o is the current value of the
o-eigenvalue. This is zero initially. Because the calculation relies on converging £ to 1.0, some number of inner k-effective
cycles are run per o-cycle in order to ensure that the computed £ is itself reasonably converged. Typically this is 2-4 inner
cycles per a-cycle, depending on the problem. During the o-cycles, computed values for In(ct) and In(k) are stored. After
each set of inner k-cycles, a new value for & is chosen using Eq. 1 prior to the next a-cycle. Once the a-cycles are complete, a
linear regression scheme is used to extrapolate the y-intercept of the line of best fit through these values. This intercept should
be the point at which In(k)=0, i.e., k= 1.0. This y-intercept is then exponentiated and is reported as the computed value for o.

An estimate of the error is also computeds. This error is the calculated from the estimated standard deviation in the fit of the
data-points to the line. A different method for estimating the error in o is under development.

It is worth noting that the o algorithm described here was added to MC++ and tested, serially and in pérallel, on a variety of
platforms, including ASCI Red and Blue options, in less than one day. This owes not just to the overall design of MC++, but
to the power of object-oriented methods, the POOMA class library, and the C++ language itself. MC++ has been written to
ensure portable parallelism, but also to ensure easy maintenance and addition of physics capabilities.

III. IMPLEMENTATION OF NEUTRON TRANSPORT USING POOMA AND OBJECT-ORIENTED METHODS

A. POOMA
POOMA stands for parallel object-oriented methods and applications, and is a class library intended to support a wide

variety of parallel scientific computing applications®. If one examines code development in general and physics software in
particular over the last several years, one often finds that the physics is imbedded in what was (at the time) the latest architec-
ture, software environment, or parallel paradigm. POOMA was developed in an effort to retain key physics investments in a
changing environment. Therefore, one of the key elements of POOMA is an architecture abstraction. That is, POOMA was
developed to provide the same interface for an end user (a transport methods developer in this case) to different computational
platforms. This allows the methods developer to focus on the computational physics algorithm and iet POOMA handle the
communications, domain decomposition, and other parallel-architecture concerns on different platforms. The programming
paradigm in POOMA is the data-paraliel model, which allows for a clean abstraction with some loss of generality to some
physics problems that are not inherently data-parallel (such as Monte Carlo neutron transport).

A framework can be thought of as something that captures reusable software design and supports common capabilities



within a specific problem domain’. Tt is an integrated and layered system, in which classes in higher layers utilize the classes
from lower layers to build capability. POOMA is built from 5 such class layers and provides the user with data-parallel repre-
sentations for a variety of data types. These data types, called global data types (GDT), include matrices, fields, and most
importantly for MC++, particles. In an application code, the user typically calculates only with the GDT objects. Class mem-
ber functions for GDTs in POOMA have been designed to seem similar to familiar procedural, data-parallel language syntax
where possible. However, it does not prevent users from using inheritance and polymorphism to create new classes that map
directly into problem domains of interest. This, combined with the parallel abstraction that POOMA provides, is what first
interested us in the framework technology.

B. PFarticles Classes

In POOMA, particles are free to move about a given domain while interacting with a fixed grid. Naturally it is important to
maintain particle locality within a given region on a local processor, otherwise the simulation will be dominated by interpro-
cessor communication as each particle will potentiaily fetch field data across nodes. The particle classes provide a data-parallel
expression syntax while handling the processor communication within the framework.

The particle classes consist of a double-precision particle field, or DPField, class, and a class that represents a distribution
of particles (called Particles). DPFields represent physical attributes of a particle, such as its position, direction cosines,
weight, and so on. A Particles object contains a set of DPFields that completely describe all of the particle attributes. While
both of these objects point to the same data, through the class member functions each of these objects operate on the attributes
of the particles in different ways. Generally speaking, the DPField class allows one to operate on individual attributes of the
particle (there are many examples of this in MC++), whereas the Particles class operates across particle attributes.

The Particles class contains even higher-level member functions that allow scatter/gather operations, interpolation func-
tions, and so on. Among these, a swap function is provided, which in combination with the problem domain-decomposition
(also provided by POOMA), provides load-balancing capabilities as particles move in the simulation. This function is respon-
sible for ensuring that particles are located on the same processor as local mesh data, and is invoked in MC++ after particle
positions are updated. The current domain decomposition algorithm is a simple spatial decomposition scheme. Once particle
positions are updated, the swap function is called as shown in Fig. 1.

Through the specifications of the DPFields, particles are constructed within POOMA. Using specifications of the problem
domain, which in this case is a computational mesh provided by another code, the Particles object and data layout are con-
structed. Once complete, the problem is fully specified within the POOMA framework, and one can then take advantage of the
functions POOMA offers.

There are many other details about POOMA that are not discussed here. For more information about POOMA, see Refs.
6, 8.

C. POOMA Implementation of Transport Physics

Naturally to use the POOMA framework, one must be able and willing to cast the problem into data-parallel form and to
utilize POOMA class implementations to access data and perform the physics. For Monte Carlo transport, the alpha version of
POOMA is a bit cumbersome to use. This is magnified by the nature of the problem being solved which is 7ot inherently data-
parallel. At any time in the simulation, individual neutrons in the distribution can undergo different interactions with their sur-
roundings. This presents a problem, as it becomes difficult to write nice tidy data-parallel statements all the time, which is one
of the nice features of POOMA.

Considering the transport problem to be solved, one is lead to a set of particle attributes that are required to simulate the
criticality problem. As mentioned before, to create particles in POOMA all one needs to do is describe their attributes using
DPFields. Once the DPFields have been specified, one then creates the Particles object (class instantiation) based on the layout
of the problem. In our case, the layout is defined by the mesh information. The details on how this is done are important, but
far to detailed to describe here*?"1%1!, The Particles object is created by specifying the layout, number of DPFields, and other
information.

During tracking, particle attributes are retrieved from the Particles object in a straight-forward way. Occasionaily during
the transport algorithm, data-parallel updates of particle attributes are done, for example, updating particle positions

x += u*dist; (2)

where x is the x-coordinate of the particle, u is the x-direction cosine, and dist is the distance to move the particle. Because the
multiplication operator (*) is overloaded, POOMA handles the computations for DPFields with no intervention from the user,
even though the particles in the problem will reside on different processors.

However, whenever individual particle interactions must be treated, MC++ loops over all nodes in the problem, and all



particles local to each node, and handle the interactions. This operation, while serial on individual nodes, is parallel across
nodes. Due to the non-data-parallel nature of the problem being solved, this happens often (e.g., some particles undergo colli-
sion events, other particles pass through a given cell without a collision and therefore cross a cell boundary into the next cell).
This is shown in Fig. 1, and is one of the reasons the unit of parallelization spans individual functions.

D. The Tally Classes
In addition to using the POOMA class library, MC++ has class definitions of it’s own to support abstractions appropriate
to the problem being solved. One such set of classes are those that are used to implement Monte Carlo tallies. These classes

are briefly described here, but additional information is available elsewhere!0.

In a Monte Carlo calculation, there are generally two types of tallies. Those that count events, and those that keep track of
some other quantities. The main difference is that event counters can be represented as integers, while other types of counters
are represented by floating point numbers. MC++ implements tallies using these simple ideas. The abstract base class
AbstractTally is a templated class containing common functions and data for all types of tallies. These include functions that
will allocate memory for the tally (if needed), initialize the tally, reset the tally, increment the tally, sum the tally at appropriate
intervals, do multi-processor gathers of tallies, broadcast summed results to other processors, and so on. Because Abstract-
Tally is an abstract class, it cannot be instantiated. It can only be used to derive other kinds of tallies. In addition, Abstract-
Tally is a templated class, meaning that at compile time the compiler will decide what type (int, float, efc.) a given derived tally
is and call the correct functions throughout the code. In MC++, there are currently two derived types of tallies, both of which
are concrete (meaning they can be instantiated and used in the code). These are the SimpleTally and Tally classes.

The SimpleTally class is used for integer tallies, and is very simple. It overloads the ++ operator to allow all such tallies to
be incremented in a straightforward way, e.g., ++number_collisions;. It also provides complete definitions for functions to
compute a running sum of the tally and to return the total value of the tally at any time (all of the correct type of course, thanks
to the templated base class). Naturally, since SimpleTally (and Tally described below) inherit from AbstractTally, member
functions of AbstractTally are available to derived objects.

The Tally class is used for all other types of tallies. In addition to defining similar functions as SimpleTally, it also defines
functions to compute averages and statistical errors on tally data. For example, if one had a tally called “sflux”, to return the
average value and statistical error in this tally to the user at any time, all one would have to do is qout << “Surface flux = “ <<
sflux.average() << “ +/- “ << sflux.error() <<endl; The class member functions take care of gathering tally data from all
processors (if a parallel calculation), computing the sum, re-broadcasting the values, and computing the average value and the
statistical error. The class user need only call these functions for any given tally where the physics dictates.

The power of such objects should be clear. Once one has provided definitions for the behavior of all tallies through the
class structure, one can instantiate (or create) any new tallies immediately at any time, and all tallies share the same functional-
ity, the same interfaces, and so on. For example, all current and future tallies can handle parallel or serial computations with
no special consideration or intervention from the user of the tally objects. This highlights one of the benefits of object-oriented

programming, the separation of the interface to some abstract object from the implementation of that object under differing
circumstances.

E. The Cross Section Classes

Similar to the Monte Carlo tally classes are a set of much more complex classes to handle the cross section data, and the
interface to that data, in MC++. This set of classes makes use of the standard template library (STL), and consists of a com-
plex series of base and inherited classes, each working in concert to provide the class user with the same interface and func-
tionality regardless of the cross section set, or type, used. That is, the cross section objects exhibit polymorphism. This is very
handy, as one can retrieve any cross section value needed in the same way, e.g., isotope->total_xsec(argument) where the
argument type and possibly the number of arguments tells the compiler which overloaded member function to use to return the
appropriate value (i.e., multigroup, continuous). In this example, the proper cross section is returned for isotope. Since most

of the cross section information is stored as STL Mapslz, STL interface functions are used by the cross section class member
functions to return the appropriate value for the cross section.

This set of abstractions leads to a powerful capability, in which one can seamlessly read in, manipulate, and use cross sec-
tions of widely varying types.

IV. PHYSICS AND PERFORMANCE RESULTS

In this section, physics and performance results for a series of test problems on a variety of platforms is discussed.



A. Platforms
MC++ was developed to be highly portable, and to run in parallel on platforms with parallel capability once compiled
there. Table I shows a list of all platforms MC++ has been run on to date.

TABLEI
Computational Platforms
Platfc.)rrr.l Description
Abbreviation
SGI64_MPI 64-bit SGI R10000 with multiple heads
SGI5 32-bit SGI Cluster
RS6K IBM RS6000 Cluster
SGIMP 32-bit SGI R8000 with multiple heads
T3D Cray T3D
TFLOP ASCI Red Intel TeraFLOPS
ORIGIN ASCI Mountain Blue SGI Origin 2000
SP2 ASCI Pacific Blue IBM SP2
SUN4SOL2 Sun Sparc10, Solaris 2.5
SGIO2 SGI 02

Because the MC++ application has been developed for a specific program (the Accelerated Strategic Computing Initiative,
or ASCI), most of the results shown here are only for ASCl-relevant hardware. This hardware includes the SGI64_MPI,
TFLOP, ORIGIN, and SP2.

Note also from the table that all platforms shown in bold have parallel capability. The platform abbreviations shown are
used throughout this paper. -

B. Test problems )
Several test problems were used to fully test the physics in MC++. Here, we focus on the double density godiva series of
tests, These problems consists of a bare Uranium sphere of radius 6.993555 cm. As previously mentioned, the geometry is

described using a rectangular mesh generated by another code*. A variety of tests were performed on meshes of different res-
olutions and differing characteristics. Tested mesh sizes were 32x32x32 (32,768 cells), 64x64x64 (262,144 cells),
128x128x128 (2,097,152 cells), and 256x256x256 (16,777,216 cells).

C. Portable Parallelism

For the most part, MC++ has been developed and debugged on a single platform (SUN4SOL2). Once it was mature
enough to run test problems, it was simply compiled on all platforms of interest and run there. However, not only did the code
run on these different platforms, but it did so in parallel, with no additional work or special considerations on any of the plat-
forms in question. This highlights one of the benefits of the POOMA framework, portable parallelism. Through POOMA’s
architecture and communications abstractions, MC++ is not only portable to different platforms, but also runs in parallel on
these platforms, allowing us to do most development locally in a robust computing environment rather than on somewhat
experimental architectures with poor development environments.

With the exception of some tuning of our sourcing algorithm and some problems with NetCDF and parallel IO on the
T3D (the meshes are provided to MC++ via NetCDF portable binary files), the code was compiled and run in parallel without
incident on all platforms shown in Table I. As the code grew in complexity, and we added additional physics features, we con-
tinued to enjoy the abstractions offered by POOMA. This greatly facilitated getting MC++ up and working across all plat-
forms in a short period of time (it was developed in about 5 months).



D. Physics Results, k

All k-effective problems were run with 30 cycles, 20 of which were used to compute averages and errors. Fig. 2 shows a
representative result from the TFLOP platform. The convergence of & on all platforms was the same, converging to the
expected value of 1.4. In addition, as the mesh resolution increased, the convergence improved. Shown in Fig. 2 is a calcula-
tion on the 2 million mesh cell godiva problem compared to an MCNP calculation on an analytic spherical surface of the
proper radius.

1.65 L] T L] L] L)
MCNP +o—
MC++ ——

1.6 Track-length K v,.s. Cucle Number for MCNP and MC++

1,55 | 2 million mesh cell pr .lem

15}

1,45 ¢

L
1.4} ++¢§-ii!l!s!!xtl!!ﬁuti!ttt_
+
+
1.35 f
+
1.3 L . A
0 5 10 15 20 25 30

Fig, 2: Track-length k-effective v.s. cycle number compared to MCNP on the 2 million mesh cett
problem. Here, MC++ was run on TFLOP using 32 processors. MCNP was run serially on the
SUN4SOL2 platform.

E. Physics Results, o

All a-eigenvalue problems were run with 18 ¢-cycles, 2 inner k-cycles per a-cycle, 12 a-cycles used for regression anal-
ysis, and 2 settle cycles prior to the start of the a-calculation. On all platforms in question, MC++ computed values for the a-
eigenvalue clustered around the expected value of 1.22 gen/sh (where 1 sh is 108 sec). A typical value for o on the 64x64x64

mesh (as an example) was 1.224 gen/sh +/- 0.084. As with the k-calculations, the higher the resolution the mesh, the better the
results, as expected.

FE. Timing Results

Even without any special performance tuning on any of the platforms in question, parallel performance of MC++ is quite
reasonable.

Fig. 3 shows the parallel performance of MC++ running the k-effective calculation on a variety of platforms and the
32x32x32 mesh. This plot is representative of the performance noted on all parallel platforms in Table I.

Fig. 4 shows parallel performance of MC++ running on the o-eigenvalue calculation on ASCI hardware. Note that as the
amount of work to do increases (either through the addition of particles or mesh cells), the parallel efficiency increases.

Note from all of these figures that the parallel performance is good, and good speedups are noted, even without special
tuning or other platform-specific considerations. We just compiled and ran MC++ and produced these results.

Note in particular that the timings shown in Fig. 4 indicate that the computation of the o-eigenvalue is now possible in a
manner of seconds, which is orders of magnitude faster than previously available with other codes available at Los Alamos.



fall-clock (sec)
8000 T T T T Y T

7000 | Perallel Perfornence, 32x32%32 Hesh

1000 z\:\ ——g

1 1 Il

0 L L 1
0 - 10 15 2 % » )
Nueber of Nodes

Fig. 3: k-eigenvalue performance on the 32x32x32 mesh for a variety of platforms.

a-Eigenvalue Performance, ORIGIN, 40k ptcls TFLOP Performance, a-Eigenvalue, 40k Ptcls
6000
, 20232 T
5000 | ——
_ —m—B4xE4X54 g o
8 4000 1 —A— 128126128 < —A— 128x128x128
3 ¢ 256x256x256 2 —5—256x256)256
2 3000 1 3
3 5
| 1 s
3 2000
1000 | . A
0 . ; 0 5 8 70

0 5 10 15 20 Number of Nodes
Number of Nodes

TFLOP Performance, «-Eigenvalue, 100,000 Ptcls

2500
—e—256x256x256
2000 +
g
)
2 1500 1
Q
S
=2 1000 4
[
=
500 +
0 t 1
0 50 100 150

Number of Nodes

Fig. 4: o-eigenvalue performance on ASCI hardware. Note as the work to do increases, so does the parallel
efficiency. Performance results for the large problem on TFLOP for fewer than 8 nodes not possible due
to memory constraints.



V. CONCLUSIONS AND FUTURE WORK

Beyond careful performance tuning, which has not been done, there are some new techniques and new physics that need to
be added. MC++ can serve not only as a computational physics tool, but also as a platform on which to try some new methods
for Monte Carlo transport. These methods include the implementation of an importance combing technique, in which particle
tracks and weights are manipulated in different ways to enhance convergence, or even the investigation of the application of
genetic algorithms to further enhance convergence. -

However, this work was not intended to just provide computational physics support for ASCL. It was also intended to help
a group of people involved in simulating transport phenomenon with legacy Fortran code to learn a new paradigm, and enable
the migration of capabilities encapsulated in these codes to different computing platforms. MC++ is the beginning of a trans-
port physics framework (TPF), which is a class library containing proper abstractions for transport physics, just as POOMA is
a class library containing proper abstractions for portable parallelism. This TPF will include proper abstractions for events,
energy deposition, variance reduction techniques, spatial differencing, synthetic accelerations, sources, and so on. It will
encapsulate transport physics, and will include Monte Carlo as well as other methods to solve the transport equation under dif-
ferent circumstances. MC++ is the first step in this direction, Further abstractions will be made to different mesh types, particle
types, problem regimes, and so on.

MC++ has been developed over a period of about 5 months. In that time, we have developed a code that is capable of
computing static k-eigenvalues and o-eigenvalues on large problems in parallel on all relevant computing platforms of the day.
This portable parallelism proved to be quite valuable as the code was developed and debugged on local workstations with
robust programming environments and rich development tools, then re-compiled and run in parallel on the more exotic hard-
ware without incident. The fact that we have not yet performance-tuned MC++, yet were able to achieve these parallel speed-
ups in a short period of time is a significant accomplishment. Although not inherently data-parallel, we have shown that the
Monte Carlo problem is castable into data-parallel form, and that our implementation of transport physics in C++, using
object-oriented methods and POOMA, can produce a code that is reasonably fast and efficient in a short period of time. This is
critical from an ASCI perspective, as platforms and computing environments will rapidly change. It will be crucial to be able
to respond to these changes, yet maintain a physics capability while always developing new capabilities and new methods.
MC++ is a big step in this direction.

REFERENCES

1. Lewis, E.E., Miller, W.F., Computational Methods of Neutron Transport, John Wiley & Sons Inc., 1984.

2. Glasstone, S., Sesonske, A., Nuclear Reactor Engineering, Chapman & Hall, 1994.

3. I.F. Briesmiester, ed., “MCNP -- A General Monte Carlo N-particle Transport Code, Version 4A”, Los Alamos National
Laboratory Report, LA-12625-M.

4. Nolen, S.D., Lee, S.R., Cummings, J.C., “Adding Mesh Tracking Capability to MC++”, X Division Research Note, Los
Alamos National Laboratory, XTM-RN(U)96-019, 1996.

5. Parratt, L.G., Prohahility and Experimental Exrors in Science, John Wiley & Sons Inc., 1961.

6. Wilson, G., Lu, P, ed., Parallel Programming Using C++, MIT Press, 1996.

7. Appley, G., Gallaher, M., “A Framework for Manufacturing-Process Simulation Software”, Obiject Magazine, May 1996,
pg. 33.

8. See http://www.acl.lanl.gov/PoomaFramework.

9. Lee, S.R., Cummings, J.C., Nolen, S.D., “Building a Transport Code using POOMA and Object-Oriented Methods”, X
Division Research Note, Los Alamos National Laboratory, XTM-RN(U)96-003, 1996.

10. Lee, S.R., Cummings, J.C., Nolen, $.D., “Some C++ Classes for Monte Carlo Tallies”, X Division Research Note, Los
Alamos National Laboratory, XTM-RN(U)96-004, 1996.

11. See http://www-xdiv.lanl.gov/XTM/srlee/PROJECTS/MC++.

12. Musser, D., Saini, A., STL Tutorial and Reference Guide, Addisson-Wesley Publishing Company, 1996.



