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Abstract 

A comprehensive analytical 
havior of a naturally fractured reserv 
bution. Geologically realisti 
used to represent reservoirs of intensity and uniformity. Transient 
interporosity %ow is assumed and interporosity skin is incorporated. 

Drawdown and interference pressure transient tests are investigated. The results 
show distinctions in the pressure response from intensely and sparsely fractured 
reservoirs in the absence of interporosity skin. Also, unifody and nonuniformly 
fractured reservoirs exhibit distinct responses, irrespective of the degree of fracture 

to study the presswe transient be- 
a continuous matrix block size distri- 
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Section 1 

Introduction 

It has long been recognized that naturally fractured reservoirs contain a significant 
portion of the world's hydrocarbon reserves. As such, the need to understand the 
detailed mechanisms of flow in these reservoirs is paramount. One of the main 
parameters that governs flow in fractured reservoirs is the matrix block size distri- - 
bution. In one phase flow, it controls the transition from early production from the 
fractures to late production from the total reservoir (niatrix and fractures). In two 
phase flow, it controls the rate of imbibition (or displacement) and ultimately the 
recovery .efficiency of the reservoir [34]. 

Pressure transient testing provides a method to predict producibility in naturally 
fractured reservoirs. In order to estimate producibility, however, many assumptions 
are made. Certain assumptions, such 51s the idealization of a single matrix block 

6 

size representing the reservoir, may be eliminated. Matrix block size distributions 
can be included in the model to more accurately describe the flow in naturally 
fractured reservoirs. The model presented in this study captures the intracacies of 
flow in a naturally fractured reservoir without complicating the task of analysis. 
The following are the key assumptions used in deriving the analytical solution: .I 

0 The primary porosity (matrix) is uniform, homogeneous and isotropic. The 
matrix blocks are defined by a characteristic length (volume of matrix 
block/surface area of matrix block, i.e. reciprical of specific surface area) 

1 
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or plates. All matrix blocks have the same con- 
nectivity path to the 

0 The secondary porosity (fractures) is uniform, homogeneous and isotropic. 

0 Flow occurs from the matrix into the fractures and then radially to the well- 
bore. No flow from the matrix to the wellbore is allowed and all flow is 
unsteady state (USS). 

0 Theoverallres te in extent and horizontal. 

0 The surface flow rate in the active well is constant, gravity effects are negligi- 

- ble, and Darcy’s law is obeyed. 

0 A single phase fluid of small compressibiE$y and constant viscosity flows 
. through the medium. 

In this report, a continuous probability density function of matrix block size 
is used. The interaction between the matrix and the fractures are defined by the 
following five parameters: 

I 

and maximum 
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SECTION 1. INTRODUCTION 3 

is the type of distribution (i.e. exponentially decaying,. exponentially increasing, 
linearly decreasing, linearly increasing, rectangular, or Dirac delta). The limits of 
the probability density function (i.e. . hmin. and h,,,), -however, do not need to be 
known and are obtained from the analysis of the pressure transient data. 

. 
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2.1 Geological Aspects 

In order to analyze naturally fractured reservoits, petroleum engineers have ideal- 
ized complex fracture patterns into very simple geometric shapes. Without such 
simplification, the mathematical problem would be unsolvable. The idealized as- 

created in a structured 
been shown to be relat 
local complexities of str 

ses and variations in these are due to 

(especially those that are close to a fault plane). For instance, quartzite rocks have 

4 
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a greater tendency to fracture than soft rocks such as limestones, which have a 
tendency to flow or bend. 

Outcrops provide the best visual identification of the types of fracture pat- 
terns that exist. Dyer [22] presented spectacular aerial photographs of jointing of 
sandstones in the Arches National Park. The photographs clearly showed parallel 
fractures extending over a large distance. The joints were continuous in one direc- 
tion but the majority did not link up in the perpendicular direction, and they were 
distributed in length such that there were more smaller joints than larger joints (Le. 
exponential decaying or linearly decreasing). In terms of model simplification, these 
fractures can be represented as vertical or horizontal slabs. Other outcrops shown 
by Dyer, demonstrated the same type of parallel fractures, but with a subparallel 
set of fractures which were perpendicular to the top and bottom bedding suTfaces. 
These fractures can be represented as either skewed rectangles, perpendicular rect- 
angles or squares depending on the intersection angle of the fractures (Figure 2.1). 
In three dimensions, these can be modeled as cubes or rectangular parallelepipeds. 
Other fracture photographs show calcite cemented or mineral filled fractures that 
could restrict flow from one matrix block to another. This phenomenon is termed 
interporosity skin [14,38]. 

Pollard and Aydin [43] showed that most joints were not individually continuous 
but were usually a series of subparallel fractures (i.e. several smaller joints make up 
a larger joint). The spacing between the joints in sedimentary rocks generally had a 
regular distribution and were scaled with the thickness of the fractured layer. The 
outcrops studied suggested most joints (in sedimentary rocks) were perpendicular 
to the layering and were roughly rectangular in pattern. They also pointed out that 
joints rarely exceeded several hundred meters and were at least as long as several 
times the characteristic grain size of the rock. Fractures smaller than this were con- 
sidered to be micro-cracks. Pollard and Aydin divided joint intersection geometries 
into orthogonal and nonorthogond classifications. Either of these two classifications 
can be divided into three additional groups: continuous, continuous and discontin- 
uous, and discontinuous. Depending on the combinations of these groups, ‘+’, ‘X’, 
‘T’, and ‘Y’ intersections can be formed (Figure 2.1). The greater the joint spacing 

. 
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- 
the greater the communication or linking between joints. Other joint types, such 
as echelon fractures can also be seen and are a result of the interaction of the stress 

ighboring fractures. 

Mt. Abott quadrangle of the central Sierra Nevadas were stud- 
ied by Segall [46). He discussed why fractures propagate and stop. fractures grow 

reaches a critical d u e  (a property of the rock and envi- when the extension 
ronmental stress conditions) and stops due to elastic interaction from nearby cracks 
and an overall d e in the systems effective stiffness. Again, the fracture (or 
fault) patterns on arrays. Many of these fractures 
were discontinuous and appeared to be mly placed. This pattern can be mod- 
elled by a Monte Carlo app odic array of cracks. In 

were parallel to each othe stribution in fracture 
e exponential (iie. there were many more smaller joints than 

larger joints). He also showed that joint lengths were comparable to lengths in the 
vertical exposure (i.e. these relationships exist in three dimensions). 

or solid rectangles) in the Asxnari formation of Southwestern Iran. In this forma- 
tion, the fracture dens h or matrix block size characteristic 
length) had an invers o bed thickness and was independent 
of structural setting. 

9 
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L McQuillan I371 described simil le geometric fracture patterns (i.e. cubes 
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Figure 2.1: Idealizations of Typical Fracture Patterns seen iri Nature. 
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Barenblatt et al. [4,5] i e porosity system for natu- 
that, at every point in the reservoir, 

there are two fhid pressures; onein the fracture and one in the matrix. Flow equa- 

tions from the matrix to the fracture were linked using the assumption of pseudo 
steady state (PSS), wbich dated  the flow rate from the matrix to the fracture to 
the difference between the matrix pressure and the fracture pressure (i.e. explicitly 

* 

d essentially the same model as Barenblatt et 

engineering Variables. They 
inuous uniform fractures, but in 

introduced A, the interporosity flow 

of the fractures. Using Xiand w they 

e and matrix flow connected the two 

r. The interporosity flow 

exhibit the double 

well testing for fractured reservoirs. 
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porosity.behavior. He suggested the double porosity behavior cannot be seen be- 
cause reliable data are not obtained during the early part uf well tests (Le. storage 
effects). Essentially, Odeh translated the anisotropic model.of Warren and Root to 
an isotropic one. 

Several years later, .Kazemi et al. 1321 extended Warren and Root’s double 
porosity model to interference well tests. Kazemi considered an infinite reservoir 
with a constant rate of production at the observation well. Like others, Kazemi 
incorporated PSS fiow from the matrix to the fractures. The solution was solved in 
Laplace space and was numerically inverted. Some important conclusions were that 
the double porosity model was important for early pressure transient responses, 
and that at late times, the model approached the homogeneous finite well source 
solution. In the same year, Kazemi [31] presented additional work on pressure 
transient responses in reservoirs with uniform fracture distributions. This work 
dropped the assumption of PSS and used an unsteady state formulation of flow from 
the matrix to the fractures. The reservoir considered was two-dimensional, circular, 
and finite. They explored allowing the matrix fluid to flow into the wellbore directly, 
but they showed that this effect was insignificant for low matrix permeability. They 
concluded the USS formulation increased the length of the transition zone but did 
not alter the early and late time parallel straight lines. 

In the mid-seventies, De Swaan [17] also used the assumption of USS interporos- 
ity flow. Approximate equations to early and late time responses were presented by 
the inclusion of a hydraulic dif€usivity constant. De Swaan considered horizontal 
fractures and spherical matrix blocks. 

Najurieta [39,40] solved the interference well test case using De Swaan’s USS 
solution for both slab and cubic geometries (assuming an idnite reservoir). Najuri- 
eta used an improved Schapery [45] inversion technique to transform the solution 
from Laplace space to real time space. This improved the approximation of the 
early, transition, and late time responses. 

Deruyck [20] considered interference well tests using Warren and Root’s model. 
He considered both constant pressure and constant rate inner boundary conditions 

- 

.. 

and applied the PSS interporosity flow assumption. Type curves were presented for 
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. .  both constant press ary conditions. He compared 
finite well radius solution asd observed no signiscagt 

greater than approximately twenty feet from the 
ortantly, he introduced a new patameta 8 (8 =.Ax.:> that 

one type curve for constant rate production. 
is for this new parameter from the approximate 

source solution.' Later, Deruyclc et al. [21] presented essentially the same 

the line source solution t 
. differences for observati 

* 

active weU Mos 
eliminated the 
He provided the theoreti 

was considered by Kuc Sawyer f333. They concluded the Warren and Root 

USS formulation proposed by De 
etries. At  early and late times, the 

pressure transient r 
ter paper, Cinco-Ley et 

n the pressure transient 

binations of these blo 
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She.showed that small matrix blocks have a pressure response more like the PSS 
behavior, while larger matrix blocks behaved more like USS. The larger the matrix 
blocks, therefore, the longer the transition zone. 

. The PSS and USS solutions were combined into one model.by Jalali-Yazdi and 
Ershaghi [28]. Their solution used the Najurieta approximation (improved Schapeq 
approximation) to develop functions of time that describe the interporosity flow 
interaction. Also, they presented a correlation for parameter estimation, using the 
difference between the wellbore pressure response and either the early time or the 
late time pressure response. 

Braester [ll] presented numerical solutions which showed that drawdown pres- 
sures were not sensitive enough to the variation in sizes of the blocks (especially 
for matrix blocks not in the immediate vicinity of the wellbore). $he suggested, 
therefore,.that drawdown and buildup well tests do not yield a unique solution for 
matrix block sizes. 

In a recent paper, Belani and Jalali-Yazdi [7] extended the discrete model pro- 
posed by Cinco-Ley and S&ego [13] to a continuous model (i.e. a continuous 
probability density function of matrix block sizes). They used three probability 
density functions: Ditac delta, uniform and bimodal. The Dirac delta function re- 
sulted in a sharp pressure response identical to the Warren and Root model. With 
an increase in the variance of the matrix block size distribution, they found features 
of a fractured reservoir response become less pronounced. 

.. 
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Section 3 

Statement of the Problem 
I 

. Yet, the utility of 'ning the matrix block size 
one of the main parameters 

transition from early 
fractures to late production from the total 

flow, it controls the rate of imbibition (or 
production of hydrocarbons fro 

placement) and ultimately the 

ensity and the degree of 

ertheless, a completely 

- * 
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Section 4 

I Theory and Solution 

4.1 General Solution 
The dif€usivity equation for a double porosity reservoir can be modified to include 
a probability distribution of matrix block size by introducing a source integral [7]: 

The source integral in Equation 4.1 accounts for the flow contribution of the ma- 
trix to the fracture. It is assumed that fluid travels from the matrix to the fractures 
and to the wellbore. P(h) is the probability density function (PDF) describing the 
likelihood of a certain matrix block size to exist and Q(h) is the flow contribution 
from that matrix block to the fracture. For transient interporosity flow and slab 
geometry: 

(4.2) 
km Q(h) = -- ph vpm linterface 

Q(h), therefore, takes into consideration the mode of interporosity flow and also the 
geometry of the matrix blocks. 

For a well producing at constant rate in an infinite reservoir, the interference 
solution in Laplace space is: 

13 ’ 
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(4.4) 
KO@) + SDSKl(Z) 

s[cDs(l(O(z) + s D z h ; ( Z ) )  + 5K1(5)] 
Parameter s is the Laplace variable related to dimensionless time (to) and the Bessel 
function axgument is: 

2 =  (4.5) 

The function f(s) embodies the reservoir parameters including the matrix block size 
distribution. the presence of interporosity skin: 

(4.6) 
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4.2 Long Time Approximation 

As t D  becomes large, the Laplace space variable s becomes small. As s approaches 
zero, the function f(s) becomes one. Neglecting wellbore storage and inverting to 
the time domain, Equation 4.4 yields: 

(4.12) 
1 PO, = S [ h ( t D )  + 2 s D  + -809071 9 

and Equation 4.3 yields: 

(4.13) 

i 

4.3 Early Time Approximat ion 

As becomes very small ,  the Laplace space variable s becomes large and the 
function f(s) approaches w ~ ,  the fractional storativity of the fractures. In the absence 
of wellbore storage and skin, inversions of Equation 4.4 give: 

. 3  

(4.14) 

This early time solution should not be confused with the ‘classical’ early parallel 
straight line response given by: 

(4.15) 

t 



Section 5 

Probabil Density ]Functions 

Prediction of the ressure response requires the type of matrix block size distribution 
be known or assumed. When the PDF is selected, ure intensity can be inferred 

- 

. from pressure transient data. Two types of probability density functions are used to 
represent the variability of matrix block size. These types, exponential and linear 
(Figure 5.1),.occur in outcrops as indicated in the geological literature [22,43,46]. 
The D i m  delta and are each’subsets of the exponential 
and linear distributions. 

ture intensity, while the variance The mean of a distrib - 

is a measure of the degree of fracture uniformity. As fracture intensity increases, 
mean block size decreases and P(h) be 

becomes ‘mow’. 
. When fracturin 

probability density function [3]. 
crop and plotted as shown. There 
n this example, h,i, is one meter 

ter htatio, therefore, is 
ability density function 
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result is a normalized probability density .function that is exponentially -decaying 
with a decay constant (‘a’) of -5. 

5.1 Exponential and Linear PDF 

The exponential PDF is given by: 

where ‘a’ is the exponential constant. The linear distribution function is: 

where ‘m’ is the slope and ‘b’ is the vertical intercept of the c a r t e s h  plot of f ( h D )  
versus hD.  Because a probability function must be positive, the slope must be in 
the range: 

The intercept ‘b’ is given by: 

5.2 Limiting Forms-Rectangular 
Distributions 

(5.4) 

and Dirac Delta 

When ‘m’ is zero (linear PDF) or ‘a’ is zero (exponential PDF), both probability 
density functions reduce to the rectangular distribution: 

’ 

. 

(5.5) 
1 

1 - hratio ’ P(hD) = 

and when ‘m’ or ‘a’ approach infinity, the distributions reduce to the Dirac delta 
function: 
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Figure 5.2: Construction of Probability Density Function from Outcrop, Central 
Sierra Nevadas. 
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PDF f( s), where ( = ,/e 

ordered as in 



Section 6 

Discussion-Drawdown Testing 

Equation 4.4 in the absence of wellbore storage and skin reduces to: 

Equat-an 6.1 is numerically evaluated using the SteMest algodun [lis] for the ex- 
ponential PDF listed in Table 5.1. Figure 6.1 illustrates the response for varying 
values of ‘a’ holding htcrtb constant. For positively increasing values of ‘a’, fracture 
intensity increases and the response approaches the Dirac delta response for a uni- 
form matrix block size hmin (i.e. the response occurs earlier in time). For negatively 
increasing values of ‘a’, fracture intensity decreases and the response approaches the 
Dirac delta response for a uniform matrix block size hm,, (i-e. the response occurs 
later in time). Thus, fracture intensity determines the temporal position of the 
pressure response. Fracture uniformity, however, af€ects the shape of the pressure 
response. From Figure 6.1, it is evident the derivative profile shows a substantial 
degree of asymmetry with respect to the time axis as ‘a’ increases or decreases to 
large absolute values. The response for the rectangular matrix block size distri- 
bution (i.e. a=O), however, is nearly symmetric. Therefore, asymmetry increases 
as fracturing becomes more uniform, and the shape of the derivative profile can 

be used as a qualitative indicator of the degree of matrix block size variability.or 
nonuniformity. 

21 
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23 SECTION 6. DISCUSSION-DRAWDOWN TESTLNG 

In addition, parameter hrutb provides-an estirnate.of matrix block size variabil- 
ity. An h,*, approaching one indicates perfectly uniform fracturing, while hratio 
approaching zero indicates perfectly nonuniform fracturing. Figure 6.2 illustrates 
the pressure response for varying values of htutio with ‘a’ held constant. For h,utio 
approaching zero, the response approaches a homogenous reservoir response. This 
occurs because there is an incessant gradual contribution from the matrix to the 
fractures. As long BS fracturing is extremely nonuniform, the response will not ex- 
hibit the classical prof3e of a distinct transition zone separating early and late time 
semilog straight lines. 

6.1 Type Curve For Drawdown Well Tests 

For the rectangular PDF, a type curve can be developed for estimation of o m ,  Amin, 

and hratio. The type curve is based on the following time domain solution of the 
wellbore pressure response: - 

where F(tD) is the time-dependent reservoir storativity: 

and r is the matrix response time coefficient: 

(6.4) 
urn r = - .  
7x 

Equations 6.2 and 6.3 are obtained by applying the inversion technique of Najurieta 
and Schapery [45,40,39]. For the rectangular PDF, Equation 6.3 becomes: 

where y is the variable of integration and rmax is the response time coefficient of the 
most dormant (or largest) matrix block: 
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In general, the time domain approximation gives.remarkably. good results (Figure 
6.3). Using the difference between the extrapolated late time pressure response and 

Y 

the observed pressure, one obtains: 

The type curve (Figure 6.4) is generated for the rectangular PDF -by plotting 
the pressure difference A P  versus & for a range of hratjo and w, values. This type 
curve is similar to one presented by Jalali-Yazdi and Ershaghi [27] where the time 
match yields rm,= (and hence, Amin), and the pressure match yields om. Fracture 
permeability, kj, can be calculated from the slope of the semilog straight line. Given 
reliable estimates of matrix permeability (i.e. from core analysis), one can calculate 
hm,, from the definition of Amin given in Appendix A. From the shape of the curve, 
hrario is estimated, and hence, hmin is determined. The arithmetic mean of hmjn and 
hm,, is a measure of fracture intensity or sparsity. c 

The type curve demonstrates two key ideas. First, as matrix storativity pre- 
dominates (increasing urn), brut, affects the pressure response more significantly. 
Conversely, as w, decreases, the effect of matrix block size variability becomes less 
significant. Second, the effect of htotio on the pressure response is greatest for lower 
values of hratio ( e.g. the pressure response changes more significantly for h+atio Val- 
ues from 0.1 to 0.5 than from 0.5 to 1.0). This indicates that block size variability 
affects the pressure response significantly if hmjn and h,,, differ by at least one 
order of magnitude. Block size variability less than half an order of magnitude does 
not affect the pressure response significantly. 

6.2 Effect of Interporosity Skin 
2 

An example of the effect of interporosity skin ( S Z D ~ , , , )  on the pressure transient 
response is shown in Figure 6.5. A significant change in the pressure derivative is 
seen for small changes in S Z D ~ ~ , , ,  and thus, the effect of the matrix block size distri- 
bution is masked. The derivative prgfile becomes symmetric and more pronounced 
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Figure 6.4: Rectangular PDF: Drawdown Type Curve for Varying h,=tk, Amin, wm. 
* Accurate for t D  > 100 and Amin < lo-'. 
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which is typical of the PSS response of Warren and Root. A symmetric PSS type 
response develops even if the no skin profile is asymmetric. As interporosity skin 
increases, the derivative profile shifts in time, giving apparent X values that. are 
too s d  (more dormant matrix). Thus, if interporosity'skin exists, interpretation 
of pressure transient tests by the Warren and Root model underestimates X and 
fracture intensity. 

, 
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Figure 6.5: Rectangular PDF: Effect of Interporosity Skin, hrctk = .l, Ami, = lo-', 
wm = .9. 



Section 7 

Discussio nce Testing 
I 

Braester[ll] demonstrated that drawdown (or buildup) tests in naturally fractured 
reservoirs may not be iduenced by matrix blocks significantly away from the well- 
bore. Interference testing, therefore, is preferred because the response is af€ected 
by matrix blocks between the active and observation wells. A simplified solution 
for interference testing in the absence of storage and wellbore skin is the line source 
solution: 

F D j  = (7-1) 
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curve is equal to one, the PDF is a Dirac delta function and the type curve is similar 
to that presented by Deruycli et  aZ[20,21]. 

For large values of 8, the matrix block size variability becomes increasingly 
important and hratio can be better estimated. Thus, if the dimensionless distance 

* 

( fg )  between the active and observation wells is large, or if Ami, becomes large 
(i.e. greater fracture intensity), then matrix block size variability becomes a key 
parameter in interference pressure transient analysis. Conversely, for s d e r  values 
of 8, matrix block size variability (or hvatio) does not affect the pressure response 
significantly. Also, as 8 becomes larger, the response approaches the line source 
solution for smder dues of 2. 





Section 8 

Conclusions 

1. A formulation incorporating transient interporosity flow and interporosity skin 
is presented for fractured reservoirs with variable matrix block size. Ewe 
nential and linear probability density functions have been used to represent 
intensely and sparsely fractured reservoirs with varying degrees of fracture 
uniformity. 

- 
2. Type c w e s  have been generated for drawdown and interference well tests 

based on the rectangular PDF and slab matrix block geometry. Type curves 
yield estimates of fracture intensity as well as fracture nonunifonnity. 

3. Fracture intensity determines the.tempora1 position of the pressure response, 
while fracture uniformity affects the shape of the pressure response. For 
transient interporosity flow, uniformly fractured reservoirs exhibit asymmetric 
derivative profiles, whereas nonuniformly fractured reservoirs exhibit symmet- 
ric profiles. 

4. The parameter FLtatio quantifies the degree of fracture uniformity. Uniform 
fracturing is indicated when htatio is near one, while nonuniform fracturing 
is indicated when hfatio is near zero. For an extremely nonuniform fractured 
reservoir (h,,ti0 approaching zero), the pressure response is similar to a non- 

- 

fractured homogeneous reservoir response. 

33 
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* 

5. Matrix block size ility (hrcrtio) canno estimated in the presence of 
interporosity skin damage. The Warren and Root model overestimates matrix 
block size if interp ity skin is present. 



Section 9 

Nomenclature 

a 
b 

m 

= exponential PDF constant 
= intercept of linear PDF 
= fracture compressibility 
= matrix compressibility 
= dimensionless. wellbore storage 
= total compressibility 
= Laplace space function 
= matrix block size characteristic length (Volume/Surface Area) 
= dimensiodess matrix block size length 
= fracture thickness 
= maximum block size length 
= minimum block size length 

= interporosity damaged zone thickness 
= fracture permeability 
= matrix permeability 
= interporosity damaged zone permeability 
= modified Bessel function, second kind, zero order 
= modified Bessel function, second kind, first order 
= slope of linear PDF 

= a t io  of hmin to hma, 

35 
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Po, 
P o ,  
P D W  = dimensionless wellbore pressure 
pi = fracture fluid pressure 

P(h) = block size distribution function 
P( h D )  = dimensionless block size distribution function 
pi = initial reservoir pressure 
p?n =' matrix fluid pressure 
PWf = wellbore flowing pressure 

Q(h) 
r = radial coordinate 
r D  = dimensionless 
r W  = wellbore radius 

SD = dimensionless wellbore 
SID = dimensionless interpor 
SIDmin &mum dimensionless 
t = time 
tD = dimensionless time . 

= flow contribution from matrix size h 

+) S = Laplace parameter 

dimensionless interporosity flow coefficient 
E 

- c 
' .  
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wln 
8 

= dimensionless matrix storativity ratio 
= dimensionless correlation parameter 

37 
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Derivation of ral Solution 

38 
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, 

Other matrix block geometries can be included in the solution by changing the 
interporosity boundary conditions. After applying Laplace transforms to the flow 
equations and boundary conditions one obtains Equations 4.3 and 4.4. 





C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
IC 
C 
C 
C 
C 
C 

BULK VOLUME STORATIVITY 

BULK VOLUME STORATIVITY + 

m---------- FRACTIONAL STORATIVITY OF THE MATRIX TO THE 
HRATIO------ THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE 
------THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY 

FUNCTION 
-IN----- THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY 

FUNCTION 
XTAUMIN----- THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE 

BLOCK EFFECTS THE PRESSURE TRANSIENT 
RESPONSE--TAU=WM/(1.781*LAMBDA) 

XTAUMAX-----THE APPROXIMATE TIME WHEN THE MINIMUM SIZE 
BLOCK EFFECTS THE PRESSURE TRANSIENT 

SD---------- THE INTERPOROSITY SKIN FACTOR 

TI)---------- DIMENSIONLESS TIME 
PD---------- DIMENSIONLESS FRACTURE PRESSURE 
PDS--------- DIMENSIONLESS SLOPE OF PD/LN(TD) 

E'S---------- THE FUNCTION IN LAPLACE SPACE TO BE INVERTED 

M N--------- INTERGERS USED IN STEFAST SUBROUTINE 

IN THIS PROGRAM, THIS IS NOT OUTPUT * 

DQDAGS------ THE CALLABLE INTEGRATION ROUTINE DESIGNED 
BY IMSL 

" 
IMPLICIT DOUBLE PRECISION (A-H,O-2) 
COMMON RD, WE', WM, XLAMMAX, W I N ,  AA, XXUP, SD 
COMMON M 
OPEN(UNIT=2,FILE='PROJ.OUT') 
REWIND (UNIT=2) 
OPEN (UNIT=3, FILE=' PROJS . OUT' ) 
REWIND (UNIT-3) 
M=l 
N-12 
RD=l . 
PRINT *, 'EXPONENTIAL DECLINE A5 ' 
READ *, AA 
PRINT *, 'FRAC. SKIN= 
READ *, SD 
PRINT *, 'LAMMIN= 
READ *, XLAMMIN 
PRINT *, 'LAkWU= ' 
RCAD *, XLAMMAX 

READ *, WM 
W=l. 0-WM 
m e 2 2 0  
TD-1. 

. PRINT *, 'WM= ' 



WRITE i3;*j NNN 
C CALCULATE THE PD, PDS IN REAL TIME SPACE USING - C THE STEFAST SUBROUTINE AND DQDAGS SUBROUTINE 

DO 10 IClfNNN 
CALL PWD(TD,NIPD,PDS) 

PDS=TD*PDS 
WRITE (2,99) TDIPD 

99 FORMAT (2X, 2F24.9) 

10 CONTINUE 
STOP 
END 

C THE SLOPE IS TD*D(PD/TD) 

I WRITE (3f99) TD,PDS 

TD=TD*l. 1 

...................................................... C 
C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND 
C IS CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE 
C INVERTED. THIS FUNCTION IS SED TO CALCULRTE THE PD 
C 
C 

IN REAL TIME SPACE. 

DOUBLE PRECISION FUNCTION PWe(S) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
EXTERNAL F 

COMMON M 
ERRREL=. 0001 
ERRABS-0 .O 
XTAUMIN=WM/ (1.7 8 1 *XLAMMAx) 

HRAT IOID SQRT (XLAMMIN/XLAMMAX 1 
XLOW=DSQRT (WM*S/XLAMMAX) 
XUP=DSQRT (WM*S/XLAMMIN) 
xxuP=XUP 

TERMPl/ (DEXP (-AA*HRATIO) -DE= (-MI ) 
FS=V?FtDSQRT(WM*XIN/S)*AA*TEW*RESULT 
XX=RD*DSQRT (S *FS) 
XXXeDSQRT (S *FS 1 
A=DBSKO (XX) 
B-DBSK1 (XXX) 
TOP=A 
BOT=S*XXX*B 

RETURN 
END 

...................................................... 

COMMON RD, WF WM, XLAMMAX, XLAMMIN, AA, XXUP SD 

XTAUMAX=WM/ (1.7 8 1 *XLAMMIN) 

r CALL DQDAGS (F,XLOW,XUP,ERRABStEmLf RESULT,ERREST) 

PLAP=TOP/BOT 

...................................................... C 
C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND 
C 
C 
C 
C 

&.- 

k 

EXTERNAL F 

COMMON M 
ERRREP. 0001 

COMMON RD,WF,WM, 

XTAUMAX=WM 

.I 



C 
c .  
C 
C 
C 



c----------------------------------------------------------------- 
c----------------.--- EXACT LINEAR SOLUTION---------------" 

a c---------------------------------------~~-~-------------------- 
C THIS PROGRRM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT 
C INTERPOROSITY FLOW WELL TEST USING A LINEAR PROBABILITY 
C DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE SPACE IS USED 
C AND INVERTED VIA THE STEFEST ALGORITHYM. THE VARIABLES IN THE 
C PROGRAM ARE: 

2 c  
C xM---------- SLOPE OF LINE OBABILITY DENS1 
C =---------- INTERCEPT OF LiNEAR PROBABILITY D 
C THIS IS DETERMINED BY THE PROGRAM DUE TO THE 

C 
C 
C 
C BULK VOLUME STORATIVITY 
C 
C BULK VOLUME STORATIVITY 
C 
C 

? C  APPLICATION OF THE FAC MUST BE 
EQUAL TO ONE 

m---------- DIMENSIONLESS DISTANCE FROM ACTIVE WELL 
m---------- FRACTION- STORATIVITYlOF THE FRACTURES TO THE 

m---------- FRACTIONAL STORATIVITY OF THE MATRIX TO THE 

HRATIO------ THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE 
XLRMMAX-----THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY c FUNCTION 

C 
C FUNCTION 
C 
C BLOCK EFFECTS THE PRESSURE TRANSIENT 
C RESPONSE--TAU=WM/(1.781*WDA) 
C 
C 
C 
C 
C TD---------- DIMENSIONLESS TIME 
C PD---------- DIMENSIONLESS FRACTURE PRESSURE 

XWLMMIN-----THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY 

XTAUMIN----- THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE 

XTAUMAX----- THE APPROXIMATE TIME WHEN THE MINIMUM SIZE 

SD---------- THE INTERPOROSITY SKIN FACTOR 
BLOCK EFFECTS THE PRESSURE TRANSIENT 

* c  PDS---------DIMENSIONLESS SLOPE OF PD/LN(TD) 
' C  IN THIS PROGRAM, THIS IS NOT OUTPUT 

E'S---------- THE FUNCTION IN LAPLACE SPACE TO BE INVERTED 

M,N---------INTERGERS USED IN STEFAST SUBROUTINE 

PWD---------THE CALLABLE STEFAST SUBROUTINE 

DQDAGS------ THE CALLABLE INTEGRATION ROUTINE,DESIGNED 

* 

BY IMSL 
C c------------------------------""""'-~------~------------~-- 
c---------------------------'-"""""------------------------ 
c-----------------------------'-"-"- 
C THIS PROGRAM CALCULATES THE LAPLACE I 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

COMMON M 
OPEN (UNITs2 
REWIND (UNITc2) 
OPEN (UNIT=3, FILE=*PiOJS .OUT' 1 
REWIND (UNIT=3) 

PRINT *, 'RD= 
READ *, RD 

OUBLE-POROSITY MODEL. 

COMMON RD, W F  X L A M M A X r  XLAMMIN, SDt 
t =' PROJ. OUT' ) 

I 

PRINT *, 'SLOPE= 
READ *, XM 
PRINT * t  'LAWINS 
READ * p  X-IN 



PRINT *, 'HRATIOP ' 
READ *, HRATIO 
PRIN!l' *, 'WM= ' 
READ *, WM 
W=l. 0-WM 
XLAMMl%=XLAMMIN/ (HRATIO**2) 
XB=(l-.S*XM+.5*XM* (HRATIO**2) ) / (1-HRATIO) 
FHRAT=XM*HFLATIO+XB 
FONE=XM+XB 
PRINT *, 'CORR. FOR AREA *,'FHRAT= ',FHRAT,'Fl=>',FONE,'M= ',XM 
PRINT *, '-IN= ', XLAMMIN, 'LAESMAXP ', XLAMM?iX 
NNN=22 0 
TD=1. 
WRITE (2,*) NNN 
WRITE (3,*) NNN 

C CALCULATE THE PD, PDS IN REAt TIME SPACE USING THE 
C STEFAST SUBROUTINE AND DQDAGS SUBROUTINE 

DO 10 I=l,NNN 
CALL PWD(TD,N,PD,PDS) 

c THE SLOPE IS TD*D(PD/TDI 

99 

10 

C 

. c  
C 
C 
C 

c .  

C 
C 
C 
C 
C 
C 

PDS=TD *PDS 
IF(PDS.LT..OOOl) PDS - .0001 
IF(PD.LT..OOOl) PD = .0001 
WRITE (2,99) TD,PD 
WRITE (3,991 TD,PDS 
FORMAT (2X,2F24.9) 
TD=TD*l .l 

CONTINUE 
STOP 
END 

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND 
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED. 
THIS FUNCTION IS USED TO CALCULATE THE PD IN REAL 
TIME SPACE. 

DOUBLE PRECISION FUNCTION PLAP (SI 
IMPLICIT DOUBLE PRECISION (A-H, 0-2)  
EXTERNAL F 
COMMON RD,WE',WM,XLAMMAX, XLAMMIN, SD, XXUP, XM,XB,HWiTIO 
COMMON M 
ERRRELr. 00001 
ERRABStO. 0 
XTAUMIN=WM/ (1.78lfXLAMMAX) 
XTAUMAX=WM/(1.781*XLAMMIN) 
HRATIOeDSQRT (XLAMMIN/XLAMMAX) 
XLOW=DSQRT(WM*S/XLAMMAX) 
XUPpDSQRT (WM*S/XLAMMIN) 
xxuP==XUP 
CALL DQDAGS(F,XLOW,XUP,ERS,ERRREL,RES~T,E~ST) 
FS=W+ (wM/XXUP) *RESULT 
XX=RD*DSQRT (S*FS) 
XXX=DSQRT (S*FS) 
AsDBSKO (XX) 
BPDBSKl (XXX) 
TOP=A 
BOT=S*XXX*B 
PLAPsTOP /BOT 
RETURN 
END 

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND 
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED. 
THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF 

...................................................... 

...................................................... 

I 

...................................................... 

PD/LN(TD) IN REAL TIME SPACE. ...................................................... 



DOUBLE PRECISION FUNCTION PLAPS(S) 
IMPLICIT DOUBLE PRECISION (A-H, 0-2 )  
EXTERNAL F 

COMMON M 
ERRREL=.OOOI 
ERRABStO . 0 
XTAUMIN=WM/ ( 1.7 8 1 * 
XTAUMAX=WM/ (1.781* 
HRAT IO=DSQRT ( XLAMMIN/XLAMMAX 1 
XLOW=DSQRT (wp1*S/XLAMMAX) 
XUP=DSQRT (WM*S/XLAMMIN) 
xxuP=m 
CALL DQDAGS (F, XLOW, XUP, ERRABS , ERRREL, RESULT, ERREST) 
FS=V?F+ (WM/XXUP) *RESULT 
XX=RD*DSQRT (S*FS) 
XXX=DSQRT (S*FS) 
A=DBSKO (XX) 
B=DBSKl (XXX) 
TOP=A 
BOT=XXX*B 

RETURN 
END 

- COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP XM, XB, HRATIO 

.. 
I) 

. PLAPS=TOP/BOT 

-_--------_---------___________________I----------~~-- C 
C THIS IS THE F'UNCTION ASSOCIATED WITH THE SPECIFIED 
C PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO 

THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS. C 
C 

DOUBLE PRECISION FUNCTION F (XI 
---.------------------------------- 
IMPLICIT DOUBLE PRECISION (A-HIO-2) 
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, 
F= ( (XM/XXUP) +XB/X) *DTANH (X) / (l+SD*XXUP*DTANH (XI ) 

END 
. RETURN 



99 

10 

C 

EXTERNAL E' 

COMMON M 
OPEN (UNIT=2, FILE='PROJ.OUT' 
REWIND (UNIT=2 
M 4  
N-12 
PRINT *, 'RD= ' 
READ *, RD 
PRINT *, 'FRAC. SKIN= 
READ *, SD 
PRINT *, 'SLOPE= ' 
READ *, XM 
PRINT *, 'HRATIO- ' 
READ *, HRATIO 
PRINT *, 'LAMMINI 
READ *, XLAMMIN 
PRINT *, 'WM= ' 
READ *, wM 
wp1.0 -wM 
XLAMMAXIXLAMMIN/ (HRATIO* *2 1 
XB=(l-.S*XM+.S*XM* (HRATIO**2)) / (1-HRATIO) 
FHRAT=XM*HRATIO+XB 
FONE=XM+XB 

PRINT *, 
XTAUMIN=WM/ (1.781*XLAMMAX) 
XTAUMAX=WM/ (1.7 8 1 * W I N )  
PRINT *, 'TAUMAX- , XTAUMAX 
NNN..2 8 0 
TD=1. 
WRITE (2,*) NNN 
DO 10 I=l,NNN 

COMMON RD, WE, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO 

PRINT *, 'LAMMINE XLAMMIN,'LAMMAXP 
'FHRATS ',FHRAT,'Fl= ',FONE,'M= ',)(M 

CALL PWD(TD,N,PD,PDS) 
PD=PD-.S*(DLOG(TD/ (RD**2) )+.80907) 
TDTAU=TD/XTAUMAX 
IF(PD.LT. .0001) PD = .0001 
IF (TDTAU. LT .1E-9) TDTAUSlE-9 
WRITE (2,99) TDTAU,PD 
FORMAT (2X, 2124.9) 
TD=TD*l. 1 

CONTINUE 
STOP 
END ..................................................... 
DOUBLE PRECISION FUNCTION PLAP (SI 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
EXTERNAL F 
COMMON RD,WF,WM,XLAMMAX,XLAMMIN, SD,XXUP,XM,XB,HRATIO 
COMMON M 
ERRREL=.00001 
ERRABSaO . 0 
XLOW=HRATIO*DSQRT(WM*S/XLAMMIN) 
XUPPDSQRT ( WM* s /XLAMMIN 1 
xxuP=xuP 
CALL DQDAGS (F,xLOW,XUP,ERRABS,ERRRELIRESULT,E~ST) 
FS=WF+ (WM/XXUP) *RESULT 
XX=RD*DSQRT (S*FS) 
XXX=DSQRT (S*FS) 

1 

* 

I- 

.* 





C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
.C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
.c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SLOPE OF THE LINEAR PROBABILITY DENSITY 
FUNCTION =---------- INTERCEPT OF THE LINEAR PROBABILITY DENSITY 
FUNCTION. THIS IS CALCULATED BY THE PROGRAM 
RND IT DETERMINED FROM THE FACT THAT THE 

BE EQUAL TO ONE. 
AREA OF A PROUILITY DENSIT* FUNCTION MUST 

m---------- DIMENSIONLESS DISTANCE FROM ACTIVE WELL 
wF---------- FRACTIONAL STORATIVITY OF THE FRACTURES TO THE 

m---------- FWCTIONAL STORATIVITY OF THE MATRIX TO THE 

HRATIO------ THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE ------ THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY 
FUNCTION 

-IN----- THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY 
FUNCTION 

XTAUMIN-----THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE 
BLOCK EFFECT$ THE PRESSURE TRANSIENT 
RESPONSE--TAU=WM/(l.781*LAMBDA) 

X T A W - - - - -  THE APPROXIMATE TIME WHEN THE MINIMUM SIZE 
BLOCK EFFECTS THE PRESSURE TRANSIENT 

THETA-------CORRELATION PARAMETER (THETA=LAMBDA*RD**2) 
SD---------- THE INTERPOROSITY SKIN FACTOR 

BULK VOLUME STORATIVITY 

BULK VOLUME STORATIVITY 

TD---------- DIMENSIONLESS TIME 
TDRD-------- DIMENSIONLESS TIME, INCLUDES RD**2 TERM 

(I.E. TDRD=TD/RD**2) 
PD---------- DIMENSIONLESS FRACTURE PRESSURE 
PDS--------- DIMENSIONLESS SLOPE OF PD/LN(TD) 

FS---------- THE FUNCTION IN LAPLACE SPACE TO BE INVERTED 

M, N--------- INTERGERS USED IN STEFAST SUBROUTINE 

pm--------- THE CALLABLE STEFAST SUBROUTINE 

IN THIS PROGRAM, THIS IS NOT OUTPUT 

DQDAGS------ THE CALLABLE INTEGRATION ROUTINE DESIGNED 
BY IMSL 

. 



PRINT *, 'RD= ' 
READ *, RD 
PRINT *, 'SLOPE= * 
READ *, XM 
PRINT *, 'THETA= ' 
READ *, THETA 
PRINT *, 'HRATIOe ' 
READ *, HRATIO 

READ *, WM 
WF=l.O-wM 
XLAMMIN=THETA/ mD* *2) 
XLAMM?S=mAMMIN/ (HRATIO**2) 
PRINT *, 'LAMMIN= ,XLAMMIN, * * , X m  
XB=(l-.S*XM+.5*XM*(HRATIO**2) ) / (1-HRATIO) 
FHRAT=XM*HRATIO+XB 
FONE=XM+XB 
PRINT *, 
m e 2 2 0  
TD4. 
WRITE (2,*)  NNN 
WRITE (3,*) NNN 

- PRINT *, 'WM= ' 
c 

'CORR. FOR AREA '~'FHRATI ',FHRAT,'Fl= ',FONE,'M= ',XM 

c CALCULATE THE PD, PDS IN REAL TIME SPACE USING THE 
C STEFAST SUBROUTINE AND DQDAGS SUBROUTINE. 

DO 10 I=l,NNN 

C THE SLOPE IS TD*D(PD/TD) 
CALL PWD (TD,N, PD, PDS) 

PDS=TD*PDS 
IF(PDS.LT. .0001) PDS = .0001 
IF(PD.LT..OOol) PD .0001 
IF (TD . LT .1E-9) TDmlE-9 
TDRD=TD/ (RD**~) 
WRITE (2,99) TDRDIPD 
WRITE (3,99) TDRD,PDS 

TD=TD*l. 1 
' 99 FORMAT (2X, 2F24.9) 

. 10 CONTINUE 
STOP 
END z __--.__----___-.-----~~--~~~---~~---~~----~----------- ' C  

C THIS FUNCTION IS 
C CONTAINS THE FUNC 
C THIS FUNCTION IS USED T 
C 
C 

SPACE. 

DOUBLE PRECISION FUNCTION PLAP (S) 
.................... 

XTAUMAX=WM/ (1.781*XLAMMIN) 



RETURN 
END 

C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

-------------L---------------------------------------~-----~ 

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND 
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED 
THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF 
PD/LN(TD) IN REAL TIME SPACE. 

DOUBLE PRECISION FUNCTION PLAPS (SI 

EXTERNAL F 

COMMON M 
ERRRELs. 0001 
ERRABS=O . 0 
XTAUMAX=WM/ (1.78 1 *XLAMMIN) 
XUPlDSQRT ( WM* S / W I N )  
XLOW=HRATIO*XUP 
xxuP=xuP 
CALL DQDAGS (F,mOW,XUP,ERRABS,E~LrRESULT,E~ST) 
FS=WF+ (WM/XXUP) *RESULT 
XX=RD*DSQRT (S*FS) 
XXXIDSQRT (S*FS) 
A=DBSKO (XX) 
B=DBSKl (XXX) 
TOP=A 
BOT=XXX*B 
PLAPS=TOP/BOT 
RETURN 
END 

THIS IS THE FUNCTION ASSOCIATED WITH THE SPECIFIED 
PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO 
THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS. 

DOUBLE PRECISION FUNCTION F(X) 
IMPLICIT DOUBLE PRECISION (A-H, 0-2) 
COMMON RD WF WM, XLAMMAX, XLAMMIN, SD XXUP , ICM, XB, HRATIO 
F= ( (XM/XXUP) +XB/X) *DTANH (X) / (l+SD*XXUP*DTANH (X) ) 
RETURN 
END 

...................................................... 
IMPLICIT DOUBLE PRECISION (A-H,O-2) 

COMMON RD WE', WM, XLAMMAX, -IN, SD XXUP , XM, XB HRAT IO 

XTAUMIN=WM/ (1 . ~ ~ ~ * X L A M M A X )  

...................................................... 

...................................................... 



THE STEHFEST ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C 
C 
C 

C 
C INVERSE OF F ( S ) .  

- SUBROUTINE PWD (TD, N, PD, PDS 1 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TWSFORM 

IMPLICIT DOUBLE PRECISION 
DIMENSION G(50) ,V(SO) IH(2 

, COMMON RD,WF,WM,XLAMMAx,X 
Y COMMON M 

C 
C NOW IF THE ARRAY V(I) COMPUTED BEFORE THE PROGRAM 
C GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 

' C  F ( S )  
IF (N.EQ.M) GO TO 17 
M=N 
DLOGTW=0.6931471805599 
NH=N/2 

G (1) =1 
DO 1 1=2,N 

C 
C THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY Go 

- G(1) =G (1-1) *I 
1 CONTINUE 
C 
C TERMS WITH R ONLY ARE 

H (1) =2. / G  (NH-1) 
DO 6 I=2,NH 

FI=I 
IF (I-NH) 4,5,6 
€I (I)=FI**NH*G (2*I) / (G (NH-I) *G (I) *G (1-1) 
GO TO 6 

4 

5 H(I)-FI**NH*G(2*1)/ (G(I)*G(I-l)) 
6 CONTINUE 

C THE TERMS (-l)**NH+l ARE CALCULATED. 
* c  

FIRST THE TERM FOR 1-1 
SN=2* (NH-NH/2*2) -1 



10 

C 
C 

. c  

C 
C 

7 
C 
C 
17 

15 

18 

CONTINUE 

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGHTING 
ACCORDING TO SN. 

V (I) 4N*V (I) . 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
SNm-SN 

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
A=DLOGTW/TD 
PD=O 
PDS=O 
DO 15 Ill,N 

AReA*I 
PD=PD+V (I) * P W  (ARG) 
PDS=PDS+V (I) *PLAPS (ARG) 

CONTINUE 
PD=PD*A 
PDS=PDS*A 
RETURN 
END 

P 
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