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Abstract

A comprehensxve a.na.lytxcal model i is presented to study the pressure transient be-

havxor ofa naturally fractured reservoir with & continuous matrix block size distri-
bution. Geologxcally realistic probablhty density functions of metrix block size are
used to 'i‘epresent reservoirs of varying fracture intensity and uniformity. Transient
interporoéity flow is assumed and interpofosity skin is incorporated.

Drawdown and interference pressure transient tests are investigated. The results
show distinctions in the pressure response from intensely and sparsely fractured
reservoirs in the absence of interporosity skm. Also, uniformly and nonuniformly

- fractured reservoirs exhabxt d1stmct responses, irrespective of the degree of fracture
- intensity. The pressure response in & nonumformly fractured reservoir with large
‘block size vanabxhty, approaches & nonfractured (homogeneous) reservoir response.

_ Type curves are developed to estimate matrix block size vanabxhty and the degree

of fracture mten51ty from drawdown and mterference well tests.
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Section 1
Introduction

It has long been recognized that naturally fractured reservoirs contain a significant
portion of the world’s hydroca.rboﬁ reserves. As such, the need to understand the
detailed mechanisms of flow in these reservoirs is paramount. One of the main
parameters that governs flow in fractured reservoirs is the matrix block size distri-
bution. In one phase flow, it controls the transition from early production from the
fractures to late production from the total reservoir (matrix and fractures). In two
phase flow, it controls the rate of imbibition (or displacement) and ultimately the
recovery .efficiency of the reservoir [34].

Pressure transient testing provides a method to predict producibility in naturally
fractured reservoirs. In order to estimate producibility, however, many a.ésumptions
are made. Certain assumptions, such as the idealization of a single matrix block
size representing the reservoir, may be eliminated. Matrix block size distributions
can be included in the model to more accurately describe the flow in naturally
fractured reservoirs. The model presented in this study captures the intracacies of
flow in a naturally fractured reservoir without complicating the task of analysis.
The following are the key assumptions used in deriving the analytical solution:

¢ The primary porosity (matrix) is uniform, homogeneous and isotrop'ic. The
matrix blocks are defined by a characteristic length (volume of matrix
block/surface area of matrix block, i.e. reciprical of specific surface area)
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SECTION 1. INTRODUCTION 2

and are represented as slabs or plates. All rnntrix blocks have the same con-

nectivity path to the wellbore.
The secondary porosxty (fractures) is umform, homogeneous and isotropic.

Flow occurs from the matrix into the fractures a.nd then radially to the well-
bore. No flow from the matrix to the wellbore is allowed and all flow is
unsteady state (USS).

The overall reservoir is infinite in extent and horizontal.

The surface flow rate in the active well is constant, gravity effects are negligi-
ble, and Darcy’s law is obeyed. '

A smgle phase fluid of small compressxbﬂxty and constant viscosity flows
through the medium. , :

In this report a contmuous probab1hty densxty function of matrix block size
is used The interaction between the matrix and the fractures are defined by the

followmg five parameters:

hmw the ratio of the charactenst:c lengths of the minimum and maximum

- matrix block size (Romin/ hma=)9

,wm the fra.ctzonal storat:v:ty of the matm.,

Amm the minimum mterporos1ty flow coeﬁcxent which- corresponds to the

.largest matnx block sxze,

S’m the mterporos:ty skm, and

P(h) the probabxhty densxty functxon descnbmg the type of dxstnbut:on of

:matnx blocL. sxzes

Other parameters such as ,\mw, the sma.llest matnx block mterporosxty flow

: coefﬁcrent or w oty the fractlonal storatmty of the fractum, are determined from
“the pa.rameters defined above. The only a priori Lnowledge needed in the analysis
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is the type of distribution (i.e. exponentially decaying, exponentially increasing, -
_ linearly decreasing, linearly increasing, rectangular, or Dirac delta). The limits of
-the probability density function (i.e. - Amin and Amqz), however, do not need to be
known and are obtained from the analysis of the pressure transient data.
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Section 2
Literature Review

2.1 Geologlcal Aspects |

In order to a,nalyze naturally fractured reservoirs, petroleum engineers have ideal-
ized complex fracture patterns into very simple geometric shapes. Without such
simplification, the mathematical problem would be unsolvable. The idealized as-

sumptions, however, ere not as unrealistic ns they. may seem because fractures are

- created in & structured way. The orientations and dxstnbutxons of fractures have

been shown to be related to tectonic stresses and variations in these are due to
local complexities of stress ﬁelds rate of bendmg of the rocks, hthology and the

_ . proximity to. fault planes. .-

“According to Agmlera [2] fracture generat:on is genera.lly attnbuted to three

: ,mam ‘causes:

‘e foldxng and faultmg,

e deep erosion of the overburden that pernuts the upper parts to expand uplift,

and fracture through planes of weakness, and

e volume shnnkage (i.e. sha.les that lose Water, coohng of 1 1gneous rocks and
des:ccatxon of sedimentary rocks). o : .

" He also indicates that fractures ‘and Jomts were usually formed in bnttle rocks

(especially those that are close to a fault plane) For instance, quartzite rocks have

4
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a greater tendency to fracture than soft rocks such as limestones, which have a
tendency to flow or bend.

‘Outcrops provide the best visual identification of the types of fracture pat-
terns that exist. Dyer [22] presented spectacular aerial photographs of jointing of
sandstones in the Arches National Park. The photographs clearly showed parallel
fractures extending over a large distance. The joints were continuous in one direc-
tion but the majority did not link up in the perpendicular direction, and they were
distributed in length such that there were more smaller joints than larger joints (i.e.
exponential decaying or linearly decreasing). In terms of model simplification, these
fractures can be represented as vertical or horizontal slabs. Other outcrops shown
by Dyer, demonstrated the same type of parallel fractures, but with a subparallel
set of fractures which were perpendicular to the top and bottom bedding surfaces.
These fractures can be represented as either skewed rectangles, perpendicular rect-
angles or squares depending on the intersection angle of the fractures (Figure 2.1).
In three dimensions, these can be modeled as cubes or rectangular parallelepipeds.
Other fracture photographs show calcite cemented or mineral filled fractures that
could restrict flow from one matrix block to another. This phenomenon is termed
 interporosity skin [14,38]. ‘

Pollard and Aydin [43] showed that most joints were not individually continuous -
but were usually a series of subparallel fractures (i.e. several smaller joints make up
a larger joint). The spacing between the joints in sedimentary rocks generally had a
regular distribution and were scaled with the thickness of the fractured layer. The

outcrops studied suggested most joints (in ‘sediméntary rocks) were perpendicular
to the layering and were roughly rectangular in pattern. They also pointed out that
joihts rarely exceeded several hundred meters and were at least as long as several
times the characteristic grain size of the rock. Fractures smaller than this were con-
sidered to be micro-cracks. Pollard and Aydin divided joint intersection geometries
into orthogonal and nonorthogonal classifications. Either of these two classifications
can be divided into three additional groups: continuous, continuous and discontin-
uous, and discontinuous. Depending on the combinations of these grdups, ‘4, X0,

“T’, and ‘Y’ intersections can be formed (Figure 2.1). The greater the joint spacing
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3
B o

~ the greater the communication or linking between joints Other joint types, such
as echelon fractures can also. be seen and are a result of the mtera,ctxon of the stress
relief caused by nexghbormg fractures. '

Fractures in the Mt Abott quadrangle of the central Sxerra Nevadas were stud-
-ied by Segall [46]. He dsscussed why fractures propagate and stop. Fractures grow
when the extension force reach& a critical value (a property of the rock and envi-
ronmental stress conditions) and stops due to elastic interaction from nearby cracks
and an overall decrease in the systems effective stiffness. Again, the fracture (or
fault) pattems were commonly arra.nged as echelon arrays. Many of these fractures
were dlscontmuous and appeared to be ra.ndomly placed. This pattern can be mod-
elled by a Monte Carlo approach or by using an infinite periodic array of cracks. In
general, the fra.ctures were parallel to each other, and the distribution in fracture
lengths appea.red to be exponentxal (i. e. there were many more smaller joints than
- larger joints). He also showed that joint. lengths were comparable to lengths in the
~ vertical exposure (i.e. these relationships exist in three dimensions).

McQuillan [37] descnbed similar simple geometric fracture patterns (i.e. cubes
or solid rectangles) in ‘the Asmari format:on of Southwestern Iran. In this forma-
tion, the fracture density (i.e. fracture length or matrix block size characteristic
length) had an inverse loga.nthxmc relatxon to bed thickness and was mdependent
of structural setting.

‘Outcrops from the Monterey format:on were examined by Isaacs [25] She ob-
-served that fracture mtensxty ‘was. lngher in thm beds tha.n in the thick-bedded
lower portion of the Monterey. Fracture mtens:ty was generally h:gher in quartzite
bearing rocks than in other lithology tyypes' such as opal-CT bearing rocks. |

Reiss [44] also used sxmple geometric shapes to represent’ fracture systems. He
‘used four pnncxpal representatlons sheets or slabs, match-sticks, cubes, and cubes
vthh an mpermeable fracture plane The mpermeable fracture pla.ne could be due
" to mineral prec1p1tatxon He added complexlty to these shapes by considering the |
flow to be either vertical or honzontal to the faces. ‘He presented relationships
" between fracture permeab1hty, porosxty, vndth and matnx size for these various

| sxmphﬁed geometnes
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2. 2 Well Testmg Aspects

Barenblatt et ol. [4, 5] 1ntroduced the concept ofa double porosity system for natu-
rally fractured reservoirs. The concept implies that, at every point in the reservoir,

‘there are two fluid pressures; one in the fracture and one in the matrix. Flow equa-

tions from the matrix to the fracture were linked using the assumption of pseudo
steady state (PSS),“Which related the flow rate from the matrix to the fracture to
the difference between the matrix pressure and the fracture pressure (i.e. explicitly -

| ~independent of ’tim’e). Flow from the fracture to the wellbore was assumed to be
unsteady state. - ' ’ ‘

The relatxonsh:p between recovery behavxor for a sxngle reservoir matrix block

' and its size was defined by Mattax and Kyte [34]. It was qualitatively shown that the
~ recovery efficiency due to imbibition was proportional to the square of the distance

between fractures. The paper defined the critical water injection rates necessary ¢ to
adequately sweep hydrocarbons from a matrix block. ?
Warren and Root [52] presented essentlally the same model as Barenblatt et

“al., but defined the problem in terms of petroleum engmeenng variables. They
- presented a model of an orthogonal system of continuous uniform fractures, but in
~ fact did not use the specxﬁed geometry. They mtroduced ), the interporosity flow

coefficient, and w, the fractional storatrvxty of the fractures. Using A'and w they

i _charactenzed the pressure transxent r&ponse expected from bu:ldup and drawdown

well tests. Two parallel lines were shown to existina semlog plot of pressure versus

- t1me A transition from fracture flow to fracture and matrix flow connected the two
parallel stra:ght lmes They showed that as w or A approaches one, the reservoir
k transxent test behaved like that of & homogenous reservoir. The interporosity flow

coeﬁicrent A contained the geometry dependent parameter a, but this para.meter
was not directly mcluded in their work. o ‘ A
- Some well tests, however, did not show parallel straxght lmee Odeh [41] gave

' examples of well tests frorn fractured reservoirs that did not exhibit the double

1They considered scalmg parameters in an unbxbxt.xon dlsplacement Thxs was not a paper on

. well testmg for fractured reservoirs.
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porosity-behavior. He suggested the double porosity behavior cannot be seen be-
cause reliable data are not obtained during the early part of well tests (i.e. storage
effects). Essentially, Odeh translated the anisotropic model of Warren and Root to
an isotropic one.

Several years later, Kazemi et al. [32] extended Warren and Root’s double
porosity model to interference well tests. Kazemi considered an infinite reservoir
- with a constant rate of production at the observation well. Like others, Kazemi
incorporated PSS flow from the matrix to the fractures. The solution was solved in
Laplace space and was numerically inverted. Some important conclusions were that
the double porosity model was important for early pressure transient responses,
and that at late times, the model approached the homogeneous finite well source
solution. In the same year, Kazemi [31] presented additional work on pressure
transient responses in reservoirs with uniform fracture distributions. This work
dropped the assumption of PSS and used an unsteady state formulation of flow from
the matrix to the fractures. The reservoir considered was two-dimensional, circular,
and finite. They explored allowing the matrix fluid to fiow into the wellbore directly,
but they showed that this effect was insignificant for low matrix permeability. They
concluded the USS formulation increased the length of the transition zone but dxd
not alter the early and late time parallel straight lines. '

- In the mid-seventies, De Swaan [17] also used the assumption of USS interporos-
ity flow. Approximate equations to early and late time responses were presented by
the inclusion of a hydraulic diffusivity constant. De Swaan considered horizontal
fractures and spherical matrix blocks. ‘

--Najurieta [39,40] solved the interference well test case using De Swaan’s USS
- solution for both slab and cubic geometries (assuming an infinite reservoir). Najuri-
‘eta used an improved Schapery [45] inversion technique to transform the solution

from Laplace space to real time space. This improved the approximation of the
early, transition, and late time responses. ,

Deruyck [20] considered interference well tests using Warren and Root’s model.

He considered both constant pressure and constant rate inner boundary conditions

and applied the PSS interporosity flow assumption. Type curves were presented for
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both constant pressure and constant Tate inner boundary conditions. He compared
the line source solution to the finite well radius solution and observed no significant

~ differences for observation wells greater than approximately twenty feet from the
- active well. Most importantly, he introduced & new parameter © (© =-Ar) that

- eliminated the need for more: than one type curve for constant rate production.
| ~He prov1ded the theoretical basis for this new parameter from the approximate

line source solution. Later, Deruyck et al. [21] pr&sented essentially the same

~ conclusions, but presented interference well test type curves for both USS and PSS

interporosity flow a’sSumptions They suggested using the type curve that best fits

" the data. In addmon, they concluded the double porosxty effect can be better seen

e for observation wells closer to the actxve well.

The first useful type curves for buildup and drawdown tests were prepared by

-Bourdet and Gringarten [10]. The type curves used PSS and USS interporosity flow
-assumptions but were based on approximations of the exact solutions.

Unsteady state interporosity flow for both cylindrical and spherical geometries
was considered by Kuch\..\lg and Sawyer [33]. They concluded the Warren and Root

R model was only applicable under sp'ecial cases of the fractured reservoir parameters.

Cmco-Ley a.nd Samamego [13] also used the USS formulation proposed by De

- ‘Swaa.n using spher&s and slab matrix block geometnes At early and late times, the
; pmsme transu—:nt r&epons&s were similar. " ‘During the transition phase, however,
differences were seen between the two geometnes In & later paper, Cmco—Ley et
al. [14] described the eﬁ‘ects of mu.ltlple matrix block sizes on the pressure transient

~ curve. They used a dxscrete model of up to five different block sxz& Using com-

binations of these block sizes, they demonstrated the transxtxon zone was affected

: srgmﬁcantly, while the late and early time responses were not changed. They state

the smaller matrix blook sizes dominated the transition period since the surface to

fracture contact area was greater. In addition, both Cinco-Ley et al. and Moench
j "[38] presented an explanatmn for the observance of the PSS behavior. They intro-

duced an mterporosxty skin factor that, in congunction with USS interporosity flow -

,‘ Lassumptxons, produced the PSS—hke behavior.

Streltsova [50] explored the differences between the USS and PSS ﬁow models.
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She showed that small matrix blocks have a pressure response more like the PSS
behavior, while larger matrix blocks behaved more like USS. The la.rger the matrix
blocks, therefore, the longer the transition zone. : :
. The PSS and USS solutions were combined into one model by Jalali-Yazdi and
Ershaghi [28]. Their solution used the Najurieta approximation (iﬁ1proved Schapery
approximation) to develop functions of time that describe the interporosity flow
interaction. Also, they presented a correlation for parameter estimation, using the
difference between the wellbore pressure response and either the early time or the
late time pressure response.

Braester [11) presented numerical solutions which showed that drawdown pres-
sures were not sensitive enoughb to the variation in sizes of the blocks (especially
for matrix blocks not in the immediate vicinity of the wellbore). She suggested,
therefore, -that drawdown and buildup well tests do not yield a unique solution for
matrix block sizes.

In a recent paper, Belani and Jalali-Yazdi [7] extended the discrete model pro-
posed by Cinco-Ley and Samaniego [13] to a continuous model (i.e. a continuous
probability density function of matrix block sizes). They used three probability
density functions: Dirac delta, uniform and bimodal. The Dirac delta function re-
sulted in a sharp pressure response identical to the Warren and Root model. With
an increase in the variance of the matrix block size distribution, they found features

of a fractured reservoir response become less pronounced.
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Section 3

Statement of the Problem

{

Currently, block size distﬁbutioh is not considered a determinable parameter from

~ well pressure transient testmg Yet, the utility of deterxmmng the matrix block size

. dxstnbutxon is paramount since block size is considered one of the main parameters

of 2 fractured ; reservoir {11]. In smgle phase flow, it controls the transition from early

- production of hydrocarbons from the fractures to late production from the total

reservoir. In reservoirs with tWO-phase.ﬂew, it controls the rate of imbibition (or

| displacement) and ult1mately the recovery eﬁclency of the reservoir (i.e. waterflood

‘ mjectxon rate). -

The objective of this r&earch is. to mfer fracture intensity and the degree of

~ fracture umformlty from transient pressure data. It is recogmzed that this can
~only be done'in a. qua.htat;ve way for many reservon's Nevertheless, a completely

quantltatwe solution based on some speclﬁed assumptxons (1 €. slab matrix block

_ geometry) is presented Certamly, this research can be modxﬁed for the partxcular
 constraints of any ngen reservoir.. Other information, such as that from cores

and logs, should be used i m conjunctxon thh well pmsure testmg, to evaluate the
dlstnbutmn of fractures ~

12



| Section 4

Theory and Solution

4.1_ General Solution

The diffusivity equation for a double porosity reservoir can be modified to include
a probability distribution of matrix block size by introducing & source integral [7]:

b L' P = ¢,c,w+ / " Q(R)P(h)dh. (4.1)

l"l"l

The source integral in Equation 4.1 accounts for the flow contribution of the ma-
trix to the fracture. It is assumed that fluid travels from the matrix to the fractures
and to the wellbore. P(h) is the probability density function (PDF) describing the
likelihood of a certain matrix block size to exist and Q(h) is the flow contribution
from that matrix block to the fracture. For transient interporosity fiow and slab
geometry:

Qh)=—— V Prm linterface - (4.2)

Q(h), therefore, takes into consxdera.tlon the mode of interporosity flow and also the
geometry of the matrix blocks.
For a well producing at constant rate in an infinite reservoir, the interference .

solution in Laplace space is:

Ko(zrp)
Fo, = 3[Cps(Ko(z) + Spzka(z)) + sKi(2)]’ (4.3)

13
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- and for drawdown:

~ function argument is:

. where,

- where,
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Ea  EKo(z)+ SpzKi(z)

P = SCos(Rolz) + Speki(@) + eKa(@)] (4.4)

Parameter s is the Laplace variable related to dxmensmnl&ss time (tp) and the Bessel

759 _ (4.5)

" The function f(s) embodies the reservoir parameters inclﬁding the matrix block size

distribution. For transient mterporosny ﬁow in the presence of interporosity skin:

V= tanh(\/_ JP(ho)
f(s) = wy + /hm.a 1 + Sm\/__ tanh(\/_— ) (46)

s ) hm'n' :
hratio* =. —_ ) ’ : (4'7)
Sip= =22, (4.8)
The interporosity skin factdi (S1p) is'a'function of inatrix block size distribution
and, hence is constant 1f -t is constant. An alternate assumption is that the depth

8 of skin damage (k,) is constant for all matnx blocks and hence, Sip is a variable:

Sm- Swm.,. -—,’, o (4.9)

PR U e

- and now: *

| f)=wytw / \/—“""r'twh(\/—)P(hD)
/ h,..... 1+Sm,,,,,\/ tanh(\/__ )

(4.11)
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4.2 Long Time Approximation

As tp becomes large, the Laplace space variable s becomes small. As s approaches
zero, the function f(s) becomes one. Neglecting wellbore storage and inverting to
the time domain, Equation 4.4 yields:

Pp, = %[ln(tp) +2Sp + .80907], (412)
and Equation 4.3 yields:
Pp, = Hin(*2) +.80907]. | (4.13)
2 TD

4.3 Early Time Approximation

As tp becomes very small, the Laplace space variable s becomes large and the
function f(s) approaches wy, the fractional storativity of the fractures. In the absence

- of wellbore storage and skin, inversions of Equation 4.4 give:

- Pp, =2 . (419)

wjﬂ'

This ea.rly time solution should not be confused with the ‘classical’ early parallel
stra.lght line response given by:

Pp, = —[ln( )+ 2Sp + .80907]. (4.15)



Seetion 5
Probabi’lity: Devrrsityi Functions

" Prediction of the pressure response requires the type of matrix block size distribution
' be known or assumed. When the PDF is selected, fracture intensity can be inferred
from pressure transient data. Two types of probability density functions are used to
represent the variability of matrix block'size. These types, exponential and linear
(Figure 5.1),. occur in outcrops as indiceted in the geological literature [22,43,46].
The Dirac delta and rectangular dxstnbutxon are each'subsets of the exponential
and linear dxstnbutlons A
The mean of & dxstnbutmn is & measure of fracture intensity, while the variance
is a measure of the degree of fracture uniformity. As fracture intensity increases,
mean block size decreas&s and P(h) becomes skewed toward smaller block sizes. As
' fra,cture intensity decreases, P(h) becomes skewed toward la.rge block sizes. When
‘fracturmg becomes umform, hm,,, approaches umty a.nd P(h) becomes ‘narrow’.
' When fractunng becomes nonumform, h,.,m approaches _zero and P(h) becomes
‘wide'. S R o | :
. Figure5.2isan exa.mple of the construction of a probabxhty dens1ty functxon [3]
‘ The lengths of the Jomts were measured at the outcrop and plotted as shown. There
' are many more ‘smaller Jomts than la.rger Jomts In this example, hniy, is one meter
’and hm, is appro:nmately thxrty—three meters. The parameter R,cti0, therefore, is
small ( .03) mdxcatmg very nonumform fractunng " A probability density function

' is then constructed by normahzmg the frequency plot by the parameter hmer. The

16
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result is & normalized probability density function that is exponentially decaying

with a decay constant (‘a’) of -5.

5.1 Exponential and Linear PDF

The exponential PDF is given by:

_ __ a(ezp~*t)
P(hD) - ezp‘(“hrntl'o) —-— ezp-d ? (5'1)
where ‘a’ is the exponential constant. The linear distribution function is:
: mhp + b
P(hp) = 2 (5.2)

Sm(1 = hlasio) + 8(1 = hratio) ’

where ‘m’ is the slope and ‘b’ is the vertical intercept of the cartesian plot of P(hp)
versus hp. Because a probability function must be positive, the slope must be in

the range:
=2 <m< 2 (5.3)
' (1 = hrutio)2 - - (1 - hratio)2 T )
‘The intercept ‘b’ is given by:
1 - .5m + -5h3a fo
b= - LA (5.4)

5.2 Limiting Forms-Rectangular and Dirac Delta

Distributions

When ‘m’ is zero (linear PDF) or ‘a’ is zero (exponential PDF), both probability
density functions reduce to the rectangular distribution:
1

1- hratio ’

P(hp) = (5.5)

and when ‘m’ or ‘a’ a.pproacix infinity, the distributions reduce to the Dirac delta

function: _
0 forhp#1

. 5.6
oo forhp=1 (56)

P(hp) = §(hp = 1) = {
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- Figure 5.1: Probability Density Functions. S
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ooting oo
ER

1(s), where E = 1!‘-?-7 | : ‘ _

Rectangular | w

PDF
_ ‘  aw,, ¢ : e‘f"tanh(y)
Exponential E(e-—chnuo - e"“) ehrario Y[1 + SID,... £ tanh(y)]
11 ea,r Nw + Wy ' € [%+%]tanh(y)
fmear - [er (5m(1 Weasio) + 81 = Fratio)] Jebeasc T+ 1D, EanB(y)
e o
Wm L tanh(y) dy

(1 - rctao) Ehrcuo y[l + SIDm.nE tanh(y)]

Dirac delta

wmtanh(f)
E[l + Szoftanh(f )]

, where Amm = Apaz = A

Table 5 1 Functxons f(s) for Vanous PDF’

A.The Drrac delta drstnbut:on descnbes fractures that are perfectly ordered as in

. the Warren and Root model. The rectangular distribution, however, represents

o fractures that are perfectly disordered with a continuum of block sizes that are
~ equally probable from the smallest (hmm) to the largest (hm,) In general, the

o rectangular dxstrxbutxon should be used if the drstnbutxon type is unknown

o Upon specifying the type of PDF Equatxon 411 can be solved for- f(s) Table
:5 1 hsts the solutlons of f(s) for the partxcular PDF ‘ :



Section 6
Discussioh—Dradewn Testing

Equation 4.4 in the absence of wellbore storage and skin reduces to:

Pp, = —ovefe)) (6.1)
s%%,[f(s)K1(v/s£(s))

Equation 6.1 is numerically evaluated using the Stehfest algorithm [48] for the ex-
1/)onential PDF listed in Table 5.1. Figure 6.1 illustrates the response for varying

values of ‘a’ holding k¢ constant. For positively increasing values of ‘a’, fracture
intensity increases and the response approaches the Dirac delta response for a uni-
form matrix block size A, (i.e. the response occurs earlier in time). For negatively
‘ increasing values of ‘a’, fracture intensity decreases and the response approaches the
Dirac delta response for a uniform matrix block size hm., (i.€. the response occurs
later in time). Thus, fracture intensity determines the temporal position of the
pressure response. Fracture uniformity, however, affects the shape of the pressure
response. From Figure 6.1, it is evident the derivative profile shows a substantial
degree of asymmetry with respect to the time axis as ‘a’ increases or decreases to
large absolute values. The response for the rectangular matrix block size distri-
bution (i.e. a=0), however, is nearly symmetric. Therefore, asymmetry increases
as fracturing becomes more uniform, and the shape of the derivative profile can
be used as a qualitative indicator of the degree of matrix block size variability -or
nonuniformity. ‘

21
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'SECTION 6. DISCUSSION-DRAWDOWN TESTING ; 23

In addition, parameter Ayq4, provides-an estimate of matrix block size variabil-
ity. An hrei, approaching one indicates perfectly uniform fracturing, while Aot
approaching zero indicates bei‘fectly nonuniform fracturing. Figure 6.2 illustrates
the pressure response for varying values of k.., With ‘a’ held constant. For A,qy,

“approaching zero, the response approaches a homogenous reservoir response. . This
occurs because there is an incessant gradual contribution from the matrix to the
fractures. As long as fracturing is extremely nonuniform, the response will not ex-
hibit the classical profile of a distinct transition zone separating early and late time
semilog straight lines.

6.1 Type Curve For Drawdown Well Tests

For the rectangular PDF, a type curve can be developed for‘&timation of Wm, Amin,
and Ayqo. The type curve is based on the following time domain solution of the

wellbore pressure response:

[ln( = t ) Frroyr) + 80907, (6.2)

where F(?p) is the time-dependent reservoir storativity:

F(tp) = wy + wm / \/_ tan h(\/— )P(hp)dhp, (6.3)

and 7 is the matrix response time coefficient:
T=—, (6.4)

Equations 6.2 and 6.3 are obtained by applying the inversion technique of Najurieta
and Schapery [45,40,39]. For the rectangular PDF, Equation 6.3 becomes:

F(=2- ) =y m)\/rfn'; /V *"""‘y)d . (65)

""G‘IO

where y is the variable of integration and 7, is the response time coefficient of the
most dormant (or largest) matrix block:
W

Tmcz = ———. _ (6.6)

'\min
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In general, the time domain approximation gives-remarkably good results (Figure
6.3). Using the difference between the extrapolated late time pressure response and
the observed pressure, one obtains: '
AP =Pp, - Po,, = —5nF(=2). 67)
The typé curve (Figure 6.4) is generated for the rectangular PDF by plotting
the pressure difference AP versus ;‘3; for a range of hyqsi, and wy, values. Thisvtype
curve is similar to one presented by Jalali-Yazdi and Ersha.gha [27] where the time
match yields 7. (and hence, Amin), and the pressure match yields w,,. Fracture
permeability, ky, can be calculated from the slope of the semilog straight line. Given
reliable estimates of matrix permeability (i.e. from core analysis), one can calculate
honez from the definition of Ap;, given in Appendix A. From the shape of the cﬁrve,
hyqiio is estimated, and hence, Ay, is determined. The arithmetic mean of A,,;, and
h...- is & measure of fracture intensity or sparsity. | |
The type curve demonstrates two key ideas. First, as matrix storativity pre- -
dominates (increasing wy,), hrario affects the pressure response more significantly. |
Conversely, as w,, decreases, the effect of matrix block size variability becomes less
significant. Second, the effect of k.., on the pressure response is greatest for lower
values of hrq4i, ( €.g. the pressure response changes more significantly for h,q1, val-
ues from 0.1 to 0.5 than from 0.5 to 1.0). This indicates that block size variability
affects the pressure response significantly if A, and h,.. differ by at least one
~ order of magnitude. Block size ﬁariability less than half an order of magnitude does

not affect the pressure response significantly.

6.2 Effect of Interporosity Skin

An example of the effect of interporosity skin (Sip,,.) on the pressure transient
response is shown in Figure 6.5. A significant change in the pressure derivative is
seen for small changes in Sip,_,,, and thus, the effect of the matrix block size distri-

bution is masked. The derivative profile becomes symmetric and more pronounced
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which is typical of the PSS response of Warren and Root. A symmetric PSS type
response develops even if the no skin profile is asymmetric. As interporosity skin
increases, the derivative profile shifts in time, giving apparent A values that are

too small (more dormant matrix). Thus, if interporosity skin exists, interpretation

.of pressure transient tests by the Warren and Root model underestimates \ and

fracture intensity.
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‘Section 7

Discussion-Interference Testing

Braester[11] demonstrated that drawdown (or buildup) tests in naturally fractured
reservoirs may not be influenced by matrix blocks significantly away from the well-
bore. Interference testing; therefore, is preferred because the response is affected
by matrix blocks between the active and observation wells. A simplified solution
for interference testing in the absence of storage and wellbore skin is the line source

Pp, = IA{°("“"‘V5 sf &) (7.1)

solution:

7.1 Type Curve For Interference Well Tests

For any PDF dxstnbut:on, it can be shown tha,t 6= AmmrD is & correlating param-
eter [20,21]. For 1nstance, using the rectangular PDF:

Sl S - | .
W ] -6 v - tanh(y) ,
f(er) = w_f + T= hmﬁo _wmsr,%/h — .dy. | - (1.2)

ratio

Um."z
Equation 7 1 can then 'be evaluated usmg the inverse Laplace transfo*m rela,tlon
L [FDJ(STD) D D;( ) , (7 3) ‘

A type curve (Fxgure 7. 1) is prepared usmg the recta.ngula.r PDF for w,, = 0.9. For
each value of 8, h,gy, is varied from zero to one. If k.4, determined from the type

30
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curveis equal to one, the PDF is a Dirac delta function and the type curve is similar
to that presented by Deruyck et al [20,21].

For large values of 6, the matrix block size variability becomes ihcreasingly
vf important and h,.;, can be better estimated. Thus, if the dimensionless distance
(rp) between the active and observation wells is large, or if Apmin becomes large
(i.e. greatér fracture intensity), then matrix block size variability becomes a key'
parameter in interference pressure transient analysis. Conversely, for smaller values
of @, matrix block size variability (or h,.s,) does not affect the pressure response
significantly. Also, as 6 becomes larger, the response approaches the line source

solution for smaller values of -:-g-.
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Section 8
Conclusions

1. A formulation incorporating transient interporosity flow and interporosity skin
, : is presented for fractured reservoirs with variable matrix block size. Expo-
nential and linear probability density functions have been used to represent
intensely and sparsely fractured reservoirs with varying degrees of fracture

uniformity.

2. Type curves have been generated for drawdown and interference well tests
based on the rectangular PDF and slab matrix block geometry. Type curves

yield estimates of fracture intensity as well as fracture nonuniformity.

3. Fracture intensity determines the temporal position of the pressure response,
while fracture uniformity affects the shape of the pressure response. For .
transient interporosity flow, uniformly fractured reservoirs exhibit asymmetric
derivative profiles, whereas nonuniformly fractured reservoirs exhibit symmet-

ric profiles.

4. The parameter k.., quantifies the degree of fracture uniformity. Uniform
fracturing is indicated when Ao, is near one, while nonuniform fracturing
is indicated when h,,y, is near zero. For an extremely nonuniform fractured
reservoir (h,.4, approaching zero), the pressure response is similar to a non-

fractured homogeneous reservoir response.

33
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5. Matrix block size vaﬁabxhty (hyatio) cannot bé estimated-in the presence of
interporosity skin damage. The Warren and Root model overestimates matrix
block size if intei'pofpsity skin is present..

oy



*Section 9

Nomenclature

a = exponential PDF constant

b = intercept of linear PDF

cs = fracture compressibility

Cm = matrix compressibility

Cp = dimensionless wellbore storage

¢t = total compressibility -

f(s) = Laplace space function

h = matrix block size characteristic length (Volume/Surface Area)
hp = dimensionless matrix block size length
hy = fracture thickness

hmaz = maximum block size length

hmin = minimum block size length

Rratio = ratio of Apin t0 Rz

h, = i;lterporosity damaged zone thickness

kg = fracture permeability

km = matrix permeability

k, = interporosity damaged zone permeability

Ko(z) = modified Bessel function, second kind, zero order
Ki(z) = modified Bessel function, second kind, first order
m = slope of lincar PDF

35



)

"

SECTION 9. NOMENCLATURE

Pp, = dimensionless fracture pressure

Pp,, = dimensionless matrix pressure G
Pp = dimensionless wellbore pressure

P; = fracture fluid pressure
P(h) = block size distribution function
P(hp) = dimensionless block size distribution function

F; = initial reservoir pressure
P, = matrix fluid pmsui‘e
P,; "= wellbore flowing pressure
Q(h) = flow contribution from matrix size h
r = radial cdordinate ,
D = dimensionless radial coordmate
Tw = wellbore radius
s = Laplace parameter
- Sp L= dlmensmnless wellbore skm factor "
Sip = dxmensxonless mterporosxty skin factor

S1D, = minimum dimensionless mterpor051ty skin factor

t = time ;
tp = dimensionless time
4 = 1.781, exponential of Euler’s constant
A = diméhsionl&s intefporositj' flow coefficient
Amez = maxlmum dimensionless interporosity flow coefficient
Amin = ‘minimum dxmensxon.l&ss interporosity flow coefficient
T = dxmensxonl&ss matm. response time coefficient
- Tmaz ’ = maximum dxmenswnl&ss matnx response tlme coeﬁclent
m - = viscosity E '
€ = ¢oord1nate normal to fracture-matn:. mterface
e = dlmensxonless coordmate normal to fracture-matnx interface
-7 = fracture poros1ty ‘
 bm = matnx porosxty

wy = dimensionless fracture storatlvxty ratio

36
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Wm = dimensionless matrix storativity ratio

0 = dimensionless correlation parameter

37



Appendix A
_Derivation bf General Solution

The dimensionless flow equations. and boundary conditions are:

&Pp, 1 0Pp, , BPD f . 8Pp,
Mo B e - GRS L

&Pp,, _ Wm BPD,,, -
oet, by atp 7

o PDI=PDm=‘08.’ttD=0'

e Pp = Pp, = 0 at rD— 00

) 8Pp R

'y CD an ‘— B1p ITD=1'-'1' L :
| 8P,

i Du, = [PD] SD a,; ] lrp‘.'_'l

= [PDm - SID"&—’;P'] Icpﬁso Jor slabds

. . a;p |cpzl for slabs= 0 at nO ﬁOW houndan&s
g L 2ekyhy (P -P)
o s : qp
g o AP

o
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APPENDIX A. DERIVATION OF 'GENERAL SOLUTION

Pp,,
tp

D

Amiﬂ.
Amar
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wy

hD'

. €D
P(hp)

2k shy(Ps = Puy)

qau

' k!t
(¢scs + dmem)prd,
r
o
_¢
2rhyeir?
kmr2,
ksh?

2
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maz
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kmrs
kf hgnm
' OmCm
¢f cr+ ¢mcm
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mazr

>
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Other matrix block geometries can be included in the solution by changing the

interporosity boundary conditions. After applying Laplace transforms to the flow

equations and boundary conditions one obtains Equations 4.3 and 4.4.



 Appendix B

e Computer Programs |
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00NANBNANNNN0NN0ANNAaNNA0ANNNANNNANA0

C
C

EXACT EXPONENTIAL SOLUTION

C TEIS PROGRAM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT
C INTERPOROSITY FLOW WELL TEST USING,AN EXPONENTIAL PROBABILITY
C DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE SPACE IS USED
C AND INVERTED VIA THE STEFEST ALGORITHYM. THE VARIABLES IN THE
C PROGRAM ARE:

AR~-—emmewe—— EXPONENTIAL DECLINE FACTOR. FOR AA EQUAL TO
ZERO USE THE LINEAR PDF MODEL.
RD=====eee=- DIMENSIONLESS DISTANCE FROM ACTIVE WELL

WF—==——==<=——FRACTIONAL STORATIVITY OF THE FRACTURES TO THE
BULK VOLUME STORATIVITY

WM~eommmewnae FRACTIONAL STORATIVITY OF THE MATRIX TO TEE
BULK VOLUME STORATIVITY

HRATIO--~-~-THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE

XLAMMAX ====- THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY
FUNCTION

XLAMMIN=——=- THE MINIMUM LAMEDA OF THE PROBABILITY DENSITY
FUNCTION

XTAUMIN====- THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE

BLOCK EFFECTS THE PRESSURE TRANSIENT
RESPONSE--TAU=WM/ (1.781*LAMEDA)

XTAUMAX-~—-- THE APPROXIMATE TIME WHEN THE MINIMUM SIZE
BLOCK EFFECTS THE PRESSURE TRANSIENT
SD---------- THE INTERPOROSITY SKIN FACTOR
TD-=—meemmn ~DIMENSIONLESS TIME
PD-—--—-=—== DIMENSIONLESS FRACTURE PRESSURE
PDS======nn~ DIMENSIONLESS SLOPE OF PD/LN(TD) )
IN THIS PROGRAM, THIS IS NOT OUTPUT
F§emmmmmmmem THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
e INTERGERS USED IN STEFAST SUBROUTINE

PWD~--~=~=--~THE CALLABLE STEFAST SUBROUTINE

DQDAGS===== -THE CALLABLE INTEGRATION ROUTINE DESIGNED
BY IMSL

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON RD,WF ¢ WM, XLAMMAX, XLAMMIN, AR, XXUP, SD
COMMON M

OPEN (UNIT=2, FILE='PROJ.OUT’)

REWIND (UNIT=2)

OPEN (UNIT=3, FILE=’PROJS.OUT’)
REWIND (UNIT=3)

M=1

N=12

RD=1.

PRINT *, ’EXPONENTIAL DECLINE A= '
READ *, AA ‘

PRINT *, ‘FRAC. SKIN= ’

READ *, SD

PRINT *, ’LAMMIN= ’

READ. *, XLAMMIN

PRINT *, ’LAMMAX= ’

READ *, XLAMMAX

PRINT *, ’WM= ’

" READ *, WM

WEF=1.0-WM
NNN=220
TD=1.



WRITE (2,*) NNN
WRITE (3,*) NNN

C CALCULATE THE PD, PDS IN REAL TIME SPACE USING

C THE

C TEE

99
10

an000aa

anaooo0

STEFAST SUBROUTINE AND DQODAGS SUBROUTINE

DO 10 I=1,NNN
CALL PWD (TD, N, PD,PDS)

SLOPE IS TD*D(PD/TD)
PDS=TD*PDS
WRITE (2,99) TD,PD
WRITE (3,99) TD,PDS
FORMAT (2X,2F24 9)
TD=TD*1.1

CONTINUE

STOP

END

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
IS CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE
INVERTED. THIS FUNCTION IS USED TO CALCULATE THE PD
IN REAL TIME SPACE.

‘DOUBLE PRECISION FUNCTION PLAP (S)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL F

. COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AR, XXUP, SD

COMMON M - '

ERRREL=.0001

ERRABS=0.0.

XTAUMIN=WM/ (1. 781*XLAMMAX)
XTAUMAX=WM/ (1 .781*XLAMMIN)
HRATIO=DSQORT (XLAMMIN/XLAMMAX)
XLOW=DSQRT (WM*S /XLAMMAX)
XUP=DSQRT (WM*S/XLAMMIN)
XXUp=XUP

‘CALL DQDAGS(F,XLOW,XUP ERRABS, ERRREL,RESULT ERREST)

TERMﬂl/(DEXP(-AA*HRATIO)*DEXP(*AA))
S=WP+DSQRT(WM*XLAMMIN/S)*AA*TERM*RESULT

XX=RD*DSQRT (S*FS)

XXX=DSQRT (S*FS)

A=DBSKO0 (XX)

B=DBSK1 (XXX)

TOP=A

BOT=S*XXX*B

PLAP=TOP/BOT

RETURN

END .

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF o
PD/LN(TD) -IN REAL TIME SPACE.

DOUBLE PRECISION FUNCTION PLAPS (S)
IMPLICIT DOUEBLE PRECISION {A-H,0-2) -
EXTERNAL F

COMMON RD, WF, WM,XLAMMAX,XLAMMIN,AA,XXUP,SD
COMMON -M

 ERRREL=.0001
ERRABS=0.0.

XTAUMIN=WM/ (1. 781*XLAMMAX)
XTAUMAX=WM/ (1.781*XLAMMIN)
HRATIOﬂDSQRE(XLAMMIN/XLAMMAX)
XLOW=DSQRT(WM*S/XLAMMAX) S

.XUP=DSQRT(WM*S/XLAMMIN)

XXUP=XUP

'CALL DQDAGS(F XLOW,XUP ERRABS ERRREL,RESULT,BRREST)



(e XeNeXeNe!

TERM=1/ (DEXP (-AA*HRATIO) ~DEXP (-AR))
FS=WE+DSQRT (WM*XLAMMIN/S) *AR*TERM*RESULT
XX=RD*DSQRT (S*F§)

XXX=DSQRT (S*FS)

A=DBSKO0 (XX)

B=DBSK1 (XXX)

TOP=A

BOT=XXX*B

PLAPS=TOP/BOT

RETURN

END

THIS IS THE FUNCTION ASSOCIATED WITH THE SPECIFIED

'PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO

THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS

DOUBLE PRECISION FUNCTION F (X)

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AR, XXUP, SD

IMPLICIT DOUBLE PRECISION (A-H,0-2Z) ’

F=DEXP (-AA*X/XXUP) * (DTANH (X) ) / (X* (1+SD*XXUP*DTANH (X) ) )
RETURN :

END
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c EXACT LINEAR SOLUTION
p 7 _
C THIS PROGRAM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT
C INTERPOROSITY FLOW WELL TEST USING A LINEAR PROBABILITY
C DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE SPACE IS USED
C AND INVERTED VIA THE STEFEST ALGORITHYM. THE VARIABLES IN THE
C PROGRAM ARE: RO
c : -
c b ~====SLOPE OF LINEAﬁ*PﬁosABILzTY DENSITY;?UNCTION
c XB-====--———INTERCEPT OF LINEAR PROBABILITY DENSITY FUNCTION
c THIS 1S DETERMINED BY THE PROGRAM DUE TO THE
- C APPLICATION OF THE FACT THAT THE AREA MUST BE
¢ . EQUAL TO ONE
c RD-—===m —~——-DIMENSIONLESS DISTANCE FROM ACTIVE WELL
c WF--~===--=-FRACTIONAL STORATIVITY OF THE FRACTURES TO THE
c BULK VOLUME STORATIVITY
c WM-—mm e ~—FRACTIONAL STORATIVITY OF THE MATRIX TO THE
c : BULK VOLUME STORATIVITY
c HRATIO-~==== THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE
C  XLAMMAX-----THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY
c FUNCTION
c XLAMMIN=-=—=m THE MINIMUM LAMBEDA OF THE PROBABILITY DENSITY
c FUNCTION ,
c XTAUMIN-==== THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE
c BLOCK EFFECTS THE PRESSURE TRANSIENT
- c RESPONSE--TAU=WM/ (1.781*LAMEDA)
c  XTAUMAX===== THE APPROXIMATE TIME WHEN THE MINIMUM SIZE
c . BLOCK EFFECTS THE PRESSURE TRANSIENT
c S o THE INTERPOROSITY SKIN FACTOR
- c
C  TD----—- ~---DIMENSIONLESS TIME
c PD-—-—-—===--DIMENSIONLESS FRACTURE PRESSURE
c PDS-=-===~=~DIMENSIONLESS SLOPE OF PD/LN(TD) :
. c IN THIS PROGRAM, THIS IS NOT OUTPUT
c FS=—=mmn ~—--THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
c
c M, N-=—====—-INTERGERS USED IN STEFAST SUBROUTINE
C . .
C  PWD=~--=----THE CALLABLE STEFAST SUBROUTINE
c DQDAGS—-----THE CALLABLE INTEGRATION ROUTINE DESIGNED
c BY IMSL
c
c
Ne
c
C  THIS PROGRAM CALCULATES THE LAPLACE. Invznsxons TO THE
'€  DOUBLE-POROSITY MODEL.

IMPLICIT DOUBLE PRECISION (A-H O-Z) .
COMMON RD, WF, WM,XLAMMAX,XLAMMIN,SD XXUP XM, XB, HRATIO
.COMMON M
OPEN (UNIT=2, FILE='’PROJ. OUT')“
REWIND (UNIT=2)
OPEN (UNIT=3, FILE='PROJS OuUT’)
REWIND(UNIT=3)
- M=1
N=12 L
PRINT *, 'RD= '
READ *, RD- . o B
PRINT *, ‘FRAC. SKIN= .
READ *' SD T
" PRINT *, ’‘SLOPE= '
READ *, XM ,
PRINT *, ‘LAMMIN= *
READ *, XLAMMIN o

%~



PRINT *, ’HRATIO= *
READ *, HRATIO
PRINT *, ‘WM= ’
READ *, WM
WF=1.0-WM :
XLAMMAX=XLAMMIN/ (HRATIO**2)
XB= (1-.5%XM+ . 5*XM* (KRATIO**2)) / (1-HRATIO)
FHRAT=XM*HRATIO+XB ,
FONE=XM+XB : .
PRINT *, CORR. FOR AREA ’,’FHRAT= !,FHRAT,’Fl=.’,FONE,’M= ', XM
PRINT *, ’ LAMMIN= ’, XLAMMIN, * = !, XLAMMAX
NNN=220 .
D=1,
WRITE (2,*) NNN
WRITE (3,*%*) NNN
C CALCULATE THE PD, PDS IN REAL TIME SPACE USING THE
C STEFAST SUBROUTINE AND DQDAGS SUBROUTINE
DO 10 I=1,NNN ‘
‘CALL PWD(TD,N,PD,PDS)
C THE SLOPE IS TD*D(PD/TD)
PDS=TD*PDS
IF (PDS.LT..0001) PDS = .0001
IF (PD.LT..0001) PD = ,0001°
WRITE (2,99) TD,PD '
WRITE (3,99) TD,PDS

99 FORMAT (2X%,2F24.9)
TD=TD*1.1
10 CONTINUE
STOP
END

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED.
THIS FUNCTION IS USED TO CALCULATE THE PD IN REAL
TIME SPACE.

000000

DOUBLE PRECISION FUNCTION PLAP (S)
IMPLICIT DOUELE PRECISION (A-H,0-2)
EXTERNAL F

COMMON RD, WF, WM,XLAMMAX,XLAMMIN,SD xxup XM, XB, HRATIO
COMMON M

ERRREL=, 00001

ERRABS=0.0

XTAUMIN=WM/ (1.781*XLAMMAX)
XTAUMAX=WM/ (1.781*XLAMMIN)
HRATIO=DSQRT (XLAMMIN/XLAMMAX)
XLOW=DSQORT (WM*S/XLAMMAX)
XUP=DSQRT (WM*S /XLAMMIN)

XXUP=XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS=WF+ (WM/XXUP) *RESULT

XX=RD*DSQRT (S*FS)

XXX=DSQRT (S*FS) *

A=DBSKO0 (XX)

B=DBSK1 (XXX)

TOP=A '

BOT=S*XXX*B

PLAP=TOP/BOT

RETURN

END

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED.
THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF
PD/LN(TD) IN REAL TIME.SPACE.

(eXeNeNeNe Ko
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DOUBLE PRECISION FUNCTION PLAPS (S)

IMPLICIT DOUBLE PRECISION (A-H,O0-2)

EXTERNAL F

COMMON RD, W , WM, XLAMMAX, XLAMMIN, SD, XXUP , XM, XB, HRATIO
COMMON M

ERRREL=., 0001

ERRABS=0.0 ;
XTAUMIN=WM/ (1. 781*XLAMMAX)
XTAUMAX=WM/ (1.781*XLAMMIN) -

ERATIO=DSQRT (XLAMMIN/XLAMMAX)

XLOW=DSQRT (WM*S /XLAMMAX) S

XUP=DSQRT (WM*S/XLAMMIN) ~ { . .

XXUP=XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS , ERRREL, RESULT, ERREST)
FS=WE+ (WM/XXUP) *RESULT

XX=RD*DSQRT (S*FS)

XXX=DSQRT (S*FS)

2=DBSKO (XX)

B=DBSK1 (XXX)

TOP=A .

BOT=XXX*B

PLAPS=TOP/BOT

RETURN

END

TR
2oy

THIS IS THE FUNCTION ASSOCIATED WITH THE SPECIFIED

PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT mo e

THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS.

DOUBLE PRECISION FUNCTION F(X)

IMPLICIT DOUBLE PRECISION {(A-H,0-2)

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP XM,XB HRATIO
F=((XM/XXUP)+XB/X)*DTANH(X)/(1+SD*XXUP*DTANH(X))
RETURN

END



THIS PROGRAM CALCULATES THE LAPLACE INVERSIONS TO THE

" DOUBLE-POROSITY MODEL TO CREATE A DRAWDOWN TYPE CURVE.

THE LATE TIME RESPONSE IS SUBTRACTED FROM PDW. THIS
DELTA P 1S CALCULATED VS. TD/TAUMAX.

anaoaa

99

10 .

IMPLICIT DOUBLE PRECISION (A-H,0-2)

EXTERNAL F

COMMON RD, WF, WM,XLAMMAX,XLAMMIN,SD XXUp, XM,XB,HRAIIO
COMMON M

OPEN (UNIT=2,FILE='PROJ. ouT’)

REWIND (UNIT=2)

M=1

N=12

PRINT *, ’RD= '

READ *, RD

PRINT *, ‘FRAC. SKIN= '/
READ *, SD

PRINT *, ’SLOPE= '/

READ *, XM

PRINT *, 'HRATIO= ’
READ *, HRATIO
PRINT *, ’LAMMIN= '
READ *, XLAMMIN
PRINT *, ‘WM= '
READ *, WM
WF=1l,0-WM
XLAMMAX=XLAMMIN/ (HRATIO**2)
XB=(1-.5%XM+. S*XM*(HRATIO**Z))/(I-HRATIO)
FHRAT=XM*HRATIO+XB
FONE=XM+XB
PRINT *, ‘LAMMIN= ‘/, XLAMMIN,’LAMMAX= ', XLAMMAX
PRINT *, ‘FHRAT= ’,FHRAT,’Fl= ’,FONE,'M= ', XM
XTAUMIN=WM/ (1.781*XLAMMAX)
XTAUMAX=WM/ (1.781*XLAMMIN) .
PRINT *, ’TAUMAX= ‘,XTAUMAX
NNN=280
TD=1.
WRITE (2,*) NNN
DO 10 I=1,NNN
CALL PWD (TD,N,PD,PDS)
PD=PD-.5* (DLOG (TD/ (RD**2) ) +.80907)
TDTAU=TD/XTAUMAX
IF(PD.LT..0001) PD = ,0001
IF (TDTAU.LT.1E-9) TDTAU=1E-9
WRITE (2,99) TDTAU,PD
FORMAT (2X,2F24.9)
TD=TD*1.1
CONTINUE
STOP
END

DOUBLE PRECISION FUNCTION PLAP(S)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL F
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M :
- ERRREL=.00001
ERRABS=0.0
XLOW=HRATIO*DSQRT (WM*S/XLAMMIN)
XUP=DSQRT (WM*S/XLAMMIN)
XXUP=XUP
CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS=WF+ (WM/XXUP) *RESULT
XX=RD*DSQRT (S*FS) .
XXX=DSQORT (S*FS)



" A=DBSKO (XX)
B=DBSK1 (XXX) .
TOP=A
8 BOT=S*XXX*B
PLAP=TOP/BOT
RETURN
" “END : o R
c ~ r——-
: DOUBLE PRECISION FUNCTION F(X) =
®* - IMPLICIT DOUBLE PRECISION (A-H,0-2) :
' COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
'1F=((XM/XXUP)+XB/X)*DTANH(X)/(1+SD*XXUP*DTANH(X)),‘
o . . RETURN
- . END




EXACT LINEAR SOLUTION

FOR INTERFERENCE WELL TESTS

THIS PROGRAM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT
INTERPOROSITY FLOW INTERFERENCE WELL TEST USING A LINEAR

"PROBABILITY DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE

SPACE IS USED AND INVERTED VIA THE STEFEST ALGORITHYM. THE
PROGRAM DOES ASSUME THE FORM OF THE LINE SOURCE SOLUTION IS VALID.

‘THE
VARIABLES IN THE PROGRAM ARE:
XMom e ——— SLOPE OF THE LINEAR PROBABILITY DENSITY
FUNCTION .
XBewm——— ~=~==INTERCEPT OF THE LINEAR PROBABILITY DENSITY

FUNCTION. THIS IS CALCULATED BY THE PROGRAM
AND IT DETERMINED FROM THE FACT THAT THE
AREA OF A PROBABILITY DENSITY FUNCTION MUST
BE EQUAL TO ONE.

RD--======~~DIMENSIONLESS DISTANCE FROM ACTIVE WELL

WEeee——— ~===FRACTIONAL STORATIVITY OF THE FRACTURES TO THE
BULK VOLUME STORATIVITY
WM———— -=e==FRECTIONAL STORATIVITY OF THE MATRIX TO THE

BULK VOLUME STORATIVITY
HERATIO=-=---=--THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE

XLAMMAX ==~ === THE MAXIMUM LAMEDA OF THE PROBABILITY DENSITY
FUNCTION

XLAMMIN=-~-~-THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY
FUNCTION

XTAUMIN=--~-==THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE
BLOCK EFFECTS THE PRESSURE TRANSIENT
RESPONSE--TAU=WM/ (1.781*LAMBDA)

XTAUMAX = ===~ THE APPROXIMATE TIME WHEN THE MINIMUM SIZE

BLOCK EFFECTS THE PRESSURE TRANSIENT
THETA~==~=w=- CORRELATION PARAMETER (THETA=LAMBDA*RD**2)
SD--wwemn——— THE INTERPOROSITY SKIN FACTOR
TDm=—mm————— DIMENSIONLESS TIME
TDRD~===~=== DIMENSIONLESS TIME, INCLUDES RD**2 TERM

(I.E. TDRD=TD/RD**2)

PD-=====—eme DIMENSIONLESS FRACTURE PRESSURE
PDS========= DIMENSIONLESS SLOPE OF PD/LN(TD)

IN THIS PROGRAM, THIS IS NOT OUTPUT
FS—=—=——m—eea THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
M,Newecmeaa- INTERGERS USED IN STEFAST SUBROUTINE
PWD=====~=== THE CALLABLE STEFAST SUBROUTINE
DODAGS===~==- THE CALLABLE INTEGRATION ROUTINE DESIGNED

BY IMSL

OOOOOOOOOOOOQOOOOOOOOOOOOOOOOQOOO(’SOOOOOOOOOOOOOOOOOOOOO

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M

OPEN (UNIT=2,FILE=’PROJ. OUT’)
REWIND(UNIT=2)

OPEN (UNIT=3, FILE=' PROJS.OUT’)
REWIND (UNIT=3)

M=l

N=12

PRINT *, 'FRAC. SKIN= '

READ *, SD :



f.)

PRINT *, ‘RD= /
READ *, RD

PRINT *, ’"SLOPE= '
READ *, XM

PRINT *, ‘THETA= '
READ *, THETA
PRINT - f HRATIO= '
READ *, HRATIO
PRINT *, 'WM= '/
READ *, WM
WE=1l.0~WM

-

x.s

XLAMMIN=THETA/ (RD**2)

XLAMMAX=XLAMMIN/ (KRATIO**2)

PRINT *, ’LAMMIN= ’, XLAMMIN, ' = !, XLAMMAX

XB=(1l-. S*XM+ S*XM*(HRATIO**2))/(I-HRATIO)

FHRAT=XM*HRATIO+XB

FONE=XM+XB

PRINT *, ‘CORR. FOR AREA ’,’FHRAT= ’,FHRAT,’Fl= ’,FONE,'M= ', XM
 NNN=220"

TD=1.

WRITE (2,*) NNN
WRITE (3,*) NNN

C CALCULATE THE PD, PDS IN REAL TIME SPACE USING THE
C STEFAST SUBROUTINE AND DQDAGS SUBROUTINE.

DO 10 I=1,NNN
CALL PWD (TD, N, PD, PDS)

C THE SLOPE I8 TD*D(PD/TD)

99

. 10

naooan’

PDS=TD*PDS ~ _

IF (PDS.LT..0001) PDS = .0001
IF(PD.LT..0001) PD = .0001
IF(TD.LT.1E-9) TD=1E-9 '
TDRD=TD/ (RD**2)
WRITE (2,99) TDRD,PD
WRITE (3,99) TDRD,PDS
FORMAT (2X,2F24.9)«—
TD=TD*1.1

CONTINUE

STOP

END

THIS‘FUNCTION_IS CALLED BY THE STEFAST SUBROUTINE AND
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED.
THIS FUNCTION IS USED TO CALCULATE THE PD. IN REAL TIME
SPACE.

DOUBLE PRECISION FUNCTION‘PLAP(S)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL F

- .COMMON RD,WF, WM,XLAMMAX,XLAMMIN,SD,XXUP xu,xs,anar:o
CCOMMON'M - - -
. ERRREL=,00001

"ERRABS=0.0

~XTAUMIN=WM/ (1.781*XLAMMAX)

XTAUMAX=WM/ (1.781*XLAMMIN)

‘ XUP=DSQRT(WM*S/XLAMMIN)
“XLOW=HRATIO*XUP g

XXUp=XUP
CALL DQDAGS (F, XLOW,XUP ERRABS, ERRREL,RESULT,ERREST)

“;FS=WF+(WM/xXUP)*RESULT_

. XX=RD*DSQRT (S*FS)

jxxx=nsonxgs*95)'
A=DBSKO (XX) .

-DBSKl(XXX)
TOP=A :
VBOT=S*XXX*B
PLAP=TOP/BOT
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RETURN
END ’

THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
TH1IS FUNCTION IS USED TO CALCULATE THE SLOPE OF
PD/LN(TD) IN REAL TIME SPACE.

DOUBLE PRECISION FUNCTION PLAPS (S)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

EXTERNAL F -

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M

ERRREL=,0001

ERRABS=0.0 :

XTAUMIN=WM/ (1.781*XLAMMAX)

XTRUMAX=WM/ (1.781*XLAMMIN)
XUP=DSQRT (WM*S /XLAMMIN)

XLOW=HRATIO*XUP '

XXUp=XUP :
CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS=WF+ (WM/XXUP) *RESULT

XX=RD*DSQRT (S*FS)

XXX=DSQRT (S*FS)

A=DBSKO (XX)

B=DBSK1 (XXX)

TOP=A

BOT=XXX*B

PLAPS=TOP/BOT

RETURN

END

THIS IS THE FUNCTION ASSOCIATED WITH THE SPECIFIED
PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO
THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS. .

DOUBLE PRECISION FUNCTION F (X)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
F= ( (XM/XXUP) +XB/X) *DTANH (X) / (1+SD*XXUP *DTANH (X) )
RETURN

END
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THE STEHFEST ALGORITHM
*'**************************** .

SUBROUTINE PWD (TD,N,PD,PDS)
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
: INVERSE OF F(S).
IMPLICIT DOUBLE PRECISION (A-H O-Z)
DIMENSION G(50),V(50),H(25):-
COMMON. RD, WF,WM,XLAMMAX,XLAMMIN AA,XXUP SD
COMMON M

'NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
F(S).
IF (N.EQ.M) GO TO 17
M=N
DLOGTW=0 6931471805599
NH=N/2.

THE FACTORIARLS OF: 1 TO N ARE CALCULATED INTO ARRAY G.
G(1)=1

DO 1 I=2,N

G(I)=G(I 1)*I

- CONTINUE .

TERMS WITH K ONLY ARE CALCULATED INTO BARRAY H.

BE(1)=2,/G(NHE-1)
DO 6 I=2,NH

FI=I - ' o :

IF (I~-NH) 4 5, 6 - :

H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I 1))

GO TO 6

H(I)=FI**NB*G(2*I)/(G(I)*G(I-l))
CONTINUE )

THE TERMS (-1)**NH+1 ARE CRLCULATED.
FIRST THE TERM FOR I=1l
SN=2* (NE-NE/2*2) -1

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE.

" THE . ARRARY V(I) s CALCULATED.,

'_bo 7 1=1,N.

FIRST SET V(I)=0
V{I)=0. :

PHE LIMITS FOR K. ARE ESTABLISHBD.:,'xx‘
THE LOWER LIMIT . IS Kl=INTEG((I+1/2))

11_f'\k1=(1+1)/2

THE- UPPER LIMIT IS K2=MIN(I N/2)
(R2=T
‘IF (KZ-NH) 8 8 9
K2=NH =

, THE SUMMATION TERM IN V(I) Is CALCULATED.,
;;Do 10 K=K1,K2. S
VIR (2%K-T) 12,13, 12 _

S IR (I=KY 1Y 14 11
‘.V(I)=V(I)+H(K)/(G(I-K)*G(Z*K—I))

- GO TO 10
;wV(I)=V(I)+H(K)/G(I-K)

GO TO 10.

- *fV(I)=V(I)+H(K)/G(z*x—I)
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CONTINUE

THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.
V(I)=SN*V({I) -

THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN '
CONTINUE

THE NUMERICAL APPROXIMATION IS CALCULATED.
A=DLOGTW/T
PD=0 ‘
PDS=0
DO 15 I=1,N
ARG=A*1
PD=PD+V (I) *PLAP (ARG)
PDS=PDS+V (I) *PLAPS (ARG)
CONTINUE
PD=PD*A
PDS=PDS*A
RETURN

" END
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